Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks
April, 2021
External Course
April, 2021
External Course
2013
External Course
The starting point of theories of probabilistic causation is that causes raise the probabilities of their effects; however the road to a satisfactory account of the relationship between causes and probabilisties has proven to be long and fraught with dificulties. This work offers a survey of the main problems and solutions emerged in about thirty years of research, and points to some metaphysical problems that are still object of philosophical debate.
2016
Judea Pearl - Computer Science and Statistics, University of California, Los Angeles, USA
Madelyn Glymour - Philosophy, Carnegie Mellon University, Pittsburgh, USA
Nicholas P. Jewell - Biostatistics and Statistics, University of California, Berkeley, USA
Preface
2020
Miquel Hernan and Jamie Robins
The book is divided in three parts of increasing difficulty:
Part I is about causal inference without models (i.e., nonparametric identification of causal effects),
Part II is about causal inference with models (i.e., estimation of causal effects with parametric models).
Part III is about causal inference from complex longitudinal data (i.e., estimation of causal effects of time-varying treatments).