Adaptive Learning and
Mining for Data Streams
and Frequent Patterns

Doctoral Thesis presented to the
Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
by
Albert Bifet

April 2009

Revised version with minor revisions.

Advisors: Ricard Gavalda and José L. Balcazar

Abstract

This thesis is devoted to the design of data mining algorithms for evolving
data streams and for the extraction of closed frequent trees. First, we deal
with each of these tasks separately, and then we deal with them together,
developing classification methods for data streams containing items that
are trees.

In the data stream model, data arrive at high speed, and the algorithms
that must process them have very strict constraints of space and time. In
the first part of this thesis we propose and illustrate a framework for devel-
oping algorithms that can adaptively learn from data streams that change
over time. Our methods are based on using change detectors and estima-
tor modules at the right places. We propose an adaptive sliding window
algorithm ADWIN for detecting change and keeping updated statistics from
a data stream, and use it as a black-box in place or counters or accumula-
tors in algorithms initially not designed for drifting data. Since ADWIN has
rigorous performance guarantees, this opens the possibility of extending
such guarantees to learning and mining algorithms. We test our method-
ology with several learning methods as Naive Bayes, clustering, decision
trees and ensemble methods. We build an experimental framework for data
stream mining with concept drift, based on the MOA framework, similar
to WEKA, so that it will be easy for researchers to run experimental data
stream benchmarks.

Trees are connected acyclic graphs and they are studied as link-based
structures in many cases. In the second part of this thesis, we describe a
rather formal study of trees from the point of view of closure-based min-
ing. Moreover, we present efficient algorithms for subtree testing and for
mining ordered and unordered frequent closed trees. We include an analy-
sis of the extraction of association rules of full confidence out of the closed
sets of trees, and we have found there an interesting phenomenon: rules
whose propositional counterpart is nontrivial are, however, always implic-
itly true in trees due to the peculiar combinatorics of the structures.

And finally, using these results on evolving data streams mining and
closed frequent tree mining, we present high performance algorithms for
mining closed unlabeled rooted trees adaptively from data streams that
change over time. We introduce a general methodology to identify closed
patterns in a data stream, using Galois Lattice Theory. Using this method-
ology, we then develop an incremental one, a sliding-window based one,
and finally one that mines closed trees adaptively from data streams. We
use these methods to develop classification methods for tree data streams.

Acknowledgments

I'am extremely grateful to my advisors, Ricard Gavalda and José L. Balcazar.
They have been great role models as researchers, mentors, and friends.
Ricard provided me with the ideal environment to work, his valuable and
enjoyable time, and his wisdom. I admire him deeply for his way to ask
questions, and his silent sapience. I learnt from him that less may be more.

José L. has been always motivating me for going further and further.
His enthusiasm, dedication, and impressive depth of knowledge has been
of great inspiration to me. He is a man of genius and I learnt from him to
focus and spend time on important things.

I would like to thank Antoni Lozano for his support and friendship.
Without him, this thesis could not have been possible. Also, I would like to
thank Victor Dalmau, for introducing me to research, and Jorge Castro for
showing me the beauty of high motivating objectives.

I am also greatly indebted with Geoff Holmes and Bernhard Pfahringer
for the pleasure of collaborating with them and for encouraging me, the
very promising work on MOA stream mining. And Jodo Gama, for in-
troducing and teaching me new and astonishing aspects of mining data
streams.

I thank all my coauthors, Carlos Castillo, Paul Chirita, Ingmar Weber,
Manuel Baena, José del Campo, Ratl Fidalgo, Rafael Morales, and Richard
Kirkby for their help and collaboration. I want to thank my former office-
mates at LSI for their support : Marc Comas, Bernat Gel, Carlos Mérida,
David Cabanillas, Carlos Arizmendi, Mario Fadda, Ignacio Barrio, Felix
Castro, Ivan Olier, and Josep Pujol.

Most of all, I am grateful to my family.

Contents

I Introduction and Preliminaries

1 Introduction

DataMining
Data streammining
Frequent tree pattern mining
Contributions of this thesis
Overview of thisthesis

II

1.1
1.2
1.3
14
1.5

1.6

1.5.1

Preliminaries
2.1 Classification and Clustering

2.2

23
24

2.5

2.1.1
212
2.1.3

NaiveBayes
DecisionTrees
k-means clustering

Change Detection and Value Estimation

221
222

Change Detection
Estimation

Frequent Pattern Mining
Mining data streams: state of theart

24.1
242
243

Sliding Windows in data streams
Classification in data streams
Clustering in data streams

Frequent pattern mining: state of theart

251
252
253

CMTreeMiner
DRYADEPARENT
Streaming Pattern Mining,

Evolving Data Stream Learning

Mining Evolving Data Streams
Introduction o Lo Lo

3.1

3.2

3.1.1

Theoretical approaches

Algorithms for mining withchange

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

FLORA: Widmerand Kubat
Suport Vector Machines: Klinkenberg
OLIN:Last. i i i e
CVEDT: Domingos
UFFT:Gama,

15
15
16
16
17
17
18
20
23
24
25
25
28
28
30
31
31

33

CONTENTS

3.3 A Methodology for Adaptive Stream Mining

3.3.1 Time Change Detectors and Predictors: A General
Framework

3.3.2 Window Management Models
3.4 Optimal Change Detector and Predictor
3.5 Experimental Setting
3.5.1 Concept Drift Framework
3.5.2 Datasets for conceptdrift
3.5.3 MOA Experimental Framework

Adaptive Sliding Windows

41 Introduction

4.2 Maintaining Updated Windows of Varying Length
421 Setting
422 Firstalgorithm: ADWINO
423 ADWINO for Poisson processes
424 Improving time and memory requirements

43 Experimental Validation of ADWIN

4.4 Example 1: Incremental Naive Bayes Predictor
441 Experiments on SyntheticData
442 Real-world data experiments

4.5 Example 2: Incremental k-means Clustering
451 Experiments

4.6 K-ADWIN =ADWIN + Kalman Filtering
4.6.1 Experimental Validation of K-ADWIN
4.6.2 Example 1: Naive Bayes Predictor
4.6.3 Example 2: k-means Clustering
464 K-ADWIN Experimental Validation Conclusions

4.7 Time and Memory Requirements

Decision Trees

51 Introduction

5.2 Decision Trees on Sliding Windows
52.1 HWT-ADWIN : Hoeffding Window Tree using ADWIN
522 CVEDT

5.3 Hoeffding Adaptive Trees
5.3.1 Example of performance Guarantee
532 Memory Complexity Analysis

54 Experimental evaluation

55 Timeandmemory.

vi

55
55
56
56
56
61
62
66
74
76
77
80
81
81
83
85
85
86
88

CONTENTS

6 Ensemble Methods 107
6.1 Baggingand Boosting 107
6.2 New method of Bagging using trees of different size 108
6.3 New method of Bagging using ADWIN 111
6.4 Adaptive Hoeffding Option Trees 111
6.5 Comparative Experimental Evaluation 111

III Closed Frequent Tree Mining 117

7 Mining Frequent Closed Rooted Trees 119
71 Introduction 119
7.2 Basic Algorithmics and Mathematical Properties 120

721 Number ofsubtrees 121
7.2.2 Finding the intersection of trees recursively 122
7.2.3 Finding the intersection by dynamic programming . 124
7.3 Closure OperatoronTrees 125
73.1 Galois Connection 127
74 Level Representations 129
74.1 Subtree Testing in Ordered Trees 132
7.5 Mining Frequent Ordered Trees 133
7.6 Unordered Subtrees 134
7.6.1 Subtree Testing in Unordered Trees 135
7.6.2 Mining frequent closed subtrees in the unordered case 135
7.6.3 Closure-based mining 138
7.7 Induced subtrees and Labeled trees 139
771 Inducedsubtrees 139
772 Labeledtrees 140
7.8 Applications o o o o 140
7.8.1 Datasets for mining closed frequent trees 140
7.8.2 Intersection set cardinality 142
783 Unlabeledtrees 143
784 Labeledtrees 147

8 Mining Implications from Lattices of Closed Trees 155
81 Introduction 155
8.2 Itemsets associationrules 157

8.2.1 C(lassical Propositional Horn Logic 158
8.3 AssociationRules o0 oL 160
8.4 On Finding Implicit Rules for Subtrees 162
8.5 Experimental Validation 168

vii

CONTENTS

IV Evolving Tree Data Stream Mining

9 Mining Adaptively Frequent Closed Rooted Trees
91 Relaxedsupport.
9.2 Closure Operator on Patterns
9.3 Closed Pattern Mining
9.3.1 Incremental Closed Pattern Mining
9.3.2 Closed pattern mining over a sliding window
94 Adding ConceptDrift
9.4.1 Concept drift closed pattern mining
9.5 Closed Tree Mining Application.
9.5.1 Incremental Closed Tree Mining
9.6 Experimental Evaluation
10 Adaptive XML Tree Classification
10.1 Introduction
10.2 Classification using Compressed Frequent Patterns
10.2.1 Closed Frequent Patterns
10.2.2 Maximal Frequent Patterns
10.3 XML Tree Classification framework on data streams
10.3.1 Adaptive Tree Mining on evolving data
streams.00,
10.4 Experimental evaluation
10.4.1 Closed Frequent Tree Labeled Mining
10.4.2 Tree Classification
V Conclusions
11 Conclusions and Future Work
11.1 SummaryofResults.
11.2 FutureWork
11.2.1 Mining Implications of Closed Trees Adaptively . . .
11.2.2 General Characterization of Implicit Rules .
Bibliography

viii

171

173
173
174
176
177
178
178
178
179
179
180

185
185
187
189
189
190

191
192
193
195

199

201
201
203
203
204

205

Part 1

Introduction and Preliminaries

Introduction

In today’s information society, extraction of knowledge is becoming a very
important task for many people. We live in an age of knowledge revo-
lution. Peter Drucker [Dru92], an influential management expert, writes
“From now on, the key is knowledge. The world is not becoming labor
intensive, not material intensive, not energy intensive, but knowledge in-
tensive”. This knowledge revolution is based in an economic change from
adding value by producing things which is, ultimately limited, to adding
value by creating and using knowledge which can grow indefinitely.

The digital universe in 2007 was estimated in [GRC08] to be 281 ex-
abytes or 281 billion gigabytes, and by 2011, the digital universe will be 10
times the size it was 5 years before. The amount of information created, or
captured exceeded available storage for the first time in 2007.

To deal with these huge amount of data in a responsible way, green
computing is becoming a necessity. Green computing is the study and prac-
tice of using computing resources efficiently. A main approach to green
computing is based on algorithmic efficiency. The amount of computer
resources required for any given computing function depends on the effi-
ciency of the algorithms used. As the cost of hardware has declined rela-
tive to the cost of energy, the energy efficiency and environmental impact
of computing systems and programs are receiving increased attention.

1.1 Data Mining

Data mining (DM) [HK06, HMS01, WF05, MRO05, BL99, BL04, LB01], also
called Knowledge Discovery in Databases (KDD) has been defined as “the
nontrivial extraction of implicit, previously unknown, and potentially use-
ful information from data” and “the science of extracting useful informa-
tion from large data sets or databases”. Data mining is a complex topic and
has links with multiple core fields such as statistics [HTF01], information
retrieval [BYRN99, Cha02a, LB01], machine learning [Lan95, Mit97] and
pattern recognition [DHS00, PM04].

Data mining uses tools such as classification, association rule mining,
clustering, etc. Data is generated and collected from many sources: sci-

3

CHAPTER 1. INTRODUCTION

entific data, financial data, marketing data, medical data, demographical
data, etc. Nowadays, we are also overwhelmed by data generated by com-
puters and machines: Internet routers, sensors, agents, webservers and the
grid are some examples.

The most important challenges in data mining [Luc08] belong to one of
the following:

Challenges due to the size of data Data is generated and collected perma-
nently, so its volume is becoming very large. Traditional methods
assume that we can store all data in memory and there is no time lim-
itation. With massive data, we have space and time restrictions. An
important fact is that data is evolving over time, so we need meth-
ods that adapt automatically, without the need to restart from scratch
every time a change on the data is detected.

Challenges due to the complexity of data types Nowadays, we deal with
complex types of data: XML trees, DNA sequences, GPS temporal
and spatial information. New techniques are needed to manage such
complex types of data.

Challenges due to user interaction The mining process is a complex task,
and is not easily understandable by all kind of users. The user needs
to interact with the mining process, asking queries, and understand-
ing the results of these queries. Not all users have the same back-
ground knowledge of the data mining process, so the challenge is to
guide people through most of this discovery process.

In this thesis, we deal with two problems of data mining that relate to
the first and second challenges :

e Mining evolving massive data streams

e Mining closed frequent tree patterns

In the last part of this thesis, we focus on mining massive and evolving
tree datasets, combining these two problems at the same time.

1.2 Data stream mining

Digital data in many organizations can grow without limit at a high rate of
millions of data items per day. Every day WalMart records 20 million trans-
actions, Google [BCCWO05] handles 100 million searches, and AT&T pro-
duces 275 million call records. Several applications naturally generate data
streams: financial tickers, performance measurements in network monitor-
ing and traffic management, log records or click-streams in web tracking

4

1.2. DATA STREAM MINING

and personalization, manufacturing processes, data feeds from sensor ap-
plications, call detail records in telecommunications, email messages, and
others.

The main challenge is that ‘data-intensive’ mining is constrained by lim-
ited resources of time, memory, and sample size. Data mining has tradition-
ally been performed over static datasets, where data mining algorithms can
afford to read the input data several times. When the source of data items
is an open-ended data stream, not all data can be loaded into the memory
and off-line mining with a fixed size dataset is no longer technically feasible
due to the unique features of streaming data.

The following constraints apply in the Data Stream model:

1. The amount of data that has arrived and will arrive in the future is
extremely large; in fact, the sequence is potentially infinite. Thus, it
is impossible to store it all. Only a small summary can be computed
and stored, and the rest of the information is thrown away. Even if
the information could be all stored, it would be unfeasible to go over
it for further processing.

2. The speed of arrival is large, so that each particular element has to be
processed essentially in real time, and then discarded.

3. The distribution generating the items can change over time. Thus,
data from the past may become irrelevant (or even harmful) for the
current summary.

Constraints 1 and 2 limit the amount of memory and time-per-item that
the streaming algorithm can use. Intense research on the algorithmics of
Data Streams has produced a large body of techniques for computing fun-
damental functions with low memory and time-per-item, usually in com-
bination with the sliding-window technique discussed next.

Constraint 3, the need to adapt to time changes, has been also intensely
studied. A typical approach for dealing is based on the use of so-called
sliding windows: The algorithm keeps a window of size W containing the
last W data items that have arrived (say, in the last W time steps). When a
new item arrives, the oldest element in the window is deleted to make place
for it. The summary of the Data Stream is at every moment computed or
rebuilt from the data in the window only. If W is of moderate size, this
essentially takes care of the requirement to use low memory.

In most cases, the quantity W is assumed to be externally defined, and
fixed through the execution of the algorithm. The underlying hypothesis is
that the user can guess W so that the distribution of the data can be thought
to be essentially constant in most intervals of size W that is, the distribution
changes smoothly at a rate that is small w.r.t. W, or it can change drastically
from time to time, but the time between two drastic changes is often much
greater than W.

CHAPTER 1. INTRODUCTION

Unfortunately, in most of the cases the user does not know in advance
what the rate of change is going to be, so its choice of W is unlikely to be
optimal. Not only that, the rate of change can itself vary over time, so the
optimal W may itself vary over time.

1.3 Frequent tree pattern mining

Tree-structured representations are a main key idea pervading all of Com-
puter Science; many link-based structures may be studied formally by means
of trees. From the B+ indices that make our commercial Database Manage-
ment Systems useful, through search-tree or heap data structures or Tree
Automata, up to the decision tree structures in Artificial Intelligence and
Decision Theory, or the parsing structures in Compiler Design, in Natu-
ral Language Processing, or in the now-ubiquitous XML, they often repre-
sent an optimal compromise between the conceptual simplicity and pro-
cessing efficiency of strings and the harder but much richer knowledge
representations based on graphs. Accordingly, a wealth of variations of
the basic notions, both of the structures themselves (binary, bounded-rank,
unranked, ordered, unordered) or of their relationships (like induced or
embedded top-down or bottom-up subtree relations) have been proposed
for study and motivated applications. In particular, mining frequent trees
is becoming an important task, with broad applications including chemical
informatics [HAKU*08], computer vision [LG99], text retrieval [WIZDO04],
bioinformatics [SWZ04] [HIWZ95], and Web analysis [Cha02b] [Zak02].
Some applications of frequent tree mining are the following [CMNKO01]:

¢ Gaining general information of data sources

Directly using the discovered frequent substructures

Constraint based mining

Association rule mining

Classification and clustering

Helping standard database indexing and access methods design

Tree mining as a step towards efficient graph mining

For example, association rules using web log data may give useful in-
formation [CMNKO1]. An association rule that an online bookstore may
find interesting is “According to the web logs, 90% visitors to the web page
for book A visited the customer evaluation section, the book description
section, and the table of contents of the book (which is a subsection of the

6

1.3. FREQUENT TREE PATTERN MINING

book description section).” Such an association rule can provide the book-
store with insights that can help improve the web site design.

Closure-based mining on purely relational data, that is, itemset mining,
is by now well-established, and there are interesting algorithmic develop-
ments. Sharing some of the attractive features of frequency-based summa-
rization of subsets, it offers an alternative view with several advantages;
among them, there are the facts that, first, by imposing closure, the num-
ber of frequent sets is heavily reduced and, second, the possibility appears
of developing a mathematical foundation that connects closure-based min-
ing with lattice-theoretic approaches such as Formal Concept Analysis. A
downside, however, is that, at the time of influencing the practice of Data
Mining, their conceptual sophistication is higher than that of frequent sets,
which are, therefore, preferred often by non-experts. Thus, there have been
subsequent efforts in moving towards closure-based mining on structured
data.

Trees are connected acyclic graphs, rooted trees are trees with a vertex
singled out as the root, n-ary trees are trees for which each node which is not
a leaf has at most n children, and unranked trees are trees with unbounded
arity.

We say that t1,. .., tx are the components of tree t if t is made of a node
(the root) joined to the roots of all the t;’s. We can distinguish betweeen the
cases where the components at each node form a sequence (ordered trees)
or just a multiset (unordered trees). For example, the following two trees are
two different ordered trees, but they are the same unordered tree.

_—y

In this thesis, we will deal with rooted, unranked trees. Most of the
time, we will not assume the presence of labels on the nodes, however in
some sections we will deal with labeled trees. The contributions of this
thesis mainly concern on unlabeled trees.

An induced subtree of a tree t is any connected subgraph rooted at some
node v of t that its vertices and edges are subsets of those of t. An embed-
ded subtree of a tree t is any connected subgraph rooted at some node v of
t that does not break the ancestor-descendant relationship among the ver-
tices of t. We are interested in induced subtrees. Formally, let s be a rooted
tree with vertex set V' and edge set E/, and t a rooted tree t with vertex
set V and edge set E. Tree s is an induced subtree (or simply a subtree) of t
(written t/ < t) if and only if 1) V/ C V, 2) E/ C E, and 3) the labeling of V'
is preserved in t. This notation can be extended to sets of trees A < B: for

7

CHAPTER 1. INTRODUCTION

allt € A, there is some t’ € B for whicht < t'.

In order to compare link-based structures, we will also be interested in
a notion of subtree where the root is preserved. In the unordered case, a
tree t’ is a fop-down subtree (or simply a subtree) of a tree t (written t’ < t)
if t’ is a connected subgraph of t which contains the root of t. Note that
the ordering of the children is not relevant. In the ordered case, the order
of the existing children of each node must be additionally preserved. All
along this thesis, the main place where it is relevant whether we are using
ordered or unordered trees is the choice of the implementation of the test
for the subtree notion.

o
50 30
(%) (%)

D

Figure 1.1: A dataset example

Given a finite dataset D of transactions, where each transaction s € D is
an unlabeled rooted tree, we say that a transaction s supports a tree t if the
tree t is a subtree of the transaction s. Figure 1.1 shows a finite dataset ex-
ample. The number of transactions in the dataset D that support t is called
the support of the tree t. A tree t is called frequent if its support is greater
than or equal to a given threshold min_sup. The frequent tree mining prob-
lem is to find all frequent trees in a given dataset. Any subtree of a frequent
tree is also frequent and, therefore, any supertree of a nonfrequent tree is
also nonfrequent.

We define a frequent tree t to be closed if none of its proper supertrees
has the same support as it has. Generally, there are much fewer closed
trees than frequent ones. In fact, we can obtain all frequent subtrees with
their support from the set of closed frequent subtrees with their supports,
as explained later on: whereas this is immediate for itemsets, in the case
of trees we will need to organize appropriately the frequent closed trees;
just the list of frequent trees with their supports does not suffice. However,
organized as we will propose, the set of closed frequent subtrees maintains
the same information as the set of all frequent subtrees

1.4. CONTRIBUTIONS OF THIS THESIS

1.4 Contributions of this thesis

The main contributions of the thesis are the following;:
Evolving Data Stream Mining

e Until now, the most frequent way to deal with continuous data
streams evolving on time, was to build an initial model from a
sliding window of recent examples and rebuild the model pe-
riodically or whenever its performance (e.g. classification er-
ror) degrades on the current window of recent examples. We
propose a new framework to deal with concept and distribu-
tion drift over data streams and the design of more efficient and
accurate methods. These new algorithms detect change faster,
without increasing the rate of false positives.

e Many data mining algorithms use counters to keep important
data statistics. We propose a new methodology to replace these
frequency counters by data estimators. In this way, data statis-
tics are updated every time a new element is inserted, without
needing to rebuild its model when change in accuracy is de-
tected.

e The advantages of using this methodology is that the optimal
window size is chosen automatically, from the rate of change ob-
served in the data, at every moment. This delivers the user from
having to choose an ill-defined parameter (the window size ap-
propriate for the problem), a step that most often ends up being
guesswork. The tradeoff between high variance and high time-
sensitivity is resolved, modulo the assumptions in the method’s
theoretical guarantees.

e The algorithms are general enough that a variety of Machine
Learning and Data Mining algorithms can incorporate them to
react to change and simulate access to permanently updated data
statistics counters. We concentrate on applicability to classifica-
tion and clustering learning tasks, but try to keep enough gen-
erality so that other applications are not necessarily excluded.
We evaluate our methodology on clustering, Naive Bayes classi-
fiers, decision trees, and ensemble methods. In our decision tree
experiments, our methods are always as accurate as the state of
art method CVFDT and, in some cases, they have substantially
lower error. Their running time is only slightly higher, and their
memory consumption is remarkably smaller, often by an order
of magnitude.

e We build an experimental framework for data stream mining
with concept drift, based on the MOA framework[MOA], sim-

9

CHAPTER 1. INTRODUCTION

ilar to WEKA, so that it will be easy for researchers to run exper-
imental benchmarks on data streams.

Closed Frequent Tree Mining

e We propose the extension into trees of the process of closure-
based data mining, well-studied in the itemset framework. We
focus mostly on the case where labels on the nodes are nonexis-
tent or unreliable, and discuss algorithms for closure-based min-
ing that only rely on the root of the tree and the link structure.

e We provide a notion of intersection that leads to a deeper under-
standing of the notion of support-based closure, in terms of an
actual closure operator.

e We present a rather formal study of trees from the point of view
of closure-based mining. Progressing beyond the plain standard
support-based definition of a closed tree, we have developed a
rationale (in the form of the study of the operation of intersec-
tion on trees, both in combinatorial and algorithmic terms) for
defining a closure operator, not on trees but on sets of trees, and
we have indicated the most natural definition for such an oper-
ator; we have provided a mathematical study that characterizes
closed trees, defined through the plain support-based notion, in
terms of our closure operator, plus the guarantee that this struc-
turing of closed trees gives us the ability to find the support of
any frequent tree. Our study has provided us, therefore, with a
better understanding of the closure operator that stands behind
the standard support-based notion of closure, as well as basic
algorithmics on the data type.

e We use combinatorial characterizations and some properties of
ordered trees to design efficient algorithms for mining frequent
closed subtrees both in the ordered and the unordered settings.

e We analyze the extraction of association rules of full confidence
out of the closed sets of trees, along the same lines as the corre-
sponding process on itemsets. We find there an interesting phe-
nomenon that does not appear if other combinatorial structures
are analyzed: rules whose propositional counterpart is nontriv-
ial are, however, always implicitly true in trees due to the pe-
culiar combinatorics of the structures. We propose powerful
heuristics to treat those implicit rules.

Tree Mining in Evolving Data Streams

e The last contributions of this thesis are the meeting point of the
two previous parts: evolving data stream mining and closed fre-
quent tree mining.

10

1.5. OVERVIEW OF THIS THESIS

e We propose a general methodology to identify closed patterns
in a data stream, using Galois Lattice Theory. Our approach is
based on an efficient representation of trees and a low complex-
ity notion of relaxed closed trees, and leads to an on-line strat-
egy and an adaptive sliding window technique for dealing with
changes over time.

e Using this methodology, we develop three closed tree mining
algorithms:

— INCTREENAT: an incremental closed tree mining algorithm

— WINTREENAT: a sliding window closed tree mining algo-
rithm

— ADATREENAT : a new algorithm that can adaptively mine
from data streams that change over time, with no need for
the user to enter parameters describing the speed or nature
of the change.

e And finally, we propose a XML tree classifier that uses closed
frequent trees to reduce the number of classification features.
As we deal with labeled trees, we propose again three closed
tree mining algorithms for labeled trees:INCTREEMINER, WIN-
TREEMINER and ADATREEMINER.

1.5 Overview of this thesis

The structure of the thesis is as follows:

e Chapter 2. We introduce some preliminaries on data mining, data
streams and frequent closed trees. We review the classic change de-
tector and estimator algorithms and we survey briefly the most im-
portant classification, clustering, and frequent pattern mining meth-
ods available in the literature.

e Chapter 3. We study the evolving data stream mining problem. We
present a new general algorithm framework to deal with change de-
tection and value estimation, and a new experimental framework for
concept drift.

e Chapter 4. We propose our adaptive sliding window method ADWIN,
using the general framework presented in the previous chapter. The
algorithm automatically grows the window when no change is ap-
parent, and shrinks it when data changes. We provide rigorous guar-
antees of its performance, in the form of bounds on the rates of false
positives and false negatives. We perform some experimental evalu-
ation on Naive Bayes and k—means.

11

CHAPTER 1. INTRODUCTION

e Chapter 5. We propose adaptive decision tree methods. After pre-
senting the Hoeffding Window Tree method, a Hoeffding Adaptive
Tree is presented using the general framework presented in Chapter
3 and the ADWIN method presented in Chapter 4.

e Chapter 6. We propose two new bagging methods able to deal with
evolving data streams: one that uses trees of different size, and one
that uses using ADWIN. Using the experimental framework of Chap-
ter 3, we carry our experimental comparison of several classification
methods.

e Chapter 7. We propose methods for closed tree mining. First we
present a new closure operator for trees and a powerful representa-
tion for unlabelled trees. We present some new mining methods for
mining closed trees in a non incremental way.

e Chapter 8. We propose a way of extracting high-confidence associa-
tion rules from datasets consisting of unlabeled trees. We discuss in
more detail the case of rules that always hold, independently of the
dataset.

e Chapter 9. We combine the methods of Chapters 3 and 4, and Chap-
ters 7 and 8 to propose a general adaptive closed pattern mining
method for data streams and, in particular, an adaptive closed tree
mining algorithm. We design an incremental closed tree mining me-
thod, a sliding window mining method and finally, using ADWIN an
adaptive closed tree mining algorithm.

e Chapter 10. We propose a new general method to classify patterns,
using closed and maximal frequent patterns. We design a frame-
work to classify XML trees, composed by a Tree XML Closed Frequent
Miner, and a classifier algorithm.

1.5.1 Publications

The results in this thesis are documented in the following publications.

e Chapter 3 contains results from [BG06] and part of [BHP*09]

[BGO6] Albert Bifet and Ricard Gavalda. Kalman filters and adaptive
windows for learning in data streams. In Discovery Science,
pages 2940, 2006.

[BHPT09] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby,
and Ricard Gavalda. New ensemble methods for evolving data
streams. In 15th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2009.

12

1.5. OVERVIEW OF THIS THESIS

e Chapter 4 contains results from [BG07c, BG06]

[BGO7c] Albert Bifet and Ricard Gavalda. Learning from time-changing
data with adaptive windowing. In SIAM International Conference
on Data Mining, 2007.

[BGO6] Albert Bifet and Ricard Gavalda. Kalman filters and adaptive
windows for learning in data streams. In Discovery Science,
pages 29-40, 2006.

e Chapter 5 is from [BG(09a]

[BG09] Albert Bifet and Ricard Gavalda. Adaptive parameter-free learn-
ing from evolving data streams. In 8th International Symposium
on Intelligent Data Analysis, 2009.

e Chapter 6 is from [BHP09]

[BHPT09] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby,
and Ricard Gavalda. New ensemble methods for evolving data
streams. In 15th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2009.

e Chapter 7 contains results from [BBL06, BBL07b, BBL07c, BBL07a,
BBL09]

[BBLO6] José L. Balcazar, Albert Bifet, and Antoni Lozano. Intersec-
tion algorithms and a closure operator on unordered trees. In
MLG 2006, 4th International Workshop on Mining and Learning with
Graphs, 2006.

[BBLO7b] José L. Balcazar, Albert Bifet, and Antoni Lozano. Mining fre-
quent closed unordered trees through natural representations.
In ICCS 2007, 15th International Conference on Conceptual Struc-
tures, pages 347-359, 2007.

[BBLO7c] José L. Balcdzar, Albert Bifet, and Antoni Lozano. Subtree test-
ing and closed tree mining through natural representations. In
DEXA Workshops, pages 499-503, 2007.

[BBLO7a] José L. Balcazar, Albert Bifet, and Antoni Lozano. Closed and
maximal tree mining using natural representations. In MLG
2007, 5th International Workshop on Mining and Learning with Graphs,
2007.

[BBL09] José L. Balcdzar, Albert Bifet, and Antoni Lozano. Mining Fre-
quent Closed Rooted Trees. In Machine Learning Journal, 2009.
Includes results from [BBL06, BBL07b, BBL07c, BBLO07a].

13

CHAPTER 1. INTRODUCTION

e Chapter 8 contains results from [BBLOS]

[BBLO8] José L. Balcazar, Albert Bifet, and Antoni Lozano. Mining im-
plications from lattices of closed trees. In Extraction et gestion des
connaissances (EGC’2008), pages 373-384, 2008.

e Chapter 9 contains results from [BG08]

[BGO8] Albert Bifet and Ricard Gavalda. Mining adaptively frequent
closed unlabeled rooted trees in data streams. In 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2008.

e Chapter 10 is from [BGO9b]

[BG09] Albert Bifet and Ricard Gavalda. Adaptive XML Tree Classifica-
tion on evolving data streams In Machine Learning and Knowledge
Discovery in Databases, European Conference, ECML/PKDD, 2009.

1.6 Support

This thesis was financially supported by the 6th Framework Program of
EU through the integrated project DELIS (#001907), by the EU Network
of Excellence PASCAL IST-2002-506778, by the EU PASCAL2 Network of
Excellence, by the DGICYT MOISES-BAR project, TIN2005-08832-C03-03
and by a Formacié d’ Investigadors (FI) grant through the Grups de Recerca
Consolidats (SGR) program of Generalitat de Catalunya.

PASCAL stands for Pattern Analysis, Statistical modelling and Compu-
tAtional Learning. It is a Network of Excellence under Framework 6. PAS-
CAL2 is the European Commission’s ICT-funded Network of Excellence
for Cognitive Systems, Interaction and Robotics.

DELIS stands for Dynamically Evolving Large-scale Information Sys-
tems. It is an Integrated European Project founded by the “Complex Sys-
tems” Proactive Initiative within Framework 6.

MOISES stands for Individualized Modelling of Symbolic Sequences. It
is a spanish project supported by the MyCT.

This thesis was developed as a research project inside the LARCA re-
search Group. LARCA (Laboratory for Relational Algorithmics, Complex-
ity and Learnability) is an international research group composed by mem-
bers of LSI Departament de Llenguatges i Sistemes Informatics and MA4
Departament de Matematica Aplicada IV of UPC, working on relational al-
gorithmics, complexity, and computational learning, and its applications.

14

Preliminaries

In the first part of this thesis, the data mining techniques that we will use
come essentially from Machine Learning. In particular, we will use the
traditional distinction between supervised and unsupervised learning. In
supervised methods data instances are labelled with a “correct answer”
and in unsupervised methods they are unlabelled. Classifiers are typical
examples of supervised methods, and clusterers of unsupervised methods.

In the second part of this thesis, we will focus on closed frequent pat-
tern mining. Association rule learning is the task of discovering interesting
relations between patterns in large datasets, and it is very closely related to
pattern mining.

2.1 Classification and Clustering

Classification is the distribution of a set of instances of examples into groups
or classes according to some common relations or affinities. Given nc dif-
ferent classes, a classifier algorithm builds a model that predicts for every
unlabelled instance I the class C to which it belongs with accuracy. A spam
filter is an example of classifier, deciding every new incoming e-mail, if it
is a valid message or not.

The discrete classification problem is generally defined as follows. A
set of N training examples of the form (x,y) is given, where y is a discrete
class label and x is a vector of d attributes, each of which may be symbolic
or numeric. The goal is to produce from these examples a model f that will
predict the class y = f(x) of future examples x with high accuracy. For
example, x could be a description of a costumer’s recent purchases, and y
the decision to send that customer a catalog or not; or x could be a record
of a costumer cellphone call, and y the decision whether it is fraudulent or
not.

The basic difference between a classifier and a clusterer is the labelling
of data instances. In supervised methods data instances are labelled and
in unsupervised methods they are unlabelled. A classifier is a supervised
method, and a clusterer is a unsupervised method.

15

CHAPTER 2. PRELIMINARIES

Literally hundreds of model kinds and model building methods have
been proposed in the literature (see [WF05]). Here we will review only
those that we will use in this thesis.

2.1.1 Naive Bayes

Naive Bayes is a classifier algorithm known for its simplicity and low com-
putational cost. Given nc different classes, the trained Naive Bayes classi-
fier predicts for every unlabelled instance I the class C to which it belongs
with high accuracy.

The model works as follows: Let x1,..., xx be k discrete attributes, and
assume that x; can take n; different values. Let C be the class attribute,
which can take n¢ different values. Upon receiving an unlabelled instance
I = (x1 =v1,...,Xx = Vi), the Naive Bayes classifier computes a “proba-
bility” of I being in class c as:

Kk
PriC=c¢|l] = HPr[xi =v;|C =]
i=1
k

PI’[Xi =viAC= cl
= Pr[C=c]- H Pr[C =]

i=1

The values Pr[x; = v; A C = c] and Pr[C = c] are estimated from
the training data. Thus, the summary of the training data is simply a 3-
dimensional table that stores for each triple (x;,vj, c) a count Ny j ¢ of train-
ing instances with x; = vj, together with a 1-dimensional table for the
counts of C = c. This algorithm is naturally incremental: upon receiving a
new example (or a batch of new examples), simply increment the relevant
counts. Predictions can be made at any time from the current counts.

2.1.2 Decision Trees

Decision trees are classifier algorithms [BFOS94, Qui93]. In its simplest
versions, each internal node in the tree contains a test on an attribute, each
branch from a node corresponds to a possible outcome of the test, and each
leaf contains a class prediction. The label y = DT(x) for an instance x is
obtained by passing the instance down from the root to a leaf, testing the
appropriate attribute at each node and following the branch corresponding
to the attribute’s value in the instance.

A decision tree is learned by recursively replacing leaves by test nodes,
starting at the root. The attribute to test at a node is chosen by comparing
all the available attributes and choosing the best one according to some
heuristic measure.

16

2.2. CHANGE DETECTION AND VALUE ESTIMATION

2.1.3 k-means clustering

k-means clustering divides the input data instances into k clusters such that
a metric relative to the centroids of the clusters is minimized. Total distance
between all objects and their centroids is the most common metric used in
k-means algorithms.

The k-means algorithm is as follows:

1. Place k points into the data space that is being clustered. These points
represent initial group centroids.

2. Assign each input data instance to the group that has the closest cen-
troid.

3. When all input instances have been assigned, recalculate the posi-
tions of each of the k centroids by taking the average of the points
assigned to it.

4. Repeat Steps 2 and 3 until the metric to be minimized no longer de-
creases.

2.2 Change Detection and Value Estimation

The following different modes of change have been identified in the litera-
ture [Tsy04, Sta03, WK96]:

e concept change

— concept drift

— concept shift
e distribution or sampling change

Concept refers to the target variable, which the model is trying to predict.
Concept change is the change of the underlying concept over time. Concept
drift describes a gradual change of the concept and concept shift happens
when a change between two concepts is more abrupt.

Distribution change, also known as sampling change or shift or virtual
concept drift , refers to the change in the data distribution. Even if the
concept remains the same, the change may often lead to revising the current
model as the model’s error rate may no longer be acceptable with the new
data distribution.

Some authors, as Stanley [Sta03], have suggested that from the practical
point of view, it is not essential to differentiate between concept change
and sampling change since the current model needs to be changed in both
cases. We agree to some extent, and our methods will not be targeted to
one particular type of change.

17

CHAPTER 2. PRELIMINARIES

2.2.1 Change Detection

Change detection is not an easy task, since a fundamental limitation ex-
ists [Gus00]: the design of a change detector is a compromise between de-
tecting true changes and avoiding false alarms. See [Gus00, BN93] for more
detailed surveys of change detection methods.

The CUSUM Test

The cumulative sum (CUSUM algorithm), first proposed in [Pag54], is a
change detection algorithm that gives an alarm when the mean of the input
data is significantly different from zero. The CUSUM input € can be any
filter residual, for instance the prediction error from a Kalman filter.

The CUSUM test is as follows:

go=0

gt = max (0,g¢1 + €t — V)
if g¢ > h then alarm and gy =0

The CUSUM test is memoryless, and its accuracy depends on the choice of
parameters v and h.

The Geometric Moving Average Test

The CUSUM test is a stopping rule. Other stopping rules exist. For exam-
ple, the Geometric Moving Average (GMA) test, first proposed in [Rob00],
is the following

go=0
gt =Agi1+ (1 —A)er
if g¢ > h then alarm and gy =0

The forgetting factor A is used to give more or less weight to the last data
arrived. The treshold h is used to tune the sensitivity and false alarm rate
of the detector.

Statistical Tests

CUSUM and GMA are methods for dealing with numeric sequences. For
more complex populations, we need to use other methods. There exist
some statistical tests that may be used to detect change. A statistical test
is a procedure for deciding whether a hypothesis about a quantitative fea-
ture of a population is true or false. We test an hypothesis of this sort by
drawing a random sample from the population in question and calculating
an appropriate statistic on its items. If, in doing so, we obtain a value of

18

2.2. CHANGE DETECTION AND VALUE ESTIMATION

the statistic that would occur rarely when the hypothesis is true, we would
have reason to reject the hypothesis.

To detect change, we need to compare two sources of data, and decide if
the hypothesis Hy that they come from the same distribution is true. Let’s
suppose we have two estimates, fio and i1 with variances 03 and o?. If
there is no change in the data, these estimates will be consistent. Otherwise,
a hypothesis test will reject Hp and a change is detected. There are several
ways to construct such a hypothesis test. The simplest one is to study the

difference

fio—fiy € N(0,0‘(z)-f— O'%), under Hy

or, to make a x? test

(Ro— A1) _
———— €x°(1), under H
O% T 0_% X () under o
from which a standard hypothesis test can be formulated.

For example, suppose we want to design a change detector using a sta-
tistical test with a probability of false alarm of 5%, that is,

Ao — 4
2, o2
\/ 05+ o3

A table of the Gaussian distribution shows that P(X < 1.96) = 0.975, so
the test becomes

Pr >h | =0.05

~ 2
Bo = M1)™ 1 96
oy + 09
Note that this test uses the normality hypothesis. In Chapter 4 we will
propose a similar test with theoretical guarantees. However, we could have
used this test on the methods of Chapter 4.

The Kolmogorov-Smirnov test [Kan06] is another statistical test used
to compare two populations. Given samples from two populations, the
cumulative distribution functions can be determined and plotted. Hence
the maximum value of the difference between the plots can be found and
compared with a critical value. If the observed value exceeds the critical
value, Hy is rejected and a change is detected. It is not obvious how to im-
plement the Kolmogorov-Smirnov test dealing with data streams. Kifer et
al. [KBDGO04] propose a KS-structure to implement Kolmogorov-Smirnov
and similar tests, on the data stream setting.

19

CHAPTER 2. PRELIMINARIES

Drift Detection Method

The drift detection method (DDM) proposed by Gama et al. [GMCR04]
controls the number of errors produced by the learning model during pre-
diction. It compares the statistics of two windows: the first one contains
all the data, and the second one contains only the data from the beginning
until the number of errors increases. This method does not store these win-
dows in memory. It keeps only statistics and a window of recent data.

The number of errors in a sample of n examples is modelized by a bi-
nomial distribution. For each point i in the sequence that is being sampled,
the error rate is the probability of misclassifying (p), with standard devia-
tion given by s; = /pi(1 —pi)/i. It assumes (as can be argued e.g. in the
PAC learning model [Mit97]) that the error rate of the learning algorithm
(p1) will decrease while the number of examples increases if the distribution
of the examples is stationary. A significant increase in the error of the algo-
rithm, suggests that the class distribution is changing and, hence, the actual
decision model is supposed to be inappropriate. Thus, it stores the values
of p; and s; when p; + s; reaches its minimum value during the process
(obtaining ppmin and smin), and when the following conditions triggers:

® Pi+ Si > Pmin + 2 - Smin for the warning level. Beyond this level, the
examples are stored in anticipation of a possible change of context.

® Di+S{ > Pmin + 3 - Smin for the drift level. Beyond this level the con-
cept drift is supposed to be true, the model induced by the learning
method is reset and a new model is learnt using the examples stored
since the warning level triggered. The values for pmin and smin are

reset too.

This approach has a good behaviour of detecting abrupt changes and
gradual changes when the gradual change is not very slow, but it has diffi-
culties when the change is slowly gradual. In that case, the examples will
be stored for long time, the drift level can take too much time to trigger and
the example memory can be exceeded.

Baena-Garcia et al. proposed a new method EDDM in order to improve
DDM. EDDM [BGACAF06] is shown to be better than DDM for some data
sets and worse for others. It is based on the estimated distribution of the
distances between classification errors. The window resize procedure is
governed by the same heuristics.

2.2.2 Estimation

An Estimator is an algorithm that estimates the desired statistics on the
input data, which may change over time. The simplest Estimator algorithm
for the expected is the linear estimator, which simply returns the average
of the data items contained in the Memory. Other examples of run-time

20

2.2. CHANGE DETECTION AND VALUE ESTIMATION

efficient estimators are Auto-Regressive, Auto Regressive Moving Average,
and Kalman filters.

Exponential Weighted Moving Average

An exponentially weighted moving average (EWMA) estimator is an al-
gorithm that updates the estimation of a variable by combining the most
recent measurement of the variable with the EWMA of all previous mea-
surements:

Xi=azg+ (1 — o)X = Xe1 + oz¢ — Xe1)

where X is the moving average, z; is the latest measurement, and « is the
weight given to the latest measurement (between 0 and 1). The idea is to
produce an estimate that gives more weight to recent measurements, on
the assumption that recent measurements are more likely to be relevant.
Choosing an adequate « is a difficult problem, and it is not trivial.

The Kalman Filter

One of the most widely used Estimation algorithms is the Kalman filter. We
give here a description of its essentials; see [WB95] for a complete introduc-
tion.

The Kalman filter addresses the general problem of trying to estimate
the state x € R™ of a discrete-time controlled process that is governed by
the linear stochastic difference equation

xt = Ax¢1 + Buy +wy g
with a measurement z € R™ that is
Zt = HXt + V¢

The random variables w¢ and v represent the process and measurement
noise (respectively). They are assumed to be independent (of each other),
white, and with normal probability distributions

p(w) ~N(0,Q)

p(v) ~N(0,R).

In essence, the main function of the Kalman filter is to estimate the state
vector using system sensors and measurement data corrupted by noise.
The Kalman filter estimates a process by using a form of feedback con-
trol: the filter estimates the process state at some time and then obtains
feedback in the form of (noisy) measurements. As such, the equations for

21

CHAPTER 2. PRELIMINARIES

the Kalman filter fall into two groups: time update equations and measure-
ment update equations. The time update equations are responsible for pro-
jecting forward (in time) the current state and error covariance estimates to
obtain the a priori estimates for the next time step.

Xy = Ax¢—1 + Bug

P =AP AT +Q

The measurement update equations are responsible for the feedback, i.e.
for incorporating a new measurement into the a priori estimate to obtain
an improved a posteriori estimate.

Ky =Py HT(HP HT +-R)™!
xt =X, + Ke(ze — Hxy)
Py = (I - KH)P;.

There are extensions of the Kalman filter (Extended Kalman Filters, or EKF)
for the cases in which the process to be estimated or the measurement-to-
process relation is nonlinear. We do not discuss them here.

In our case we consider the input data sequence of real values z1, 2, . . .,
Zt, ... as the measurement data. The difference equation of our discrete-
time controlled process is the simpler one, with A =1,H = 1,B = 0. So the
equations are simplified to:

K¢ =P¢1/(Pt—1 +R)

Xe = Xe—1 4+ Ke(ze — Xe1)
Pt == Pt(] - Kt) + Q

Note the similarity between this Kalman filter and an EWMA estimator,
taking & = K. This Kalman filter can be considered as an adaptive EWMA
estimator where o« = f(Q,R) is calculated optimally when Q and R are
known.

The performance of the Kalman filter depends on the accuracy of the
a-priori assumptions:

e linearity of the difference stochastic equation

e estimation of covariances Q and R, assumed to be fixed, known, and
follow normal distributions with zero mean.

When applying the Kalman filter to data streams that vary arbitrarily over
time, both assumptions are problematic. The linearity assumption for sure,
but also the assumption that parameters Q and R are fixed and known —in
fact, estimating them from the data is itself a complex estimation problem.

22

2.3. FREQUENT PATTERN MINING

2.3 Frequent Pattern Mining

Patterns are graphs, composed by a labeled set of nodes (vertices) and a
labeled set of edges. The number of nodes in a pattern is called its size.
Examples of patterns are itemsets, sequences, and trees [ZPD"05]. Given
two patterns t and t’, we say that t is a subpattern of t’, or t' is a super-pattern
of t, denoted by t < t’ if there exists a 1-1 mapping from the nodes in t to
a subset of the nodes in t’ that preserves node and edge labeling. As there
may be many mappings with this property, we will define for each type of
pattern a more specific definition of subpattern. Two patterns t, t’ are said
to be comparable if t < t’ or t’ < t. Otherwise, they are incomparable. Also
t < t’if tis a proper subpattern of t’ (thatis, t < t’ and t # t’).

The (infinite) set of all patterns will be denoted with 7, but actually all
our developments will proceed in some finite subset of 7 which will act as
our universe of discourse.

The input to our data mining process, now is a given finite dataset D of
transactions, where each transaction s € D consists of a transaction iden-
tifier, tid, and a pattern. Tids are supposed to run sequentially from 1 to
the size of D. From that dataset, our universe of discourse ! is the set of all
patterns that appear as subpattern of some pattern in D.

Following standard usage, we say that a transaction s supports a pat-
tern t if t is a subpattern of the pattern in transaction s. The number of
transactions in the dataset D that support t is called the support of the pat-
tern t. A subpattern t is called frequent if its support is greater than or equal
to a given threshold min_sup. The frequent subpattern mining problem
is to find all frequent subpatterns in a given dataset. Any subpattern of a
frequent pattern is also frequent and, therefore, any superpattern of a non-
frequent pattern is also nonfrequent (the antimonotonicity property).

We define a frequent pattern t to be closed if none of its proper superpat-
terns has the same support as it has. Generally, there are much fewer closed
patterns than frequent ones. In fact, we can obtain all frequent subpatterns
with their support from the set of frequent closed subpatterns with their
supports. So, the set of frequent closed subpatterns maintains the same
information as the set of all frequent subpatterns.

Itemsets are subsets of a set of items. Let I = {i1,--- ,in} be a fixed set
of items. All possible subsets I’ C I are itemsets. We can consider itemsets
as patterns without edges, and without two nodes having the same label.
In itemsets the notions of subpattern and super-pattern correspond to the
notions of subset and superset.

Sequences are ordered list of itemsets. Let I = {iy,--- iy} be a fixed
set of items. Sequences can be represented as ((I7)(I2)...(In)), where each
I; is a subset of I, and I; comes before I; if i < j. Without loss of gener-
ality we can assume that the items in each itemset are sorted in a certain
order (such as alphabetic order). In sequences we are interested in a no-

23

CHAPTER 2. PRELIMINARIES

tion of subsequence defined as following: a sequence s = ((I1)(I2)...(In))
is a subsequence of s’ = ((I7)(15)...(I},)) i.e. s < s/, if there exist integers
1<j1<j2...<jn <msuchthatI; C I].’],...,Ing Ii/n'

Trees are connected acyclic graphs, rooted trees are trees with a vertex
singled out as the root, n-ary trees are trees for which each node which is not
a leaf has at most n children, and unranked trees are trees with unbounded
arity. We say that t1, ..., ty are the components of tree t if t is made of a node
(the root) joined to the roots of all the t;’s. We can distinguish betweeen the
cases where the components at each node form a sequence (ordered trees)
or just a set (unordered trees).

2.4 Mining data streams: state of the art

The Data Stream model represents input data that arrives at high speed
[Agg06, BW01, GGR02, Mut03]. This data is so massive that we may not
be able to store all of what we see, and we don’t have too much time to
process it.

It requires that at a time t in a data stream with domain N, this three
performance measures: the per-item processing time, storage and the com-
puting time to be simultaneously o(N, t), preferably, polylog(N,t).

The use of randomization often leads to simpler and more efficient algo-
rithms in comparison to known deterministic algorithms [MR95]. If a ran-
domized algorithm always return the right answer but the running times
vary, it is known as a Las Vegas algorithm. A Monte Carlo algorithm has
bounds on the running time but may not return the correct answer. One
way to think of a randomized algorithm is simply as a probability distribu-
tion over a set of deterministic algorithms.

Given that a randomized algorithm returns a random variable as a re-
sult, we would like to have bounds on the tail probability of that random
variable. These tell us that the probability that a random variable deviates
from its expected value is small. Basic tools are Chernoff, Hoeffding, and
Bernstein bounds [BLB03, CBL06]. Bernstein’s bound is the most accurate
if variance is known.

Theorem 1. Let X =) ; X; where X1, ..., Xy, are independent and indentically
distributed in [0, 1]. Then

1. Chernoff For each € < 1

2
PriX > (1+ e)EX]] < exp (—ZE[X])

2. Hoeffding For each t > 0

Pr[X > E[X] +t] <exp <—2t2/n>

24

2.4. MINING DATA STREAMS: STATE OF THE ART

3. Bernstein Let 0% = Y ; o the variance of X. If X; — E[X{] < b for each
i € [n] then for each t > 0

tZ
Pr(X > E[X] + 1] < exp <—2>
20'2 + gbt

Surveys for mining data streams, with appropriate references, are given
in [GG07, GZKO05, Agg06].

24.1 Sliding Windows in data streams

An interesting approach to mining data streams is to use a sliding window
to analyze them [BDMOO03, DGIMO2]. This technique is able to deal with
concept drift. The main idea is instead of using all data seen so far, use
only recent data. We can use a window of size W to store recent data, and
deleting the oldest item when inserting the newer one. An element arriving
at time t expires at time t + W.

Datar et al. [DGIMO02] have considered the problem of maintaining statis-
tics over sliding windows. They identified a simple counting problem
whose solution is a prerequisite for efficient maintenance of a variety of
more complex statistical aggregates: Given a stream of bits, maintain a
count of the number of 1’s in the last W elements seen from the stream.
They showed that, using O(1 log? W) bits of memory, it is possible to esti-
mate the number of 1’s to within a factor of 1+e€. They also give a matching
lower bound of Q(log? W) memory bits for any deterministic or random-
ized algorithm. They extended their scheme to maintain the sum of the last
W elements of a stream of integers in a known range [0, B], and provide
matching upper and lower bounds for this more general problem as well.

An important parameter to consider is the size W of the window. Usu-
ally it can be determined a priori by the user. This can work well if informa-
tion on the time-scale of change is available, but this is rarely the case. Nor-
mally, the user is caught in a tradeoff without solution: choosing a small
size (so that the window reflects accurately the current distribution) and
choosing a large size (so that many examples are available to work on, in-
creasing accuracy in periods of stability). A different strategy uses a decay
function to weight the importance of examples according to their age (see
e.g. [CSO3]). If there is concept drift, the tradeoff shows up in the choice of
a decay function that should match the unknown rate of change.

2.4.2 C(lassification in data streams

Classic decision tree learners like ID3, C4.5 [Qui93] and CART [BFOS94]
assume that all training examples can be stored simultaneously in main
memory, and are thus severely limited in the number of examples they

25

CHAPTER 2. PRELIMINARIES

can learn from. And in particular not applicable to data streams, where
potentially there is no bound on number of examples.

Domingos and Hulten [DHO00] developed Hoeffding trees, an incremen-
tal, anytime decision tree induction algorithm that is capable of learning
from massive data streams, assuming that the distribution generating ex-
amples does not change over time. We describe it in some detail, since it
will be the basis for our adaptive decision tree classifiers.

Hoeffding trees exploit the fact that a small sample can often be enough
to choose an optimal splitting attribute. This idea is supported mathemat-
ically by the Hoeffding bound, which quantifies the number of observa-
tions (in our case, examples) needed to estimate some statistics within a
prescribed precision (in our case, the goodness of an attribute). More pre-
cisely, the Hoeffding bound states that with probability 1 -39, the true mean
of a random variable of range R will not differ from the estimated mean
after n independent observations by more than:

~ [R?In(1/5)
€ = 7211 .

A theoretically appealing feature of Hoeffding Trees not shared by other
incremental decision tree learners is that it has sound guarantees of per-
formance. Using the Hoeffding bound and the concept of intensional dis-
agreement one can show that its output is asymptotically nearly identical
to that of a non-incremental learner using infinitely many examples. The
intensional disagreement A; between two decision trees DTy and DT, is the
probability that the path of an example through DT will differ from its path
through DT,. Hoeffding Trees have the following theoretical guarantee:

Theorem 2. If HT;s is the tree produced by the Hoeffding tree algorithm with
desired probability & given infinite examples, DT is the asymptotic batch tree, and
p is the leaf probability, then E[Ai(HTs, DT)] < §/p.

VEDT (Very Fast Decision Trees) is the implementation of Hoeffding
trees, with a few heuristics added, described in [DHO00]; we basically iden-
tify both in this thesis. The pseudo-code of VFDT is shown in Figure 2.1.
Counts nyj are the sufficient statistics needed to choose splitting attributes,
in particular the information gain function G implemented in VFDT. Func-
tion e(9,...) inline 4 is given by the Hoeffding bound and guarantees that
whenever best and 2nd best attributes satisfy this condition, we can confi-
dently conclude that best indeed has maximal gain. The sequence of exam-
ples S may be infinite, in which case the procedure never terminates, and
at any point in time a parallel procedure can use the current tree to make
class predictions.

Many other classification methods exist, but only a few can be applied
to the data stream setting, without losing accuracy and in an efficient way.

26

2.4. MINING DATA STREAMS: STATE OF THE ART

VFDT(Stream,d)

1 Let HT be a tree with a single leaf (root)
Init counts nyj, at root to 0

2
3 for each example (x,y) in Stream
4 do VEDTGROW((x,y), HT, d)

VFDTGROW((x,y), HT, d)

1 Sort (x,y) to leaf 1 using HT

2 Update counts nyj at leaf |

3 if examples seen so far at | are not all of the same class
4 then Compute G for each attribute

if G(Best Attr.)—G(2nd best) > \/@
then Split leaf on best attribute
for each branch

do Start new leaf and initialize counts

e N o Ot

Figure 2.1: The VFDT algorithm

We mention two more that, although not so popular, have the potential for
adaptation to the data stream setting.

Last [Las02] has proposed a classification system IFN, which uses a
info-fuzzy network, as a base classifier. IFN, or Info-Fuzzy Network, is
an oblivious tree-like classification model, which is designed to minimize
the total number of predicting attributes. The underlying principle of the
IFN method is to construct a multi-layered network in order to test the
Mutual Information (MI) between the input and output attributes. Each
hidden layer is related to a specific input attribute and represents the inter-
action between this input attribute and the other ones. The IFN algorithm
is using the pre-pruning strategy: a node is split if this procedure brings
about a statistically significant decrease in the entropy value (or increase
in the mutual information) of the target attribute. If none of the remain-
ing input attributes provides a statistically significant increase in mutual
information, the network construction stops. The output of this algorithm
is a network, which can be used to predict the values of a target attribute
similarly to the prediction technique used in decision trees.

AWSOM (Arbitrary Window Stream mOdeling Method) is a method
for interesting pattern discovery from sensors proposed by Papadimitriou
et al. [PFB0O3]. It is a one-pass algorithm that incrementally updates the pat-
terns. This method requires only O(logn) memory where n is the length
of the sequence. It uses wavelet coefficients as compact information repre-

27

CHAPTER 2. PRELIMINARIES

sentation and correlation structure detection, applying a linear regression
model in the wavelet domain.

2.4.3 Clustering in data streams

An incremental k-means algorithm for clustering binary data streams was
proposed by Ordonez [Ord03]. As this algorithm has several improve-
ments to k-means algorithm, the proposed algorithm can outperform the
scalable k-means in the majority of cases. The use of binary data simplifies
the manipulation of categorical data and eliminates the need for data nor-
malization. The complexity of the algorithm for n points in RY, is O(dkn),
where k is the number of centers. It updates the cluster centers and weights
after examining each batch of \/n points rather than updating them one by
one.

LOCALSEARCH is an algorithm for high quality data stream clustering
proposed by O’Callaghan et al. [OMM"02]. An algorithm called STREAM
starts by determining the size of the sample and then applies the LOCAL-
SEARCH algorithm if the sample size is larger than a pre-specified equa-
tion result. This process is repeated for each data chunk. Finally, the LO-
CALSEARCH algorithm is applied to the cluster centers generated in the
previous iterations.

2.5 Frequent pattern mining: state of the art

There exist abundant work in closure-based mining on structured data,
particularly sequences [YHAO03, BG07b], trees [CXYMO1, TRS04, AU05],
and graphs [YH03, YZHO5]. One of the differences with closed itemset
mining stems from the fact that the set theoretic intersection no longer
applies, and whereas the intersection of sets is a set, the intersection of
two sequences or two trees is not one sequence or one tree. This makes it
nontrivial to justify the word “closed” in terms of a standard closure op-
erator. Many papers resort to a support-based notion of closedness of a
tree or sequence ([CXYMO1], see below); others (like [AUO5]) choose a vari-
ant of trees where a closure operator between trees can be actually defined
(via least general generalization). In some cases, the trees are labeled, and
strong conditions are imposed on the label patterns (such as nonrepeated
labels in tree siblings [TRS04] or nonrepeated labels at all in sequences
[GBO04]).

Yan and Han [YHO02, YHO3] proposed two algorithms for mining fre-
quent and closed graphs. The first one is called gSpan (graph-based Sub-
structure pattern mining) and discovers frequent graph substructures with-
out candidate generation; gSpan builds a new lexicographic order among
graphs, and maps each graph to a unique minimum DFS code as its canon-
ical label. Based on this lexicographic order, gSpan adopts the depth-first

28

2.5. FREQUENT PATTERN MINING: STATE OF THE ART

search strategy to mine frequent connected subgraphs. The second one
is called CloseGraph and discovers closed graph patterns. CloseGraph is
based on gSpan, and is based on the development of two pruning meth-
ods: equivalent occurrence and early termination. The early termination
method is similar to the early termination by equivalence of projected data-
bases method in CloSpan [YHAO3], an algorithm for mining closed sequen-
tial patterns in large datasets published by the Illimine team. However, in
graphs there are some cases where early termination may fail and miss
some patterns. By detecting and eliminating these cases, CloseGraph guar-
antees the completeness and soundness of the closed graph patterns dis-
covered.

In the case of trees, only labeled tree mining methods are considered in
the literature. There are four broad kinds of subtrees: bottom-up subtrees,
top-down subtrees, induced subtrees, and embedded subtrees. Bottom-up
subtree mining is the simplest from the subtree mining point of view.

Algorithms for embedded labeled frequent trees include:

e Rooted Ordered Trees

— TreeMiner [Zak02]: This algorithm, developed by Zaki, uses
vertical representations for support counting, and follows the
combined depth-first/breadth traversal idea to discover all em-
bedded ordered subtrees.

e Rooted Unordered Trees

— SLEUTH [Zak05]: This method, also by Zaki, extends TreeM-
iner to the unordered case using two different methods for gen-
erating canonical candidates: the class-based extension and the
canonical extension.

Algorithms for induced labeled frequent trees include:
¢ Rooted Ordered Trees

- FREQT [AAK™02]. Asai et al. developed FREQT. It uses an ex-
tension approach based on the rightmost path. FREQT uses an
occurrence list base approach to determine the support of trees.

e Rooted Unordered Trees

— uFreqt [NKO3]: Nijssen et al. extended FREQT to the unordered
case. Their method solves in the worst case, a maximum bipar-
tite matching problem when counting tree supports.

— uNot [AAUNO03]: Asai et al. presented uNot in order to extend
FREQT. It uses an occurrence list based approach wich is similar
to Zaki’s TreeMiner.

29

CHAPTER 2. PRELIMINARIES

— HybridTreeMiner [CYMO04]: Chi et al. proposed HybridTreeM-
iner, a method that generates candidates using both joins and ex-
tensions. It uses the combined depth-first/breadth-first traver-
sal approach.

— PathJoin [XYLDO3]: Xiao et al. developed PathJoin, assuming
that no two siblings are indentically labeled. It presents the max-
imal frequent subtrees. A maximal frequent subtree is a frequent
subtree none of whose proper supertrees are frequent.

A survey of works on frequent subtree mining can be found in [CMNKO1].

Arimura and Uno proposed CLOATT [AU05] considering closed mining
in attribute trees, which is a subclass of labeled ordered trees and can also
be regarded as a fragment of description logic with functional roles only.
These attribute trees are defined using a relaxed tree inclusion. Termier
et al. [TRS04] considered the frequent closed tree discovery problem for a
class of trees with the same constraint as attribute trees.

Labeled trees are trees in which each vertex is given a unique label. Un-
labeled trees are trees in which each vertex has no label, or there is a unique
label for all vertices. A comprehensive introduction to the algorithms on
unlabeled trees can be found in [Val02].

2.5.1 CMTreeMiner

Chi et al. proposed CMTreeMiner [CXYMO1], the first algorithm to dis-
cover all closed and maximal frequent labeled induced subtrees without
first discovering all frequent subtrees. CMTreeMiner is to our knowledge,
the state of art method for closed frequent tree mining. It shares many fea-
tures with CloseGraph, and uses two pruning techniques: the left-blanket
and right-blanket pruning. The blanket of a tree is defined as the set of im-
mediate supertrees that are frequent, where an immediate supertree of a tree t
is a tree that has one more vertex than t. The left-blanket of a tree t is the
blanket where the vertex added is not in the right-most path of t (the path
from the root to the rightmost vertex of t). The right-blanket of a tree t is the
blanket where the vertex added is in the right-most path of t. The method
is as follows: it computes, for each candidate tree, the set of trees that are
occurrence-matched with its blanket’s trees. If this set is not empty, they
apply two pruning techniques using the left-blanket and right-blanket. If
it is empty, then they check if the set of trees that are transaction-matched
but not occurrence matched with its blanket’s trees is also empty. If this is
the case, there is no supertree with the same support and then the tree is
closed.

CMTreeMiner is a labeled tree method and it was not designed for un-
labeled trees. As explained in [CXYMO1]:

30

2.5. FREQUENT PATTERN MINING: STATE OF THE ART

Therefore, if the number of distinct labels decrease dramatically
(so different occurrences for the same pattern increase dramat-
ically), the memory usage of CMTreeMiner is expected to in-
crease and its performance is expected to deteriorate. To study
the performance under this special case and to modify CMTreeM-
iner to handle it is a topic for future work.

In this thesis we will propose closed frequent mining methods for un-
labeled trees, that will outperform CMTreeMiner precisely in this case.

2.5.2 DRYADEPARENT

Termier et al. proposed DRYADEPARENT [TRS'08] as a closed frequent at-
tribute tree mining method comparable to CMTreeMiner. Attribute trees
are trees such that two sibling nodes cannot have the same label. They
extend to induced subtrees their previous algorithm DRYADE [TRS04].

The DRYADE and DRYADEPARENT algorithm are based on the compu-
tation of tiles (closed frequent attribute trees of depth 1) in the data and
on an efficient hooking strategy that reconstructs the closed frequent trees
from these tiles. Whereas CMTreeMiner uses a classical generate-and-test
strategy to build candidate trees edge by edge, the hooking strategy of
DRYADEPARENT finds a complete depth level at each iteration and does
not need tree mapping tests. The authors claim that their experiments have
shown that DRYADEPARENT is faster than CMTreeMiner in most settings
and that the performances of DRYADEPARENT are robust with respect to
the structure of the closed frequent trees to find, whereas the performances
of CMTreeMiner are biased toward trees having most of their edges on their
rightmost branch.

As attribute trees are trees such that two sibling nodes cannot have the
same label, DRYADEPARENT is not a method appropriate for dealing with
unlabeled trees.

2.5.3 Streaming Pattern Mining

There is a large body of work done on itemset mining. An important part
of the most recent work is related to data streams; see the survey [JCNO07b]
and the references there. We can divide these data stream methods in two
families depending if they use a landmark window or a sliding window.
Only a small part of these methods deal with closed frequent mining. Mo-
ment [CWYMO04], CFI-Stream [JG06], and IncMine [JCNO07a] are the state-
of-art algorithms for mining frequent closed itemsets over a sliding win-
dow. CFI-Stream stores only closed itemsets in memory, but must maintain
all closed itemsets as does not implement a min-support threshold. Mo-
ment stores much more information besides the current closed frequent

31

CHAPTER 2. PRELIMINARIES

itemsets, but it has a min-support threshold to reduce the quantity of pat-
terns found. IncMine proposes a notion of semi-FCIs that consists in in-
creasing the minimum support threshold for an itemset as it is retained
longer in the window.

Alot of research work exist on XML pattern mining. Asaietal. [AAAT02]
present StreamT, a tree online mining algorithm that uses a forgetting model
and is able to maintain a sliding window, but it extracts only frequent trees,
not closed ones. Hsieh et al. [HWCO06] propose STMer, an alternative to
StreamT to deal with frequent trees over data streams, but without using
a sliding window. In [FQWZ07], Feng et al. present SOLARIA*, a frequent
closed XML query pattern mining algorithm, but it is not an incremental
method. Li. et al [LSLO6] present Incre-FXQPMiner, an incremental mining
algorithm of frequent XML query patterns, but it does not obtain the closed
XML queries, neither uses a sliding window.

32

Part 11

Evolving Data Stream Learning

33

Mining Evolving Data Streams

In order to deal with evolving data streams, the model learned from the
streaming data must be able to capture up-to-date trends and transient pat-
terns in the stream [Tsy04, WFYHO03]. To do this, as we revise the model by
incorporating new examples, we must also eliminate the effects of outdated
examples representing outdated concepts. This is a nontrivial task. Also,
we propose a new experimental data stream framework for studying con-
cept drift.

3.1 Introduction

Dealing with time-changing data requires strategies for detecting and quan-
tifying change, forgetting stale examples, and for model revision. Fairly
generic strategies exist for detecting change and deciding when examples
are no longer relevant. Model revision strategies, on the other hand, are in
most cases method-specific.

Most strategies for dealing with time change contain hardwired con-
stants, or else require input parameters, concerning the expected speed or
frequency of the change; some examples are a priori definitions of sliding
window lengths, values of decay or forgetting parameters, explicit bounds
on maximum drift, etc. These choices represent preconceptions on how
fast or how often the data are going to evolve and, of course, they may
be completely wrong. Even more, no fixed choice may be right, since the
stream may experience any combination of abrupt changes, gradual ones,
and long stationary periods. More in general, an approach based on fixed
parameters will be caught in the following tradeoff: the user would like
to use values of parameters that give more accurate statistics (hence, more
precision) during periods of stability, but at the same time use the opposite
values of parameters to quickly react to changes, when they occur.

Many ad-hoc methods have been used to deal with drift, often tied to
particular algorithms. In this chapter we propose a more general approach
based on using two primitive design elements: change detectors and es-
timators. The idea is to encapsulate all the statistical calculations having
to do with detecting change and keeping updated statistics from a stream

35

CHAPTER 3. MINING EVOLVING DATA STREAMS

an abstract data type that can then be used to replace, in a black-box way,
the counters and accumulators that typically all machine learning and data
mining algorithms use to make their decisions, including when change has
occurred.

We believe that, compared to any previous approaches, our approach
better isolates different concerns when designing new data mining algo-
rithms, therefore reducing design time, increasing modularity, and facili-
tating analysis. Furthermore, since we crisply identify the nuclear prob-
lem in dealing with drift, and use a well-optimized algorithmic solution to
tackle it, the resulting algorithms are more accurate, adaptive, and time-
and memory-efficient than other ad-hoc approaches.

3.1.1 Theoretical approaches

The task of learning drifting or time-varying concepts has also been stud-
ied in computational learning theory. Learning a changing concept is in-
feasible, if no restrictions are imposed on the type of admissible concept
changes, but drifting concepts are provably efficiently learnable (at least
for certain concept classes), if the rate or the extent of drift is limited in
particular ways.

Helmbold and Long [HL94] assume a possibly permanent but slow con-
cept drift and define the extent of drift as the probability that two subse-
quent concepts disagree on a randomly drawn example. Their results in-
clude an upper bound for the extend of drift maximally tolerable by any
learner and algorithms that can learn concepts that do not drift more than
a certain constant extent of drift. Furthermore they show that it is sufficient
for a learner to see a fixed number of the most recent examples. Hence a
window of a certain minimal fixed size allows to learn concepts for which
the extent of drift is appropriately limited. While Helmbold and Long re-
strict the extend of drift, Kuh, Petsche, and Rivest [KPR90] determine a
maximal rate of drift that is acceptable by any learner, i. e. a maximally
acceptable frequency of concept changes, which implies a lower bound for
the size of a fixed window for a time-varying concept to be learnable, which
is similar to the lower bound of Helmbold and Long.

3.2 Algorithms for mining with change

In this section we review some of the data mining methods that deal with
data streams and concept drift. There are many algorithms in the literature
that address this problem. We focus on the ones that they are more referred
to in other works.

36

3.2. ALGORITHMS FOR MINING WITH CHANGE

3.2.1 FLORA: Widmer and Kubat

FLORA [WKD96] is a supervised incremental learning system that takes as
input a stream of positive and negative example of a target concept that
changes over time. The original FLORA algorithm uses a fixed moving
window approach to process the data. The concept definitions are stored
into three description sets:

e ADES description based on positive examples
e NDES descriptions based on negative examples

e PDES concept descriptions based on both positive and negative ex-
amples

The system uses the examples present in the moving window to incremen-
tally update the knowledge about the concepts. The update of the concept
descriptions involves two processes: a learning process (adjust concept de-
scription based on the new data) and a forgetting process (discard data that
may be out of date). FLORA2 was introduced to address some of the prob-
lems associated with FLORA such as the fixed window size. FLORA2 has
a heuristic routine to dynamically adjust its window size and uses a better
generalization technique to integrate the knowledge extracted from the ex-
amples observed. The algorithm was further improved to allow previously
extracted knowledge to help deal with recurring concepts (FLORA3) and
to allow it to handle noisy data (FLORA4).

3.2.2 Suport Vector Machines: Klinkenberg

Klinkenberg and Joachims [K]J00] presented a method to handle concept
drift with support vector machines. A proper introduction to SVM can be
found in [Bur98].

Their method maintains a window on the training data with an appro-
priate size without using a complicated parameterization. The key idea is
to automatically adjust the window size so that the estimated generaliza-
tion error on new examples is minimized. To get an estimate of the gen-
eralization error, a special form of {x-estimates is used. {x-estimates are
a particularly efficient method for estimating the performance of an SVM,
estimating the leave-one-out-error of a SVM based solely on the one SVM
solution learned with all examples.

Each example z = (x,y) consists of a feature vector x € RN and a label
y € {—1,+1} indicating its classification. Data arrives over time in batches
of equal size, each containing m examples. For each batch i the data is in-
dependently identically distributed with respect to a distribution Pri(x, y).
The goal of the learner L is to sequentially predict the labels of the next
batch.

37

CHAPTER 3. MINING EVOLVING DATA STREAMS

The window adaptive approach that employs this method, works that
way: at batch t, it essentially tries various windows sizes, training a SVM
for each resulting training set.

For each window size it computes a £x-estimate based on the result of
training, considering only the last batch for the estimation, that is the m
most recent training examples z 1), . .., Z(t;m)-

This reflects the assumption that the most recent examples are most
similar to the new examples in batch t + 1. The window size minimiz-
ing the £ x-estimate of the error rate is selected by the algorithm and used
to train a classifier for the current batch.

The window adaptation algorithm is showed in figure 3.1.

SVMWINDOWSIZE(Stream Strqin consisting of t batches of m examples)

1 forhe{0,...,t—1}

2 do train SVM on examples z(y_1, 1), - -, Z(t,m)

3 Compute &o-estimate on examples z(_p 1), - - -, Z(t,m)
4 return Window size which minimizes éx-estimate.

Figure 3.1: Window size adaption algorithm

3.2.3 OLIN: Last

Last in [Las02] describes an online classification system that uses the info-
fuzzy network (IFN) explained in Section 2.4.2. The system called OLIN
(On Line Information Network) gets a continuous stream of non-stationary
data and builds a network based on a sliding window of the latest exam-
ples. The system dynamically adapts the size of the training window and
the frequency of model re-construction to the current rate of concept drift

OLIN uses the statistical significance of the difference between the train-
ing and the validation accuracy of the current model as an indicator of con-
cept stability.

OLIN adjusts dynamically the number of examples between model re-
constructions by using the following heuristic: keep the current model for
more examples if the concept appears to be stable and reduce drastically
the size of the validation window, if a concept drift is detected.

OLIN generates a new model for every new sliding window. This ap-
proach ensures accurate and relevant models over time and therefore an
increase in the classification accuracy. However, the OLIN algorithm has a
m