Learning and Vision Group, NUS, Classification task of ILSVRC 2013

Adaptive Non-parametric Rectification of Shallow and Deep Experts

Min LIN*, Qiang CHEN*, Jian DONG, Junshi HUANG, Wei XIA

Shuicheng YAN

eleyans@nus.edu.sg

National University of Singapore

Task 2: Classification – NUS Solution Overview

Non-parametric Rectification

Motivation

- Each validation-set image has a **pair** of **outputs-from-experts** (x_i) and **ground-truth label** (y_i) , possibly inconsistent
- For a testing image, rectify the experts based on priors from validation-set pairs (experts errors are often repeated)

Adaptive Non-parametric Rectification

- Determine the optimal tuneable values for each test sample
 - For each test sample, refer to the **k-NN** in the validation set
 - Optimal tuneable values for validation samples are obtained through cross-validation

Shallow Experts

Shallow Experts
PASCAL VOC 2012
Solution (SVMs)

- Two-layer feature representation
 - Layer 1: Traditional handcrafted features
 - ▶ We exact dense-SIFT, HOG and color moment features within patches
 - Layer 2: Coding + Pooling
 - Derivative coding: Fisher-Vector
 - Parametric coding: Super-Coding

Shallow Experts: GMM-based Super-Coding

- Two basic strategies to obtain the patch based GMM coding [1]
 - **Derivative**: Fisher-Vector (w.r.t. μ_i and σ_i , high-order), Super-Vector (w.r.t. μ_i only)

Image from [F Perronnin, 2012]

- Parametric: use adapted model parameters, e.g. Mean-Vector (1st order)
- High-order parametric coding
 - The Super-Coding: $C_a = \left[\frac{\mu_1^a}{\sqrt{\sigma_1}}; \cdots; \frac{\mu_K^a}{\sqrt{\sigma_K}}; \frac{\sigma_1^a}{\sigma_1}; \cdots; \frac{\sigma_K^a}{\sigma_K}\right]$
 - ▶ The inner product of the codings is an approximate of the KL-divergence
- Advantages
 - Comparable and complementary performance with Fisher-Vector
 - It is very efficient to compute Super-Coding along with Fisher-Vector

Shallow Experts: Early-stop SVMs

Shallow Experts
PASCAL VOC 2012
Solution (SVMs)

- Two-layer feature representation
 - ▶ Layer 1: Traditional handcrafted features
 - We use dense-SIFT, HOG and color moment
 - Layer 2: Coding + Pooling
 - Derivative coding: Fisher-Vector
 - ▶ Parametric coding: Super-Coding
- Classifier learning
 - Dual coordinate descent SVM [2]
 - Model averaging for early stopped SVMs

Shallow Experts: Performance

- Results on validation set
 - ▶ 1024-component GMM
 - Average early-stopped SVMs
 - For each round, 1) randomly select 1/10 of the negative samples, and 2) stop the SVMs at around 30 epochs [balance efficiency and performance]
 - ▶ Train 3 rounds, and average

	Fisher-Vector (FV)	Super-Coding (SC)	FV+SC	3 FV+SC
Top 1	47.93%	47.67%	45.3%	43.27%
Тор 5	25.93%	25.54%	24.0%	22.5%

Comparable & complementary

Deep Experts

Deep Experts
Convolutional
Neural Network

- ▶ Follow Krizhevsky et al. [3]
 - Achieved top-1 performance 1% better than reported by Krizhevsky
 - No network splitting for two GPUs, instead NVIDIA TITAN GPU card 6GB memory
 - Our network does not have PCA noise for data expansion, which is reported by Krizhevsky to improve the performance by 1%

	Krizhevsky's	Ours
Top 1	40.7%	39.7%
Top 5	18.2%	17.8%

Deep Experts: Extensions

Two extensions

- ▶ Bigger (left): Big network with doubled convolutional filters/kernels
- ▶ Deeper (right): CNN with 6 convolutional layers
- Performance comparison on validation set

	CNN5 (8days)	BigNet (30days)	CNN6 (12days)	5 CNN6	5 CNN6 +BigNet
Top 1	39.7%	37.67%	38.32%	36.27%	35.96%
Top 5	17.8%	15.96%	16.52%	15.21%	14.95%

Deep Experts: "Network in Network" (NIN)

NIN: CNN with non-linear filters, yet without final fully-connected NN layer

Deep Experts: "Network in Network" (NIN)

NIN: CNN with non-linear filters, yet without final fully-connected NN layer

Intuitively less overfitting globally, and more discriminative locally

(not finally used in our submission due to the surgery of our main team member, but very effective)

	Cifar-10	Cifar-100
Previous Best performance (Maxout) [4]	11.68%	38.57%
Our method	10.41%	36.30%

With less parameter #

More details at: http://arxiv.org/abs/1312.4400

NUS Submissions

▶ Results on test set

Submission	Method	Top 5 error rate
tf	traditional framework based on PASCAL VOC12 winning solution with extension of high-order parametric coding	22.39% (26.17%)
cnn	weighted sum of outputs from one large CNN and five CNNs with 6-convolutional layers	15.02% (16.42%)
weigtht tune	weighted sum of all outputs from CNNs and refined PASCAL VOC12 winning solution	13.98% (\$\square\$1.04%)
anpr	adaptive non-parametric rectification of all outputs from CNNs and refined PASCAL VOC12 winning solution	13.30% (\$\square\$0.68%)
anpr retrain	adaptive non-parametric rectification of all outputs from CNNs and refined PASCAL VOC12 winning solution, with further CNN retraining on the validation set	12.95% (↓0.35%)

Clarifai 11.74% (↓1.21%)

Conclusions & Further Work

- Conclusions
 - Complementarity of shallow and deep experts
 - Super-coding: effective, complementary with Fisher-Vector
 - Deep learning: deeper & bigger, better
- Further work
 - Consider more validation data for adaptive non-parametric rectification (training data are overfit, yet only 50k validation data; training: less is more)
 - Network in Network (NIN): CNN with non-linear filters, yet without final fully-connected NN layer on ILSVRC data; paper draft is accessible at http://arxiv.org/abs/1312.4400

Shuicheng YAN

eleyans@nus.edu.sg

