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Abstract

This paper describes recent work on the BIDMach toolkit for large-scale machine
learning. BIDMach has demonstrated single-node performance that exceeds that
of published cluster systems for many common machine-learning task. BIDMach
makes full use of both CPU and GPU acceleration (through a sister library BID-
Mat), and requires only modest hardware (commodity GPUs). One of the chal-
lenges of reaching this level of performance is the allocation barrier. While it
is simple and expedient to allocate and recycle matrix (or graph) objects in ex-
pressions, this approach is too slow to match the arithmetic throughput possible
on either GPUs or CPUs. In this paper we describe a caching approach that al-
lows code with complex matrix (graph) expressions to run at massive scale, i.e.
multi-terabyte data, with zero memory allocation after initial start-up. We present
a number of new benchmarks that leverage this approach.

1 Introduction

Modern hardware is capable of high-speed execution of the core operations needed for machine
learning. Table 1 below shows the throughput of several operations on standard CPU and GPU
hardware, The table also includes the throughput for a pure Java implementation, and the perfor-
mance gain of a GPU implementation (last column) over Java. The machine used has dual 8-core
Intel Sandy Bridge E5-2650 processors, and dual GTX-690 GPUs. We chose this combination to
approximately balance the cost of CPU and GPUs ($1000 for each CPU or GPU).

Table 1: Performance of ML Primitives
Task Java CPU GPU GPU/Java
SGEMM(gflops) 2 550 3500 2× 103

SPMV(gflops) 1 20 10 10
SPMM(gflops) 1 12 120 120
sort(gitems) 0.01 0.2 1 100
rand(gevals) 0.08 1.6 90 103

exp,ln(gevals) 0.02 0.6 200 104

SGEMM is a dense matrix/matrix multiply, SPMV and SPMM are products of a sparse matrix with
respectively a dense vector or a dense matrix. The next row shows sort performance (integer or float
keys) in billions of items/sec. The fifth row shows throughput in billions of samples/sec for basic
random number generation, and the last row shows throughput in billion evaluations per second
for transcendental function evaluation. The sparse matrix measurements, which can be sensitive to
matrix structure, were evaluated on typical (power law distributed) representing term counts in text.
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The CPU column shows the speed for a high-performance CPU library, either Intel MKL or Intel
IPP. The GPU column includes both CUDA and BIDMat routines, whichever is faster.

SPMV is the dominant step in regression and SVM on sparse data (like text, web, clickthrough etc),
and performance typically scales with the choice of SPMV primitive used. SPMM is the bottleneck
primitive for factor models such as LDA (Latent Dirichlet Allocation) NMF with KL-divergence
loss and a fast version of ALS (Alternating Least Squares), together with a related primitive called
SDDMM [1]. As was shown in [1], SDDMM can be implemented with similar performance to
SPMM. Thus one can expect about a 100-fold improvement in performance for factor models over
naive Java or C implementations. Random number generation is a bottleneck for carefully-written
MCMC algorithms (one must first remove non-memory-coherent linked data structures). Transcen-
dental function evaluation is a bottleneck for very sparse problem using transcendentals (e.g. Logis-
tic regression) and for Lp distance evaluation (e.g for computational genomics). SGEMM will often
dominate performance on dense problems, and also is the bottleneck for the L2-loss form of NMF.
Many graph algorithms have a matrix interpretation using the adjacency matrix of the graph, e.g.
Pagerank, triangle counting etc. and can similarly leverage a high-performance matrix layer. Sort-
ing is the bottleneck for many sparse algorithms, including Gibbs samplers for LDA etc. While one
can implement machine learning algorithms without using high-performance matrix libraries, this
is likely to be slow. Most machine learning algorithms bottleneck on a calculation that is equivalent
to one of the above. High-performing systems such as BIDMach, Weka, SciPy etc layer machine
learning algorithms on a matrix layer. Then the benefits of high-performance matrix kernels will
carry over to the learning layer.

1.1 The Memory Allocation Barrier

In [1] several end-to-end machine learning algorithms were described which leveraged the GPU
primitives above and which on a single node exceeded the performance of any published cluster
implementation. Obtaining those results was challenging. While the matrix primitives above are fast,
a complex machine learning algorithm generates many intermediate results which are themselves
large matrices. A language like Java is a benefit here, because these objects can be automatically
allocated and garbage collected without the matrix library having to manage reference counts. But
it becomes a liability as the problem scales up. SPMV and SPMM are memory-limited functions.
When results have to be repeatedly allocated and garbage-collected, the memory overhead for each
datum is multiplied (since it must be at least cleared by the GC, and often copied somewhere else
in memory). The overall performance of the algorithm often drops by a factor of two or three. On
small machines with a few GB of memory we have seen steady-state performance (i.e. throughput
over hours) drop by a factor of five due to garbage collection. We call this the allocation barrier.

For GPUs, the problem is much worse. There is no garbage collector in the standard GPU libraries.
And importantly, memory allocation on a GPU is much slower (1 GB/sec) relative to GPU memory
access (150GB/s). So even if a GPU garbage collector were available it would have an overhead of
more than 100x. Instead, we have implemented a caching scheme in BIDMat which supports re-use
of intermediate matrices, and which achieves zero-memory allocation after a start-up period. This
approach complements mini-batch processing of a large dataset. i.e. where data are read from a
massive dataset and processed in blocks. Many ML algorithms have a mini-batch formulation, e.g
those that use stochastic gradient optimization, “online” or “streaming” implementations [2], [3],
and most MCMC implementations.

2 Architecture of a Scalable Learner

BIDMach is designed to process large datasets in small batches to support mini-batch, streaming and
online algorithms. It relies on an abstraction called a “DataSource” to do this. A DataSource is like
an iterator over matrix blocks and includes a next() method which returns a matrix containing
a block of samples1. DataSources are currently implemented either as: (i) in-memory datasets,
(ii) disk-backed matrices, coarsely striped across many disks for high read and writes (iii) HDFS
sources, which stream blocks directly from the datanode in an HDFS cluster. While individual

1Actually a DataSource in general returns several matrices for each block, e.g. for regression it may return
separate matrices of features and targets.
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HDFS nodes typically have quite low read throughput (20MB/s), the throughput from a 100-node
cluster is well-matched to a BIDMach learner process.

From the DataSource, the blocks of data are distributed by a Learner class to various instances of
algorithm-specific code running in separate threads (normally on different GPUs, although threads
can run only on a CPU). See figure 1. BIDMach avoids “canned” machine learning routines in
favor of a modular “GLM” approach where a basic model can be mixed with different regularizers,
different optimizers (Conjugate gradient, L-BFGS, ADAGRAD etc.), and with various mixins which
add losses for things like component dependence.

Figure 1: Learner architecture

2.1 Caching Learner Code

The source code for matrix-based variational LDA E- or mean-step is given below.

def eStep(sdata:Mat, user:Mat):Unit = {
for (i <- 0 until opts.uiter) {

val preds = SDDMM(mm, user, sdata)
val unew = user o (mm * (sdata / preds)) + opts.alpha
user <-- exppsi(unew)

}
}

We include the code here to aid in the description of our caching scheme. The inputs to the E-step
routine are two matrices: sdata which is a block of sparse input samples, and user which is
a dense matrix of topic weights for those samples, and also the word × topic matrix mm which is
inherited from a containing lexical scope.

The algorithm generates both explicit (preds, unew) and implicit temporary matrices
(sdata/preds etc.), one for each operation whose result is not saved to an explicit target. These
matrices constitute a substantial amount of storage, since each turns out to have the same size as one
of the input matrices sdata or user, and the intermediate results are being computed in a loop
which repeats opts.uiter times (typically 10-20). Thus the temp storage which needs to be al-
located and freed for this routine is typically 20-60 times the size of the input. For 256-dimensional
LDA of a 1TB input DataSource, the total of all user matrices is 10 TB, requiring around 0.5 PB
of temp storage allocation. At typical GPU allocation speeds (1 GB/s) this would slow the algorithm
down by more than 100x (even leaving aside the problem that there is no GPU garbage collector to
reclaim the temps). Clearly we should avoid this if possible.

When operators are sufficiently local (e.g. A+B or a small convolution kernel), one can compile a
series of operations into a single-pass operator that is mapped across an input matrix [4]. However,
global operators (e.g. SDDMM, matrix-* which both occur in the LDA routine) are common in
machine learning code, and do not support this approach. Instead we use a caching scheme which
is invisible to the programmer, which allows us to re-use matrices from one mini-batch call to the
next.
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2.2 Matrix Caching

In a functional language, objects are immutable. Expressions like A⊗B always have the same value
within a scope where A and B are fixed, and the results can be safely cached and re-used. BIDMat
does not currently include immutable matrix types, although most operations in Learner code would
work with them. However all matrices have immutable dimensions. Furthermore, knowing the di-
mensions of two input matrices and the type of operator and certain additional arguments determines
the result matrix. Rather than caching values, we can cache containers that can hold the values of
future expressions involving the same input matrices, and any other input arguments that determine
the output dimensions.

To be more concrete, each matrix has a GUID which is set when the matrix is created. A basic
operation like C = A + B, rather than allocating new storage for C, first checks the matrix cache
using a key

(A.guid, B.guid, hash("+"))

If A and B are immutable, the output is fully determined by their values and the operator +. It is
therefore safe to use a container for C within any code segment where A and B are fixed. A and
B are actually mutable which is important for us to be able to re-use their storage. But once set, we
can derive arbitrary expression DAGs from them with recycled storage.

Some operations return matrices whose dimensions depend on other matrices. For instance, an
expression A(I, J) with matrix A and integer matrices I and J returns a matrix whose size is the
product of the number of elements in I times the number of elements in J . Since these matrices
have immutable dimensions, the following hash key will find a correctly-sized container if one has
been saved:

(A.guid, I.guid, J.guid, hash("apply"))

Scalars (floating point or integer) can be mixed with matrices in expressions and have the usual
mathematical interpretation. e.g. A+1, B ∗2 etc. Since scalars are values rather than references (as
for matrices) there are no GUIDs associated with scalars, and caching needs to be done carefully.
To avoid aliasing the scalar values must be incorporated into keys. e.g. A+ 1 is cached with key

(A.guid, 1, hash("+"))

But these can lead to a failure of caching in common functional expressions like a ∗ A where a
is a scalar which is changing from one iteration to the next. Each evaluation leads to a separate
cached value even though the symbol a is the same, and its value is assumed fixed in that scope. The
simplest solution is to use 1x1 matrices for scalars. Setting a’s contents and keeping it fixed inside
model methods will generate only one cached value.

Going back to example 2.1, every operator and function for the LDA E-step represents a functional
operation and uses a cached output. The exception is the assignment statement at the end of the
for loop. The <-- operator copies a result into the LHS, modifying the matrix user. This pattern
mimics the updates to loop variables in functional for loops in Scala and other functional languages.
Without this operation, the expression DAG depth (and the temporary storage) for this calculation
would be proportional to opt.uiter. By placing the assignment operator at the end of the func-
tion, we ensure that each pass through the for loop uses only immutable values, and avoids aliasing.
We note that use of the assignment operator is important even if matrix caching is not used. Without
it, a number of temps will be created and recyled proportional to the number of iterations.

While it is a general approach, matrix caching strongly complements the Learner pattern described
earlier. Since the input to the E-step is a mini-batch, matrices sdata and user have the same size
on each call. The Learner is designed to use exactly the same matrices to hold these values, and
pass them to the model update function. This minimizes allocation, but also ensures that any temps
created inside the update will be re-used when caching is enabled. Thus there are no new temps
allocated at any step in the algorithm, and yet the code has a simple functional form.

All models in BIDMach use matrix caching, and have zero memory allocation after the first call.
This eliminates memory allocation overhead and allows the models to be learned at the full speed of
the hardware. An updated set of benchmarks using these routines are included in an appendix to the
paper.
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Appendix

We collect together a number of benchmarks for BIDMach, and include new benchmarks for each
problem which improve on previously-published results. More details on the datasets used are given
in [1]. We first report on recent development of high-speed network primitives for scalable data min-
ing. In this paper, we addressed the allocation barrier to performance. A parallel challenge occurs
in the network layer. Traditional network primitives achieve much lower throughput than hardware-
accelerated matrix primitives. To bridge this gap, in [6], we introduced a new network primitive,
a Sparse Allreduce that provides higher throughput, scalability and error tolerance, for power-law
data. The performance of this primitive on graph data is shown in the last row (BIDMat+SA) in
the table below. It can be seen that this approach provides a five-fold improvement over the closest
comparable system, Powergraph.

Table 2: Pagerank Performance

System Graph VxE Time(s) Gflops nodes x CPU cores
Hadoop ?x1.1B 198 0.015 50x8
Spark 40Mx1.5B 97.4 0.03 50x2
Twister 50Mx1.4B 36 0.09 60x4
PowerGraph 40Mx1.4B 3.6 0.8 64x8
BIDMat 60Mx1.4B 6 0.5 1x8
BIDMat+disk 60Mx1.4B 24 0.16 1x8
BIDMat+SA 60Mx1.4B 0.6 4.8 64x8

The following benchmarks are for a mini-batch algorithm for Variational LDA [3]. We include an
additional line in the table derived from the current Learner implementation which distributes across
4 GPUs (two dual GPU boards) on our test node. These modifications increase the speed ratio for
our single-node implementation to 10x vs the closest comparable system, Powergraph, running on
64 nodes.

Table 3: LDA Performance
System Docs/hr Gflops nodes x CPU cores x GPUs
Smola[5] 1.6M 0.5 100x8x0
PowerGraph 1.1M 0.3 64x16x0
BIDMach 3.6M 30 1x8x1
BIDMach 10M 85 1x8x4

In addition to the experiments above, we computed a 256-dimensional LDA factorization of a 1 TB
dataset (50,000 word features), which comprises approximately 9 months of the Twitter “Garden-
hose” (a random 10% sample of all tweets). The throughput was 80 gflops, and each iteration took
approximately 3 hours. Convergence to a perplexity of 90 was achieved after two passes over the
dataset, which corresponded to 200,000 mini-batch updates. To our knowledge this is significantly
larger than any other completed LDA factorization, on a cluster or otherwise.

Now for ALS (Alternating Least Squares), we add a new experiment on quad-GPUs. This change
produces similar improvements across scales. Note that as described in [1], rewriting ALS to follow
a loop-interleaving pattern led to an asymptotic improvement. So the time differences below are
due only in part to the faster GPU primitives we used. Results are from the “small Netflix” dataset
developed by the GraphLab group.

Table 4: ALS Performance
System \ Dimension 20 100 1000 nodes x CPU cores x GPUs
Powergraph 1000s ** ** 64x8x0
BIDMach (CG) 150s 500s 4000s 1x8x1
BIDMach (CG) 50s 150s 1300s 1x8x4
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Finally, we conducted some new experiments on multi-model regression. Regression involves rela-
tively little computation and is typically an I/O bound calculation. Therefore there is little advantage
from GPU acceleration for single-model regression. However, BIDMach has been written to sup-
port multi-model regression using shared SPMM operations. Each regression can be a distinct GLM
model (i.e. one logistic, one linear), with different features, regularization, and targets. So one
can regress many tuned regressors against multiple targets, which is a common scenario in indus-
try (e.g. targeting many ad campaigns). The table below shows time in seconds on two datasets
(unfortunately the dataset used for the Spark experiments is no longer available) for logistic regres-
sion. However, regression performance is normally a function only of dataset size and number of
iterations.

Table 5: Regression Performance

System \ NumTargets 1 300 nodes x CPU cores x GPUs
Spark 46s ** 100x4
BIDMach 100s 500s 1x8x1

Note that single-node GPU regression with one target is 2x slower than a cluster implementation on
100 nodes. This is still a 50x advantage in throughput per node. However, with hundreds of targets,
running time increases only slightly for a GPU implementation. Comparable benchmark data is not
available for Spark. However, Spark uses naive sparse matrix algebra and transcendental functions,
and these appear to be the bottleneck for the single-target implementation. Running time should
scale linearly with number of targets, and the GPU multi-model implementation looks to have more
than a 20x advantage over the 100-node cluster implementation for hundreds of targets.
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