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SUMMARY 10

Directed Acyclic Graphs (DAGs) provide an effective framework for learning causal relation-
ships among variables given multivariate observations. Under pure observational data, DAGs
encoding the same conditional independencies cannot be distinguished and are collected into
Markov equivalence classes. In many contexts however, observational measurements are sup-
plemented by interventional data that improve DAG identifiability and enhance causal effect 15

estimation. We propose a Bayesian framework for multivariate data partially generated after
stochastic interventions. To this end, we introduce an effective prior elicitation procedure leading
to a closed-form expression for the DAG marginal likelihood and guaranteeing score equivalence
among DAGs that are Markov equivalent post intervention. Under the Gaussian setting we show,
in terms of posterior ratio consistency, that the true network will be asymptotically recovered, 20

regardless of the specific distribution of the intervened variables and of the relative asymptotic
dominance between observational and interventional measurements. We validate our theoretical
results in simulation and we implement on both synthetic and biological protein expression data
a Markov chain Monte Carlo sampler for posterior inference on the space of DAGs.

Some key words: Bayesian model selection; Causal inference; Directed acyclic graph; Intervention; Markov equiva- 25

lence; Posterior ratio consistency; Structure learning.

1. INTRODUCTION

Identifying cause-and-effect relations between variables is a fundamental issue in several sci-
entific domains, including medicine, biology and economics (Pingault et al., 2018; Hünermund
& Bareinboim, 2019). The objective is to infer these relationships from the data, a task which is 30

not possible in general when only pure observational measurements are given. In some contexts
however, one could set up intervention experiments, and jointly model observations that were
collected before and after the interventions, or derived under distinct experimental conditions.
One example is the analysis of biological protein signalling data, where measurements are typ-
ically collected after a series of stimulatory cues and inhibitory interventions obtained from the 35

administration of reagents, responsible of the perturbation of nodes in the pathway (Sachs et al.,
2005; Dorel et al., 2018). Another instance is genomics, where transcriptomic gene expression
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2 F. CASTELLETTI AND S. PELUSO

data can be supplemented by interventional data obtained by performing partial, single, or multi-
ple gene knock-out experiments (Rau et al., 2013; Pinna et al., 2013). When the problem involves
several variables, the allied multivariate causal structure can be represented through a directed40

network, namely a Directed Acylic Graph (DAG), with directed edges representing causal rela-
tionships between nodes/variables and their parents in the graph. The target is then to infer the
network structure, a process known as structure learning, based on conditional independence
assertions that can be deduced from the joint distribution (Kalisch & Bühlmann, 2007; Friedman
& Koller, 2003). Since DAG identification is not guaranteed from observational measurements,45

the output of the inferential process is a potentially large Markov equivalence class of DAGs
sharing the same conditional independencies (Andersson et al., 1997). Importantly however, by
combining observational and interventional data, one can reduce the Markov equivalence class,
in principle up to a single DAG structure.

The literature on structure learning from experimental data has grown surprisingly in the last50

years, both in the statistical and machine learning community. Several types of interventions have
been considered, leading to different characterizations of Markov equivalence under intervention,
named I-Markov equivalence, and to the development of several dedicated methodologies (Korb
et al., 2004; Yang et al., 2018; Jaber et al., 2020); see also Correa & Bareinboim (2020) for a
comprehensive treatment. For our purposes, a distinction can be made between deterministic and55

stochastic intervention: the former sets each manipulated variable to a given value x̃, so that the
local distribution of each intervened node reduces to a point mass at x̃; the second type instead
replaces the local density with that of a new random variable, say f̃ . In addition, hard (also
named perfect) interventions destroy the dependence of each intervened node from its parents in
the DAG; by converse, soft interventions preserve the original parent-child relations, but allow60

for a modification of their “strength” (Yang et al., 2018). Hauser & Bühlmann (2012) provide
a characterization of Markov equivalence under stochastic hard interventions and introduce the
Greedy Interventional Equivalence Search (GIES) method as a score-based algorithm for struc-
ture learning of interventional equivalence classes. Hauser & Bühlmann (2015) present several
statistical properties connected to the joint modeling of observational and interventional data and65

prove consistency of the adopted Bayesian information criterion.
In the Bayesian framework, structure learning is set up as a model selection problem which

adopts the DAG marginal likelihood or equivalently the Bayes factor (Kass & Raftery, 1995;
Carvalho & Scott, 2009), to derive a posterior distribution over the space of graphs. Posterior
approximations are performed through Markov Chain Monte Carlo (MCMC) strategies; see for70

instance Chickering (2002), Consonni et al. (2017) and Castelletti (2020). To compute analyt-
ically the DAG marginal likelihood one needs to assign a suitable parameter prior distribution
which is constrained to satisfy the conditional independencies encoded by the graph. For undi-
rected decomposable graphs, Dawid & Lauritzen (1993) introduced Hyper Markov laws as a
class of conjugate priors for graph-dependent model parameters and specialized them under both75

a categorical and Gaussian setting; moreover, Roverato (2002) introduced the general G-Wishart
distribution for arbitrary, possibly non decomposable, undirected Gaussian graphical models. For
DAG models with i.i.d. observational samples, Geiger & Heckerman (2002) proposed an effec-
tive method for prior construction, which requires as input the elicitation of a single prior for
the parameter of a complete unconstrained DAG model and then derive compatibly the prior for80

any arbitrary DAG. Importantly, their approach assigns equal marginal likelihoods to Markov
equivalent DAGs, besides leading to a closed-form expression in the Gaussian setting. More re-
cently, Ben-David et al. (2015) introduced the DAG-Wishart distribution as a conjugate prior
for the parameter of a Gaussian DAG model. Theoretical properties of the DAG-Wishart prior
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Biometrika style 3

under the restrictive assumption of known parent ordering are studied by Cao et al. (2019) who 85

established graph selection consistency in high dimensional settings. Peluso & Consonni (2020)
then extended the DAG-Wishart to arbitrary DAGs, without a pre-determined node-ordering, by
showing that score equivalence is guaranteed only for specific hyperparameter choices.

In this paper we develop a Bayesian framework for the analysis of multivariate experimen-
tal data collected under stochastic hard interventions. Our contribution can be summarized as 90

follows: (i) we introduce a new Bayesian model for partially intervened multivariate data, with
a theoretically-guaranteed prior elicitation procedure on parameters indexing observational and
interventional distributions; (ii) we demonstrate that our method guarantees score equivalence,
i.e. same marginal likelihood, for I-Markov equivalent DAGs, thus generalizing the method
of Geiger & Heckerman (2002), originally introduced for observational samples, to an inter- 95

ventional setting; (iii) we specialize our model to Gaussian DAGs and prove, up to I-Markov
equivalence, the posterior ratio consistency: the true network structure can be asymptotically
recovered, regardless of the distributional form of the intervened variables, and regardless of the
relative asymptotic prevalence of observational or interventional measurements; therefore, we
extend the model and results of Cao et al. (2019) designed for pure observational measurements. 100

2. BACKGROUND: DAGS, INTERVENTIONS AND MARKOV EQUIVALENCE

2·1. Markov properties
Let D = (V,E) be a Directed Acyclic Graph (DAG), where V = {1, . . . , q} is a finite set of

nodes, or vertices, andE ⊂ V × V a set of edges. Elements ofE are ordered pairs such as (u, v)
and corresponding to directed edges of the form u→ v. We further assume that D does not have 105

bi-directed edges, implying that if (u, v) ∈ E, then (v, u) /∈ E, and cycles, that is paths of the
form u1 → u2 → · · · → uk where u1 = uk. For a given DAG D = (V,E), we say that u is a
parent of v in D if (u, v) ∈ E; conversely, v is a child of u. The set of all parents of u in D
is then paD(u), while faD(u) = u ∪ paD(u) is called the family of node u. A DAG D encodes
a set of conditional independencies between nodes which can be read-off from the DAG using 110

graphical criteria, such as d-separation (Pearl, 2000).
Consider a collection of random variables X1, . . . , Xq each associated with a node in D, and

with joint p.d.f. f(·). The latter factorizes according to D as

f(x1, . . . , xq | D) =

q∏
j=1

f(xj |xpaD(j)), (1)

in which case we say that f(·) obeys the Markov property of DAGD (Lauritzen, 1996). Equation
(1) is also known as the DAG factorization property and is equivalent to the local and global 115

Markov properties if f(·) is strictly positive (Lauritzen, 1996).
Consider now two distinct DAGs D1 and D2. These are called Markov equivalent if they en-

code the same set of conditional independencies. For a given DAG D, the set of all DAGs that
are Markov equivalent to D defines its Markov equivalence class, that we denote by [D]. One
further result in Andersson et al. (1997) shows that each equivalence class can be uniquely rep- 120

resented by a special partially directed graph named Essential Graph (EG). Most importantly for
our purposes, Markov equivalence implies a partition of the DAG space into equivalence classes.
Markov equivalent DAGs may differ by the orientation of some edges, while they share the same
skeleton, that is the underlying undirected graph obtained by disregarding edge orientation; this
feature follows from Verma & Pearl (1990) who show that any two Markov equivalent DAGs 125

have the same skeleton and set of v-structures.
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4 F. CASTELLETTI AND S. PELUSO

2·2. Interventional Markov equivalence
We now introduce interventions. Specifically, with a perfect stochastic intervention on the set

of nodes I ⊂ V , the intervention target, we fix each Xj , j ∈ I , to the level of a random variable
Uj with density f̃(uj) and such that {Uj}j∈I are mutually independent. The do-operator (Pearl,130

2000) is used to denote such an intervention and the post-intervention distribution ofX1, . . . , Xq

can be written as

f(x1, . . . , xq | do{Xj = Uj}j∈I ,D) =
∏
j /∈I

f(xj |xpaD(j))
∏
j∈I

f̃(xj), (2)

where it appears that for each j ∈ I the original dependence of node j from its parents paD(j)

is dropped and f(xj |xpaD(j)) replaced by f̃(xj). Under the specific case I = Ø, Equation (2)
reduces to (1) which is also named the observational or pre-interventional distribution.135

It is also common to deal with multiple and independent intervention experiments, correspond-
ing to a family of intervention targets I = {I1, . . . , IK}, where Ik ⊂ {1, . . . , q} and each imply-
ing a post-intervention distribution of the form (2). A family of intervention targets is conser-
vative (Hauser & Bühlmann, 2012, Definition 6) if for each j ∈ {1, . . . , q}, there exists some
I ∈ I such that j /∈ I . This implies that for each node j there exists at least one intervention140

which does not involve j, a requirement which is always guaranteed whenever observational
data are available.

Equation (2) shows that interventions modify the original DAG factorization and the cor-
responding Markov property. Hauser & Bühlmann (2012) extended the definition of Markov
equivalence under interventions. Importantly, under a conservative family of intervention tar-145

gets I, I-Markov equivalent DAGs are also observationally equivalent. Accordingly, interven-
tions lead to a finer partition of DAGs into equivalence classes. Specifically, given the family
of intervention targets I, D1 and D2 are interventionally Markov, or I-Markov, equivalent if,
for each I ∈ I, DI1 and DI2 encode the same conditional independencies, where DI = (V,EI),
EI = {(u, v) ∈ E | v /∈ I}, is the so-called intervention DAG of D = (V,E) given the target I .150

Finally, if we let [D]I be the I-Markov equivalence class ofD, i.e. the set of all DAGs that are I-
Markov equivalent to D, each class can be again represented by a chain graph called I-Essential
Graph; see also Definition 11 in Hauser & Bühlmann (2012), to which we also refer for further
theoretical results and characterizations of I-Markov equivalence.

3. BAYESIAN DAG MODEL COMPARISON155

3·1. Model formulation
Let I = {I1, . . . , IK} be a family of targets, where Ik ⊂ V for each k = 1, . . . ,K; notice

that if Ik = Ø the k-th dataset is purely observational. We assume that f(·) in (2) belongs to
some parametric family indexed by a global parameter (θ,θI) and write the post-intervention
distribution as160

f(x1, . . . , xq | do{Xj = Uj}j∈I ,θ,θI ,D) =
∏
j /∈I

f(xj |xpaD(j), θj) ·
∏
j∈I

f̃(xj |θI), (3)

where in particular θ = {θj}j /∈I is a collection of node-parameters relative to node-conditional
observational distributions, while θI = {θIj }j∈I are “interventional” node-parameters. We fur-
ther assume that for each intervention experiment k = 1, . . . ,K, n(k), with target Ik, i.i.d. ob-
servations from (3)

{
x

(k)
i , i = 1, . . . , n(k)

}
are available, and let X(k) be the corresponding

n(k) × q data matrix. To link observations to intervention targets we introduce the multiset165
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Biometrika style 5

T = (T (1), . . . , T (n)), where T (i) ∈ I is the intervention target under which observation i was
collected. By assuming independence across interventions, the likelihood function can be written
as

f(X |θ,θ(1), . . . ,θ(K),D) =
K∏
k=1


n(k)∏
i=1

∏
j /∈Ik

f
(
x

(k)
i,j |x

(k)
i,paD(j), θj

)
·
∏
j∈Ik

f̃k
(
x

(k)
i,j | θ

(k)
j

)


=
K∏
k=1

∏
j /∈Ik

f
(
X

(k)
j |X

(k)
paD(j), θj

) ∏
j∈Ik

f̃k
(
X

(k)
j | θ

(k)
j

) , (4)

where X(k)
S denotes the n(k) × |S| sub-matrix of X(k) with columns belonging to the set S ⊆

{1, . . . , q} and X =
(
X(1), . . . ,X(K)

)> the n× q data matrix, n =
∑K

k=1 n
(k). Notice that in 170

(4) we avoid the conditioning on the do-operator which for clarity was included in the post-
intervention distribution (3) since we consider interventions with targets that are known a priori;
see also Castelletti & Peluso (2022) for a comparison with interventions on uncertain targets.
Also notice that θ is common to all the K terms, while θ(k) is specific to intervention k. If we
now let A(j) = {i ∈ {1, . . . , n} : j /∈ T (i)}, then Equation (4) can be written as 175

f
(
X |θ,θ(1), . . . ,θ(K),D

)
=

q∏
j=1

f
(
X
A(j)
j |XA(j)

paD(j), θj
)
·
K∏
k=1

∏
j∈Ik

f̃k
(
X

(k)
j | θ

(k)
j

) (5)

where nowXA(j) denotes the sub-matrix ofX with rows corresponding toA(j). We emphasize
that, as long as we assume a conservative family of targets, all terms f(·) in the first product exist.

3·2. Prior parameter elicitation
Prior elicitation for DAG model parameters requires specific care. In particular, an important

requirement is that any two DAGs sharing the same I-Markov property, i.e. I-Markov equivalent 180

DAGs, are score equivalent, namely they are assigned the same marginal likelihood. The latter
corresponds to the likelihood function (4) which is integrated w.r.t. the prior on model parameters
(θ,θ(1), . . . ,θ(K)),

m(X | D) =

∫
f
(
X |θ,θ(1), . . . ,θ(K),D

)
p
(
θ,θ(1), . . . ,θ(K) | D

)
d
(
θ,θ(1), . . . ,θ(K)

)
.

Relevant to our method, Heckerman et al. (1995) and Geiger & Heckerman (2002) introduce a
set of assumptions that guarantee score equivalence in the case of observational i.i.d. samples. 185

They start by assuming some conditions on the likelihood, namely complete model equivalence,
regularity, likelihood modularity, which are satisfied by any Gaussian and categorical graph-
ical model. As mentioned however, the distinctive feature of the approach concerns the prior
construction, which is based on the following two assumptions. The first assumption of prior
modularity states that, given two distinct DAG models with the same set of parents for vertex j, 190

the prior for the node-parameter θj must be the same under both models.
The second assumption of global parameter independence assumes that for every DAG model

D, the parameters {θj ; j = 1, . . . , q} should be a priori independent. As a result, the parameter
prior for any DAG model can be derived from a unique prior on the parameter of an arbitrary
unconstrained complete DAG. Moving back to our interventional setting, consider now the like- 195

lihood function in (5), which consists of two terms. The first one reflects the DAG factorization
which is imposed to the likelihood f(·); also, the node-parameters {θj}qj=1, each indexing the
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6 F. CASTELLETTI AND S. PELUSO

conditional distribution of node j in DAG D are specific to each DAG under consideration and
therefore DAG-dependent. We assume for both the likelihood and priors in this term the same
assumptions of Geiger & Heckerman (2002), that is Assumptions 1-5 in the original paper. In200

particular, we first need the prior modularity assumption, exactly as in Geiger & Heckerman
(2002), limited to the observational parameters, being the interventional parameters detached
from the graphical structures.

On the other hand, the global independence assumption of Geiger & Heckerman (2002) needs
now to be extended to the interventional parameters, and to the relationship between observa-205

tional and interventional parameters. Because of prior independence across parameters θj’s, we
have p(θ | D) =

∏q
j=1 p(θj | D).Now notice that the second term in (5) corresponds to an uncon-

ditional likelihood which does not depend anymore on the DAG and with the node-parameters
{θ(k)
j , k = 1, . . . ,K, j ∈ Ik} indexing an unconditional marginal distribution now “free” from

the original DAG structure.210

Each of the terms f̃k is therefore the same across all DAG models. For what follows, we
only assume that for each k = 1, . . . ,K the “interventional” node-parameters are a priori in-
dependent, that is p(θ(k)) =

∏
j∈Ik p

(
θ

(k)
j

)
, and also global independence among all parame-

ters θ(1), . . . ,θ(K). We finally assume that the joint prior on θ and
(
θ(1), . . . ,θ(K)

)
factorizes

as p
(
θ,θ(1), . . . ,θ(K)

)
= p(θ | D) p

(
θ(1), . . . ,θ(K)

)
, so that parameters indexing observational215

and interventional densities are also a priori independent. The above line of reasoning is then
summarized in the following assumption, that we name of joint, for observational and interven-
tional, global parameter independence.

Assumption 1. (Joint global parameter independence) For a DAG D and intervention targets
I1, . . . , IK , we have that p

(
θ,θ(1), . . . ,θ(K) | D

)
= p(θ | D)

∏K
k=1

∏
j∈Ik p

(
θ

(k)
j

)
.220

3·3. Marginal likelihood and Bayes factor computation
We now focus on the computation of m(X | D), the marginal likelihood of DAG D. Because

of the assumptions in Section 3·2 we obtain

m(X | D) =

q∏
j=1

m
(
X
A(j)
faD(j) | C

)
m
(
X
A(j)
paD(j) | C

) ∏
k:j∈Ik

m
(
X

(k)
j

) , (6)

where m(· | C) denotes the marginal likelihood computed under any complete DAG model C; see
also Section 1 of the Supplementary material for full details on the derivation of (6).225

Consider now two DAGs D0 and D1, differing by one edge, say u→ v, which is contained in
D1 and reversed in D0 (Figure 1). Let also pa be the set of common parents of nodes u and v,
possibly an empty set. The Bayes Factor (BF) of D0 against D1,

BF(D0,D1) :=
m(X | D0)

m(X | D1)
, (7)

then simplifies to

BF(D0,D1) =
∏

j∈{u,v}

m
(
X
A(j)
faD0

(j)

)
m
(
X
A(j)
paD0

(j)

) · m
(
X
A(j)
paD1

(j)

)
m
(
X
A(j)
faD1

(j)

)
 , (8)

where we omit the conditioning on C to simplify the notation.230
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Biometrika style 7

D0 D1

pa

u v

pa

u v

Fig. 1: Two DAGs, D0,D1, differing by an edge reversal between u and v. pa is the set of
common parents of nodes u and v.

3·4. Gaussian DAG models
In the following we assume that the joint density f(·) in Equation (1) is that of a zero-mean

multivariate Normal distribution, namely

X1, . . . , Xq |Ω ∼ Nq(0,Ω−1), (9)

where Ω ∈ PD corresponds to the precision matrix, inverse of the covariance matrix Σ, and
PD is the space of all symmetric positive definite (s.p.d.) matrices Markov w.r.t. DAG D. An 235

equivalent formulation is in terms of the corresponding Structural Equation Model (SEM),

L>x = ε, ε ∼ Nq(0,D) (10)

where L is a q × q matrix of regression coefficients such that Lu,u = 1 for each u = 1, . . . , q
and Lu,v 6= 0, for each u 6= v if and only if u→ v is in D. Moreover, D is a q × q diagonal
matrix collecting node-conditional variances,D = diag(D11, . . . ,Dqq). Equation (10) implies

f(x1, . . . , xq |D,L,D) =

q∏
j=1

φ(xj | −L>≺j] xpaD(j),Djj), (11)

where ≺ j] = paD(j)× j, LA×B is the sub-matrix of L with columns and rows indexed by A 240

and B respectively, and φ(· |µ, σ2) denotes the p.d.f. of a N (µ, σ2). Equation (11) resembles
the DAG factorization in (1) and adopts the re-parameterization Σ 7→ (L,D) such that Σ =

L−>DL−1, where L−> :=
(
L>
)−1. Therefore, it corresponds to the observational distribution

in the Gaussian setting. The post-intervention distribution for an intervention on I ⊂ {1, . . . , q}
in (3) becomes under the Gaussian assumption 245

f(x1, . . . , xq | do{Xj = Uj}j∈I ,L,D, {δj}j∈I ,D) =
∏
j /∈I

φ(xj | −L>≺j]xpaD(j),Djj)

·
∏
j∈I

φ(xj | 0, δj), (12)

where {δj}j∈I are the interventional parameters, here corresponding to conditional variances of
variables Xj , j ∈ I . The post-intervention covariance matrix, Σ̃, is therefore Σ̃ = L̃−>D̃L̃−1

where L̃u,v = 0 if v ∈ I and u 6= v, while L̃u,v = Lu,v otherwise, and D̃ is obtained fromD by
replacing elementsDu,u, for each u ∈ I , with δu. As in Section 3·1, by assumingK independent
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8 F. CASTELLETTI AND S. PELUSO

interventions, each with target Ik, the likelihood function in (5) can be written as250

f
(
X |L,D, δ(1), . . . , δ(K),D

)
=

q∏
j=1

φ|A(j)|

(
X
A(j)
j | −XA(j)

paD(j)L≺j],DjjI|A(j)|

)

·
K∏
k=1

∏
j∈Ik

φn(k)

(
X

(k)
j |0, δ

(k)
j In(k)

) ,

(13)

where δ(k) = {δ(k)
j }j∈Ik , for k = 1, . . . ,K, φd(x |µ,Σ) denotes the p.d.f. of a Nd(µ,Σ) dis-

tribution and Id is the d× d identity matrix. To compute the marginal likelihood in (6) and the
BF in (8) we only need to specify a prior for the parameter of the observational Gaussian dis-
tribution of a complete DAG model (9), with Ω s.p.d. but otherwise unconstrained. Geiger &
Heckerman (2002) show that a Wishart prior assigned to Ω = Σ−1 satisfies the assumptions of255

prior modularity and global parameter independence required to obtain the marginal likelihood
in (6). Accordingly we set

Ω ∼ Wq(a,U), (14)

a Wishart distribution with parameters a > q − 1 and U , a (q, q) s.p.d. matrix, having expecta-
tion E(Ω) = aU−1. We then write

p(Ω) = c(a,U)|Ω|
a−q−1

2 exp

{
−1

2
tr(ΩU)

}
, c(a,U) =

|U |
a
2

2
aq
2 Γq

(
a
2

) ,
under which we obtain (Supplementary material, Section 2) the marginal likelihood restricted to260

XB , a generic submatrix of the n× q matrixX , with columns indexed by B ⊆ {1, . . . , q},

m(XB) = π−
n|B|

2
|UBB|

a−|B̄|
2

|UBB + SBB|
a−|B̄|+n

2

Γ|B|

(
a−|B̄|+n

2

)
Γ|B|

(
a−|B̄|

2

) . (15)

This general formula applied to each termm(·) in Equation (8) specializes the BF to the Gaussian
setting.

4. THEORETICAL PROPERTIES

In this section we present our main results, for which our model is able to consistently detect a265

posteriori the true DAG, or, more precisely, the interventional equivalence class [D0]I to which
the true DAGD0 belongs. Furthermore, it guarantees score equivalence among graphs within the
same interventional equivalence class, under a conservative family of intervention targets I. We
need to distinguish three settings, according to the relative asymptotic dominance between ob-
servational and interventional measurements, since they correspond to three distinct behaviours270

of the posterior ratio of the graphs under comparison. Specifically, we say that a node u ∈ I is a
balanced target if nA(u)/n→ α ∈ (0, 1), where nA(u) is the number of observational measure-
ments of Xu, with the meaning that asymptotically a proportion (1− α) of measurements will
be interventional for this variable; furthermore, we say that u ∈ I is an observationally dominant
target, or an interventionally dominant target, if, respectively, nA(u)/n→ 1 or nA(u)/n→ 0.275

We will first show that the prior elicitation procedure introduced in Section 3·2 guarantees
score equivalence, namely that any two DAGs D0 and D1 that are I-Markov equivalent, are
assigned the same marginal likelihood. For this purpose, recall Theorem 2 in Chickering (1995)
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which shows that two DAGs D0, D1 are Markov equivalent if and only if there exists a sequence
of edge reversals transforming D0 into D1 having the following properties: i) after each reversal 280

the resulting graph is a DAG belonging to the Markov equivalence class of D0 and D1; ii) each
reversed arc is covered. In particular, an arc u→ v is covered in D if paD(v) = paD(u) ∪ u.
Moreover, the length of the sequence is |∆(D0,D1)|, where ∆(D0,D1) is the set of edges in
D0 that have opposite orientation in D1. In the Supplementary material, we show that such a
sequence of graphs also exists within an I-Markov equivalent class, and we use this result to 285

further show the following proposition on score equivalence of I-Markov equivalent graphs.

PROPOSITION 1. (Score equivalence) Let I be a conservative family of targets, D0 and D1

two I-Markov equivalent DAGs, Then, D0 and D1 have the same marginal likelihood, namely
m(X | D0) = m(X | D1), with m(X | D) as in (6).

Proof. See the Supplementary material. � 290

To understand now how we correctly identify [D0]I , the I-Markov equivalence class of the
true DAG D0, it is crucial to focus on the comparison among graphs which are equivalent before
the interventions, but whose equivalence is broken after the interventions. In other words, these
graphs are observationally, but not interventionally, equivalent: this occurs whenD0 is compared
with D ∈ [D0] but D /∈ [D0]I . For such two graphs D0 and D, we find the exact rate of conver- 295

gence of the posterior ratio when the edges involved in the intervention are not strong protected
inD0, i.e their reversal does not break observational Markov equivalence; see also Definition 3.3
in Andersson et al. (1997). This rate is at least the rate of the posterior ratio when graphs neither
observationally nor interventionally equivalent are compared, in line with the intuition that these
latter graphs tend to be more easily discriminated. When these observationally equivalent graphs 300

are compared, we know from Chickering (1995) that there exists a graph sequence in which ad-
jacent graphs are equal, with the exception of u→ v reversed as v → u, with u and v having the
same parents pa, of cardinality |pa| = p ≥ 0, in both graphs.

It turns out that in our setting it is relevant to analyze the matrix

A(u | D) =
(
Σ0,faD(u)

)−1
Σ̃0,faD(u)

for the intervened node u ∈ V , where Σ0 and Σ̃0 denote respectively pre- and post-intervention
true covariance matrices; see also Section 3·4. For brevity, we may omit the dependence on the 305

graphs when clear from the context. If in D0 there are some edges involving the intervened node
u that are not strong protected in D0, it exists a pair of adjacent graphs Dj and Dj+1 in the
sequence of Chickering (1995) for which u is part of a covered edge. We therefore study how the
intervention on node u breaks the equivalence between the two adjacent graphs, and how this is
reflected in terms of posterior ratio. If on the other hand all edges of u are strong protected, v 310

has to be intended as an empty set, and A(u | Dj) = A(u | Dj+1). We define the ordered, from
smallest to largest, eigenvalues of A(u | D) as λj(u | D) for j = 1, . . . , |faD(u)|. In particular
the minimum and maximum eigenvalues are denoted respectively as λ(u | D) and λ(u | D).

We are then ready in the following propositions to show posterior ratio consistency to the true
interventional equivalence class when all targets are interventionally dominant, observationally 315

dominant, or balanced. Their proofs are contained within the Supplementary material, in a more
general proposition that includes the three cases. In the first of these results, we show that the
true interventional equivalence class is consistently identified, when the oservational measure-
ments asymptotically dominate the interventions, as long the number of interventions n− nA(u)

increases in n. 320
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10 F. CASTELLETTI AND S. PELUSO

PROPOSITION 2. (Observationally dominant setting) Let D0 be the true DAG. Under the as-
sumptions of Section 3·2, consider a prior Ω ∼ Wq(a,U) and the likelihood function in Equa-
tion (13). For conservative interventions on u, and with nA(u)/n→ 1 as n→∞, we have, for
all D /∈ [D0]I ,

p(D |X, I)

p(D0 |X, I)
= OP̄

Cα p(D)

p(D0)

J−1∏
j=0

(
Σ0,u | paDj+1

(u)

Σ0,u | paDj (u)

|eA(u | Dj+1)|
|eA(u | Dj)|

) 1
2

(n−nA(u))
 ,

where {D0,D1, . . . ,DJ = D} is a sequence of observationally equivalent adjacent graphs,
Cα some constant. Furthermore, for all D ∈ [D0]I , we have p(D |X, I)/p(D0 |X, I) =
p(D)/p(D0) P̄−almost surely.

Proof. See the Supplementary material. �

The above proposition tells that the posterior ratio consistency rate to the true [D0]I depends325

on n− nA(u). In particular, log BF(D,D0) ≤ −C
2 (n− nA(u)), P̄ almost surely, for some C not

dependent on n and for a sufficiently large n. When nA(u) ∼ n− log n, or nA(u) ∼ n− nβ , for
some β ∈ (0, 1), we have Bayes factor consistency, and posterior ratio consistency, respectively
at rate at least n and exp{nβ}, even if asymptotically the observational part of the data will
dominate. On the other hand, if nA(u) ∼ n− k, for some constant number of interventions k > 0330

not dependent on n, there is not necessarily consistency: still, log BF(D,D0) ≤ −Ck/2 with P̄
probability 1 for n sufficiently large, suggesting evidence in favour of the true graph D0.

Proposition 2 also suggests that, after an intervention on u, the convergence rate to [D0]I
is not affected by v → u or u→ v being present in the true edge set E0. Nevertheless, the
constant Cα is affected: for those targets with v → u ∈ E0 and I−strong protected, as in335

Definition 14 of Hauser & Bühlmann (2012), it is more beneficial to intervene on nodes
with Σu | pa,v|A(u | Dj)| >> Σu | pa|A(u | Dj+1)|; on the other hand, for those targets with
u→ v ∈ E0 and I−strong protected, from the proof of Proposition 1 we have |A(u | Dj)| =
|A(u | Dj+1)| and then targets with Σu | pa,v << Σu | pa should be privileged, looking only at
the pre-intervention covariance matrix.340

In the next result, we demonstrate the asymptotic correct identification of the true class when
interventions asymptotically dominate observational measurements. Relative to the previous sce-
nario and in line with intuition, it is now easier to find the correct graph class, and the requirement
of an nA(u) increasing in n is not needed.

PROPOSITION 3. (Interventionally dominant setting) In the setting of Proposition 2, for con-
servative interventions on u, and with nA(u)/n→ 0 as n→∞, we have, for all D /∈ [D0]I ,

p(D |X, I)
p(D0 |X, I) = OP̄

Cα
p(D)

p(D0)

J−1∏
j=0

(
nA(u)

n

)kj(u)
(
Σ0,u | paDj+1

(u)

Σ0,u | paDj
(u)

) 1
2

(n−nA(u))(
|A(u | Dj+1)|
|A(u | Dj)|

)n
2

 ,

where {D0,D1, . . . ,DJ = D} is a sequence of observationally equivalent adjacent graphs, Cα345

some constant, kj(u) = 1
2(|paDj (u)| − |paDj+1

(u)|). Furthermore, for all D ∈ [D0]I , we have
p(D |X, I)/p(D0 |X, I) = p(D)/p(D0) P̄−almost surely.

Proof. See the Supplementary material. �
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The implications of Proposition 3 in the interventionally dominant setting are considerably
different than in the previous scenario: we now have

log BF(D,D0) ≤ −1

2

∑
j

Cj

[
n1(u→ vj ∈ E0) + (nA(u) + log n)1(vj → u ∈ E0)

]
P̄ almost surely, for a sufficiently large n, constant Cj , and the sum is intended over j =
1, . . . , J − 1 for which u→ vj or vj → u is I−strong protected. This shows that the conver- 350

gence rate can be better for those targets u for which u→ v is in the true edge set, always at
rate at least exp{n}, regardless of the specific behaviour of nA(u). On the other hand, for a target
u with vj → u ∈ E0 for all j = 0, . . . , J − 1, I−strong protected for some j, the identification
of the true graph depends on nA(u): if nA(u) ∼ log n, or nA(u) ∼ nβ , for some β ∈ (0, 1), we
have a rate at least

√
n and exp{nβ/2}, respectively. If nA(u) ∼ k > 0 independent of n, we 355

have Bayes factor consistency at rate at least
√
n. Therefore, Proposition 3 suggests to choose

as targets in an interventionally dominant setting, those u with u→ v in E0 and, among these,
those nodes showing Σ0,u | pa,v << Σ0,u | pa.

In the next result we balance purely observational and interventional data, and show that we
always identify the correct graph, at a rate that increases in the proportion of interventional 360

measurements. Convergence is better than in the obervationally dominant setting, in line with
intuition, but not always worse than in the interventionally dominant case.

PROPOSITION 4. (Balanced setting) In the setting of Proposition 2, for conservative interven-
tions on u, and with nA(u)/n→ α ∈ (0, 1) as n→∞, we have, for all D /∈ [D0]I ,

p(D |X, I)

p(D0 |X, I)
= OP̄

Cα p(D)

p(D0)

J−1∏
j=0

(
Σ0,u | paDj+1

(u)

Σ0,u |paDj (u)

)n
2

(1−α)

Mj,α(u)
n
2

 ,

where {D0,D1, . . . ,DJ = D} is a sequence of observationally equivalent adjacent graphs, Cα
some constant, and

Mj,α(u) =
α+ (1− α)λ(u | Dj+1)

α+ (1− α)λ(u | Dj)
α+ (1− α)λ(u | Dj+1)

α+ (1− α)λ(u | Dj)
.

Furthermore, for all D ∈ [D0]I , we have p(D |X, I)/p(D0 |X, I) = p(D)/p(D0) P̄−almost
surely.

Proof. See the Supplementary material. � 365

In the balanced setting, we have

log BF(D,D0) ≤ −1

2

∑
j

Cj [n(1− α)1(u→ vj ∈ E0) + n1(vj → u ∈ E0)]

P̄ almost surely, for a sufficiently high n, constant Cj , and the sum again intended over
j = 1, . . . , J − 1 for which u→ vj or vj → u is I−strong protected. Therefore the Bayes factor
consistency rate is exp{n(1− α)} or exp{n}, depending on the direction in D0 of the edges in-
volving the target u. Intuitively, convergence improves for lower values of α, that is for a higher
proportion of interventional measurements, but only when u→ vj , whilst the convergence is 370

faster when vj → u. Interestingly, relative to the interventionally dominant setting, balanced
interventions induce a worsening in the convergence rate that depends on the direction of the
I−strong protected edges of u inD0: for vj → u ∈ E0 and I−strong protected, the rate remains
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12 F. CASTELLETTI AND S. PELUSO

exp{n} in both cases; for u→ vj ∈ E0 and I−strong protected, we assist on the contrary to an
improvement in rate for balanced interventions, to exp{n(1− α)}. Finally, in line with the ob-375

servationally equivalent setting, for those targets with v → u ∈ E0 and I−strong protected, the
result suggests to intervene on nodes with Σu | pa,v|A(u | Dj)| >> Σu | pa|A(u | Dj+1)|; whilst,
if u→ v ∈ E0 and I−strong protected, targets with Σu |pa,v << Σu | pa are preferred.

In Section 3 of the Supplementary material we provide a first result and related considera-
tions for the high-dimensional case, where the number of nodes q increases with n. In particular,380

we show that, under an additional assumption on neighbourhood sparsity, posterior ratio consis-
tency outside the equivalence class is still valid, for the balanced setting, in the particular case
of n/qn → β > 1. We conjecture that similar results exist in the observationally dominant and
interventionally dominant settings, and when n/qn → β < 1 or n/qn → 0, but the whole treat-
ment of all relevant cases is beyond the scope of the current work and is left as future research.385

5. EMPIRICAL ANALYSES

5·1. Simulated validations
In this section we investigate the asymptotic behaviour of the Bayes Factor (BF) through

simulation experiments. Specifically, we consider the BF of D0 against D1, the two DAGs in
Figure 1, where for simplicity we also assume that the set of common parents of u and v consists390

of a single node z, i.e. pa ≡ {z}. Notice that the two DAGs, that differ by the orientation of u←
v inD0 which is reversed inD1, are observationally Markov equivalent. We consider a family of
intervention targets I = {Ø, u} corresponding to a dataset which consists of observational data
and interventional data produced from an intervention with target I2 = u. Under the conservative
family of targets I, D0 and D1 are not I-Markov equivalent.395

Assuming the true DAG is D0 we then proceed by randomly generating the parame-
ters (D,L, δu) of the underlying SEM; see also Equations (11) and (12). Specifically, simi-
larly to Hauser & Bühlmann (2012), we draw independently the non-zero elements of L in
[−2,−0.1] ∪ [0.1, 2], while we fix D = diag(1, 1, 1) and δu = 0.1, the conditional variance of
Xu in the post-intervention distribution. Under this setting, a dataset X combines nØ obser-400

vational data X(1), corresponding to I1 = Ø, and nint interventional data X(2) for I2 = u.
Letting n = nØ + nint, we also have nA(v) = n and nA(u) = nØ. In the following we build
different scenarios with respect to the sample size n which we vary in a grid within [10, 1000]
and α = nA(u)/n, the proportion of observational data over the total sample size n. Under each
scenario defined by (n, α) we generate independently N = 100 datasets. We also fix the hy-405

perparameters of the Wishart prior (14) as a = q = 4 and U = Iq, the (q, q) identity matrix, a
weakly informative prior with weight corresponding to a prior sample of size one. Given each
dataset, we then compute the BF of D0 against D1 as in Equation (8).

We fist consider balanced settings in which the N = 100 datasets are generated for values
of α ∈ {0.2, 0.4, 0.6, 0.8}. The distribution of the logBF across the N = 100 simulations, under410

each scenario defined by α and for increasing sample sizes n, is summarized in the box-plots
of Figure 2. The theoretical values, represented as red dots in the figure, are computed in accor-
dance with Proposition 4, and show perfect harmony to the empirically evaluated BFs. Next,
we consider an observationally dominant setting, corresponding to the BF limiting value α = 1.
Accordingly, we take nA(u) = nØ = n− nβ , for β ∈ {0.2, 0.4, 0.6, 0.8} which indeed implies415

nA(u)/n→ α = 1. Results are reported in Figure 3 where the four panels refer to the four levels
of β. As in previous case, there is accordance between the theoretical values of Proposition 2
and the empirical results. The correct graph is always preferred, and we assist to an ameliora-
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Fig. 2: Simulated data. Balanced setting. Distribution, over N = 100 simulated datasets, of the
log Bayes Factor (BF) of D0 (true DAG) against D1 for increasing sample sizes n and values
of α ∈ {0.2, 0.4, 0.6, 0.8}, corresponding to increasing balanced proportions of observational
measurements.

tion of the BF value, with more and more detachment from score equivalence as we move to
higher and higher amounts of interventional data. We finally consider the interventionally domi- 420

nant case corresponding to α = 0. We fix nA(u) = nØ = nβ , for β ∈ {0.2, 0.4, 0.6, 0.8}, so that
nA(u)/n→ α = 0. Results are reported in Figure 4 where the four panels refer to the four levels
of β, again validating the theoretical results of Proposition 3.

5·2. Posterior sampling scheme
In this section we implement a Bayesian posterior sampler for DAG structure learning, and 425

we apply it to two public synthetic datasets. A further application to the protein signalling data
of Sachs et al. (2005) is provided in the Supplementary material. Our sampler is based on a
Metropolis Hastings MCMC scheme which adopts the BF in (8) to compute the acceptance ratio
between any two competing DAGs D, D̃. More specifically, we consider as a target distribution
the marginal posterior p(D |X) ∝ m(X | D) p(D),D ∈ Sq, where Sq is the set of all DAGs on 430

q vertices and p(D) is a prior on DAG D that we specify through independent Bernoulli ran-
dom variables on the collection of q(q − 1)/2 0-1 elements indicating the absence/presence of a
link between two nodes; see also Castelletti (2020). At each step of the MCMC scheme, corre-
sponding to a current DAG D, a new DAG D̃ is proposed from a suitable proposal distribution
q(D̃ | D) based on a local modification of D through insertion, deletion or reversal of a single 435

edge; see Castelletti (2020, Algorithm 1) for full details. The acceptance probability for D̃ under
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Fig. 3: Simulated data. Observationally dominant setting. Distribution, over N = 100 simulated
datasets, of the log Bayes Factor (BF) ofD0 (true DAG) againstD1 for increasing sample sizes n
and values of β ∈ {0.2, 0.4, 0.6, 0.8}, corresponding to increasing proportions of interventional
measurements.

a Metropolis Hastings algorithm is given by

αD̃ = min

{
1; BF(D̃,D) · p(D̃)

p(D)
· q(D | D̃)

q(D̃ | D)

}
, (16)

with BF(D̃,D) as in (7). Output of the MCMC is a collection of DAGs {D(1), . . . ,D(S)} visited
by the chain, where S is the number of final iterations. Let now D be the set of distinct DAGs
visited by the MCMC chain. The posterior probability of D ∈ D can be approximated as440

p̂(D |X) =
m(X | D)p(D)∑
D∈Dm(X | D)p(D)

=

1 +
∑
D∗ 6=D

p(D∗)
p(D)

BF(D∗,D)


−1

(17)

while it is p̂(D |X) = 0 if D /∈ D; see also Garcı́a-Donato & Martı́nez-Beneito (2013) for
a comparison with frequency-based approximations of posterior probabilities in large model
spaces. To evaluate the performance of our methodology in recovering the underlying DAG,
we then consider the Maximum A Posteriori (MAP) DAG, D̂, corresponding to the DAG with
the highest estimated posterior probability. As a further summary of the MCMC output, we can445

also compute, for each edge u→ v, its marginal posterior probability of inclusion

p̂(u→ v |X) =
∑
D∈D

p̂(D |X)1(u→ v ∈ D) (18)
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Fig. 4: Simulated data. Interventionally dominant setting. Distribution, over N = 100 simulated
datasets, of the log Bayes Factor (BF) ofD0 (true DAG) againstD1 for increasing sample sizes n
and values of β ∈ {0.2, 0.4, 0.6, 0.8}, corresponding to increasing proportions of observational
measurements.

where 1(u→ v ∈ D) = 1 if D contains u→ v, 0 otherwise.

Dataset 1: gmInt data. We first apply our MCMC scheme to the gmInt data of Kalisch et al.
(2012), which consists of an ensemble of observational and interventional measurements simu-
lated from a 8-dimensional Gaussian DAG model. The family of targets is I = {Ø, {3}, {5}} 450

and the corresponding sample sizes are nØ = 3000, n{3} = n{5} = 1000, so that the overall pro-
portions of observational and interventional data are almost balanced. We apply our MCMC
scheme for a number of iterations S = 10000. Given the output, we first recover the MAP DAG
estimate, whose representative I-EG coincides with the true I-EG in Figure 5 (b). The true
DAG is reported in Figure 5 (a), together with the representative true I-EG. The latter contains 455

one undirected, i.e. bidirected, edge between nodes Author and Bar; accordingly there are two
DAGs in the true I-Markov equivalence, corresponding to the two possible orientations of the
undirected edge. In addition, we estimate the posterior probability of inclusion as in Equation
(18) for each possible edge (u, v), u, v ∈ {1, . . . , q}. Results are summarized in the heat map of
Figure 5 (c). It appears that the posterior probability of inclusion is approximately one for all 460

directed edges that are included in the estimated I-EG and zero otherwise, with the exception
of the two directed edges Author → Bar and Author ← Bar whose posterior probabilities are
approximately equal to 0.5. Indeed, the posterior distribution of DAGs computed from Equation
(17) is concentrated around the two DAGs belonging to the true I-Markov equivalence class,
which divide into two equal parts the overall posterior over the DAG space. 465
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Fig. 5: gmInt data. True DAG (a), true and estimated I-essential graph (b) and heat map collect-
ing the estimated posterior probabilities of edge inclusion p̂(u→ v |X) (c).

Dataset 2: DREAM4 data. We now consider synthetic gene expression data from the DREAM4
in silico challenge (Marbach et al., 2009, 2010). DREAM4 provides five datasets with an ensem-
ble of interventional and observational data simulated from five biologically plausible, possibly
cyclic gene regulatory networks with 10 genes. Each dataset contains both observational mea-
surements, as well as measurements from single-gene knockdowns, single-gene knockouts on470

each gene and time series data simulated from an unknown change of parameters in the first half
and unperturbed data in the second half. We follow the procedure of Hauser & Bühlmann (2012,
Section 5.3.1) for the construction of the datasets here analyzed. Most importantly, given the
composition of each dataset, a DAG structure is fully identifiable. We then implement the MCMC
scheme for a number of iterations S = 10000 on each of the five datasets to approximate the pos-475

terior (17) from which we recover, as a summary of the entire output, the MAP DAG estimate.
The latter is compared with the true regulatory network by means of the structural Hamming
distance between the two graphs (Kalisch & Bühlmann, 2007). As a benchmark we also include
the Greedy Interventional Equivalence Search (GIES) method of Hauser & Bühlmann (2012),
a search-and-score method based on penalized maximum likelihood estimation which jointly480

model observational and interventional data. The Greedy Interventional Equivalence Search is
implemented for three different optimization criteria: the BIC (GIES 0) and the Extended BIC
with tuning coefficient γ ∈ {0.5, 1} (GIES 0.5 and GIES 1, respectively); see also Foygel &
Drton (2010). The BIC and the Extended BIC correspond to Laplace approximations of the
marginal likelihood based on differently regularized likelihood functions. Differences between485

our closed-form expression for the DAG marginal likelihood and the BIC are therefore expected
at small sample sizes, where the Laplace approximation can be less accurate (Konishi & Kita-
gawa, 2008), and in contexts more sensitive to changes in the likelihood penalty tuning. Results
are reported in Table 1, where it is clear that, with few exceptions, we favourably compare with
the alternative methodologies, and that overall our performance shows a lower error.490

6. DISCUSSION

Our method has been specifically constructed for assumed hard stochastic interventions that
destroy the relations between intervened variables and their parents, but it can be useful with no
further adaptations to hard deterministic interventions, by fixing the f̃ density to a degenerate
delta function δx̃ with total mass on the chosen fixed value x̃ of the intervened node. In this spe-495
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Dataset Bayes MAP GIES 0 GIES 0.5 GIES 1
1 10 10 9 10
2 12 12 11 12
3 12 16 15 13
4 6 10 6 7
5 6 8 8 7

Average 9.2 11.2 9.8 9.8

Table 1: DREAM4 data. Structural Hamming Distance (SHD) between true and estimated DAG
for each of the five datasets. Methods under comparison are: our Bayesian approach with the
Maximum A Posteriori DAG estimate (Bayes MAP); the Greedy Interventional Equivalence
Search (GIES) method implementing the Bayesian Information Criterion (GIES 0) and the Ex-
tended Bayesian Information Criterion with tuning coefficient γ ∈ {0.5, 1} (GIES 0.5 and GIES
1).

cial case, the whole prior elicitation construction is trivially respected, since for all k = 1, . . . ,K,
there are no interventional parameters θ(k). More strongly, any choice of f̃ for the generic node
j ∈ V is compatible with our framework, as long as it implies the same set of post-intervention
dependencies towards j for any couple of graphs under comparison: when this happens, the re-
lated interventional part of the likelihood ratio will not affect the Bayes factor and the posterior 500

ratio, exactly in finite sample sizes. On the contrary, with soft interventions (Yang et al., 2018)
which only weaken the strength of the parent-child relationships, or with general interventions
(Correa & Bareinboim, 2020) that allow for local modifications of the DAG structure, the Bayes
factor would be explicitly affected by the choice of f̃ . We conjecture that our theoretical results
on score equivalence and posterior ratio consistency of, respectively, equivalent and nonequiva- 505

lent graphs, can be extended to soft interventions and to general interventions, by imposing some
constraints on the hyperparameters of the interventional prior distributions, along the same line
of those constraints suggested by Geiger & Heckerman (2002) and elicited by Peluso & Con-
sonni (2020), in the context of multivariate data with no interventions, on the hyperparameters
of the observational prior distributions. 510

Active learning methods implement experimental design techniques to identify a family of in-
tervention targets that guarantee full DAG identification via the smallest number of intervention
experiments (Eberhardt, 2008; He & Geng, 2008). To this purpose, He & Geng (2008) propose
two kinds of optimal intervention strategies: a batch intervention, which identifies upfront, be-
fore any intervention, the minimum set of variables to manipulate leading to DAG identification, 515

and a sequential approach which iteratively selects an optimal target variable and collects in-
terventional data gathered from a manipulation of the selected node. The procedure is repeated
until the estimated interventional Markov equivalence class consists of a single DAG. Based
on these premises, Castelletti & Consonni (2022) propose a Bayesian methodology for sample
size determination, which computes at each intervention the minimal sample size guaranteeing a 520

pre-experimental overall probability of decisive and correct evidence in favour of a correct DAG
identification. To discriminate between competing DAG structures, their method adopts a Bayes
Factor (BF) computed from observational data, and therefore is limited to targets designed by
a batch strategy. On the other hand, our methodology is based on a BF that integrates observa-
tional and interventional data, and it can therefore be used to extend the method of Castelletti & 525

Consonni (2022) to sample size determination for sequentially designed interventions.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes (i) additional material
on the DAG marginal likelihood in the general and Gaussian case, (ii) proofs of propo-
sitions with related auxiliary results and discussion, (iii) a first result and discussion in535

the high-dimensional case with an increasing number of nodes, (iv) an empirical applica-
tion to protein signalling data. Code implementing our methodology is publicly available at
https://github.com/FedeCastelletti/bayes learning networks interventional.
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