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Foreword

Welcome to Bayesuvius! a proto-book uploaded to github.
A different Bayesian network is discussed in each chapter. Each chapter title

is the name of a B net. Chapter titles are in alphabetical order.
This is a volcano in its early stages. First version uploaded to a github repo

called Bayesuvius on June 24, 2020. First version only covers 2 B nets (Linear Re-
gression and GAN). I will add more chapters periodically. Remember, this is a moon-
lighting effort so I can’t do it all at once.

For any questions about notation, please go to Notational Conventions section.
Requests and advice are welcomed.

Thanks for reading this
Robert R. Tucci
www.ar-tiste.xyz

9



Navigating the ocean of Judea
Pearl’s Books

Many of the greatest ideas in the bnet field were invented by Judea Pearl and his
collaborators. Thus, this book is heavily indebted to those great scientists. Those
ideas have had no clearer and more generous expositor than Judea Pearl himself.

Pearl has written 4 books that I have used in writing Bayesuvius. His 1988
book Ref.[25] dates back to his pre-causal period. That book I used to learn about
topics such as d-separation, belief propagation, Markov-blankets, and noisy-ORs. 3
other books that he wrote later, in his causal period, are:

1. In 2000 (1st ed.), and 2013 (2nd ed.), Pearl published what is so far his most
technical and exhaustive book on the subject of causality, Ref.[26].

2. In 2016, he released together with Glymour and Jewell, a less advanced “primer”
on causality, Ref.[29].

3. In 2018, he released together with Mackenzie his lovely “The Book of Why”,
Ref.[30].

Those 3 books I used to learn about causality topics such as do-calculus, backdoor
and front-door adjustments, linear deterministic bnets with exogenous noise, and
counterfactuals.
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Notational Conventions and
Preliminaries

0.1 Some abbreviations frequently used through-

out this book

• bnet= B net= Bayesian Network

• CPT = Conditional Probabilities Table, same as TPM

• DAG = Directed Acyclic Graph

• i.i.d.= independent identically distributed.

• RCT= Randomized Controlled Trial, aka A/B testing.

• TPM= Transition Probability Matrix, same as CPT

0.2 N (!a)

N (!a) will denote a normalization constant that does not depend on a. For example,
P (x) = N (!x)e−x where

∫∞
0
dx P (x) = 1.

0.3 One hot

A one hot vector of zeros and ones is a vector with all entries zero with the exception
of a single entry which is one. A one cold vector has all entries equal to one with
the exception of a single entry which is zero. For example, if xn = (x0, x1, . . . , xn−1)
and xi = δ(i, 0) then xn is one hot.

0.4 Special sets

Define Z,R,C to be the integers, real numbers and complex numbers, respectively.
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For a < b, define IZ to be the integers in the interval I, where I = [a, b], [a, b), (a, b], (a, b)
(i.e, I can be closed or open on either side).

A>0 = {k ∈ A : k > 0} for A = Z,R.

0.5 Kronecker delta function

For x, y in discrete set S,

δ(x, y) =

{
1 if x = y
0 if x 6= y

(1)

0.6 Dirac delta function

For x, y ∈ R, ∫ +∞

−∞
dx δ(x− y)f(x) = f(y) (2)

0.7 Indicator function (aka Truth function)

1(S) =

{
1 if S is true
0 if S is false

(3)

For example, δ(x, y) = 1(x = y).

0.8 Majority function

The majority function is defined as follows.

majority(L) = most common element of list L
(ties resolved by chance)

(4)

Note that the majority function acts on lists, not sets. By definition, all elements of
a set appear only once in the set. majority(L) is usually used when the elements
of L are categorical (i.e., not real numbers). When they are real numbers, it makes
more sense to use, instead of majority(L), a simple average of the elements of L.

0.9 Underlined letters indicate random variables

Random variables will be indicated by underlined letters and their values by non-
underlined letters. Each node of a bnet will be labelled by a random variable. Thus,
x = x means that node x is in state x.

It is more conventional to use an upper case letter to indicate a random variable
and a lower case letter for its state. Thus, X = x means that random variable X is

12



in state x. However, we have opted in this book to avoid that notation, because we
often want to define certain lower case letters to be random variables or, conversely,
define certain upper case letters to be non-random variables.

0.10 Probability distributions

Px(x) = P (x = x) = P (x) is the probability that random variable x equals x ∈ Sx.
Sx is the set of states (i.e., values) that x can assume and nx = |Sx| is the size (aka
cardinality) of that set. Hence, ∑

x∈Sx

Px(x) = 1 (5)

Px,y(x, y) = P (x = x, y = y) = P (x, y) (6)

Px|y(x|y) = P (x = x|y = y) = P (x|y) =
P (x, y)

P (y)
(7)

0.11 Discretization of continuous probability dis-

tributions

The TPM of a node of a bnet can be either a discrete or a continuous probability
distribution. To go from continuous to discrete, one replaces integrals over states of a
node by sums over new states, and Dirac delta functions by Kronecker delta functions.
More precisely, consider a function f : [a, b] → R. Express [a, b] as a union of small,
disjoint (except for one point) closed sub-intervals (bins) of length ∆x. Name one
point in each bin to be the representative of that bin, and let Sx be the set of all the
bin representatives. This is called discretization or binning. Then

1

(b− a)

∫
[a,b]

dx f(x)→ ∆x

(b− a)

∑
x∈Sx

f(x) =
1

nx

∑
x∈Sx

f(x) . (8)

Both sides of last equation are 1 when f(x) = 1. Furthermore, if y ∈ Sx, then∫
[a,b]

dx δ(x− y)f(x) = f(y)→
∑
x∈Sx

δ(x, y)f(x) = f(y) . (9)

0.12 Samples, i.i.d. variables

~x = (x[0], x[1], x[2] . . . , x[nsam(~x)− 1]) = x[:] (10)
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nsam(~x) is the number of samples of ~x. x[σ] ∈ Sx are i.i.d. (independent
identically distributed) samples with

x[σ] ∼ Px (i.e. Px[σ] = Px) (11)

P (x = x) =
1

nsam(~x)

∑
σ

1(x[σ] = x) (12)

Hence, for any f : Sx → R,∑
x

P (x = x)f(x) =
1

nsam(~x)

∑
σ

f(x[σ]) (13)

If we use two sampled variables, say ~x and ~y, in a given bnet, their number of
samples nsam(~x) and nsam(~y) need not be equal.

P (~x) =
∏
σ

P (x[σ]) (14)

∑
~x

=
∏
σ

∑
x[σ]

(15)

∂~x = [∂x[0], ∂x[1], ∂x[2], . . . , ∂x[nsam(~x)−1]] (16)

P (~x) ≈ [
∏
x

P (x)P (x)]nsam(~x) (17)

= ensam(~x)
∑
x P (x) lnP (x) (18)

= e−nsam(~x)H(Px) (19)

0.13 Normal Distribution

For x, µ, σ ∈ R, σ > 0

N (x;µ, σ2) =
1

σ
√

2π
e−

1
2(x−µσ )

2

(20)

0.14 Uniform Distribution

For a < b, x ∈ [a, b]

U(x; a, b) =
1

b− a
(21)
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0.15 Sigmoid and logit functions

The sigmoid function sig:R→ [0, 1] is defined by

sig(x) =
1

1 + e−x
(22)

sig() is monotonically increasing with sig(−∞) = 0 and sig(+∞) = 1.
The logit or log-odds function logit:[0, 1]→ R is defined by

logit(p) = ln
p

1− p
(23)

logit() is the inverse of sig():

logit[sig(x)] = x (24)

0.16 Expected Value and Variance

Given a random variable x with states Sx and a function f : Sx → R, define

Ex[f(x)] = Ex∼P (x)[f(x)] =
∑
x

P (x)f(x) (25)

V arx[f(x)] = Ex
[
(f(x)− Ex[f(x)])2

]
(26)

= Ex[f(x)2]− (Ex[f(x)])2 (27)

E[x] = Ex[x] (28)

V ar[x] = V arx[x] (29)

0.17 Conditional Expected Value

Given a random variable x with states Sx, a random variable y with states Sy, and a
function f : Sx × Sy → R, define

Ex|y[f(x, y)] =
∑
x

P (x|y)f(x, y) , (30)

Ex|y=y[f(x, y)] = Ex|y[f(x, y)] =
∑
x

P (x|y)f(x, y) . (31)

Note that
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Ey[Ex|y[f(x, y)]] =
∑
x,y

P (x|y)P (y)f(x, y) (32)

=
∑
x,y

P (x, y)f(x, y) (33)

= Ex,y[f(x, y)] . (34)

0.18 Law of Total Variance

Claim 1 Suppose P : Sx × Sy → [0, 1] is a probability distribution. Suppose f :
Sx × Sy → R and f = f(x, y). Then

V arx,y(f) = Ey[V arx|y(f)] + V ary(Ex|y[f ]) . (35)

In particular,
V arx(x) = Ey[V arx|y(x)] + V ary(Ex|y[x]) . (36)

proof:
Let

A =
∑
y

P (y)

(∑
x

P (x|y)f

)2

. (37)

Then

V arx,y(f) =
∑
x,y

P (x, y)f 2 −

(∑
x,y

P (x, y)f

)2

(38)

=


∑

x,y P (x, y)f 2 − A

+

(
A−

(∑
x,y P (x, y)f

)2
)

(39)

Ey[V arx|y(f)] =
∑
y

P (y)

∑
x

P (x|y)f 2 −

(∑
x

P (x|y)f

)2
 (40)

=
∑
x,y

P (x, y)f 2 − A (41)

V ary(Ex|y[f ]) =
∑
y

P (y)

(∑
x

P (x|y)f

)2

−

(∑
y

P (y)
∑
x

P (x|y)f

)2

(42)

= A−

(∑
x,y

P (x, y)f

)2

(43)
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QED

0.19 Notation for covariances

Consider two random variables x, y.

• Mean value of x
〈x〉 = Ex[x] (44)

• Signed distance of x to its mean value

∆x = x− 〈x〉 (45)

• Covariance of (x, y)

Cov(x, y) =
〈
x, y
〉

=
〈
∆x∆y

〉
=
〈
xy
〉
− 〈x〉

〈
y
〉

(46)〈
x, y
〉

is symmetric (i.e.,
〈
x, y
〉

=
〈
y, x
〉
) and bilinear (i.e.,

〈∑
i αixi, y

〉
=∑

i αi
〈
xi, y

〉
, where αi ∈ R are non-random scalars and xi, y ∈ R are real-

valued random variables.)

• Variance of x
V ar(x) = 〈x, x〉 (47)

• Standard deviation or x
σx =

√
〈x, x〉 (48)

• Correlation Coefficient of (x, y)

ρx,y =

〈
x, y
〉√

〈x, x〉
〈
y, y
〉 (49)

0.20 Conditional Covariance

Let x, y, a be random variables. The covariance Cov(x, y|a) of x and y given a, is
defined the same way as Cov(x, y), except that all expected values are conditioned
on a.

Cov(x, y|a) =
〈
x, y
〉
|a =

〈
(x− 〈x〉|a)(y −

〈
y
〉
|a)
〉
|a

(50)

where

〈x〉|a = Ex|a[x] . (51)
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0.21 Linear regression, Ordinary Least Squares (OLS)

Wikipedia articles

1. Linear Regression (LR)

• linear regression, Ref.[64]

• simple linear regression, Ref.[79]

• errors in variable, Ref.[51]

2. Least squares (LS)

• least squares, Ref.[63]

• ordinary least squares (OLS), Ref.[75]

In LR, the dependent variables y equal a linear combination of some inde-
pendent variables x plus some external noise variables ε called the residuals.

Below, we consider two types of LR:

1. LR in which the independent variables are non-random.

2. LR in which the independent variables are random and i.i.d.

Once one assumes that certain variables are random, a “model” (i.e., a bnet)
for the random variables must be specified.

For LR of type 2, there is randomness in y coming from the randomness in x
and in the residuals. For LR of type 1, there is randomness in y too, but it comes
from the residuals only.

OLS provides a cost function which when minimized, yields LR. The term
OLS is often used to refer to LR of type 1.

0.21.1 LR, assuming xσ are non-random

Let
σ ∈ {0, 1, 2, . . . , nsam− 1} : sample index
yσ ∈ R: dependent variables
xσj ∈ R: independent variables
εσ ∈ R: residuals
β0, βj ∈ R: regression coefficients

yσ = β0 +
n∑
j=1

xσjβj + εσ (52)

If we define
xσ0 = 1 (53)
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for all σ, then

yσ =
n∑
j=0

xσjβj + εσ . (54)

If y and ε are nsam× 1 column vectors and β is an (n+ 1)× 1 column vector, then
can write previous equation in matrix form as:

y = Xβ + ε . (55)

Define the projection matrices

∧ = X(XTX)−1XT , ∨ = 1− ∧ (56)

A square matrix M is symmetric if MT = M and is idempotent if M2 = M . ∧ is
symmetric and idempotent and so is ∨. Note that ∧ and ∨ also satisfy:

∨∧ = ∧∨ = 0 (57)

and

∧X = X , ∨X = 0 . (58)

One has

β = (XTX)−1XT (y − ε) . (59)

Define

β̂ = (XTX)−1XTy = By , (60a)

ŷ = Xβ̂ = ∧y , (60b)

and

ε̂ = y −Xβ̂ = y − ŷ = (1− ∧)y = ∨y . (60c)

∧ is sometimes called the hat matrix, because it gives y a hat.
Given any function f = f(y,X, ε) and a scalar factor ξ ∈ R, suppose f(ξy, ξX, ξε) =

ξOf(y,X, ε). Then we will say that f(·) is of order O under scaling. Note that
{X, y, ŷ, ε, ε̂} are all of order 1 under scaling, {β, β̂,∧,∨} are all of order 0 under
scaling, and B is of order −1 under scaling. Thus, the estimator variables (i.e, those
with a hat) scale the same way as the variables without a hat that they are estimat-
ing. Furthermore, β, its estimator β̂, and the projection matrices ∧,∨ are invariant
(O = 0) under scaling.
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Fig.3 illustrates that y can be expressed as a sum of 2 estimators:

y = ŷ︸︷︷︸
∧y

+ ε̂︸︷︷︸
∨y

. (61)

y

??

ŷ=∧y
//

ε̂=∨y

OO

Figure 3: Decomposition of y into sum of two estimators, ŷ and ε̂.

model dependent results:
Assume the components of ε are random over σ and

Eσ[ε] = 〈ε〉 = 0 (62)

AssumeX and β are not random. This makes y = Xβ+ε and β̂ = (XTX)−1XTy
random. One finds that 〈

y
〉

= Xβ (63)

〈
ŷ
〉

= ∧
〈
y
〉

=
〈
y
〉

(64a)

〈ε̂〉 = ∨
〈
y
〉

= 0 (64b)〈
β̂
〉

= β (64c)

So far, we have assumed a zero mean value for ε. Next, assume “homoscedas-
ticity” (HS), which means that 〈

ε, εT
〉

= ξ2Insam (64d)

where ξ ≥ 0, nsam =
∑

σ and Insam is the nsam× nsam identity matrix. It follows
that 〈

y, yT
〉

=
〈
ε, εT

〉
= ξ2Insam , (65)

〈
ε̂, ε̂T

〉
= ∨

〈
y, yT

〉
∨T = ξ2∨ , (66)
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〈
ŷ, ŷT

〉
= ∧

〈
y, yT

〉
∧T = ξ2∧ (67)

and 〈
β̂, β̂

T
〉

= B
〈
y, yT

〉
BT = ξ2(XTX)−1 . (68)

The goodness of fit for this model is often measured using the coefficient of
determination R2. R2 is defined by

R2 =
‖ ŷ −

〈
ŷ
〉
‖2

‖ y −
〈
y
〉
‖2

=
tr
〈
ŷ, ŷT

〉
tr
〈
y, yT

〉 (69)

If HS holds, then R2 reduces to

R2 =
tr ∧
nsam

. (70)

0.21.2 LR, assuming xσ are random and i.i.d.

Let
y ∈ R: true value of dependent variable
ŷ ∈ R: estimator of dependent variable
ε ∈ R: residual
xj ∈ R: independent variables
β0, βj ∈ R: regression coefficients

ŷ = β0 +
n∑
j=1

βjxj (71)

y = ŷ + ε (72)

Assume

〈ε〉 = 0 (73)

and 〈
xj, ε

〉
= 0 (74)

for all j.
For k = 1, . . . , n, 〈

xk, y
〉

=
n∑
j=1

βj
〈
xk, xj

〉
. (75)

Let xn and βn be column vectors. Then〈
xn, y

〉
=
〈
xn, (xn)T

〉
βn , (76)
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βn =
〈
xn, (xn)T

〉−1 〈
xn, y

〉
. (77)

β0 =
〈
y
〉
− (βn)T 〈xn〉 (78)

Notice that the equations for the regression coefficients are very similar for the
two cases of xσ-nonrandom and xσ-random. In fact, if we replace bilinears as follows

XTy −→
〈
xn, y

〉
(79)

XTX −→
〈
xn, (xn)T

〉
(80)

we go from the estimator of β for one case to the estimator of β for the other case:

Eq.(60a) −→ Eq.(77) (81)

Next, we will write Eq.(77) for the special cases n = 1 and n = 2, where n is
the number of independent variables xj

1. n = 1 (y fitted by a line)

y = β0 + βx+ ε (82)

Eq.77 becomes

βy,x = β =

〈
y, x
〉

〈x, x〉
(83)

2. n = 2 (y fitted by a plane)

y = β0 + β1x1 + β2x2 + ε (84)

Define

Ci,j =
〈
xi, xj

〉
(85)

for all i, j. Then Eq.77 becomes1

[
β1

β2

]
= C−1

[ 〈
y, x1

〉〈
y, x2

〉 ] (86)

=
1

detC

[
C22 −C12

−C21 C11

] [ 〈
y, x1

〉〈
y, x2

〉 ] (87)

1 Recall that if M =

[
a b
c d

]
then M−1 = 1

detM

[
d −b
−c a

]
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Hence,

βy,x1|x2 = β1 =
C22

〈
y, x1

〉
− C12

〈
y, x2

〉
C11C12 − C2

12

(88)

Eq.(88) agrees with the value of βY X|Z in Ref.[21] by Pearl, if we replace in
Pearl’s formulae X → x1, Y → y, Z → x2.

0.22 Short Summary of Boolean Algebra

See Ref.[46] for more info about this topic.
Suppose x, y, z ∈ {0, 1}. Define

x or y = x ∨ y = x+ y − xy , (89)

x and y = x ∧ y = xy , (90)

and

not x = x = 1− x , (91)

where we are using normal addition and multiplication on the right hand sides.2

Actually, since x∧y = xy, we can omit writing the symbol ∧. The symbol ∧ is
useful to exhibit the symmetry of the identities, and to remark about the analogous
identities for sets, where ∧ becomes intersection ∩ and ∨ becomes union ∪. However,
for practical calculations, ∧ is an unnecessary nuisance.

Since x ∈ {0, 1},
P (x) = 1− P (x) . (92)

Clearly, from analyzing the simple event space (x, y) ∈ {0, 1}2,

P (x ∨ y) = P (x) + P (y)− P (x ∧ y) . (93)

0.23 Entropy, Kullback-Liebler divergence

For probabilty distributions p(x), q(x) of x ∈ Sx
• Entropy:

H(p) = −
∑
x

p(x) ln p(x) ≥ 0 (94)

• Kullback-Liebler divergence:

DKL(p ‖ q) =
∑
x

p(x) ln
p(x)

q(x)
≥ 0 (95)

2Note the difference between ∨ and modulus 2 addition ⊕. For ⊕ (aka XOR): x⊕y = x+y−2xy.
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Associativity
x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∧ (y ∧ z) = (x ∧ y) ∧ z

Commutativity
x ∨ y = y ∨ x
x ∧ y = y ∧ x

Distributivity
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Identity
x ∨ 0 = x
x ∧ 1 = x

Annihilator
x ∧ 0 = 0
x ∨ 1 = 1

Idempotence
x ∨ x = x
x ∧ x = x

Absorption
x ∧ (x ∨ y) = x
x ∨ (x ∧ y) = x

Complementation
x ∧ x = 0
x ∨ x = 1

Double negation (x) = x

De Morgan Laws
x ∧ y = (x ∨ y)

x ∨ y = (x ∧ y)

Table 1: Boolean Algebra Identities

• Cross entropy:

CE(p→ q) = −
∑
x

p(x) ln q(x) (96)

= H(p) +DKL(p ‖ q) (97)

0.24 Definition of various entropies used in Shan-

non Information Theory

• (plain) Entropy of x

H(x) = −
∑
x

P (x) lnP (x) (98)

This quantity measures the spread of Px.

• Conditional Entropy of y given x
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H(y|x) = −
∑
x,y

P (x, y) lnP (y|x) (99)

= H(y, x)−H(x) (100)

This quantity measures the conditional spread of y given x.

• Mutual Information (MI) of x and y

H(y : x) =
∑
x,y

P (x, y) ln
P (x, y)

P (x)P (y)
(101)

= H(x) +H(y)−H(y, x) (102)

This quantity measures the correlation between x and y.

• Conditional Mutual Information (CMI)3 of x and y given λ

H(y : x|λ) =
∑
x,y,λ

P (x, y, λ) ln
P (x, y|λ)

P (x|λ)P (y|λ)
(103)

= H(x|λ) +H(y|λ)−H(y, x|λ) (104)

This quantity measures the conditional correlation of x and y given λ.

• Kullback-Liebler Divergence from Px to Py.

Assume random variables x and y have the same set of states Sx = Sy. Then

DKL(Px ‖ Py) =
∑
x

Px(x) ln
Px(x)

Py(x)
(105)

This measures a non-symmetric distance between the probability distributions
Px and Py. DKL(Px ‖ Py) is non-negative and equals zero iff Px = Py.

3CMI can be read as “see me”.
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Definition of a Bayesian Network

A directed graph G = (V,E) consists of two sets, V and E. V contains the vertices
(nodes) and E contains the edges (arrows). An arrow a → b is an ordered pair
(a, b) where a, b ∈ V .

The parents of a node x are those nodes a such that there are arrows a→ x.
The children of a node x are those nodes b such that there are arrows x → b. A
root node is a node with no parents. A leaf node is a node with no children. The
neighbors of a node x is the set of parents and children of x.

A path is a set of nodes that are connected by arrows, so that all nodes have
1 or 2 neighbors, but only two nodes (open path) or zero nodes (closed path) have
only one neighbor. A directed path is a path in which all the arrows point in the
same direction. A loop is a closed path;i.e., a path in which all nodes have exactly
2 neighbors. A cycle is a directed loop. A Directed Acyclic Graph (DAG) is a
directed graph that has no cycles.

A fully connected directed graph is a directed graph in which every node
has all other nodes as neighbors. Figs.4 and 5 show 2 different ways of drawing the
same directed graph, a fully connected graph with 4 nodes. Note that a convenient
way to label the nodes of a fully connected directed graph with N nodes is to point
arrows from xk to xj where j = 0, 1, 2, . . . , N − 1 and k = j − 1, j − 2, . . . , 0.

x3 x2
oo x1

oovv
x0

oo��zz

Figure 4: Fully connected directed graph with 4 nodes, drawn as a line.

x0
//

��   

x1

��~~
x2

// x3

Figure 5: Fully connected directed graph with 4 nodes, drawn as a square.

A connected graph is a graph for which there is no way of separating the
nodes into two sets so that there is no arrow from one set to the other. A tree is a
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directed graph in which all nodes have a single parent except for a single node called
the “root” node which has no parents. A polytree is a DAG with no loops.

A Bayesian network (bnet) consists of a DAG and a Transition Prob-
ability Matrix (TPM) associated with each node of the graph. A TPM is often
called a Conditional Probability Table (CPT). The structure of a bnet is its
DAG alone, sans the TPMs. The skeleton of a bnet is the undirected graph beneath
the bnet’s DAG.

In this book, random variables are indicated by underlined letters and their
values by non-underlined letters. Each node of a bnet is labelled by a random variable.
Thus, x = x means that node x is in state x.
Some sets of nodes associated with each node a of a bnet

• ch(a) = children of a.

• pa(a) = parents of a.

• nb(a) = pa(a) ∪ ch(a) = neighbors of a.

• de(a) = ∪∞n=1ch
n(a) = ch(a) ∪ ch ◦ ch(a) ∪ . . ., descendants of a.

• an(a) = ∪∞n=1pa
n(a) = pa(a) ∪ pa ◦ pa(a) ∪ . . ., ancestors of a.

In this book, we will use a. to indicate a multi-node (node set, node array)
a. = (aj)j=0,1,...,na−1. We will often treat multinodes as if they were sets, and combine
them with the usual set operators. For instance, for two multinodes a. and b., we
define a.∪b., a.∩b., a.−b. and a. ⊂ b. in the obvious way. We will indicate a singleton
set (single node multi-node) a. = {a} simply by a. = a. For instance, a.−b = a.−{b}.

The TPM of a node x of a bnet is a matrix of probabilities P (x = x|pa(x) = a.).
A bnet with nodes x. represents a probability distribution

P (x.) =
∏
j

P (xj = xj|(xk = xk)k:xk∈pa(xj)
) . (106)

Note that for a fully connected bnet with N nodes, Eq.(106) becomes

P (x.) =
N−1∏
j=0

P (xj|(xk)k=j−1,j−2,...,0) . (107)

For example, if N = 4, Eq.(107) becomes

P (x0, x1, x2, x3) = P (x3|x2, x1, x0)P (x2|x1, x0)P (x1|x0)P (x0) . (108)

We see that Eq.(107) is just the chain rule for conditional probabilities.
Given an arbitrarily large dataset of samples for the random variables (xi)i=0,1,...,N−1,

there may be several bnets (differing perhaps in the direction of some arrows) that
fit the data well. However, according to Pearl’s causality theory, only one of these
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bnets is used by Nature. I like to refer to that single one as the causally correct
(CC) Bayesian network.4 In this book, whenever we speak of causal issues, we
will assume, often without mentioning it, that the CC bnet is being used.5

4 The uniqueness of a CC bnet can be taken to be an implicit axiom of causality theory. Al-
ternatively, instead of assuming uniqueness, one can assume that out of all CC bnets that fit the
data well, one can find the “best” one. Here the definition of “best” is not unique and depends on
a non-unique figure of merit defined in terms of Pearl do interventions.

5We won’t use the term “causal bnet” in this book. Pearl defines a causal bnet to be a CC
bnet that is also a “SCM” (i.e., a bnet whose internal nodes are deterministic and external ones are
probabilistic.)
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Chapter 1

ARACNE-structure learning

This chapter is based on Ref.[16].
The ARACNE algo is an algo for learning the structure of a bnet from data.

The algo considers data samples for n random variables (xi)i=0,1,...,n−1, and estimates
the mutual information MIi,j = H(xi : xj) between every pair of nodes. The set UG
is initialized to contain all the edges of a fully connected undirected graph. Next the
algo removes from UG every edge withMIi,j < ε for some threshold 0 < ε << 1. Then
the algo examines every triplet of edges in UG, and marks for removal the edge of the
triplet with the smallest MI. Finally, the algo removes from UG all edges marked for
removal. Each triplet is analyzed irrespective of whether its edges have been marked
for removal when considering a prior triplet. Thus the network constructed by the
algorithm is independent of the order in which the triplets are examined. Some of
the unoriented edges in UG can be given an orientation using the same techniques
used to orient edges in constraint based structure learning (see Chapter 49).

Ref.[16] incorrectly claims that removing the smaller of 3 MI’s is “an applica-
tion” of the Data Processing Inequality (DPI) of Shannon Information Theory. See
Chapter 30 for more info about DPI. Note that DPI is only valid for a Markov chain,
and not all triplets of random variables are in a Markov chain. Removing the smaller
of 3 numbers does not require DPI.

Fig.1.1 gives an example of the application of the ARACNE algo.
See Chapter 8 on Chow-Liu trees (CLT). A CLT is just a maximum spanning

tree where the weights are mutual informations MIi,j estimated from data.
Sometimes, the outcome of the ARACNE algo is a CLT. For example, Fig.1.1

(a) was considered in Chapter 8 on CLTs, and the CLT algo also gave Fig.1.1 (c) as
the final structure.

According to Ref.[16], the ARACNE algo sometimes yields a polytree (i.e., a
connected graph with no loops). It may even yield a structure with loops. Hence, it
does not always yield a CLT.

By breaking all cliques (i.e., fully connected subgraphs) with 3 edges and 3
nodes, ARACNE breaks all cliques with 3 or more nodes. However, cliques are not
uncommon in Nature, especially 3 node cliques. Cliques become less likely in Nature
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Figure 1.1: An example where the ARACNE algo gives a Chow-Liu tree. (a) Fully
connected undirected graph with weights MIi,j along the edges. (b) All 4 possible
triplets of edges with nonzero weights. Edges marked for removal have their weights
printed in red.(c) Final structure.

the bigger the number of nodes they have after 3. Therefore, a nice generalization of
ARACNE would be to list all 4 node cliques, and break each of them by eliminating
their edge with the smallest MI. This will have the effect of breaking all cliques with 4
or more nodes but keeping 3 node cliques. One could also break some, not all, of the
3 node cliques, by consecutively removing the clique-breaking-edge with the smallest
MI of all edges of all 3 node cliques. Let β stand for banned clique number of nodes.
Then the current ARACNE has β = 3. We are suggesting that a β of 4 might be
more likely to occur in Nature.
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Chapter 2

Backdoor Adjustment

The backdoor (BD) adjustment theorem is proven in Chapter 13 from the rules of do-
calculus. The goal of this chapter is to give examples of the use of that theorem. We
will restate the theorem in this chapter, sans proof. There is no need to understand
the theorem’s proof in order to use it. However, you will need to skim Chapter 13 in
order to familiarize yourself with the notation used to state the theorem. This chapter
also assumes that you are comfortable with the rules for checking for d-separation.
Those rules are covered in Chapter 14.

Suppose that we have access to data that allows us to estimate a probability
distribution P (x., y., z.). Hence, the variables x., y., z. are ALL the observed (i.e,
not hidden). Then we say that the backdoor z. satisfies the backdoor adjustment
criterion relative to (x., y.) if

1. All backdoor paths from x. to y. are blocked by z..

2. z. ∩ de(x.) = ∅.

Claim 2 Backdoor Adjustment Theorem
If z. satisfies the backdoor criterion relative to (x., y.), then

P (y.|ρx. = x.) =
∑
z.

P (y.|x., z.)P (z.) (2.1)

= ∑
z.

z. = z.

##
x. = x. // y.

(2.2)

proof: See Chapter 13
QED
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2.1 Examples

1.
z

��
x //

@@

y

(2.3)

BD criterion satisfied if x. = x, y. = y, z. = ∅. No adjustment necessary.

P (y|ρx = x) = P (y|x) (2.4)

2.
z

�� ��
x // y

(2.5)

BD criterion satisfied if x. = x, y. = y, z. = z.

Note that here the backdoor formula adjusts the parents of x..

3.
z

�� ��
x //m // y

(2.6)

BD criterion satisfied if x. = x, y. = y, z. = z.

4.
z

�� ��
x //m // y

(2.7)

BD criterion is impossible to satisfy if x. = x, y. = y. However, the front-door
criterion can be satisfied. See Chapter 17.

5.
w

��

// z

��
x // y

(2.8)

BD criterion satisfied if x. = x, y. = y, z. = z. Note that here the backdoor
formula cannot adjust the single parent w of x because it is hidden, but we are
able to block the backdoor path by conditioning on z instead.
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6.
e

��

// z

�� ��

a

��

oo

x // y

(2.9)

Conditioning on z blocks backdoor path x−z−y, but opens path x−e−z−a−y
because z is a collider for that path. That path is blocked if we also condition
on a, which is possible because a is observed. In conclusion, the BD criterion
is satisfied if x. = x, y. = y and z. = (z, a).

Conditioning on the parents of x. is often enough to block all backdoor paths.
However, sometimes some of the parents are unobserved and one must condition
on other nodes that are not parents of x. in order to satisfy the BD criterion.

7.
z

��

too

��
w x //oo y

(2.10)

No need to control anything because only possible backdoor path is blocked by
collider w. Hence,

P (y|ρx = x) = P (y|x) . (2.11)

However, if for some reason we want to control t, we can do so. We can’t
control w though, because w ∈ de(x). Thus, the BD criterion is satisfied if
x. = x, y. = y and z. = t. Therefore,

P (y|ρx = x) =
∑
t

P (y|x, t)P (t) . (2.12)

8. Discuss reasons why multiple possible sets z. that satisfy the BD criterion can
be advantageous.

• Can evaluate P (y.|ρx. = x.) multiple ways and compare the results. This
is a test that the causal bnet is correct.

• It might be easier or less expensive to get data for some z. more than for
others.

9. (Taken from online course notes Ref.[11])
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Consider the bnet

x2

��

// x3 x4

��

oo

x1

��

// x6

��

// x5

��

x7
oo

x8 x9 x10

(2.13)

If x. = x1 and y. = x5, find all possible adjustment multinodes z. that satisfy
the BD criterion. Ans:

• ∅
• x2

• x4

• x2, x4

• x2, x3

• x3, x4

• x2, x3, x4

Add x7 to each of the previous 7 possible z.. This gives a total of 14 possible
adjustment multinodes z..
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Chapter 3

Back Propagation (Automatic
Differentiation)

3.1 General Theory

3.1.1 Jacobians

Suppose f : Rnx → Rnf and

y = f(x) . (3.1)

Then the Jacobian ∂y
∂x

is defined as the matrix with entries1[
∂y

∂x

]
i,j

=
∂yi
∂xj

. (3.2)

Jacobian of function composition. Supoose f : Rnx → Rnf , g : Rnf → Rng. If

y = g ◦ f(x) , (3.3)

then

∂y

∂x
=
∂g

∂f

∂f

∂x
. (3.4)

Right hand side of last equation is a product of two matrices so order of matrices is
important.
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f 4 f 3oo f 2oo f 1oo f 0oo

(a) Composition

∂f4

∂x
∂f3

∂x
oo ∂f2

∂x
oo ∂f1

∂x
oo 1oo

(b) Forward-p

1 // ∂y
∂f3

// ∂y
∂f2

// ∂y
∂f1

// ∂y
∂f0

(c) Back-p

Figure 3.1: bnets for function composition, forward propagation and back propagation
for nf = 5 nodes.

3.1.2 bnets for function composition, forward propagation
and back propagation

Let
y = f 4 ◦ f 3 ◦ f 2 ◦ f 1(x) . (3.5)

This function composition chain can be represented by the bnet Fig.3.1(a) with TPMs

P (fµ|fµ−1) = 1(fµ = fµ(fµ−1)) (3.6)

for µ = 1, 2, 3, 4.

1 Mnemonic for remembering order of indices: i in numerator/j in denominator becomes index
i/j of Jacobian matrix.
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Note that

∂y

∂x
=

∂y

∂f 3

∂f 3

∂f 2

[
∂f 2

∂f 1

∂f 1

∂x

]
(3.7)

=
∂y

∂f 3

[
∂f 3

∂f 2

∂f 2

∂x

]
(3.8)

=

[
∂y

∂f 3

∂f 3

∂x

]
(3.9)

=
∂y

∂x
. (3.10)

This forward propagation can be represented by the bnet Fig.3.1(b) with node TPMs

P (
∂fµ+1

∂x
| ∂f

µ

∂x
) = 1(

∂fµ+1

∂x
=
∂fµ+1

∂fµ
∂fµ

∂x
) (3.11)

for µ = 1, 2, 3.
Note that

∂y

∂x
=

[
∂y

∂f 3

∂f 3

∂f 2

]
∂f 2

∂f 1

∂f 1

∂x
(3.12)

=

[
∂y

∂f 2

∂f 2

∂f 1

]
∂f 1

∂x
(3.13)

=

[
∂y

∂f 1

∂f 1

∂x

]
(3.14)

=
∂y

∂x
. (3.15)

This back propagation can be represented by the bnet Fig.3.1(c) with node TPMs

P (
∂y

∂fµ
| ∂y

∂fµ+1
) = 1(

∂y

∂fµ
=

∂y

∂fµ+1

∂fµ+1

∂fµ
) (3.16)

for µ = 2, 1, 0.
∂fµ+1

∂fµ
is a Jacobian matrix so the order of multiplication matters. In forward

prop, it pre-multiplies, and in back prop it post-multiplies.

3.2 Application to Neural Networks

3.2.1 Absorbing bλi into wi|j.

Below are, printed in blue, the TPMs for the nodes of a NN bnet, as given in Chapter
35.
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x //

��

h0
2

//

��

h1
2

//

��

Y2

h0
1

//

@@

h1
1

//

??

Y1

h0
0

OO

HH

h1
0

OO

HH

Y 0

OO

HH

Figure 3.2: Nodes h0
0, h

1
0, Y 0 are all set to 1. They allow us to absorb bλi into the first

column of wλi|j.

For all hidden layers λ = 0, 1, . . . ,Λ− 2,

P (hλi | hλ−1
. ) = δ

(
hλi ,Aλi (

∑
j

wλi|jh
λ−1
j + bλi )

)
(3.17)

for i = 0, 1, . . . , nh(λ)− 1. For the output visible layer λ = Λ− 1:

P (Yi | hΛ−2
. ) = δ

(
Yi,AΛ−1

i (
∑
j

wΛ−1
i|j hΛ−2

j + bΛ−1
i )

)
(3.18)

for i = 0, 1, . . . , ny − 1.
For each λ, replace the matrix wλ·|· by the augmented matrix [bλ., wλ·|·] so that

the new wλ·|· satisfies

wλi|0 = bλi (3.19)

Let the nodes hλ0 for all λ and Y 0 be root nodes (so no arrows pointing into
them). For each λ, draw arrows from hλ0 to all other nodes in that same layer. Draw
arrows from Y 0 to all other nodes in that same layer.

After performing the above steps, the TPMs, printed in blue, for the nodes of
the NN bnet are as follows:

For all hidden layers λ = 0, 1, . . . ,Λ− 2,

P (hλ0) = δ(hλ0 , 1) , (3.20)

and

P (hλi | hλ−1
. , hλ0 = 1) = δ

(
hλi ,Aλi (

∑
j

wλi|jh
λ−1
j )

)
(3.21)

for i = 1, . . . , nh(λ)− 1. For the output visible layer λ = Λ− 1:

P (Y0) = δ(Y0, 1) , (3.22)
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and

P (Yi | hΛ−2
. , Y0 = 1) = δ

(
Yi,AΛ−1

i (
∑
j

wΛ−1
i|j hΛ−2

j )

)
(3.23)

for i = 1, 2, . . . , ny − 1.

3.2.2 bnets for function composition, forward propagation
and back propagation for NN

A3 B3oo A2oo B2oo A1oo B1oo A0oo B0oo xoo

(a)

∂A3

∂x
∂B3
∂x

oo ∂A2

∂x
oo ∂B2

∂x
oo ∂A1

∂x
oo ∂B1

∂x
oo ∂A0

∂x
oo ∂B0

∂x
oo 1oo

(b)

1 // ∂Y
∂B3

// ∂Y
∂A2

// ∂Y
∂B2

// ∂Y
∂A1

// ∂Y
∂B1

// ∂Y
∂A0

// ∂Y
∂B0

// ∂Y
∂x

(c)

Figure 3.3: bnets for (a) function composition, (b) forward propagation and (c) back
propagation for a neural net with 4 layers (3 hidden and output visible).

.
From here on, we will rename y above by Y = ŷ and consider samples y[i] for i =
0, 1, . . . , nsam− 1. The Error (aka loss or cost function) is

E =
1

nsam

nsam−1∑
σ=0

ny−1∑
i=0

|Yi − yi[σ]|2 (3.24)

To perform simple gradient descent, one uses:

(wλi|j)
′ = wλi|j − η

∂E
∂wλi|j

. (3.25)
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One has

∂E
∂wλi|j

=
1

nsam

nsam−1∑
σ=0

ny−1∑
i=0

2(Yi − yi[σ])
∂Y

∂wλi|j
. (3.26)

Define Bλi thus

Bλi (hλ−1) =
∑
j

wλi|jh
λ−1
j . (3.27)

Then

∂Y

∂wλi|j
=

∂Y

∂Bλi
∂Bλi
∂wλi|j

(3.28)

=
∂Y

∂Bλi
hλ−1
j (3.29)

∂E
∂wλi|j

=
∂E
∂Bλj

∂Bλj
∂wλi|j

(3.30)

=
∂E
∂Bλj

hλ−1
j . (3.31)

This suggest that we can calculate the derivatives of the error E with respect to the
weights wλi|j in two stages, using an intermediate quantity δλj :{

δλj = ∂E
∂Bλj

∂E
∂wλ

i|j
= δλj h

λ−1
j

(3.32)

To apply what we learned in the earlier General Theory section of this chapter,
consider a NN with 4 layers (3 hidden, and the output visible one). Define the
functions fi as follows:

f 0
i = xi (3.33)

Layer 0: f 1
i = B0

i (xi), f 2
i = A0

i (B0
i ) (3.34)

Layer 1: f 3
i = B1

i (A0
i ), f 4

i = A1
i (B1

i ) (3.35)

Layer 2: f 5
i = B2

i (A1
i ), f 6

i = A2
i (B2

i ) (3.36)

Layer 3: f 7
i = B3

i (A2
i ), f 8

i = A3
i (B3

i ) (3.37)
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See Fig.3.3. The TPMs, printed in blue, for the nodes of the bnet (c) for back
propagation, are:

P (
∂Y

∂Bλ
| ∂Y

∂Bλ+1
) = 1(

∂Y

∂Bλ
=

∂Y

∂Bλ+1

∂Bλ+1

∂Aλ
∂Aλ

∂Bλ
) . (3.38)

One has

∂Aλi
∂Bλj

= DAiλ(Bλi )δ(i, j) (3.39)

where DAλi (z) is the derivative of Aλi (z).
From Eq.(3.27)

Bλ+1
i (Aλ) =

∑
j

wλ+1
i|j A

λ
j (3.40)

so

∂Bλ+1
i

∂Aλj
= wλ+1

i|j . (3.41)

Therefore, Eq.(3.38) implies

P (
∂Y

∂Bλj
| ∂Y

∂Bλ+1
j

) = 1(
∂Y

∂Bλj
=
∑
i

∂Y

∂Bλ+1
i

DAλj (Bλj )wλ+1
i|j ) , (3.42)

P (
∂E
∂Bλj

| ∂E
∂Bλ+1

j

) = 1(
∂E
∂Bλj

=
∑
i

∂E
∂Bλ+1

i

DAλj (Bλj )wλ+1
i|j ) , (3.43)

P (δλj | δλ+1
j ) = 1(δλj =

∑
i

δλ+1
i DAλj (Bλj ))wλ+1

i|j ) . (3.44)

First delta of iteration, belonging to output layer λ = Λ− 1:

δΛ−1
j =

∂E
∂BΛ−1

j

(3.45)

=
1

nsam

nsam−1∑
σ=0

ny−1∑
i=0

2(Yi − yi[σ])DAΛ−1
i (BΛ−1

i )δ(i, j) (3.46)

=
1

nsam

nsam−1∑
σ=0

2(Yj − yj[σ])DAΛ−1
j (BΛ−1

j ) (3.47)

Cute expression for derivative of sigmoid function:

Dsig(x) = sig(x)(1− sig(x)) (3.48)
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3.3 General bnets instead of Markov chains in-

duced by layered structure of NNs

P (δx | (δa)a∈ch(x)) = 1(δx =
∑

a∈ch(x)

δaDAx(Bx))wa|x) (3.49)

Reverse arrows of original bnet and define the TPM of nodes of “time reversed”
bnet by

P (δx | (δa)a∈pa(x)) = 1(δx =
∑

a∈pa(x)

δaDAx(Bx))wTx|a) (3.50)
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Chapter 4

Basic Curve Fitting Using
Gradient Descent

~x

��

// ~y

��
φ // 55~̂y // E // φ′

Figure 4.1: Basic curve fitting bnet.

Samples (x[σ], y[σ]) ∈ Sx × Sy are given. nsam(~x) = nsam(~y).
Estimator function ŷ(x;φ) for x ∈ Sx and φ ∈ R is given.
Let

Px,y(x, y) =
1

nsam(~x)

∑
σ

1(x = x[σ], y = y[σ]) . (4.1)

Let

E(~x, ~y, φ) =
1

nsam(~y)

∑
σ

|y[σ]− ŷ(x[σ];φ)|2 (4.2)

E is called the mean square error.
Best fit is parameters φ∗ such that

φ∗ = argmin
φ
E(~x, ~y, φ) . (4.3)

The node TPMs for the basic curve fitting bnet Fig.4.1 are printed below in
blue.

P (φ) = given . (4.4)
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The first time it is used, φ is arbitrary. After the first time, it is determined by
previous stage.

P (~x) =
∏
σ

Px(x[σ]) (4.5)

P (~y|~x) =
∏
σ

Py|x(y[σ] | x[σ]) (4.6)

P (ŷ[σ]|φ, ~x) = δ(ŷ[σ], ŷ(x[σ];φ)) (4.7)

P (E|~̂y, ~y) = δ(E , 1

nsam(~x)

∑
σ

|y[σ]− ŷ[σ]|2) . (4.8)

P (φ′|φ, E) = δ(φ′, φ− η∂φE) (4.9)

η > 0 is the descent rate. If ∆φ = φ′ − φ = −η ∂E
∂φ

, then ∆E = −1
η

(∆φ)2 < 0 so this
will minimize the error E . This is called “gradient descent”.
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Chapter 5

Bell and Clauser-Horne
Inequalities in Quantum Mechanics

λ

����
xα1

1 xα2
2

Figure 5.1: bnet used to discuss Bell and Clauser-Horne inequalities in Quantum
Mechanics.

I wrote an article about this in 2008 for my blog “Quantum Bayesian Net-
works”. See Ref.[39].
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Chapter 6

Berkson’s Paradox

For more information about Berkson’s Paradox (BP), see Ref.[43]

a

��

b

��
x

Figure 6.1: Bnet used to discuss Berkson’s Paradox (BP). a and b are common causes
of collider x.

Consider the bnet of Fig.6.1. For that bnet, we have

P (a, b, x) = P (a)P (b)P (x|a, b) . (6.1)

Summing Eq.(6.1) over x, we get

P (a, b) = P (a)P (b) (6.2)

so a and b are independent. It follows that a can be ignored in calculating the
probability of b; i.e.,

P (b|a) = P (b) . (6.3)

However, a cannot be ignored in calculating the probability of b, if x is being held
fixed; i.e.,

P (b|a, x) 6= P (b|x) . (6.4)

Indeed,

P (b|a, x) =
P (b)P (x|a, b)∑
b P (b)P (x|a, b)

(6.5)
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whereas

P (b|x) =

∑
a P (a)P (b)P (x|a, b)∑
a,b P (a)P (b)P (x|a, b)

. (6.6)

The two boxed equations are what is referred to as BP.
BP is also called collider bias because x is a collider.
BP is also called explaining away in the special case that a, b, x ∈ {true, false} =

{0, 1}. In that case, if x is fixed to true, and the cause a is known to be true,
then the cause b is less likely to be true. For example, suppose a car engine fails
(x = 1) and the two most likely causes of the failure are alternator (a) and bat-
tery (b). Once we know that the alternator has failed (a = 1), it is less likely
that the battery is failing (b = 1) than when the status of a was not known; i.e.,
P (b = 1|x = 1, a = 1) < P (b = 1|x = 1).

Figure 6.2: Example of Berkson’s paradox (BP).

Fig.6.2 presents an example of BP. The figure consists of a scatter plot with
axes x=intelligence, y=attractiveness, for a population of possible dates for a single
person. For the full population,

(a, b) ∼ P (a, b) = P (a)P (b) (6.7)

whereas for the population in the white swath,

(a, b) ∼ P (a, b|x) = P (b|a, x)P (a|x) 6= P (b|x)P (a|x) . (6.8)

As shown by Fig.6.2, BP is an example of selection bias. Selection bias
happens when a non-representative subset of the total population is considered (i.e.,
selected).
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Chapter 7

Binary Decision Diagrams

Figure 7.1: Binary decision tree and truth table for the function f(x1, x2, x3) =
x̄1(x2 + x̄3) + x1x2

Figure 7.2: BDD for the function f of Fig.7.1.
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This chapter is based on Wikipedia article Ref.[45].
Binary Decision Diagrams (BDDs) can be understood as a special case of

Decision Trees (dtrees). We will assume that the reader has read Chapter 10 on
dtrees before reading this chapter.

Both Figs.7.1 and 7.2 were taken from the aforementioned Wikipedia article.
They give a simple example of a function f : {0, 1}3 → {0, 1} represented in Fig.7.1 as
a binary decision tree and in Fig.7.2 as a binary decision diagram (BDD). It
is possible to find, for each of those two figures, a bnet with the same graph structure.
We show how to do this next.

We begin by noting that the function f : {0, 1}3 → {0, 1} is a special case
of a probability distribution P : {0, 1}3 → [0, 1]. In fact, if we restrict P to be
deterministic, then Pdet : {0, 1}3 → {0, 1} has the same domain and range as f .
Henceforth, we will refer to f(x1, x2, x3) as P (x1, x2, x3), keeping in mind that we are
restricting our attention to deterministic probability distributions.

If we apply the chain rule for conditional probabilities to P (x1, x2, x3), we get

P (x1, x2, x3) = P (x3|x1, x2)P (x2|x1)P (x1) , (7.1)

which can be represented by the bnet:

x1

��

��

x2

��
x3

Figure 7.3: Most general 3 node bnet.

But in Chapter 10, we learned how to represent the dtree of Fig.7.1 as the
image bnet Fig.7.4. The node TPMs, printed in blue, for the image bnet Fig.7.4 are
as follows. Note that the TPMs for Fig.7.4 can be constructed from the TPMs for
the bnet Fig.7.3. If x1, x2, x3, x4 ∈ {0, 1, null} and a, b, c ∈ {0, 1}, then

P (x1 = x1) =

{
Px1(x1) if x1 ∈ {0, 1}
0 if x1 = null

(7.2)

P (x2|a = x2 | x1 = x1) =

{
Px2|x1(x2|a) if x1 = a
1(x2 = null) otherwise

(7.3)

P (x3|a, b = x3 | x2|a = x2) =

{
Px3|x1,x2(x3|a, b) if x2 = b
1(x3 = null) otherwise

(7.4)
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x1

�� **
x2|0

�� $$

x2|1

�� $$
x3|00

��

  

x3|01

��

  

x3|10

��

  

x3|11

��

  

x4|000 x4|010 x4|100 x4|110

x4|001 x4|011 x4|101 x4|111

Figure 7.4: Image bnet for binary dtree of Fig.7.1.

P (x4|a, b, c = x4 | x3|a, b = x3) =

{
δ(x4, c) if x3 = c
1(x4 = null) otherwise

(7.5)

Note that if Px3|x1,x2 = Px3|x2 in Eq.(7.4), then the bnet Fig.7.3 reduces to a
Markov chain x1 → x2 → x3.

The BDD shown in Fig.7.2 emphasizes the fact that

P (x1, x2, x3|x1 = 1) = P (x2|x1 = 1) = x2 . (7.6)

The BDD of Fig.7.2 has as image bnet Fig.7.5. Define

pa(0) = pa(1) = (x2|1, x3|00, x3|01) . (7.7)

Let pa(0) = abc mean the same as pa(0) = (a, b, c). The TPMs of the image bnet
Fig.7.5 are the same as those for the image bnet Fig.7.4 except for the TPMs of the
nodes 0 and 1. For those two nodes, the TPMs, printed in blue, are as follows.

P (0 = x|pa(0)) =

{
δ(x, 0) if pa(0) = 011
δ(x, null) otherwise

(7.8)

P (1 = x|pa(1)) =

{
δ(x, 1) if pa(1) = 101
δ(x, null) otherwise

(7.9)
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Figure 7.5: Image bnet for BDD of Fig.7.2.
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Chapter 8

Chow-Liu Trees and Tree
Augmented Naive Bayes (TAN)

This chapter is mostly based on chapter 8 of Pearl’s 1988 book Ref.[25]. See also
Ref.[48] and references therein.

This chapter uses various Shannon Information Theory entropies. Our nota-
tion for these entropies is described in Chapter Notational Conventions and Prelimi-
naries on Notational Conventions.

8.1 Chow-Liu Trees

Chow-Liu trees refers to an algorithm for finding a bnet tree that fits an a priori given
probability distribution as closely as possible.

Consider a bnet with n nodes xn = (x0, x1, . . . , xn−1) such that xi ∈ Sxi for all
i. Let its total probability distribution be Pxn . For simplicity, we will abbreviate Pxn
by P . Hence

P (xn) = Pxn(xn) . (8.1)

Suppose we want to fit Pxn by a tree bnet with nodes tn = (t0, t1, . . . , tn−1)
such that ti ∈ Sti = Sxi for all i. For simplicity, we will abbreviate Ptn by PT . Hence

PT (xn) = Ptn(xn) . (8.2)

Throughout this chapter, let V = {0, 1, . . . , n−1}, the set of vertices. Suppose
µ is a function µ : V → V such that µ(i) < i. Let Tµ = {tµ(i) → ti : i ∈ V − {0}}.
Then Tµ is a tree that spans ( i.e., it includes all nodes) tn. Its root node is t0, because
t0 has no parents. All other nodes ti have exactly one parent, namely tµ(i). Let PT ,
the total probability distribution for the tree, be parameterized by the function µ as
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follows:

PT (xn) =
n−1∏
i=0

PT (xi|xµ(i)) , (8.3)

where, for the root node 0, PT (x0|xµ(0)) = PT (x0).

Claim 3 DKL(P ‖ PT ) is minimized over all probability distributions PT that are
expressible as Eq.(8.3) iff

PT (xi|xµ(i)) = P (xi|xµ(i)) (8.4)

for all i, and ∑
i

H(xi : xµ(i)) (8.5)

is maximized over all µ.

proof:

DKL(P ‖ PT ) =
∑
xn

P (xn) ln
P (xn)

PT (xn)
(8.6)

= −
∑
xn

∑
i

P (xn) lnPT (xi|xµ(i)) +
∑
i

P (xn) lnP (xn) (8.7)

= −
∑
i

∑
xi,xµ(i)

P (xi, xµ(i)) lnPT (xi|xµ(i))−H(xn) (8.8)

= −
∑
i

∑
xµ(i)

P (xµ(i))

[∑
xi

P (xi|xµ(i)) lnPT (xi|xµ(i))

]
−H(xn) . (8.9)

Now note that ∑
xi

P (xi|xµ(i)) ln
P (xi|xµ(i))

PT (xi|xµ(i))
≥ 0 (8.10)

and this inequality becomes an equality iff

P (xi|xµ(i)) = PT (xi|xµ(i)) . (8.11)

Therefore

DKL(P ‖ PT ) ≥ −
∑
i

∑
xµ(i)

P (xµ(i))

[∑
xi

P (xi|xµ(i)) lnP (xi|xµ(i))

]
︸ ︷︷ ︸

=H(xi|xµ(i))=H(xi:xµ(i))−H(xi)

−H(xn) , (8.12)
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and this inequality becomes an equality iff Eq.(8.11) is satisfied.
Note from the last equation that

argmin
µ

DKL(P ‖ PT ) = argmax
µ

∑
i

H(xi : xµ(i)) . (8.13)

QED

Claim 4
argmin

µ
H(xn) = argmax

µ

∑
i

H(xi : xµ(i)) (8.14)

proof:

H(xn) = −
∑
xn

P (xn)
∑
i

lnP (xi|xµ(i)) (8.15)

= −
∑
i

∑
xi,xµ(i)

P (xi, xµ(i)) lnP (xi|xµ(i)) (8.16)

= −
∑
i

∑
xi,xµ(i)

P (xi, xµ(i))

[
ln
P (xi|xµ(i))

P (xi)
+ lnP (xi)

]
(8.17)

= −
∑
i

[
H(xi : xµ(i))−H(xi)

]
(8.18)

=
∑
i

H(xi)−
∑
i

H(xi : xµ(i)) (8.19)

QED
The meaning of Claims 3 and 4 is as follows. If DKL(P ‖ PT ) is minimized

over all PT , then

1. PT inherits its TPM’s from P , and

2. PT gets its structure, which is being parameterized by the function µ, by max-
imizing the score given by

score =
∑
i

H(xi : xµ(i)) . (8.20)

(mutual information H(a : b) measures correlation between a and b). Maximiz-
ing the score is the same as minimizing the entropy H(xn) over all the structures
µ. (i.e., finding least complex structure).

So far, we have studied the properties of those probability distributions PT
for a tree bnet that best approximates an a priori given probability distribution P ,
but we haven’t yet described how to build a Chow-Liu tree based on empirical data.
Next we give Chow-Liu’s algorithm for doing so.

54



1. Find MST using Kruskal’s algorithm1. (see Fig.8.1)
Calculate weights wi,j = H(xi : xj) for all i, j ∈ V and store them in a dictionary
D that maps edges to weights.
Order D by weight size.
Let T be a list of the edges in the tree. Initialize T to empty.
Repeat this until T has n− 1 elements:

Remove largest weight w from D and corresponding edge e.
Add e to T if {e} ∪ T has no loops. Otherwise discard e and w.

2. Give directions to edges in T . (see Fig.8.2)
Let DT be a list of directed edges. Initialize DT to empty.
Choose any node as root node.
Point arrows along edges in T , away from root node.
Add new arrows to DT .
Repeat this until DT has n− 1 elements:

Point arrows along edges in T , away from leaf nodes of current DT .
Add new arrows to DT .

Figure 8.1: Example of finding MST (maximum spanning tree)

Figure 8.2: Example of giving directions to edges of spanning tree.

Nodes in a Chow-Liu tree can be rated in terms of their relative importance.
Here are 2 possible metrics for measuring the importance of a node a:

Nnb(a) = number of neighbors of a (8.21)

1Kruskal’s algorithm is one several famous algorithms (Prim’s algo is another one) for finding an
MST (maximum or minimum spanning tree). An MST algorithm takes an undirected graph with
weights along its edges as input. It then finds a tree subgraph (i.e., subset of the edges of the graph
with no loops) that (1) spans the graph (i.e., includes every vertex of the graph) and (2) maximizes
(or minimizes) the sum of weights among all possible tree subgraphs. For more information, see
Ref[68] and references therein, or any other of numerous explanations of MST in the Internet.
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traffic(a) =
∑

n∈nb(a)

H(a : n) (8.22)

For example, to get a tree with low depth, one can choose as the root node the node
which has largest Nnb, and if there are several with the same largest Nnb, choose out
of those the one with the largest traffic.

8.2 Tree Augmented Naive Bayes (TAN)

Recall from Chapter 34 that a Naive Bayes bnet consists of a class node c with n
children nodes xn, called the feature nodes. A Tree Augmented Naive Bayes (TAN)
bnet is a Naive Bayes bnet with a tree grafted onto it like a chimera. More precisely,
one starts with a Naive Bayes bnet and adds arrows between the feature nodes. The
arrows are added in such a way that the TAN bnet sans node c constitutes a tree.
It’s not the most well motivated bnet in human history, but at least it adds a bit
of correlation between the feature nodes of the Naive Bayes bnet. Those nodes are
independent at fixed c in the Naive Bayes bnet, but are no longer so in the TAN bnet.
See Figs.8.3 and 8.4 for an example of a TAN bnet.

c

��   (( **x0 x1 x2 x3

x0 x1 x2
oohh x3

oo

Figure 8.3: bnet for Naive Bayes with 4 feature nodes and another bnet for a tree
made of the same feature nodes.

c

��   (( **x0 x1 x2
oohh x3

oo

Figure 8.4: TAN bnet constructed by merging Naive Bayes bnet and tree bnet of
Fig.8.3.

The total probability distribution PTAN for a TAN bnet can be parameterized
as follows.

PTAN(xn, c) = PTAN(c)
n−1∏
i=0

PTAN(xi|xµ(i), c) . (8.23)
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As with Chow Liu trees, we can attempt to find a TAN bnet whose total
probability PTAN = Ptn,c best approximates an a priori given probability distribution
P = Pxn,c.

Note that

Claim 5
argmin

µ
H(xn, c) = argmax

µ

∑
i

H(xi : xµ(i)|c) (8.24)

proof:

H(xn, c) = −
∑
xn,c

P (xn, c)

[
lnP (c) +

∑
i

lnP (xi|xµ(i), c)

]
(8.25)

= −
∑
xn,c

P (xn, c)

[
lnP (c) +

∑
i

ln

(
P (xi, xµ(i)|c)

P (xi|c)P (xµ(xi)|c)
P (xi|c)

)]
(8.26)

=
∑
i

H(xi, c)−
∑
i

H(xi : xµ(i)|c) (8.27)

QED
Following the same line of reasoning that we followed for Chow-Liu trees, we

conclude that:
If DKL(P ‖ PTAN) is minimized over all PTAN , then

1. PTAN inherits its TPM’s from P , and

2. PTAN gets its structure, which is being parameterized by the function µ, by
maximizing the score defined by

score =
∑
i

H(xi : xµ(i)|c) (8.28)

One can build a TAN bnet from empirical data as follows:
Calculate a Chow-Liu Tree for each c ∈ Sc. For each of those trees, create a

TAN bnet, and calculate its score given by Eq.(8.28). Keep the TAN bnet with the
largest score.
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Chapter 9

Counterfactual Reasoning

This chapter is mostly based on Ref.[27], a 2019 review of causality by Pearl.
This chapter assumes that the reader has read Chapter 13 on do-calculus and

Chapter 27 on LDEN (linear deterministic systems with external noise).

9.1 The 3 Rungs of Causal AI

According to Judea Pearl, there are 3 rungs in the ladder of causal AI. These are (as
I see them):

1. Observing Dumbly: Collecting data and fitting curves to it, without any plan
designed to investigate Nature’s causal connections.

2. Doing causal experiments: Doing experiments consciously designed to elu-
cidate Nature’s causal connections. Even cats do this!, but current AI doesn’t.

3. Imagining counterfactual situations, Analogizing: Imagining gedanken
experiments to further understand Nature’s causal connections, and to decide
what future courses of action are more likely to succeed, even if there is zero
direct data for those courses of action. Making predictions based on zero di-
rect data is a very Bayesian concern, well out of the purview of frequentists.
Nevertheless, humans do such “analogizing” all the time to great advantage. It
becomes possible if there is some indirect but similar data that can be trans-
ported (transplanted, applied) to the situation of interest.

Chapter 31 on message passing is about rung 1. Chapter 13 on do-calculus is about
rung 2. This chapter is dedicated to rung 3.

9.2 Two kinds of intervention operators

In Chapter 13, we introduced a do operator ρx=x ( this is our notation for what Pearl
symbolizes by do(x) = x). The study of counterfactuals requires that we introduce a
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new kind of intervention operator that we will call an imagine operator and denote
by κx→a(x).

The 2 types of intervention operators are defined graphically in Fig.9.1.

• The do operator ρx=5 (called ρ because it turns x into a root node) amputates
the incoming arrows of node x and sets the TPM of the new root node x to
a delta function δ(x, 5) (or some state of x other than 5). Sometimes it is
convenient, rather than calling the new node x like the old one, to call it by the
new name ρx.

• The imagine operator κx→b(5) (called κ because it creates konstant nodes) op-
erates on arrows unlike the ρ operator which operates on nodes. κx→b(5) deletes
arrow x→ b and creates a new root node x′ and a new arrow x′ → b. The TPM
of the new node x′ is a delta function δ(x′, 5) (or some state of x other than 5).
Sometimes it is convenient, rather than calling the new node x′, to call it by
the more explicit name κbx.

Now that we have both a do and an imagine operator, we realize, as Pearl did
long ago, that we can create a do-imagine-calculus whose objective is to express
probabilities such as P (y|ρr = r, κbs = s, t) in terms of observable probabilities
that do not contain any do or imagine operators in them. As with do-calculus, this
reduction is not always possible, and we say a probability is identifiable if it can
be reduced in that manner. Such a do-imagine-calculus has already been developed
by Pearl and collaborators, but we won’t discuss it in this chapter (perhaps we will
discuss it in a future one).

Figure 9.1: Action of “do” operator ρx=5 on node x and of “imagine” operator κx→b(5)
on arrow x→ b.
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9.3 Do operator for DEN diagrams

By the end of this chapter, the two kinds of intervention operators will be applied to
DEN diagrams. Let us begin that journey by showing in this section how to apply
the already familiar do operator to DEN diagrams.

Recall that the structural equations for a linear DEN, as given by Eq.(27.21)
of Chapter 27, are:

x = Ax+ u . (9.1)

Therefore,

x = (1− A)−1u (9.2)

which can be represented for both linear and non-linear DEN diagrams by:

xi = xi(u.) (9.3)

If now we apply the operator ρa=a to the diagram described by the structural
equations Eqs.9.1, we get the following new structural equations:

x∗i =

{ ∑
j<iAi|jx

∗
j + ui if xi 6= a

a if xi = a
, (9.4)

where we are calling x∗i the nodes of the DEN diagram post intervention.
Eqs.(9.4) can be expressed in matrix notation as follows. Define πa to be the

nx× nx matrix with all entries equal to zero except for the (i0, i0) entry, which is 1.
And define ea to be the column vector with all entries zero except for the i0’th one,
which is 1. Here i0 is defined so that xi0 = a. In other words, πa and ea are defined
by

(πa)i,j = 1(i = j, a = xi) (9.5)

and

(ea)i = 1(a = xi) , (9.6)

for i, j ∈ {0, 1, . . . , nx− 1}. Next define

π!a = 1− πa , (9.7)

A∗ = π!aA , (9.8)

and

u!a = π!au . (9.9)
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The effect of pre-multiplying the matrix A and the column vector u by π!a is to leave
all rows intact except for the i0 row, which is set to zero. Here i0 is defined by a = xi0 .
Finally, using all of the variables just defined, we can express the structural equations
of the linear DEN diagram, post intervention, as

x∗ = A∗x∗ + u!a + aea . (9.10)

Thus,

x∗ = (1− A∗)−1(u!a + aea) . (9.11)

which can be represented for both linear and non-linear DEN diagrams by:

x∗i = x∗i (u!a, a) . (9.12)

For any bnet,

P (y = y|x = x) = PG(y = y|x = x) (9.13)

P (y = y|ρx = x) = Pρx=xG(y = y) (9.14)

Claim 6 For a non-linear DEN diagram,

P (y|ρx = x) = E
[
δ[y, y(u!x, x)]

]
. (9.15)

proof:

P (y = y|ρx = x) = Pρx=xG(y = y) (9.16)

=
∑
u!x

P (u!x)Pρx=xG(y = y|u!x) (9.17)

=
∑
u!x

P (u!x)δ[y, y(u!x, x)] (9.18)

= Eu!x [δ[y, y(u!x, x)]] (9.19)

= E[δ[y, y(u!x, x)]] (9.20)

QED

Claim 7 For a nonlinear DEN diagram,

E[y|ρx = x] = E[y(u!x, x)] . (9.21)
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proof:

E[y|ρx = x] =
∑
y

yP (y = y|ρx = x) (9.22)

=
∑
y

yE[δ[y, y(u!x, x)]] (9.23)

= E[y(u!x, x)] (9.24)

QED
For any bnet

P (y|ρx = x, z) =
P (y, z|ρx = x)

P (z|ρx = x)
= Pρx=xG(y|x, z) (9.25)

For a nonlinear DEN diagram,

P (y, z|ρx = x) =
∑
u!x

P (u!x)δ[y, y(u!x, x)]δ[z, z(u!x, x)] (9.26)

P (z|ρx = x) =
∑
u!x

P (u!x)δ[z, z(u!x, x)] . (9.27)

9.4 Mediation Analysis

In the previous section, we applied the do operator to DEN diagrams. Mediation
analysis is a nice example which applies both do and imagine operators to DEN
diagrams.

ut

��

um

��

uy

��

m

  
t

>>

// y

G

ut

��

�� ��
um

��

�� ��
uy

��

m

  
t

>>

// y

G∗

Figure 9.2: Graphs G and G∗ are used to discuss mediation. In graph G, the exoge-
nous variables are independent, whereas in graph G∗ they are not.
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The term “mediation analysis” refers to the analysis of the DEN diagram G in
Fig.9.2. In that diagram, node t influences node y both directly and via the mediator
node m. The structural equations for that diagram are of the form:

t = ut (9.28a)

m = fm(t, um) (9.28b)

y = fy(t,m, uy) . (9.28c)

Thus,

y = fy(ut, fm(ut, um), uy) . (9.29)

ut um

��

uy

��

m

  
t = 5

<<

// y

ut

��

um

��

uy

��

m

  
t

κ(5)
>>

// y

ρt=5G κt→m(5)G

Figure 9.3: Graph G of Fig.9.2 after applying do operator ρt=5 and imagine operator
κt→m(5).

If we apply ρt=5G to Eqs.(9.28), we get

t = 5 (9.30a)

m = fm(t, um) (9.30b)

y = fy(t,m, uy) . (9.30c)

Eqs.9.30 are represented graphically in Fig.9.3. We will often denote the random
variable y in Eqs.(9.30) by the more explicit symbol y

ρt=5G
. Pearl often refers to this

y by the less explicit symbol Y5 or Y5(u) where Y = y and u = (um, uy) = u!t.
If we apply κt→m(5)G to Eqs.(9.28), we get

t = ut (9.31a)

m = fm(5, um) (9.31b)

y = fy(t,m, uy) . (9.31c)
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Eqs.9.31 are represented graphically in Fig.9.3. We will often denote the random
variable y in Eqs.(9.31) by the more explicit symbol y

κt→m(5)G
. Pearl often refers to

this y by the less explicit symbol Y5 or Y5(u) where Y = y and u = (ut, um, uy).

ut um

��

uy

��

m

  
t = t

<<

// y

ut um uy

��

m = m

##
t = t // y

ρt=tG ρt=tρm=mG

Figure 9.4: Graph G of Fig.9.2 after applying the do operators ρt=t and ρt=tρm=m.

Define the Total Effect (TE), and the Controlled Direct Effect (CDE) by

TE = E[y
ρt=1G

− y
ρt=0G

] (9.32)

CDE(m) = E[y
ρt=1ρm=mG

− y
ρt=0ρm=mG

] (9.33)

The two DEN diagrams ρt=tG and ρt=tρm=mG used in the definitions of TE and CDE
are given in Fig.9.4.

κt→y(a)κt→m(b)G =

ut

��

um

��

uy

��

m

  
t

κ(b)
>>

κ(a) // y

Figure 9.5: Graph G of Fig.9.2 after applying the imagine operator κ to arrows t→ m
and t→ y.

Let

Yba = E[y
κt→y(a)κt→m(b)G

] (9.34)

Fig.9.5 shows the diagram κt→y(a)κt→m(b)G used in the definition of Yba.
Now define the Natural Direct Effect (NDE), and the Natural Indirect Effect

(NIE) by

NDE = Y0
1 − Y0

0 (9.35)

NIE(t) = Y1
t − Y0

t . (9.36)
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Note that

NDE +NIE(1) = (Y0
1 − Y0

0 ) + (Y1
1 − Y0

1 ) (9.37)

= Y1
1 − Y0

0 (9.38)

= TE . (9.39)
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Chapter 10

Decision Trees

This chapter is based mainly on Ref.[36].

Figure 10.1: Example of dtree taken from Ref.[36]

Fig.10.1 shows a typical decision tree (dtree). This example was taken from
Ref.[36], where it is analyzed in detail. As you can see, a dtree contains two main
types of nodes: the non-leaf, internal nodes, and the leaf nodes. The internal
nodes pose questions. In general, the answers1 to those questions can be multiple
choices with two or more choices. For each of those choices, a tree branch labeled by
the choice comes down from the question node. The leaf nodes represent endpoints,
goals, final conclusions, etc. Dtrees can be viewed as classifiers. They take in a large
amount of information about a population and compress that information to just a
few classes. If Sc is the set of distinct leaf node labels, then we call each c ∈ Sc a
class of the classifier. In the case of Fig.10.1, Sc = {False, True}.

Dtrees can be used with probabilities attached to each node, or without prob-
abilities (as a plain undirected graph(UG)). This is analogous to bnets, which can

1The question-answer pairs in dtrees are often also referred to as attribute-value pairs.
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Figure 10.2: Fig.10.1 with generic labels.

Figure 10.3: Fig.10.2 converted to a bnet.

be used with probabilities attached to each node (as DAGs with TPMs specified for
each node) or without probabilities (as plain DAGs). Dtrees differ from bnets in that
their tree branches are labelled, whereas bnet arrows aren’t labelled. Also, whereas
the nodes of a bnet carry a matrix of probabilities (the TPM), the nodes of a dtree
carry just a column vector of probabilities which represents a single probability dis-
tribution. Henceforth, we will refer to the column vector of probabilities carried by
each node of a dtree as its Transition Probability Vector (TPV). Without the
TPVs, a dtree can be used as a deterministic classifier, to classify inputs. With the
TPVs, it can be used as a probabilistic sampler (to generate random samples.)

10.1 Transforming a dtree into a bnet

A trivial observation that is seldom made in the dtree pedagogical literature is that
every dtree maps into a special bnet, let’s call it its “image” bnet, in a very natural
way. We use the dtree of Fig.10.1 as an example to show how to do this. As a first
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P (x|a) a = a0 a ∈ S−a − {a0} null

0 p0 0 0
1 p1 0 0
...

... 0 0
N−x − 1 pNx−1 0 0

null 0 1 1

Table 10.1: TPM of a node of a dtree image bnet.

step, we go from Fig.10.1 to Fig.10.2 by replacing all the labels of the nodes and of the
branches of the dtree by generic symbols. Next, we go from Fig.10.2 to Fig.10.3, by
replacing all tree branches by arrows pointing down, and by moving the tree branch
labels down so that they become a suffix to the question that the tree branch leads
to. At this point, we have created Fig.10.3, which constitutes the DAG of the image
bnet. It remains for us to define a TPM for each node of this DAG.

Table 10.1 gives the TPM P (x|a) for a node x with single parent a of a dtree
image bnet. Say node x has a set S−x of possible tree branches coming out of it. Let
N−x = |S−x |. Let Sx = S−x ∪{null} and Nx = |Sx| = N−x +1. Define S−a , N−a , Sa and Na

analogously for node a. In Table 10.1, S−x = {0, 1, . . . , N−x − 1} and a0 is the value of
node a which labels the tree branch connecting nodes a and x. ~p = (p0, p1, . . . , pNx−1)
is a probability distribution associated with node x, its TPV. TPVs can be learned
from a dataset following the dtree Structure Learning (SL) algorithm discussed in
Section 10.2.

Table 10.1 also applies when node x is a leaf node, except that for leaf nodes,
~p is one hot (i.e., all components are zero except for one component which is 1). Also,
all leaf nodes x have the same S−x , namely Sc.

Adding a null state to the set of states (SOS) of each node of the image bnet
is necessary because, once null is added to the SOS of any node, it must be added
to the SOS of all descendant nodes. null must be added to the SOS of the children
of the root node to take care of the situations when those first children don’t receive
the state they were expecting from their parent, i.e., the root node.

When drawing dtrees, some people put info like explanations and probabilities
on the branches of the dtree. That info can all be preserved in the TPM and the node
names and node state names of the image bnet nodes. One can also place info inside
tool tips attached to the node name and node state names. Often, the pedagogical
literature states that dtrees are more explicit and carry more info than their image
bnets, but if one follows the above prescriptions, both can carry the same info.

A naive Bayes (NB) bnet (see Chapter 34) consists of a single “class node”
with states Sc that fans out with arrows pointing to the “feature nodes”. If each leaf
node of a NB bnet fans out into a set of new leaf nodes, and those new leaf nodes also
fan out and so on, we get a generalized NB bnet. Let’s call this type of tree bnet an
NB∗ bnet. An NB∗ bnet has the same graph structure as the image bnet of a dtree,
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but it’s more general, because its TPMs are more general. Each TPM of a NB∗ bnet
can have several non-trivial columns instead of just one TPV= ~p.

10.2 Structure Learning for Dtrees

Let
J0 = {0, 1, . . . , nj − 1}
Σ = {0, 1, 2, . . . , nsam− 1}
DS = {(σ, xσ, cσ) : σ ∈ Σ} be a dataset
σ ∈ Σ be an individual (a sample) from a population (sampling set),
xσ ∈ Sx be the feature (attributes, questions) vector. Sx = Sx0 × Sx1 ×

. . .× Sxnj−1
, x = (x0, x1, . . . , xnj−1) ∈ Sx, xj ∈ Sxj

cσ ∈ Sc be a classification class
We will assume Σ, Sx and Sc are finite sets.
Building a classifier f for a dtree means finding a deterministic function

f : Sx → Sc such that cσ ≈ f(xσ) for all σ ∈ Σ. If we divide the population Σ
into two large disjoint sets, a training set Σtrain and a validation set Σvali, and
if cσ ≈ f(xσ) very closely for σ ∈ Σtrain but fits poorly for σ ∈ Σvali, then we say
the classifier (curve fit) f suffers from overfitting. We can learn the structure and
TPVs of a dtree from a dataset DS, by using the dtree Structure Learning (SL)
algorithm that we will discuss in detail later. However, that algorithm is prone to
produce a classifier f that overfits. Two techniques commonly used to reduce the
effects of overfitting are pruning and Random Forests (RF). Pruning just means
somehow removing nodes that are too specific. RFs are ensembles of dtrees that one
averages over. In this chapter, we will only deal with a single dtree, not an ensemble
of them.

Below, we give the standard algorithm for SL of a dtree, in the form of pseudo-
code. But first, we define two quantities, Information Gain and Gini, that are used
in that pseudo-code.

10.2.1 Information Gain, Gini

This section uses various Shannon Information Theory entropies. Our notation for
those entropies is described in Chapter Notational Conventions and Preliminaries on
Notational Conventions.

Call a separation ability measure (SAM) a measure used to decide, when
constructing a dtree from a dataset, in what order to ask the questions about the
feature vector x. The question order is decided by searching over all so far unused
questions for the question with the largest SAM.2

2SAM is also called, somewhat confusingly, the splitting criterion and Gain.

69



xk′

xj xj=xj
//

xj=x
′
j

44

xk

{Nj(c)}c∈Sc {Nk(c)}c∈Sc

∑
c∈Sc Nj(c) = Nj

∑
c∈Sc Nk(c) = Nk

∑
k∈ch(j) Nk(c) = Nj(c)

Figure 10.4: Some population numbers associated with the nodes of a dtree. Nj(c)
is the number of individuals σ in the population that reaches node j and belongs to
class c. ch(j) is the set of nodes k that are children of node j.

j // k // c

Figure 10.5: Bnet derived from population numbers in Fig.10.4

Fig.10.4 defines some population numbers associated with the nodes of a dtree.
From these population numbers, we can define the bnet in Fig.10.5. The TPMs,
printed in blue, for the (non-root) nodes of this bnet, are as follows

P (c|k) =
Nk(c)

Nk

(10.1)

P (k|j) =
Nk

Nj

1(k ∈ ch(j)) (10.2)

where j, k ∈ J0 are dtree nodes, c ∈ Sc is a class node, and ch(j) is the set of nodes
k that are children of node j.

Note that

∑
k∈ch(j)

P (c|k)P (k|j) =
∑

k∈ch(j)

Nk(c)

Nk

Nk

Nj

(10.3)

=
Nj(c)

Nj

(10.4)

= P (c|j) (10.5)
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so these TPMs are consistent with the Markov-chain bnet structure shown in Fig.10.5.

Claim 8 ∑
k

H(c|k)P (k|j) = H(c|k, j) (10.6)

for the Markov chain c← k ← j.

proof:∑
k

H(c|k)P (k|j) = −
∑
c

∑
k

P (c|k)P (k|j) lnP (c|k) (10.7)

= −
∑
c

∑
k

P (c|k)P (k|j) {ln[P (c|k)P (k|j)]− lnP (k|j)} (10.8)

= −
∑
c

∑
k

P (c, k|j) lnP (c, k|j)−H(k|j) (10.9)

= H(c, k|j)−H(k|j) (10.10)

= H(c|k, j) (10.11)

QED
One can define the following information theory quantities associated with

bnet Fig.10.5.

INFO finj = −
∑
c

P (c|j) lnP (c|j) (10.12)

= H(c|j) (10.13)

(10.14)

INFO initj =
∑

k∈ch(j)

P (k|j)H(c|k) (10.15)

= H(c|k, j) (using Claim 8) (10.16)

INFO gainj = INFO finj − INFO initj (10.17)

= H(c|j)−H(c|k, j) (10.18)

= H(c : k|j) (10.19)

The mutual information H(c : k|j) is usually called the information gain for node
xj. Maximizing this mutual information produces a node k that has a large correlation
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to a class c for each k ∈ ch(j). If the goal is to reach a point where each leaf node is
closely correlated to a different class, then maximizing the Information Gain of each
new node is a greedy move towards that goal. Thus, Information Gain is a good (in
fact, the preferred) SAM for dtree SL.

Call

H(c|j) = −
∑
c∈Sc

P (c|j) lnP (c|j) (10.20)

the class-entropy for node xj.
Note that if we approximate

lnP (c|j) ≈ ln[1 + P (c|j)− 1] (10.21)

≈ P (c|j)− 1 (10.22)

in Eq.(10.20), we get what is usually called the Gini for node xj:

Ginij = 1−
∑
c∈Sc

P (c|j)2 (10.23)

Ginij is a simpler to compute polynomial approximation to H(c|j).
One can also define a Gini gain for node xj by approximating Eq.(10.19)

for INFO gainj.

Gini gainj =
∑
c,k

P (c|k, j)2P (k|j)
P (c|j)

− 1 (10.24)

We say a probability distribution Px, is pure (i.e., deterministic) if Px(x) =
δ(x, x0). Ginij and H(c|j) are both always non-negative. They both vanish iff P (c|j)
is pure. Thus, Ginij and H(c|j) are both good measures of class impurity.

10.2.2 Pseudo-code

Below, we give the standard algorithm for SL of a dtree, in the form of pseudo-code.
The strategy employed by the algo is to assume an incoming population into the
current root node, then determine the feature xj that best separates that incoming
population. The feature xj is chosen so as to maximize Information Gain or Gini.
This process is repeated by nominating the end of each new branch to be the current
root node. In essence, what we are doing is performing a top-down, greedy search
through the space of possible dtrees.

The algo in the pseudo-code below is called ID3 (Iterative Dichotomiser 3)
or CART (Classification and Regression Trees). ID3 (Quinlan, 1986) and CART
(Breiman et al, 1984) are almost identical, but were invented independently. As you
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can see, ID3/CART is quite old. Many in the AI community consider it old fashioned
compared to neural nets.

The pseudo-code below uses the majority function defined in Chapter Nota-
tional Conventions and Preliminaries.

Algorithm 1: Pseudo-code for learning a dtree from a dataset

Input : dataset DS = {(σ, xσ, cσ) : σ ∈ Σ},
set of classification classes Sc,
set of currently available node indices J , where J ⊂ J0

Output: tree T ,
population numbers {(j, c, Nj(c)) : j ∈ J0, c ∈ Sc} stored globally

J ← J0

Function learn dtree(DS, Sc, J):
Σ← set of all σ in DS
if {cσ : σ ∈ Σ} = {c} then

T ← one node tree with leaf node label= c

else if J = ∅ then
T ← one node tree with leaf node label= majority([cσ : σ ∈ Σ])

else
r ← argmax

j∈J
INFO gainj(DS)

from DS, calculate {(r, c,Nr(c)) : c ∈ Sc} and store it globally

T ← a new decision tree with root node xr
for v ∈ Sxr do

add a branch to tree T below xr with label “xr = v”
DS1 ← subset of DS with xr = v
if DS1 = ∅ then

below the new branch add a
leaf node labeled = majority([cσ : σ ∈ Σ])

else
below the new branch add
subtree =learn dtree(DS1, Sx, J − {j})

return T
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Chapter 11

Difference-in-Differences

This chapter is based on Ref.[3].
The Difference-in-Differences (DID) method was first used by John Snow in

an 1854 report that argued that cholera in London was being transmitted by sewage
polluted water rather than, as others at the time believed, by air (in fetid vapors
called miasmas). In general, one can apply DID to discover causal effects in historical
data. By historical data (aka a natural experiment. See Ref.[73]) we mean data
that is collected long after the treatment (rather than during it) and is thus not
subject to active intervention by the experimenter.

This chapter assumes that the reader has read Chapter 39 on Potential Out-
comes (PO). The DID method applies the basic single-time PO theory described in
Chapter 39, to 2 well separated times in which different conditions prevail.

11.1 John Snow, DID and a cholera transmission

pathway

Let
d ∈ {0, 1}
t ∈ {t0, t1}, t0 < t1
y = f(d, t) ∈ R.
Define

∆tf(d, t) = f(d, t1)− f(d, t0) , (11.1)

∆df(d, t) = f(1, t)− f(0, t) , (11.2)

DID = δ = ∆d∆tf(d, t) . (11.3)

DID is illustrated in Fig.11.1.
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Figure 11.1: Pictorial representation of Difference-in-differences (DID) as a difference
of two differences (i.e., a difference of two slopes).

A time series is any function of time for which the domain is a discrete set
of times.

In DID, one calculates the slope, over the same time interval, of two time
series. One of the time series (d = 0) is for the control (i.e., untreated) population
and the other (d = 1) is for the treated population. Then the difference δ of those 2
slopes is taken. The idea is that if there is no causal difference between the 2 time
series, then both time series will have the same slope, and δ will be zero.

Figure 11.2: DID = δ expressed as a a triple vector product.

Note that, as shown Fig.11.2, DID = δ can also be expressed as a triple vector
product. Indeed, consider a space of points (t, y, z) ∈ R3 with an orthonormal basis
t̂, ŷ, ẑ. Let ∆t = t1 − t0. Let md be the slope of the lines d ∈ {0, 1} = { untreated,
treated }. Let

~rd = (∆t,md∆t, 0) (11.4)

75



for d ∈ {0, 1}. Then

1

∆t
~r0 × ~r1 · ẑ =

1

∆t
det

 ∆t m0∆t 0
∆t m1∆t 0
0 0 1

 (11.5)

= (m1 −m0)∆t (11.6)

= δ (11.7)

When ~r0 and ~r1 are parallel, ~r0 × ~r1 = 0 so δ = 0.

t = t0 (1849) t = t1 (1854)

d̃ = 1 (town 1) 85 deaths, polluted DW 19 deaths, unpolluted DW

d̃ = 0 (town 0) 135 deaths, polluted DW 147 deaths, polluted DW

Table 11.1: A condensation of the data collected by John Snow in 1854, to test the
hypothesis that cholera in London was being spread by polluted drinking water (DW).

A condensation of the data collected by John Snow in 1854 is given in Table
11.1. From that data, we find that

δ = ∆d∆tf(d, t) = (19− 85)− (147− 135) = −66− 12 = −78 (11.8)

11.2 PO analysis

In this section, we show how to analyze the DID method using the formalism of PO
theory.

We will speak of a treatment outcome yσ
t,gσ

(dσ, xσ) for individual σ that de-

pends, not just on the treatment dose dσ ∈ {0, 1} and the confounder state xσ, but
also on a group parameter (i.e., which population or town) gσ ∈ {0, 1} and on a time
parameter t ∈ {t0, t1} (note t is independent of σ). Actually, we will assume gσ = dσ,
so we will just speak of yσ

t
(dσ, xσ) with no explicit gσ dependence. As usual for PO

theory, we will consider expected values of yσt :

Eσ|d̃,x[y
σ
t (d)] = Eyt|d̃,x[yt(d)] = Yd|d̃,x(t) (11.9)

To calculate these expected values, we need a “model” with probability dis-
tributions. In this case, the needed model and probability distributions are provided
by the bnets depicted in Fig.11.3. The TPMs, printed in blue, for the bnet Gt,im in
Fig.11.3, are as follows. Note that the TPMs for the bnet Gt,im are defined in terms
of the TPMs for the bnet Gt.
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xσ

�� ��
dσ // yσ

t

xσ

yy ##
dσ = dσ d̃

σ
= d̃σ // yσ

t

Gt Gt,im

Figure 11.3: t ∈ {t0, t1}. Bnet Gt,im = κdσ→yσ
t
(d̃σ)Gt is obtained by applying the

imagine operator to arrow dσ → yσ
t

of bnet Gt.

P (xσ) = Px(x
σ) (11.10)

P (dσ|xσ) = Pd|x(d
σ|xσ) (11.11)

P (yσt |d̃σ, xσ) = Py
t
|d,x(y

σ
t |d̃σ, xσ) (11.12)

P ((d̃σ)′) = δ((d̃σ)′, d̃σ) (11.13)

Figure 11.4: Four different time-dependent expected values Yd|d̃(t) of yσt for bnet Gt,im

The 4 magenta stars represents the 4 DID measurements.

Henceforth, for simplicity, we will omit the confounder state x from the indices
of Y ; i.e., we will write Yd|d̃(t) instead of Yd|d̃,x(t). The fact that we will not explicitly
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mention x does not mean that it doesn’t exist or that it doesn’t affect our analysis.
John Snow does not seem to have considered any confounders in his cholera study, or
else he tried to collect data restricted to a single stratum x. If there are confounders,
they cannot be neglected. As discussed in Chapter 39 under the subject of strata-
matching in PO, one must condition Y on a single x stratum and, later on, one must
average over all the possible x strata.

Let MYd|d̃(t) denote the measured Yd|d̃(t). We define this quantity as

MYd|d̃(t) = Yd|d̃(t)
[
1(d = 0, t = t0) + 1(d = d̃, t = t1)

]
(11.14)

Now we claim that the DID δ calculated in the previous section for John Snow’s data,
can be expressed in PO formalism as follows:

δ = ∆d̃∆t

∑
d

MYd|d̃(t) . (11.15)

Fig.11.4 depicts the four functions Yd|d̃(t) for t in the interval [t0, t1] and for d, d̃ ∈
{0, 1}. The Y coordinates of the four magenta stars in Fig.11.4 can be calculated
using bnet Gt.

Define the parallel trends (PT) by

PT = ∆d̃∆tY0|d̃(t) . (11.16)

We will say the parallel trends assumption (PTA) holds if PT = 0.
Next we prove that the DID δ equals the sum of an ATT1 and PT.

δ = ∆d̃∆t

∑
d

MYd|d̃(t) (11.17)

=
∑
d

[
∆tMYd|1(t)−∆tMYd|0(t)

]
(11.18)

=
∑
d

[
MYd|1(t1)−MYd|1(t0)

]
−
∑
d

[
∆tMYd|0(t1)−∆tMYd|0(t0)

]
(11.19)

= Y1|1(t1)− Y0|1(t0)− {Y0|0(t1)− Y0|0(t0)} (11.20)

= Y1|1(t1)− Y0|1(t0)− {Y0|0(t1)− Y0|0(t0)}+ {Y0|1(t1)− Y0|1(t1)}︸ ︷︷ ︸
zero

(11.21)

= Y1|1(t1)− Y0|1(t1)︸ ︷︷ ︸
ATT (t1)

−Y0|1(t0)− {Y0|0(t1)− Y0|0(t0)}+ Y0|1(t1) (11.22)

= ATT (t1)−∆tY0|0(t) + ∆tY0|1(t) (11.23)

= ATT (t1) + ∆d̃∆tY0|d̃(t)︸ ︷︷ ︸
zero if PTA holds

(11.24)

1ATT stands for the average treatment effect of the treated. ATT is defined in Chapter 39
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11.3 Linear Regression

In this section, we show how to apply linear regression (LR) to the PO analysis of
DID.

As before, let yσt (d̃σ) be the treatment outcome for individual σ, who receives
a treatment dose d̃σ at times t ∈ {t0, t1}. yσt (d̃σ) can be fitted as follows. Here εσ is
the residual for individual σ and b0,m0, b1,m1 ∈ R are the fit parameters.

yσt = [b0 +m0t](1− d̃σ) + [b1 +m1t]d̃
σ + εσ . (11.25)

Note that Eq.(11.25) yields a straight line in the yσt − t plane for dσ = 0, and another
straight line for dσ = 1. We are using the standard symbols b to denote the y-intercept,
and m to denote the slope of a straight line.

Taking the expected value of Eq.(11.25), we get

Yd|d̃(t) = [b0 +m0t](1− d̃) + [b1 +m1t]d̃ . (11.26)

with d = 0 for t = t0 and d = d̃ for t = t1.
Let ∆t = t1 − t0. Since ∆tt = ∆t and ∆dd = 1, one gets

δ = ∆d∆tMYd|d̃(t) = ∆d∆ty
σ
t = (m1 −m0)∆t . (11.27)

Figure 11.5: We use Linear Regression to fit a straight line between points S0 and
F0, and between points S1 and F1. (S=starting, F=finishing). S0, S1, F0, F1 are the
measurement points. Point I is an image of point F0. Point C is a counterfactual
point.
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t = t0 t = t1

d̃ = 1 Y(S1) = Y0|1(t0) Y(F1) = Y1|1(t1)

d̃ = 0 Y(S0) = Y0|0(t0) Y(F0) = Y0|0(t1)

Table 11.2: Y coordinates of points S0, S1, F0, F1 in Figs.11.4 and 11.5.

Figs.11.4 and 11.5 define points S0, S1, F0, F1, I, C. The Y coordinates of points
S0, S1, F0, F1 are given by Table 11.2. The Y coordinates of points C, I are given by
Eqs.11.28.

Y(C) = Y0|1(t1) (11.28a)

Y(I) = Y(F0) + [Y(S1)− Y(S0)] (11.28b)

We can express ATT and the δ for DID in terms of the Y of the points
S0, S1, F0, F1, I, C. Indeed,

δ = Y(F1)− Y(I) (11.29)

= Y(F1)− Y(F0)− [Y(S1)− Y(S0)] (11.30)

ATT = Y(F1)− Y(C) (11.31)

Hence,

δ = ATT ⇐⇒ Y(I) = Y(C) ⇐⇒ PTA holds (11.32)
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Chapter 12

Digital Circuits

Figure 12.1: Typical digital circuit of NAND gates.

Digital (logic) gate: node with na input ports and nx output ports which
represents a function

f : {0, 1}na → {0, 1}nx . (12.1)

Suppose
ana = (ai)i=0,1,...,na−1 where ai ∈ {0, 1},
xnx = (xi)i=0,1,...,nx−1 where xi ∈ {0, 1}.
f maps ana into xnx.
Digital circuit (dcircuit) = circuit of digital gates.
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Figure 12.2: 2 options for mapping dcircuit node with multiple output ports into
bnet.

12.1 Mapping any dcircuit to a bnet

12.1.1 Option A of Fig.12.2

1. Replace every dcircuit gate described by Eq.(12.1) by nx bnet nodes xi for
i = 0, 1, . . . , nx− 1 such that

P (xi|ana) = δ(xi, fi(a
na)) (12.2)

2. Replace all connectors of the dcircuit by arrows pointing in the direction of the
bit flow.

12.1.2 Option B of Fig.12.2

1. Replace every dcircuit gate described by Eq.(12.1) with one bnet node called
xnx and, if nx > 0, nx “marginalizer nodes” mi for i = 0, 1, . . . , nx − 1, such
that

P (xnx|ana) = δ(xnx, f(ana)) , (12.3)

and
P (mi|xnx) = δ(mi, xi) . (12.4)

2. Replace all connectors of the dcircuit by arrows pointing in the direction of the
bit flow.

Options A and B don’t work for digital circuits with feedback loops such as flip-flops.
Those could probably be modeled with dynamical bnets.
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Chapter 13

Do-Calculus

The do-calculus and associated ideas were invented by Judea Pearl and collaborators.
This chapter is based on Judea Pearl’s books. (See Navigating the ocean of Judea
Pearl’s Books).

When doing do-calculus, it is convenient to separate the nodes of a bnet into
2 types: visible (observed), and non-visible (not observed, latent, hidden),
depending on whether data describing the state of that node is available (visible) or
not (non-visible). In this chapter, hidden nodes will be indicated in a bnet diagram by
either: (1) enclosing their random variable in a box (as if it were inside a black box)
or (2) making the arrows coming out of them dashed. Accordingly, the 3 diagrams
in Fig.13.1 all mean the same thing.

A confounder node c for nodes x and y is a root node with arrows pointing
from it to both x and y. Thus, c acts as a common cause of x and y. The node c in
Fig.13.1) is an unobserved confounder node.

In this book, we will refer to a path all of whose nodes are observed as an
opath.

c

�� ��
x // y

x
�� ��// y c

�� ��
x // y

Figure 13.1: These 3 diagrams are equivalent. They mean that node c is hidden.
Node c is implicit in the middle diagram.

Define an operator ρx that acts on a node x of a bnet to delete all the arrows
entering x, thus coverting x into a new node ρx that is a root node. Define an
analogous operator λx that acts on a node x of a bnet to delete all the arrows leaving
x, thus converting x into a new node λx that is a leaf node. ρx and λx are depicted
in Fig.13.2.
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Figure 13.2: The operator ρx converts node x into a root node ρx. The operator λx
converts node x into a leaf node λx.

If you don’t know yet what we mean by a a multi-node a., see Chapter Defi-
nition of a Bayesian Network

Given a bnet G, we define as follows the operators ρa. and λa. for a multi-node
a..

ρa.G =

[∏
j

ρaj

]
G , λa.G =

[∏
j

λaj

]
G . (13.1)

Consider a bnet whose totality of nodes is labeled X.. Recall that

P (X.) =
∏
j

P (Xj|(Xk)k:Xk∈pa(Xj)
) . (13.2)

Define an operator ρ that acts as follows1: Let X.− a. = (Xk)k:Xk /∈a..

P (X.− a.|ρa. = a.) = N (!(X.− a.)) P (X.)∏
j:Xj∈a.

P (Xj|(Xk)k:Xk∈pa(Xj)
)

(13.3)

= N (!(X.− a.))
∏

j:Xj /∈a.

P (Xj|(Xk)k:Xk∈pa(Xj)
) (13.4)

6= P (X.− a.|a. = a.) . (13.5)

Also,

P (X.− a., ρa. = a.′) = P (X.− a.|ρa. = a.)δ(a′., a.) . (13.6)

In words, we replace the TPM for multinode a. by a deterministic prior distribution.
For instance, for the bnet

x // y (13.7)

with

P (x, y) = P (y|x)P (x) , (13.8)

1As usual, N (!x) denotes a constant that is independent of x.
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one has

P (y|ρx = x) = P (y|x) (13.9)

and

P (x|ρy = y) = P (x) . (13.10)

This means that x causes y and y does not cause x.
For the bnet

c

�� ��
x // y

(13.11)

with

P (x, y, c) = P (y|x, c)P (x|c)P (c) , (13.12)

one has

P (y, c|ρx = x) = P (y|x, c)P (c) . (13.13)

Hence,

P (y|ρx = x) =
∑
c

P (y|x, c)P (c) . (13.14)

This is called adjusting the parents of x.
For b. ⊂ X.− a., define

P (b.|ρa. = a.) =
∑

X.−a.−b.

P (X.− a.|ρa. = a.) , (13.15)

and for s. ⊂ X.− a.− b., define

P (b.|ρa. = a., s.) =
P (b., s.|ρa. = a.)

P (s.|ρa. = a.)
. (13.16)

P (b.|ρa. = a., s.) is usually denoted instead by P (b.|do(a. = a.), s.). I prefer
to use ρ instead of do() to remind me that it generates root nodes. I’ll still call ρ a
do operator.

In P (y|ρx = x), node x is turned into a root node. This guarantees that there
is no confounding node connecting x and y. Such confounding nodes are unwelcomed
when calculating causal effects between the 2 variables x and y because they introduce
non-causal correlations between the two. This is also what happens in a Randomized
Clinical Trial (RCT). In a RCT with treatment x, the value of x for each patient
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is determined by a coin toss, effectively turning x into a root node. Hence, the do
operator mimics a RCT.

P (b.|ρa. = a., s.) is said to be identifiable (i.e., calculable) if it can be ex-
pressed in terms of probability distributions that only depend on observed variables
and that have no do operators in them. For example, P (y|ρx = x) is identifiable for
the bnet

z

�� ��
x // y

(13.17)

but it is non-identifiable for the bnet

z

�� ��
x // y

(13.18)

For x, y ∈ {0, 1}, the average controlled effect (ACE) is defined as

ACE = P (y = 1|ρx = 1)− P (y = 1|ρx = 0) (13.19)

and the Risk Difference (RD) as

RD = P (y = 1|x = 1)− P (y = 1|x = 0) . (13.20)

13.1 Parent Adjustment

Suppose that x., y., z. are disjoint multinodes and their union equals the totality of all
nodes of a bnet. Suppose we have data available that allows us to estimate P (x., y., z.).
Hence, all nodes of the bnet are observable. Furthermore, suppose z. = pa(x.). In
other words, we are considering the bnet

z.

�� ��
x. // y.

. (13.21)

Then

P (y., z.|ρx. = x.) = P (y.|x., z.)P (z.) (13.22)
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so

P (y.|ρx. = x.) =
∑
z.

P (y.|x., z.)P (z.) . (13.23)

This is called adjusting the parents of x..
We say that we are adjusting or controlling a variable a if we condition

a probability on a and then we average that probability over a. More generally, we
can adjust a whole multinode a. together.

Later on, we will introduce a generalization of this parent adjustment called
the backdoor adjustment. In a backdoor adjustment, the adjusted multinode is not
necessarily the parents of x., and P (x., y., z.) need not represent the whole bnet.

13.2 3 Rules of do-calculus

Throughout this section, suppose a., b., r., s. are disjoint multinodes in a bnet G.
Recall from Chapter 14 on d-separation, that (b. ⊥G a.|r., s.) means that we

have established from the d-separation rules that that all paths in G from a. to b. are
blocked if we condition on r. ∪ s.. Recall also that:

• Rule 0: Insertion or deletion of observations, without do operators. (a. = a.↔
1 )

If (b. ⊥G a.|r., s.), then P (b.|a., r., s.) = P (b.|r., s.)

The 3 rules of do-calculus can be presented in the same format.

• Rule 1: Insertion or deletion of observations (a. = a.↔ 1 )

If (b. ⊥ a.|r., s.) in ρr.G, then P (b.|a., ρr. = r., s.) = P (b.|ρr. = r., s.).

• Rule 2: Action or observation exchange (ρa. = a.↔ a. = a.)

If (b. ⊥ a.|r., s.) in λa.ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|a., ρr. =
r., s.).

• Rule 3: Insertion and deletion of actions (ρa. = a.↔ 1)

If (b. ⊥ a.|r., s.) in ρa.−an(s.)ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|ρr. =
r., s.).

These rules have been proven to be sufficient for removing all do operators
from an expression for which it is possible to do so.

Next we discuss two theorems that can be proven using do-calculus: the back-
door and the front-door adjustment theorems.

The backdoor theorem adjusts one multinode and the front-door theorem ad-
justs two.

87



13.3 Backdoor Adjustment

See Chapter 2 for examples of the use of the backdoor adjustment theorem. In this
section, we shall mainly be concerned with proving this theorem using do-calculus.

For any two disjoint multinodes x. and y., we define a backdoor path from
x. to y. as a path from x. and y. that starts with an arrow pointing into x.,

Suppose that we have access to data that allows us to estimate a probability
distribution P (x., y., z.). Hence, the variables x., y., z. are ALL the observed (i.e,
not hidden). Then we say that the backdoor z. satisfies the backdoor adjustment
criterion relative to (x., y.) if

1. All backdoor paths from x. to y. are blocked by z..

2. z. ∩ de(x.) = ∅.

Motivation for BD criterion: Part 1 rules out paths from x to y containing
a fork node (confounder) which, if not blocked by z., would introduce a non-causal
correlation (confounder bias). Part 2 rules out a directed path from x to y that has
a mediator node blocked by z. or a collider node unblocked by z..

Claim 9 Backdoor Adjustment Theorem
If z. satisfies the backdoor criterion relative to (x., y.), then

P (y.|ρx. = x.) =
∑
z.

P (y.|x., z.)P (z.) (13.24)

= ∑
z.

z. = z.

##
x. = x. // y.

(13.25)

proof:
For simplicity, let us omit the dots from the multinodes. If z satisfies the

backdoor criterion relative to (x, y), then x, y, z must have the following structure.

z

�� ��
x // y

(13.26)
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P (y|ρx = x) =
=

∑
m P (y|ρx = x, z)P (z|ρx = x)

by Probability Axioms
=

∑
P (y|x, z)P (z|ρx = x)

P (y|ρx = x, z)→ P (y|x, z)
by Rule 2: If (b. ⊥ a.|r., s.) in λa.ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|a., ρr. = r., s.).
y ⊥ x|z in λxG z

�� ��
x y

=
∑

z P (y|x, z)P (z)
P (z|ρx = x)→ P (z)
by Rule 3: If (b. ⊥ a.|r., s.) in ρa.−an(s.)ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|ρr. = r., s.).
z ⊥ x in ρxG z

��
x // y

(13.27)

QED
Note that the backdoor adjustment formula can be written as

P (y.|ρx. = x.) =
∑
z.

P (y.|x., z.)P (z.) (13.28)

=
∑
z.

P (y., x., z.)

P (x.|z.)
(13.29)

This assumes P (x.|z.) 6= 0 for all x., z.. This assumption is referred to as positivity,
and is violated if P (x.|z.) = δ(x., x.(z.)). P (x.|z.) is called the propensity score of x.
given z.. This equation does inverse probability weighting. One can approximate
P (x.|z.) in this equation to get an approximation to P (y|ρx = x).

13.4 Front Door Adjustment

See Chapter 17 for examples of the use of the front-door adjustment theorem. In this
section, we shall mainly be concerned with proving this theorem using do-calculus.

Suppose that we have access to data that allows us to estimate a probability
distribution P (x.,m., y.). Hence, the variables x.,m., y. are ALL the observed (i.e, not
hidden). Then we say that the front-door m. satisfies the front-door adjustment
criterion relative to (x., y.) if
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1. All directed paths from x. to y. are intercepted by (i.e., have a node in) m..

2. All backdoor paths from x. to m. are blocked (by ∅).

3. All backdoor paths from on m. to y. are blocked by x..

Claim 10 Front-Door Adjustment Theorem
If m. satisfies the front-door criterion relative to (x., y.), and P (x.,m.) > 0,

then

P (y.|ρx. = x.) =
∑
m.

[∑
x.′

P (y.|x′.,m.)P (x′.)

]
︸ ︷︷ ︸

P (y.|ρm.=m.)

P (m.|x.)︸ ︷︷ ︸
P (m.|ρx.=x.)

(13.30)

= ∑
m.,x.′

x. = x.′

##
x. = x. //m. = m. // y.

(13.31)

proof: (See also Ref.[22] for a proof of the Front-Door Adjustment Theorem without
using do-calculus.)

For simplicity, let us omit the dots from the multinodes. If m satisfies the
front-door criterion relative to (x, y), then x,m, y must have the following structure,
where node c is hidden.

c

�� ��
x //m // y

(13.32)

Continues in next page.
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P (y|ρx = x) =
=

∑
m P (y|ρx = x,m)P (m|ρx = x)

by Probability Axioms
=

∑
m P (y|ρx = x, ρm = m)P (m|ρx = x)

P (y|ρx = x,m)→ P (y|ρx = x, ρm = m)
by Rule 2: If (b. ⊥ a.|r., s.) in λa.ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|a., ρr. = r., s.).
y ⊥ m|x in λmρxG c

��
x //m y

=
∑

m P (y|ρx = x, ρm = m)P (m|x)
P (m|ρx = x)→ P (m|x)
by Rule 2: If (b. ⊥ a.|r., s.) in λa.ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|a., ρr. = r., s.).
m ⊥ x in λxG c

�� ��
x m // y

=
∑

m P (y|ρm = m)P (m|x)
P (y|ρx = x, ρm = m)→ P (y|ρm = m)
by Rule 3: If (b. ⊥ a.|r., s.) in ρa.−an(s.)ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|ρr. = r., s.).
y ⊥ x|m in ρxρmG c

��
x m // y

=
∑

x′
∑

m P (y|ρm = m,x′)P (x′|ρm = m)P (m|x)
by Probability Axioms

=
∑

x′
∑

m P (y|m,x′)P (x′|ρm = m)P (m|x)
P (y|ρm = m,x′)→ P (y|m,x′)
by Rule 2: If (b. ⊥ a.|r., s.) in λa.ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|a., ρr. = r., s.).
y ⊥ m|x in λmG c

����
x //m y

=
∑

x′
∑

m P (y|m,x′)P (x′)P (m|x)
P (x′|ρm = m)→ P (x′)
by Rule 3: If (b. ⊥ a.|r., s.) in ρa.−an(s.)ρr.G, then P (b.|ρa. = a., ρr. = r., s.) = P (b.|ρr. = r., s.).
x ⊥ m in ρmG c

����
x m // y

(13.33)
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QED
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Chapter 14

D-Separation

Before reading this chapter, I recommend that you read Chapter Definition of a
Bayesian Network on the definition of bnets.

A path γ that isn’t a loop can have 3 types of intermediate nodes x ( an
intermediate node of γ is a node in γ that isn’t one of the two end nodes). Suppose
a and b are the two neighbors of x. Then the 3 possible cases are:

1. mediator node: (a← x← b) or (a→ x→ b)

2. fork node: (a← x→ b)

3. collider node: (a→ x← b)

We say that a non-loop path γ from a to b (i.e., with end nodes a, b) is blocked
by a multinode Z. if one or more of the following statements is true:

1. There is a node x ∈ Z. which is a mediator or a fork of γ.

2. γ contains a collider node c and (c ∪ de(c)) ∩ Z. = ∅ (i.e., neither c nor any of
the descendants of c is contained in Z.)

This definition of a blocked path is easy to remember if one thinks of the
following analogy with pipes carrying a fluid. Think of path γ as if it were a pipe
carrying a fluid. Think of the nodes of γ as junctions in the pipe. If Z. intersects γ
at either a mediator or a fork junction, that blocks the pipe flow. A collider junction
c is like a blackhole or a huge leak. Its presence blocks passage of the fluid as long
as neither c nor any of the descendants of c are in Z.. If, on the other hand, c ∈ Z.,
or c′ ∈ Z. where c′ ∈ de(c), then that acts as a complete (in the case of c ∈ Z.) or a
partial (in the case of c′ ∈ Z.) bridge across the blackhole.

See Fig.14.1 for some examples of paths that are blocked or not blocked by a
multinode Z..
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◦ // ◦ // ◦ // ◦ // ◦ Not Blocked (14.1)

◦ // • // ◦ // ◦ // ◦ Blocked (14.2)

◦ ◦oo // ◦ // ◦ // ◦ Not Blocked (14.3)

◦ •oo // ◦ // ◦ // ◦ Blocked (14.4)

◦ // ◦ // ◦ ◦oo // ◦ Blocked (14.5)

◦ // ◦ // • ◦oo // ◦ Not Blocked (14.6)

◦ // ◦ // ◦

��

◦oo // ◦

•

Not Blocked (14.7)

Figure 14.1: Examples of paths that are blocked or not blocked by a multinode Z..
Nodes belonging to Z. are colored red.

Given 3 disjoint multinodes A.,B., Z. of a graph G, we write “ A. ⊥G B.|Z.”
or say “ A. and B. are d-separated by Z. in G” iff there exists no path γ from
a ∈ A., to b ∈ B. which is not blocked by Z..1

The minimal Markov blanket (see Chapter 28) of a node a is the smallest
multinode Z. such that a ⊥G b|Z. for all b /∈ a ∪ Z..

We are finally ready to state the d-separation theorem, without proof.
A probability distribution P is compatible with a DAG G if P and G

have the same random variables, and they can be combined to form a bnet without
contradictions; i.e., one can calculate all the TPMs from P and multiply them together
to obtain P again.

Claim 11 (d-separation Theorem)
Suppose A.,B., Z. are disjoint multinodes of a DAG G.
If A. ⊥G B.|Z., then P (B.|A., Z.) = P (B.|Z.) for all B.,A., Z., for all P

compatible with G.

The full converse of the theorem can also be proven, but we won’t be using it in this
book.

Often, the right hand side of this theorem is stated as “A. ⊥P B.|Z. for all
P”. Then the theorem is stated: “If A. ⊥G B.|Z., then A. ⊥P B.|Z. for all P .”

Note that the following are equivalent:

• P (B.|A., Z.) = P (B.|Z.) for all B.,A., Z..

• A. ⊥P B.|Z.
1 Z. are the nodes we are “conditioning on”. Unmeasured (i.e., hidden, unobserved) nodes cannot

be conditioned on, because that would entail measuring them.
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• H(A. : B.|Z.) = 0 (see Chapter Notational Conventions and Preliminaries for
definition of conditional mutual information (CMI))

Extra stuff: mostly only for pure mathematicians
Below, we will use the notation nde(a) to denote all nondescendants, including

a itself, of a node a in a DAG G; i.e., all nodes of G that are not in de(a) ∪ a, where
de(a) is defined in Chapter Definition of a Bayesian Network.

Given a DAG G, define the following sets of d-separations:2

DS(G) = {(A. ⊥G B. | Z.) : A.,B., Z. are multinodes of G} . (14.8)

DSmin(G) = {(A. ⊥G nde(A.) | pa(A.)) : A. is a multinode of G} . (14.9)

See Chapter 38 for an example where set DSmin(G) is calculated for a partic-
ular DAG G.

Claim 12 For all DAGs G, DS(G) = DSmin(G).

Given a probability distribution P , define the following set of conditional in-
dependencies:

CI(P ) = {(A. ⊥P B. | Z.) : A.,B., Z. are multinodes of P} , (14.10)

For a DAG G and a probability distribution P compatible with G, define a
map φ by

φ : DSmin(G) → CI(P ) (14.11)

φ : A. ⊥G nde(A.) | pa(A.) 7→ A. ⊥P nde(A.) | pa(A.) (14.12)

In general, this map is 1-1 but not onto.

Claim 13 For a bnet with a DAG G and a total probability distribution P , the map
φ is a bijection.

DS(G) does not fully specify a DAG. DAGs with the same DS(G) are said
to be d-separation equivalent. See Chapter 38 for more info about d-separation
equivalence.

2 Note that (A. ⊥G nde(A.) | pa(A.)) and (A. ⊥G nde(A.) − pa(A.) | pa(A.)) are equivalent
because H(a : b, c|c) = H(a : b|c).
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Chapter 15

Dynamic Bayesian Networks

c(0) //

��

c(1) //

��

c(2) . . . c(T−2) //

��

c(T−1)

b(0)

  

// b(1)

  

// b(2) . . . b(T−2)

$$

// b(T−1)

a(0) a(1)

OO

a(2)

OO

. . . a(T−2)

OO

a(T−1)

OO

Figure 15.1: Example of a dynamic bnet. The pattern of red arrows is repeated T −1
times.

A dynamic bnet is simply a time homogeneous Markov chain (see Chapter
30) for which each node is called a time slice, and each time slice represents at finer
resolution a sub-DAG which is the same between any 2 successive time slices. Fig.15.1
gives an example of a dynamic bnet. In Fig.15.1, we’ve drawn the 3 nodes of each time
slice vertically, and labeled them with a superscript .(t), where t ∈ {0, 1 . . . , T − 1}
is the time of the slice. To fully specify the dynamic bnet of Fig.15.1, we would also
have to specify the TPMs

P (c(0)),
P (b(0))
P (c(1)|c(0)),
P (b(1)|b(0), a(1))
P (a(1)|b(0)).
Dynamic bnets are very common in AI and Data Science. Kalman filters

(Chapter 25), Hidden Markov Models (Chapter 20) and Recurrent Neural Networks
(Chapter 41) are famous examples of dynamic bnets.

Bnets are acyclic; they can’t have cycles (i.e, closed directed paths). Yet
feedback loops are an important concept in Science. So what is the equivalent of
feedback loops in the bnet world? Dynamic bnets are. Fig.15.2 represents Fig.15.1
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more compactly using feedback loops. Any bnet with feedback loops can be “unrolled”
into a dynamic bnet.

c(t)

+

{{

+kk

b(t)

+
��

+kk

a(t)

OO

Figure 15.2: Dynamic bnet of Fig.15.1 represented more compactly using feedback
loops. Arrows labelled + point from nodes of the t time slice to nodes of the t + 1
time slice.
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Chapter 16

Expectation Maximization

This chapter is based on Refs.[52] and [84].
The Expectation Maximization (EM) algorithm is commonly used in Data

Science to find the maximum over an unknown parameter θ of a likelihood function

P (~x|θ) =
∑
~h

P (~x,~h|θ) , (16.1)

where ~x denotes the observed variables, and ~h denotes the latent variables. Both
θ and ~h are hidden (i.e., unobserved).1

θ

�� ��
~x ~hoo

= θ

��

��

��

""

��

��

x[0] h[0]oo

x[1] h[1]oo

x[2] h[2]oo

Figure 16.1: bnet for EM with nsam = 3.

The bnet for the EM algorithm is given by Fig.16.1 for nsam = 3. Later on in
this chapter, we will give the node TPMs for this bnet for the special case in which
P (x[σ] | θ) is a mixture (i.e., weighted sum) of Gaussians.

1 The term “unknown parameter” is mainly of frequentist origin. For Bayesians, θ is a random
variable with a delta function prior, whereas for frequentists, it is not a random variable at all, just
an unknown parameter with no randomness.
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Note that if we erase the h[σ] nodes from Fig.16.1, we get the bnet for naive
Bayes, which is used for classification into the states of θ. However, there is one
big difference. With naive Bayes, the leaf nodes have different TPMs. Here, we will
assume they are i.i.d. Naive Bayes is used for classification: i.e., given the states of
the leaf nodes, we infer the state of the root node. EM is used for clustering; i.e., given
many i.i.d. samples, we fit their distribution by a weighted sum of prob distributions,
usually Gaussians.

Let
L =likelihood function.
nsam = number of samples.
~x = (x[0], x[1], . . . , x[nsam− 1]) x[σ] ∈ Sx for all σ.
~h = (h[0], h[1], . . . , h[nsam− 1]) h[σ] ∈ Sh for all σ.
We assume that the samples (x[σ], h[σ]) are i.i.d. for different σ at fixed θ.

What this means is that there are probability distributions Px|h,θ and Ph|θ such that

P (~x,~h|θ) =
∏
σ

[
Px|h,θ(x[σ] | h[σ], θ)Ph|θ(h[σ] | θ)

]
. (16.2)

Definition of likelihood functions:

P (~x|θ)︸ ︷︷ ︸
L(θ;~x)

=
∑
~h

P (~x,~h|θ)︸ ︷︷ ︸
L(θ;~x,~h)

(16.3)

θ∗ = maximum likelihood estimate of θ (no prior P (θ) assumed):

θ∗ = argmax
θ
L(θ; ~x) (16.4)

16.1 The EM algorithm:

1. Expectation step:2

Q(θ|θ(t)) = E~h|~x,θ(t) lnP (~x,~h|θ) (16.5)

2. Maximization step:

θ(t+1) = argmax
θ

Q(θ|θ(t)) . (16.6)

Claim: limt→∞ θ
(t) = θ∗.

2 Note that that the right hand side of Eq.(16.5) is expressible in the form
∑
σ

∑
h[σ] f(x[σ], h[σ]).

99



θ(0)

��   

// θ(1) // θ(2) // · · · θ∗

~x

>> 66 44

~hoo

Figure 16.2: The EM algo generates a sequence of parameter estimates (θ(t))t=0,1,2,...

that converges to the optimum (i.e., best-fit) parameter θ∗.

Fig.16.2 portrays the recursive nature of the EM algo as a dynamical, recurrent
bnet. For Fig.16.2, the TPMs, printed in blue, for the θ(t) nodes for t = 1, 2, . . ., are
as follows:

P (θ(t+1)|~x, θ(t)) = δ(θ(t+1), argmax
θ

Q(θ|θ(t))) . (16.7)

16.1.1 Motivation

Q(θ|θ(t)) = E~h|~x,θ(t) lnP (~x,~h|θ) (16.8)

= E~h|~x,θ(t) [lnP (~h|~x, θ) + lnP (~x|θ)] (16.9)

= −DKL

(
P (~h|~x, θ(t)) ‖ P (~h|~x, θ)

)
−H[P (~h|~x, θ(t))] + lnP (~x|θ) (16.10)

When θ(t) = θ, this becomes

Q(θ|θ) = −H[P (~h|~x, θ)] + lnP (~x|θ) . (16.11)

Hence,

∂θQ(θ|θ) = −
∑
~h

∂θP (~h|~x, θ) + ∂θ lnP (~x|θ) (16.12)

= ∂θ lnP (~x|θ) (16.13)

So if θ(t) → θ and Q(θ|θ) is max at θ = θ∗, then lnP (~x|θ) is max at θ = θ∗

too.
For a more rigorous proof that limt→∞ θ

(t) = θ∗, see Wikipedia article Ref.[52]
and references therein.
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Figure 16.3: Function µ(θ|θ(t)) minorizes the function L(θ). Note that µ(θ|θ(t))
is always below L(θ). “max” indicates θ(t+1) = argmax

θ
µ(θ|θ(t)). “kiss” indicates

µ(θ(t)|θ(t)) = L(θ(t)).

16.2 Minorize-Maximize (MM) algorithms

A function µ(θ|θ(t)) is said to minorize a target function L(θ) iff for all θ at fixed
θ(t), it satisfies the “µ ≤ L property”

µ(θ|θ(t)) ≤ L(θ) , (16.14)

and the “µ = L property”

µ(θ(t)|θ(t)) = L(θ(t)) . (16.15)

We recursively maximize a minorizing function µ(θ|θ(t)) if we define a
sequence (θ(t))t=0,1,... as follows:

θ(t+1) = argmax
θ

µ(θ|θ(t)) . (16.16)

The sequence (L(θ(t)))t=0,1,2,... generated by recursively maximizing a minoriz-
ing function must be nondecreasing:

L(θ(t+1)) ≥ µ(θ(t+1)|θ(t)) ≥ µ(θ(t)|θ(t)) = L(θ(t)) . (16.17)

A minorize-maximize (MM) algorithm is any algo that specifies a mi-
norizing function µ(θ|θ(t)) for a particular target function L(θ). One can also define a
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majorize-minimize algo (also called MM) by inverting the inequalities through-
out.

The EM algo is an MM algo. Indeed, if we define

L(θ) = lnP (~x|θ) (16.18)

and

µ(θ|θ(t)) = Q(θ|θ(t)) +H(P (~h|~x, θ(t)) , (16.19)

then Eq.(16.10) establishes the µ ≤ L and µ = L properties required of a minorizing
function.

How an MM algo works is portrayed in Fig.16.3.

16.3 Examples

16.3.1 Gaussian mixture

x[σ] ∈ Rd = Sx. Sh discrete and not too large. nh = |Sh| is number of Gaussians that
we are going to fit the samples with.

Let
θ = [wh, µh,Σh]h∈Sh , (16.20)

where [wh]h∈Sh is a probability distribution of weights, and where µh ∈ Rd and Σh ∈
Rd×d are the mean value vector and covariance matrix of a d-dimensional Gaussian
distribution.

The TPMs, printed in blue, for the nodes of Fig.16.1, for the special case of a
mixture of Gaussians, are as follows:

P (x[σ] | h[σ] | θ) = Nd(x[σ];µh[σ],Σh[σ]) (16.21)

P (h[σ] | θ) = wh[σ] (16.22)

Note that

P (x[σ] | θ) =
∑
h

P (x[σ] | h[σ] = h, θ)P (h[σ] = h | θ) (16.23)

=
∑
h

whNd(x[σ];µh,Σh) (16.24)
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P (~x,~h|θ) =
∏
σ

[
wh[σ]Nd(x[σ];µh[σ],Σh[σ])

]
(16.25)

=
∏
σ

∏
h

[whNd(x[σ];µh,Σh)]
1(h=h[σ]) (16.26)

Old Faithful: See Wikipedia Ref.[52] for an animated gif of a classic example
of using EM to fit samples with a Gaussian mixture. Unfortunately, could not include
it here because pdflatex does not support animated gifs. The gif shows samples in
a 2 dimensional space (eruption time, delay time) from the Old Faithful geyser. In
that example, d = 2 and nh = 2. Two clusters of points in a plane are fitted by a
mixture of 2 Gaussians.

K-means clustering is often presented as the main competitor to EM for
doing clustering (non-supervised learning). In K-means clustering, the sample
points are split into K mutually disjoint sets S0, S1, . . . , SK−1. The algorithm is easy
to describe:

1. Initialize by choosing at random K data points (µk)
K−1
k=0 called means or cen-

troids and placing µk in Sk for all k.

2. STEP 1: For each data point, add it to the Sk whose centroid µk is closest to
it.

3. STEP 2: Recalculate the centroids. Set µk equal to the mean value of set Sk.

4. Repeat steps 1 and 2 until the centroids stop changing by much.

Step 1 is analogous to the expectation step in EM, and Step 2 to the maximization
step in EM (θ estimation versus µk estimation). We won’t say anything further about
K-means clustering because it isn’t related to bnets in any way, and this is a book
about bnets. For more info about K-means clustering, see Ref.[61].

16.3.2 Blood Genotypes and Phenotypes

Notation: ~a = (a[σ])σ=0,1,...,nsam−1, where nsam is the number of samples. Will
sometimes denote a[σ] by a[σ].

Suppose ~x = (~x0) (i.e., just one component)
~h = (~h0) (i.e., just one component)
h[σ] ∈ Sh = {AA,AO,BB,BO,OO,AB} (the 6 blood genotypes)
x[σ] ∈ Sx = {A,B,O,AB} (the 4 blood phenotypes)
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θ

�� ""
x[σ] h[σ]oo

Figure 16.4: bnet for blood phenotypes x[σ] and genotypes h[σ].

For the bnet of Fig.16.4, the TPMs, printed in blue, are:

P (h[σ]|θ) =

AA p2
A

AO 2pApO
BB p2

B

BO 2pBpO
OO p2

O

AB 2pApB

, (16.27)

where pA + pB + pO = 1.

P (x[σ] | h[σ], θ) =

AA AO BB BO OO AB
A 1 1 0 0 0 0
B 0 0 1 1 0 0
O 0 0 0 0 1 0
AB 0 0 0 0 0 1

(16.28)

θ = (pA, pB) (16.29)

Multiplying the TPMs in Eqs.(16.27 and (16.28), we get

P (x[σ] | θ) =
A p2

A + 2pApO(= πA)
B p2

B + 2pBpO(= πB)
O p2

O(= πO)
AB 2pApB(= πAB)

(16.30)

Note that

P (~x|θ) =
∏
σ

P (x[σ]|θ) (16.31)

= (πA)NA(πB)NB(πO)NO(πAB)NAB , (16.32)

where Nx for x ∈ Sx = {A,B,O,AB} are the counts from the data. We can get
estimates for the parameters pA and pB right here without doing EM. Just note that

π̂x =
Nx

N+

(16.33)
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for x ∈ Sx, where N+ =
∑

xNx. Eqs.(16.33) give 4 quadratic equations that can be
solved for the parameters pA, pB in terms of the observed counts Nx for x ∈ Sx.

If, instead, you want to find the optimum parameters pA, pB using EM, note
that

Q(θ|θ(t)) =
∑
~h

P (~h|θ(t)) lnP (~x,~h|θ) (16.34)

=
∑
~h

[∏
σ

P (h[σ]|θ(t))

]
ln

[∏
σ

P (x[σ], h[σ]|θ)

]
(16.35)

=
∑
σ

∑
h[σ]

P (h[σ]|θ(t)) lnP (x[σ], h[σ]|θ) (16.36)

=
∑
σ

∑
h[σ]

P (h[σ]|θ(t))[lnP (x[σ]|h[σ], θ) + lnP (h[σ]|θ)] (16.37)

= nsam
∑
h[σ]

P (h[σ]|θ(t)) lnP (h[σ]|θ) . (16.38)

16.3.3 Missing Data/Imputation

The previous example on blood genotypes and phenotypes assumed no missing data
in compiling the counts Nx. But what if there is missing data? Can one still apply
the EM algo in that case? Yes! See Chapter 32.
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Chapter 17

Front-door Adjustment

The front-door (FD) adjustment theorem is proven in Chapter 13 from the rules of do-
calculus. The goal of this chapter is to give examples of the use of that theorem. We
will restate the theorem in this chapter, sans proof. There is no need to understand
the theorem’s proof in order to use it. However, you will need to skim Chapter 13 in
order to familiarize yourself with the notation used to state the theorem. This chapter
also assumes that you are comfortable with the rules for checking for d-separation.
Those rules are covered in Chapter 14.

Suppose that we have access to data that allows us to estimate a probability
distribution P (x.,m., y.). Hence, the variables x.,m., y. are ALL the observed (i.e, not
hidden). Then we say that the front-door m. satisfies the front-door adjustment
criterion relative to (x., y.) if

1. All directed paths from x. to y. are intercepted by (i.e., have a node in) m..

2. All backdoor paths from x. to m. are blocked (by ∅).

3. All backdoor paths from on m. to y. are blocked by x..

Claim 14 Front-Door Adjustment Theorem
If m. satisfies the front-door criterion relative to (x., y.), and P (x.,m.) > 0,

then

P (y.|ρx. = x.) =
∑
m.

[∑
x.′

P (y.|x′.,m.)P (x′.)

]
︸ ︷︷ ︸

P (y.|ρm.=m.)

P (m.|x.)︸ ︷︷ ︸
P (m.|ρx.=x.)

(17.1)

= ∑
m.,x.′

x. = x.′

##
x. = x. //m. = m. // y.

(17.2)
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proof: See Chapter 13
QED

17.1 Examples

1.
c

�� ��
x //m // y

(17.3)

If x. = x,m. = m and y. = y, then the FD criterion is satisfied. Can’t satisfy
backdoor criterion because z. must be observed so can’t block backdoor path
x− c− y.

2.
z1

��   

z2

��~~
w1

��

c

~~   

w2

��
x //m // y

(17.4)

If x. = x,m. = m and y. = y, then the FD criterion is satisfied. Can’t satisfy
backdoor criterion because to block backdoor path x−c−y, need to condition on
c (i.e., need c ∈ z.) but if this is true, then long path x−w1−z1−c−z2−w2−y
becomes unblocked.
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Chapter 18

Generative Adversarial Networks
(GANs)

Figure 18.1: Generative Adversarial Network (GAN)

Original GAN, Ref.[9](2014).

Generator G (counterfeiter) generates samples ~f of fake money and submits
them to Discriminator D (Treasury agent). D also gets samples ~r of real money.
D submits veredict V ∈ [0, 1]. G depends on parameter θG and D on parameter
θD. Veredict V and initial θG, θD are used to get new parameters θ′G, θ

′
D.Process is
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Figure 18.2: Discriminator node V in Fig.18.1 can be split into 3 nodes ~c, ~d and V .

repeated (Dynamical Bayesian Network) until saddle point in V (θG, θD) is reached.
D makes G better and vice versa. Zero-sum game between D and G.

Let D be the domain of D(·, θD). Assume that for any x ∈ D,

0 ≤ D(x, θD) ≤ 1 . (18.1)

For any S ⊂ D, define ∑
x∈S

D(x, θD) = λ(S, θD) . (18.2)

In general, G(·, θG) need not be real valued.
Assume that for every u ∈ Su, G(u, θG) = f ∈ Sf ⊂ D. Define

D(f, θD) = 1−D(f, θD) . (18.3)

Note that

0 ≤ D(f, θD) ≤ 1 . (18.4)

Define:

V (θG, θD) =
∑
r

P (r) lnD(r, θD) +
∑
u

P (u) lnD(G(u, θG), θD) . (18.5)

We want the first variation of V (θG, θD) to vanish.

δV (θG, θD) = 0 . (18.6)
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This implies

∂θGV (θG, θD) = ∂θDV (θG, θD) = 0 (18.7)

and

Vopt = min
θG

max
θD

V (θG, θD) . (18.8)

Node TPMs for Figs.18.1 and 18.2 are given next in blue:

P (θG) = given (18.9)

P (θD) = given (18.10)

P (~u) =
∏
i

P (u[i]) (usually uniform distribution) (18.11)

P (~r) =
∏
i

P (r[i]) (18.12)

P (f [i] | ~u, θG) = δ[f [i], G(u[i], θG)] (18.13)

P (c[i] | ~f, θD) = δ(c[i], D(f [i], θD)) (18.14)

P (d[j] | ~r, θD) = δ(d[j], D(r[j], θD)) (18.15)

P (V |~d,~c) = δ(V,
1

N
ln
∏
i,j

(c[i]d[j])) (18.16)

where N = nsam(~r)nsam(~u).
Let ηG, ηD > 0. Maximize V wrt θD, and minimize it wrt θG.

P (θ′G|V, θG) = δ(θ′G, θG − ηG∂θGV ) (18.17)

P (θ′D|V, θD) = δ(θ′D, θD + ηD∂θDV ) (18.18)
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Figure 18.3: GAN, Constraining Bayesian Network

Constraining B net given in Fig.18.3. It adds 2 new nodes, namely ~U and
~R, to the bnet of Fig.18.1. The purpose of these 2 barren (childrenless) nodes is to
constrain certain functions to be probability distributions.

Node TPMs for the 2 new nodes given next in blue.

P (U [i] | θG) =
D(G(U [i], θG), θD))

λ(θG, θD)
(18.19)

where SU [i] = Su and λ(θG, θD) =
∑

uD(G(u, θG), θD)).

P (R[i] | θG, θD) =
D(R[i], θD)

λ(θD)
(18.20)

where SR[i] = Sr and λ(θD) =
∑

rD(r, θD).

P (V |~u, ~r) = δ(V,
1

N
ln
∏
i,j

(P (R[i] = r[i] | θG, θD)P (U [i] = u[j] | θG))) (18.21)

where N = nsam(~r)nsam(~u).
L = likelihood

L = P (~r, ~u|θG, θD) (18.22)

=
∏
i,j

[
D(r[i], θD)

λ(θD)

D(G(u[j], θG), θD))

λ(θG, θD)

]
(18.23)
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lnL = N [V (θG, θD)− lnλ(θD)− lnλ(θG, θD)] (18.24)
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Chapter 19

Gaussian Nodes with Linear
Dependence on Parents

Bnet nodes that have a Gaussian TPM with a linear dependence on their parent nodes
(GLP) are a very popular way of modeling continuous nodes of bnets. A convenient
aspect of them is that their parents can be discrete or continuous nodes, and their
children can be discrete or continuous nodes too. Also, they can be learned easily from
the data because their parameters can be expressed in terms of two node covariances.
For these reasons, they are commonly used when doing structure learning of bnets
with continuous nodes (see Chapter 49).

y x1
oo

x2

__

x3

WW

Figure 19.1: GLP node y with 3 parent nodes x3 = (x1, x2, x3).

Recall our notation for a Gaussian distribution:

N (x;µ, σ2) =
1

σ
√

2π
e
−(x−µ)2

2σ2 , (19.1)

where x, µ ∈ R and σ > 0.
A GLP node y with n parents xn = (x1, x2, . . . , xn) has the following TPM:

P (y|xn) = N (y; β0 + βnTxn, σ2) (19.2)

where y, β0,∈ R and σ2 > 0, and where xn, βn ∈ Rn are **column vectors**. The

T in βnT stands for transpose. Any xi can have a discrete set of states as long as
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they are real valued and ordinal (ordered by size). Fig.19.1 shows a diagrammatic
representation of a GPL node with 3 parents.

Note that as σ → 0, a GLP node becomes deterministic. In fact, it becomes a
neural net node with a linear activation function.

An equivalent way of defining a GLP node y is in terms of a random variable
equation expressing y as a hyperplane function of the parents xn plus a Gaussian
noise variable. Define an estimator ŷ of a “true value” y by

ŷ = β0 + βnTxn (19.3a)

and

y = ŷ + ε (19.3b)

where the residual ε satisfies

P (ε) = N (ε; 0, σ2) (19.3c)

and

〈xn, ε〉 = 0 . (19.3d)

The notation
〈
x, y
〉

for the covariance of random variables x and y is explained
in Chapter Notational Conventions and Preliminaries.

Claim 15 The parameters of a GLP node can be expressed in terms of 2-node co-
variances. Specifically,

βn =
〈
xn, xnT

〉−1 〈
y, xn

〉
(19.4)

β0 =
〈
y
〉
− βnT 〈xn〉 (19.5)

σ2 =
〈
y, y
〉
− βnT

〈
xn, y

〉
(19.6)

proof:

Note that
〈
xn, xnT

〉T
=
〈
xn, xnT

〉
and

〈
y, xnT

〉T
=
〈
y, xn

〉
.〈

y, xnT
〉

= βnT
〈
xn, xnT

〉
(19.7)

〈
y, xn

〉
=
〈
xn, xnT

〉
βn (19.8)

βn =
〈
xn, xnT

〉−1 〈
y, xn

〉
(19.9)
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〈
y
〉

= β0 + βnT 〈xn〉 (19.10)

〈
y, y
〉

=
〈
β0 + βnTxn + ε, y

〉
(19.11)

= βnT
〈
xn, y

〉
+ σ2 (19.12)

QED
Let D=Discrete, GLP=Gaussian with Linear dependence in Parents
The following arrows are possible in a bnet.

• GLP ← GLP

• GLP ← D

Pass to GLP a separate set of regression coefficients β0, β
n and variance σ2 for

each state of D. If D is called d, let

P (y|(xn)d, d) = N (y; (β0)d + (βnT )d(x
n)d, σ

2
d) (19.13)

for each d ∈ Sd.

• D ← GLP

If D expects a continuous parent, no need to preprocess GLP output. If D
expects a discrete parent, break the interval [a, b] that contains most of the
range of the GPL node into sub-intervals and assign a discrete label to each
subinterval.

• D ← D
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Chapter 20

Hidden Markov Model

A Hidden Markov Model (HMM) is a generalization of a Kalman Filter (KF). KFs
are discussed in Chapter 25. The bnets of HHMs and KFs bnets are the same. The
only difference is that a KF assumes special node TPMs.

See Wikipedia article Ref.[56] to learn about the history and many uses of
HMMs. This chapter is based on Ref.[20].

x0

��

// x1

��

// x2

��

// x3

��
v0 v1 v2 v3

Figure 20.1: HMM bnet with n = 4.

Suppose
vn = (v0, v1, . . . , vn−1) are n visible nodes that are measured, and
xn = (x0, x1, . . . , xn−1) are the n hidden, unmeasurable state nodes of a system

that is being monitored.
For the bnet of Fig.20.1, one has

P (xn, vn) =
n−1∏
i=0

P (xi|xi−1)P (vi|xi) , (20.1)

where x−1 = 0.
Let x<i = (x0, x1, . . . , xi−1).
For i = 0, 1, . . . , n− 1, define
Fi=future measurements probability

Fi(xi) = P (v>i|xi) (20.2)
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F i= past and present measurements probability

F i(xi) = P (v<i, vi, xi) (20.3)

λi= present measurement probability

λi(xi) = P (vi|xi) (20.4)

Fi, F i and λi can be represented graphically as follows:

Fi(xi) = 1
P (xi)

∑
x>i

xi // x>i

��
v>i

(20.5)

F i(xi) =
∑

x<i
x<i //

��

xi

��
v<i vi

(20.6)

λi(xi) = 1
P (xi)

xi

��
vi

(20.7)

Claim 16 For i ≥ 0,
P (xi, v

n) = F i(xi)Fi(xi) . (20.8)

For i > 0,

P (xi−1, xi, v
n) = F i−1(xi−1)λi(xi)P (xi|xi−1)Fi(xi) . (20.9)

proof:

P (xi, v
n) =

∑
x<i

∑
x>i

P (xn, vn) (20.10)

=
∑
x<i

∑
x>i

P (xn, vn|xi)P (xi) (20.11)

=
∑
x<i

∑
x>i

P (x<i, v<i, vi|xi)P (x>i, v>i|xi)P (xi) (20.12)

= P (v<i, vi|xi)P (v>i|xi)P (xi) (20.13)

= F i(xi)Fi(xi) (20.14)
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P (xi−1, xi, v
n) =

∑
x<i−1

∑
x>i

P (xn, vn) (20.15)

=
∑
x<i−1

∑
x>i

P (xn, vn|xi−1, xi)P (xi−1, xi) (20.16)

=
∑
x<i−1

∑
x>i

P (x<i−1, v<i−1, vi−1|xi−1)P (vi|xi)P (xi−1, xi)P (x>i, v>i|xi)

(20.17)

= P (v<i−1, vi−1|xi−1)P (vi|xi)P (xi−1, xi)P (v>i|xi) (20.18)

= F i−1(xi−1)λi(xi)P (xi|xi−1)Fi(xi) (20.19)

QED

Claim 17 For i > 0, Fi and F i can be calculated recursively as follows:

F i(xi) =
∑
xi−1

F i−1(xi−1)λi(xi)P (xi|xi−1) (20.20)

Fi−1(xi−1) =
∑
xi

λi(xi)P (xi|xi−1)Fi(xi) (20.21)

proof:

F i(xi)Fi(xi) = P (xi, v
n) (20.22)

=
∑
xi−1

P (xi−1, xi, v
n) (20.23)

=
∑
xi−1

F i−1(xi−1)λi(xi)P (xi|xi−1)Fi(xi) (20.24)

F i−1(xi−1)Fi−1(xi−1) = P (xi−1, v
n) (20.25)

=
∑
xi

P (xi−1, xi, v
n) (20.26)

=
∑
xi

F i−1(xi−1)λi(xi)P (xi|xi−1)Fi(xi) (20.27)

QED
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Claim 18

P (xi|xi−1, v
n) =

λi(xi)Fi(xi)
Fi−1(xi−1)

P (xi|xi−1) (20.28)

P (xi−1|xi, vn) =
λi(xi)F i−1(xi−1)

F i(xi)
P (xi|xi−1) (20.29)

proof:

P (xi|xi−1, v
n) =

P (xi−1, xi, v
n)

P (xi−1, vn)
(20.30)

=
F i−1(xi−1)λi(xi)P (xi|xi−1)Fi(xi)

F i−1(xi−1)Fi−1(xi−1)
(20.31)

Analogous proof for Eq.(20.29).
QED
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Chapter 21

Influence Diagrams & Utility
Nodes

Influence diagrams are just arbitrary bnets enhanced with a new kind of node called
an utility node. The rest of this brief chapter will be devoted to discussing utility
nodes.

Suppose U(x) is a deterministic function U : Sx → R called the utility func-
tion. Then the expected utility is defined as

EU [U ] =
∑
U

P (U)U (21.1)

=
∑
x

∑
U

P (U |x)︸ ︷︷ ︸
δ[U,U(x)]

P (x)U (21.2)

=
∑
x

P (x)U(x) . (21.3)

An utility node can be understood as a node composed of 3 simpler bnet
nodes. This is illustrated in Fig.21.1.

Figure 21.1: An utility node can be understood as a node composed of 3 simpler bnet
nodes.
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The TPMs, printed in blue, for the nodes of Fig.21.1, are as follows:

P (U |pa(U)) = δ[U,U(pa(U))] , (21.4)

where if U : Sx → R, then x = pa(U).

P (u|pa(U)) = δ[u, U(pa(U))] (21.5)

Node µ
u

calculates the expected value (mean value) of u:

P (µu) = δ(µu, Eu[u]) (21.6)

Node σu calculates the standard deviation of u:

P (σu) = δ(σU ,
√
Eu[(u− Eu[u])2]) (21.7)

Note that in order to calculate expected values, it is necessary that U, u ∈ R.
Note that nodes u, µ

u
, σu must all 3 have access to the TPM P (U |pa(U)) of node U .

In fact, in order to calculate Eu[·], it is necessary for nodes µ
u

and σu to have access
not just to P (U |pa(U)) but also to P (pa(U)).

See Fig.21.2. An influence diagram may have multiple utility nodes (U1 and
U2 in Fig.21.2). Then one can define a merging utility node U that sums the values
of all the other utility nodes.

Figure 21.2: An influence diagram may have multiple utility nodes, say U1 and U2.
Then one can define an utility node U = U1 + U2.

For the node U of Fig.21.2,

P (U |U1, U2) = δ(U,U1 + U2) (21.8)
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Chapter 22

Instrumental Inequality and
beyond

This chapter is based on Refs. [4] and [23].
Instrumental Variables (IVs) are discussed in Chapter 23. This chapter will

discuss the original Instrumental inequality (I-inequality) discovered by Pearl, and
other related inequalities. The I-inequality arises in bnets that use an IV. The I-
inequality bounds the effect that an IV z can have on the outcome y of a treatment
d → y. Since there is a path z → d → y, the treatment dose d acts as a mediator
between the IV z and the treatment outcome y. The I-inequality is reminiscent of
the data processing inequality H(z : y) ≤ H(d : y) which is valid for a simple Markov
chain bnet z → d→ y. The data processing inequality is saying that the endpoint y
receives more information from d than from z. This is reasonable, since y is “closer”
to d than to z.

22.1 I-inequality

u

�� ��
z // d // y

u

}} !!
z // d d̃ = d̃ // y

G G̃ = κd→y(d̃)G

Figure 22.1: In bnet G, an IV z acts on a treatment d → y. Bnet G̃ is obtained by
applying an imagine operator to arrow d→ y of bnet G.

122



Claim 19 The TPMs for the bnet G in Fig.22.1 satisfy

max
d

∑
y

max
z
P (d, y|z) ≤ 1 (22.1)

proof:
Below, any probability that alludes to a value d̃ refers to bnet G̃. Otherwise,

if it doesn’t allude to d̃, then it refers to G (or to G̃, since the TPMs of G̃ are defined
from those of G in a consistent manner.)

G satisfies

P (d, y|z) =
∑
u

P (u)P (y|u, d)P (d|u, z) , (22.2)

and G̃ satisfies

P (d, y|z, d̃) =
∑
u

P (u)P (y|u, d̃)P (d|u, z) . (22.3)

Note that Eqs.(22.2) and (22.3) imply that

P (d, y|z, d) = P (d, y|z) (22.4)

and that

P (d̃, y|z, d̃) ≤
∑
d

P (d, y|z, d̃) = P (y|d̃) . (22.5)

Thus,

max
d̃

∑
y

max
z
P (d̃, y|z, d̃) ≤ max

d̃

∑
y

max
z
P (y|d̃) (22.6)

≤ max
d̃

∑
y

P (y|d̃) (22.7)

≤ max
d̃

1 (22.8)

≤ 1 (22.9)

QED
As pointed out in Ref.[4] from which I learned the above proof, the above proof

is highly generalizable.
Fig.22.2 gives a graphical representation of the boxed Eq.(22.5) which is crucial

to the proof.
And here is a meta-description of the steps in the proof:
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∑
u u

{{
!!

z // d = d̃ d̃ = d̃ // y

≤
∑

d

∑
u u

}} !!
z // d d̃ = d̃ // y

= .

d̃ = d̃ // y

Figure 22.2: Graphical representation of the boxed equation Eq.(22.5).

1. Use imagine operator to create a non-negative matrix Md,d̃.

2. Use fact that row or column sum of Md,d̃ is larger than diagonal element in sum:∑
dMd,d̃ ≥Md̃,d̃.

22.1.1 I-inequality for binary z,d,y

It is enlightening to write down the I-inequality for the special case that z, d, y are
binary.

Figure 22.3: I-inequality for binary z, d, y. The same picture except with d = 0 is
also true.

In the binary case, the I-inequality implies 4 different inequalities. These are
as follows. One gets two inequalities by setting d = 1 in the next 2 equations.

1∑
y=0

1∑
z=0

1(y = z)P (d, y|z) , (22.10a)

1∑
y=0

1∑
z=0

1(y 6= z)P (d, y|z) . (22.10b)

One gets an additional 2 inequalities by setting d = 0 in Eqs.(22.10). These 4 in-
equalities are illustrated in Fig.22.3.
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What do they mean? That at fixed d, the correlation between z and y is
limited.

22.2 Bounds on Effect of IV on treatment outcome

y

u

�� ��
z // 88d // y

u

��
z 77ρd = d̃ // y

u

}} !!
z // 77d d̃ = d̃ // y

G Gdo = ρd=d̃G Gim = κd→y(d̃)G

Figure 22.4: Bnet G is obtained from the bnet G in Fig.22.1 by adding to G an arrow
from the IV z to the treatment outcome y. Bnet Gdo is obtained by applying a do
operator to node d of G. Bnet Gim is obtained by applying an imagine operator to
arrow d→ y of G.

In this section, we will assume that random variables z, d, y are binary. Just
as with the binary case of the I-inequality, we will find an inequality for each value
of d ∈ {0, 1}.

Below, we will use the following 3 shorthand notations:

Py|z(d) = P (d, y|z) , (22.11)

P|z(d) =
∑
y

P (d, y|z) , (22.12)

and

π|z(d) = 1− P|z(d) . (22.13)

For the bnet Gdo in Fig.22.4, define the IV effect at fixed ρd = d̃ by

IV E(d̃) = P (y = 1|z = 1, ρd = d̃)− P (y = 1|z = 0, ρd = d̃) . (22.14)

Claim 20 The TPMs for the bnet Gdo in Fig.22.4 satisfy

π|0(d) ≤
[
IV E(d)− {P1|1(d)− P1|0(d)}

]
≤ π|1(d) (22.15)
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proof:

P (y|z, ρd = d̃) =
∑
u

P (u)P (y|u, z, d̃) (22.16)

=
∑
u

P (u)
∑
d

P (d, y|u, z, d̃) (22.17)

≥
∑
u

P (u)P (d̃, y|u, z, d̃) (22.18)

=
∑
u

P (u)P (d̃, y|u, z) (22.19)

= Py|z(d̃) (22.20)

Next note that P (d, y|z, d̃) ≥ 0, and
∑

d,y P (d, y|z, d̃) = 1. If we write a table

for P (d, y|z, d̃) at fixed z, d̃ with row and column indices (d, y), then a partial sum of
the entries of that table must be ≤ 1:∑

d6=d̃

P (d, y|z, d̃) +
∑
y′

P (d̃, y′|z, d̃)︸ ︷︷ ︸
P|z(d̃)

≤ 1 . (22.21)

Using the definitions of P|z and π|z, we can rewrite the last equation as∑
d6=d̃

P (d, y|z, d̃) ≤ π|z(d̃) . (22.22)

Next note that

P (y|z, ρd = d̃) =
∑
u

P (u)P (y|u, z, d̃) (22.23)

=
∑
u

P (u)
∑
d

P (d, y|u, z, d̃) (22.24)

= P (d̃, y|z, d̃) +
∑
d6=d̃

P (d, y|z, d̃) (22.25)

= Py|z(d̃) +
∑
d6=d̃

P (d, y|z, d̃) (22.26)

≤ Py|z(d̃) + π|z(d̃) . (22.27)

Hence,

Py|z(d̃) ≤ P (y|z, ρd = d̃) ≤ Py|z(d̃) + π|z (22.28)
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P1|1(d̃) ≤ P (y = 1|z = 1, ρd = d̃) ≤ P1|1(d̃) + π|1 (22.29)

−P1|0(d̃)− π|0 ≤ −P (y = 1|z = 0, ρd = d̃) ≤ −P1|0(d̃) (22.30)

QED
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Chapter 23

Instrumental Variables

This chapter is based on Refs.[3] and [58].
The theory of potential outcomes (PO) discussed in Chapter 39 assumes that

confounders can be ignored by conditioning on them. However, there are cases when
that is not possible, as when there are some unmeasured (i.e., unobserved, hidden)
confounder nodes in the bnet, because one can only condition on observed random
variables, by definition. So what if confounders can’t be ignored? Are we then
precluded from using PO theory? Not necessarily. It might still be possible to use
PO theory if one can find a suitable instrumental variable (IV) for the problem.

IVs were actually invented by Sewall Wright and his father Philip Wright
long before PO theory was invented by Rubin. The reason why IVs save PO theory
is greatly clarified by using Pearl causal DAGs and his d-separation theorem (see
Chapter 14).

Most of the discussion in this chapter is limited to LDEN (linear deterministic
bnets with external noise). These are discussed in Chapter 27. However, as will
become obvious to the reader, IVs are also applicable and useful in general bnet
modeling.

23.1 δ with unnmeasured confounder

In this section, we explain using LDENs why unmeasured confounders prejudice PO
calculations.

h

ν

��

µ

��
d

δ
// y

Figure 23.1: An LDEN bnet. The direct path d → y is confounded by a hidden
variable h.
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Consider the LDEN bnet of Fig.23.1, For some δ, µ ∈ R, we have

y = δd+ µh+ uy︸ ︷︷ ︸
ny

. (23.1)

If
〈
ny, d

〉
= 0, then 〈

y, d
〉

= δ0 〈d, d〉 , (23.2)

whereas if
〈
ny, d

〉
6= 0, then〈

y, d
〉

= δ1 〈d, d〉+
〈
ny, d

〉
. (23.3)

Therefore,

δ0 =

〈
y, d
〉

〈d, d〉
, (23.4)

δ1 =

〈
y, d
〉

〈d, d〉︸ ︷︷ ︸
δ0

−

〈
ny, d

〉
〈d, d〉

. (23.5)

If we assume no confounders and there is one, this gives the difference between the
estimate δ1 of δ for the truth, versus the naive estimate δ0.

If the confounder h had been measured, then we would calculate the covari-

ances at fixed ny, and the conditional covariance
〈
ny, d

〉
|ny

= 0

23.2 δ (with unmeasured confounder) can be in-

ferred via IV

h

ν

��

µ

��
A α

// d
δ

// y

h

ν

��

µ

��
A α

// d d̃
δ
// y

G Gim+

Figure 23.2: Two LDEN bnets. The direct path d → y is confounded by a hidden
variable h, but by using the IV A, we are still able to identify (i.e. calculate) δ.
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Now consider the two LDEN bnets shown in Fig.23.2. Note that there are no
arrows A → y or A → h. Note that node d is a collider in the path A − d − h − y,
Therefore, the only unblocked path from A to y in G is A → d → y and that path
has been removed in Gim+. These observations are encapsulated in the following
statements.

d ⊥G y = false, A ⊥G y = false . (23.6)

d ⊥Gim+
y = false, A ⊥Gim+

y = true . (23.7)

The following is true for G:

y = δd+ µh+ uy︸ ︷︷ ︸
ny

(23.8)

d = αA+ νh+ ud︸ ︷︷ ︸
nd

. (23.9)

Since
〈
ny, A

〉
=
〈
nd, A

〉
= 0 is true in G, we have〈
y, A

〉
= δ 〈d,A〉 (23.10)

and

〈d,A〉 = α 〈A,A〉 . (23.11)

Note that
〈
y, A

〉
= δ = 0 for Gim+ but not for G, so we are speaking about G from

here on. It follows that

α =
〈d,A〉
〈A,A〉

(23.12)

and

δ =

〈
y, A

〉
〈d,A〉

(23.13)

=

〈
y, A

〉
〈A,A〉

〈A,A〉
〈d,A〉

(23.14)

=

〈
y, A

〉
〈A,A〉

1

α
(23.15)

=

〈
y, αA

〉
〈αA, αA〉

. (23.16)
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23.3 More general bnets with IVs

h

�� ��
A //

&&

d
δ

// y

��
v

h

�� ��
A //

&&

d d̃
δ
// y

��
v

G Gim+

Figure 23.3: The 2 paths in Gim+ from IV variable A to y are blocked by colliders v
and d. Thus, d ⊥Gim+

y = false, A ⊥Gim+
y = true

h

�� ��
A // d

δ
// y

v

AAff

h

�� ��
A // d d̃

δ
// y

v

AAff

G Gim+

Figure 23.4: There are 2 paths in Gim+ from IV variable A to y. One is blocked by
the collider d and the other can be blocked by conditioning on v. Thus, d ⊥Gim+

y|v = false, A ⊥Gim+
y|v = true

Figs.23.3 and 23.4 are examples of other bnets for which the effect δ is identi-
fiable thanks to the IV A.

23.4 Instrumental Inequality

Pearl’s instrumental inequality and related inequalities are discussed in Chapter 22.
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Chapter 24

Junction Tree Algorithm

The Junction Tree (JT) algorithm is an algo for evaluating exact marginals of a bnet,
including cases in which some nodes are fixed to a single state. (fixed nodes are called
the a priori evidence.)

The JT algo starts by clustering the loops of a bnet into bigger nodes so as to
transform the bnet into a polytree bnet. Then it applies Pearl Belief Propagation (see
Chapter 31) to the ensuing polytree. The first breakthrough paper to achieve this
agenda in full was Ref.[13] by Lauritzen, and Spiegelhalter in 1988. See the Wikipedia
article Ref.[60] for more info and references on the JT algorithm.

I won’t describe the JT algo any further here, because it would take too long for
this brief book to give a complete treatment of it, including the mathematical proofs.
If all you want to do is to code the JT algo, without delving into the mathematical
theorems and proofs behind it, I strongly recommend Ref.[12]. Ref.[12] is an excellent
cookbook for programmers of the JT algo. My open source program QuantumFog
(see Ref.[40]) implements the JT algo in Python, following the recipe of Ref.[12].
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Chapter 25

Kalman Filter

A Kalman Filter is a special case of a Hidden Markov Model. HMMs are discussed
in Chapter 20.

x0

��

// x1

��

// x2

��

// x3

��
z0 z1 z2 z3

Figure 25.1: Kalman Filter bnet with T = 4.

Let t = 0, 1, 2, . . . , T − 1.
xt ∈ Sx are random variables that represent the hidden (unobserved) true

state of the system.
zt ∈ Sz are random variables that represent the measured (observed) state of

the system.
The Kalman Filter bnet Fig.25.1 has the following node TPMs, printed in

blue:

P (xt|xt−1) = N (xt;Ftxt−1 +Btut, Qt) , (25.1)

where Ft, Qt, Bt, ut are given. P (xt|xt−1) becomes P (xt) for t = 0.

P (zt|xt) = N (zt;Htxt, Rt) , (25.2)

where Ht, Rt are given.
Define

Zt = (zt′)t′≤t . (25.3)

Define x̂t and Pt by

P (xt|Zt) = N (xt; x̂t, Pt) . (25.4)
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25.1 Problem

Find x̂t and Pt in terms of

1. current (at time t) given values of F,Q,H,R,B, u

2. current (at time t) observed value of z

3. prior (previous) value (at time t− 1) of x̂ and P .

See Fig.25.2. For that figure,

P (x̂t, Pt|zt, x̂t−1, Pt−1) = δ(x̂t, ?)δ(Pt, ?) . (25.5)

x0

��

// x1

��

// x2

��

// x3

z0

��

z1

��

z2

��

z3

x̂0, P 0
// x̂1, P 1

// x̂2, P 2
// x̂3, P 3

Figure 25.2: Kalman Filter bnet with deterministic nodes for x̂t, Pt.

25.2 Solution

Solution copied from Wikipedia Ref.[62].
Define ηt|t = ηt for η = x̂, P .

• Predict

Predicted (a priori) state estimate

x̂t|t−1 = Ftx̂t−1|t−1 +Btut (25.6)

Predicted (a priori) estimate covariance

Pt|t−1 = FtPt−1|t−1F
T
t +Qt (25.7)
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• Update

Innovation (or measurement pre-fit residual)

ỹt|t−1 = zt −Htx̂t|t−1 (25.8)

Innovation (or pre-fit residual) covariance

St = HtPt|t−1H
T
t +Rt (25.9)

Optimal Kalman gain

Kt = Pt|t−1H
T
t S
−1
t (25.10)

Updated (a posteriori) state estimate

x̂t|t = x̂t|t−1 +Ktỹt (25.11)

Updated (a posteriori) estimate covariance

Pt|t = (I −KtHt)Pt|t−1 (25.12)

Measurement post-fit residual

ỹt|t = zt −Htx̂t|t (25.13)
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Chapter 26

Linear and Logistic Regression

Figure 26.1: Linear Regression

Figure 26.2: B net of Fig.26.1 with new ~Y node.

Estimators ŷ for linear and logistic regression.

• Linear Regression: y ∈ R. Note ŷ ∈ R. (x, ŷ(x)) is the graph of a straight
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line with y-intercept b and slope m.

ŷ(x; b,m) = b+mx (26.1)

• Logistic Regression: y ∈ {0, 1}. Note ŷ ∈ [0, 1]. (x, ŷ(x)) is the graph of a
sigmoid. Often in literature, b,m are replaced by β0, β1.

ŷ(x; b,m) = sig(b+mx) (26.2)

Define
V (b,m) =

∑
x,y

P (x, y)|y − ŷ(x; b,m)|2 . (26.3)

We want to minimize V (b,m) (called a cost or loss function) wrt b and m.
Node TPMs of B net of Fig.26.1 given next in blue.

P (b,m) = given (26.4)

The first time it is used, (b,m) is arbitrary. After the first time, it is determined by
previous stage.

Let

Px,y(x, y) =
1

nsam(~x)

∑
σ

1(x = x[σ], y = y[σ]) . (26.5)

P (~x) =
∏
σ

P (x[σ]) (26.6)

P (~y|~x) =
∏
σ

P (y[σ] | x[σ]) (26.7)

P (~̂y|~x, b,m) =
∏
σ

δ(ŷ[σ], ŷ(x[σ], b,m)) (26.8)

P (V |~̂y, ~y) = δ(V,
1

nsam(~x)

∑
σ

|y[σ]− ŷ[σ]|2) (26.9)

Let ηb, ηm > 0. For x = b,m, if x′ − x = ∆x = −η ∂V
∂x

, then ∆V ≈ −1
η

(∆x)2 ≤ 0 for
η > 0. This is called “gradient descent”.

P (b′|V, b) = δ(b′, b− ηb∂bV ) (26.10)

P (m′|V,m) = δ(m′,m− ηm∂mV ) (26.11)
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26.1 Generalization to x with multiple components

(features)

Suppose that for each sample σ, instead of x[σ] being a scalar, it has n components
called features:

x[σ] = (x0[σ], x1[σ], x2[σ], . . . xn−1[σ]) . (26.12)

Slope m is replaced by weights

w = (w0, w1, w3, , . . . , wn−1) , (26.13)

and the product of 2 scalars mx[σ] is replaced by the inner vector product wTx[σ].

26.2 Alternative V (b,m) for logistic regression

For logistic regression, since y[σ] ∈ {0, 1} and ŷ[σ] ∈ [0, 1] are both in the interval
[0, 1], they can be interpreted as probabilities. Define probability distributions p[σ](x)
and p̂[σ](x) for x ∈ {0, 1} by

p[σ](1) = y[σ], p[σ](0) = 1− y[σ] (26.14)

p̂[σ](1) = ŷ[σ], p̂[σ](0) = 1− ŷ[σ] (26.15)

Then for logistic regression, the following 2 cost functions V (b,m) can be used as
alternatives to the cost function Eq.(26.3) previously given.

V (b,m) =
1

nsam(~x)

∑
σ

DKL(p[σ] ‖ p̂[σ]) (26.16)

and

V (b,m) =
1

nsam(~x)

∑
σ

CE(p[σ]→ p̂[σ]) (26.17)

=
−1

nsam(~x)

∑
σ

{y[σ] ln ŷ[σ] + (1− y[σ]) ln(1− ŷ[σ])} (26.18)

=
−1

nsam(~x)

∑
σ

ln
{
ŷ[σ]y[σ](1− ŷ[σ])(1−y[σ])

}
(26.19)

=
−1

nsam(~x)

∑
σ

lnP (Y = y[σ] | ŷ = ŷ[σ]) (26.20)

= −
∑
x,y

P (x, y) lnP (Y = y|ŷ = ŷ(x, b,m)) (26.21)
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Above, we used
P (Y = Y |ŷ) = ŷY [1− ŷ]1−Y (26.22)

for Y ∈ SY = {0, 1}. (Bernoulli distribution).
There is no node corresponding to Y in the B net of Fig.26.1. Fig.26.2 shows

a new B net that has a new node called ~Y compared to the B net of Fig.26.1. One
defines the TPMs for all nodes of Fig.26.2 except ~Y and V the same as for Fig.26.1.
For ~Y and V , one defines

P (Y [σ] | ~̂y) = P (Y = Y [σ] | ŷ[σ]) (26.23)

P (V |~Y , ~y) = δ(V,
−1

nsam(~x)
lnL) , (26.24)

where L =
∏

σ P (Y = y[σ] | ŷ[σ])=likelihood.
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Chapter 27

Linear Deterministic Bnets with
External Noise

In this chapter, we will consider bnets which were referred to, prior to the invention of
bnets, as: Sewall Wright’s Path Analysis (PA) and linear Structural Equations
Models (SEM). Judea Pearl in his books calls them linear Structural Causal
Models (SCM), because they are very convenient for doing causal analysis. We will
refer to them as linear Deterministic with External Noise (LDEN) diagrams. This
chapter is devoted to LDEN diagrams, except that we will say a few words about
non-linear DEN diagrams at the end.

A DEN diagram is a special kind of bnet. To build a DEN diagram, start
with a deterministic bnet G. The deterministic nodes of G are called the endogenous
(internal) variables. Now make a bigger bnet G called a DEN diagram by adding
to each node a of G a non-deterministic root node ua pointing into a only. The nodes
ua are called the exogenous (external) variables. The exogenous variables make
their children noisy. They are assumed to be unobserved and their TPMs are prior
probability distributions. Since they are root nodes, they are mutually independent.
When we draw a DEN diagram, we will never draw the exogenous nodes, leaving
them implicit.

A linear DEN diagram (LDEN) is a DEN diagram whose deterministic
nodes have a TPM that is a linear function of the states of the parent nodes.

27.1 Example of LDEN diagram

The TPMs, printed in blue, for the nodes of the LDEN diagram Fig.27.1, are as
follows.

P (y|w, z, uy) = 1(y = εw + δz + uy) (27.1)
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x
β

��

α

��
w

ε
��

z
γoo

δ
��

y

Figure 27.1: Example of a LDEN diagram wherein x splits into two nodes z and w,
then merges into node y. There is also an arrow z → w. Exogenous nodes are not
shown. The Greek letters represent real numbers.

P (w|x, z, uw) = 1(w = βx+ γz + uw) (27.2)

P (z|x, uz) = 1(z = αx+ uz) (27.3)

P (x|ux) = 1(x = ux) (27.4)

Hence,

y = εw + δz + uy (27.5)

= ε(βx+ γz + uw) + δz + uy (27.6)

= (εγ + δ)z + εβx+ εuw + uy (27.7)

= (εγ + δ)z + εβux + εuw + uy . (27.8)

Therefore (
∂y

∂z

)
u.−uz

= εγ + δ , (27.9)

where the partial derivative holds fixed all exogenous variables except uz. Note that
this partial derivative is a sum of terms, and that each of those terms represents a
different directed path from z to y(z). This is a general property of LDEN diagrams.

27.2 Fully Connected LDEN diagrams

The bnets that will be considered in this section will all be fully connected. Fully
connected bnets are defined in Chapter Definition of a Bayesian Network. This sec-
tion uses the notation

〈
x, y
〉

for the covariance of any two random variables x, y.
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This
〈
x, y
〉

notation is defined in the Notational Conventions Chapter Notational
Conventions and Preliminaries.

Consider a LDEN diagram with deterministic nodes x. = (xk)k=0,1,...nx−1 and
corresponding exogenous nodes u. = (uk)k=0,1,...nx−1. Assume

〈
ui, uj

〉
= 0 if i 6= j.

The strength of each connection xi → xj of the LDEN diagram is measured by a
structural coefficient αj|i ∈ R. Some of the αj|i may be zero, in which case the
corresponding arrow i→ j would not be drawn.

27.2.1 Fully connected LDEN diagram with nx = 2

x0

α1|0
��
x1

Figure 27.2: Fully connected LDEN diagram with two xj nodes (exogenous nodes uj
not shown).

Consider the LDEN diagram of Fig.27.2. This diagram represents the following
structural equations:

x0 = u0 (27.10a)

x1 = α1|0x0 + u1 . (27.10b)

Eqs.27.10 constitute a system of 2 linear equations in 2 unknowns (the x’s) so we can
solve for the x’s in terms of the α’s and u’s.

Note also that
〈x1, x0〉 = α1|0 〈x0, x0〉 . (27.11)

Thus, α1|0 can be estimated from the covariances
〈
xi, xj

〉
.

27.2.2 Fully connected LDEN diagram with nx = 3

x0

α1|0

��

α2|0

  
x1

α2|1 // x2

Figure 27.3: Fully connected LDEN diagram with three xj nodes (exogenous nodes
uj not shown).
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Consider the LDEN diagram of Fig.27.3. This diagram represents the following
structural equations:

x0 = u0 (27.12a)

x1 = α1|0x0 + u1 (27.12b)

x2 = α2|0x0 + α2|1x1 + u2 . (27.12c)

Eqs.27.12 constitute a system of 3 linear equations in 3 unknowns (the x’s) so we can
solve for the x’s in terms of the α’s and u’s.

Note also that

〈x1, x0〉 = α1|0 〈x0, x0〉 (27.13a)

〈x2, x0〉 = α2|0 〈x0, x0〉+ α2|1 〈x1, x0〉 (27.13b)

〈x2, x1〉 = α2|0 〈x0, x1〉+ α2|1 〈x1, x1〉 (27.13c)

Eqs.27.13 constitute a system of 3 linear equations in 3 unknowns (the α’s) so we can
solve solve for the α’s in terms of covariances

〈
xi, xj

〉
. This gives an estimate for the

α’s.

27.2.3 Fully connected LDEN diagram with arbitrary nx

Let x. = (xi)i=0,1,...,nx−1 and x<i = (xk)k=0,1,...,i−1. Consider a fully connected LDEN
diagram with deterministic nodes labeled xi. The xi labels are assumed to be in
topological order (i.e., the parents of node xi are x<i). Let the TPMs, printed in
blue, for the nodes x. of the LDEN diagram, be

P (xi|x<i, ui) = 1(xi =
∑
k<i

αi|kxk + ui) , (27.14)

for some parameters αi|k ∈ R. The exogenous nodes u. are assumed to be independent
so

P (u.) =
∏
i

P (ui) (27.15)

and 〈
ui, uj

〉
= 0 if i 6= j . (27.16)

Note that

P (x.) =
∑
u.

P (u.)
∏
i

P (xi|x<i, ui) (27.17)

= Eu.[
∏
i

P (xi|x<i, ui)] . (27.18)
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In terms of random variables, this system is described by the following struc-
tural equations:

xi =
∑
k<i

αi|kxk + ui . (27.19)

The structural equations can be written in matrix form as follows. Define a strictly
lower triangular matrix A with the connection strengths αi|k ∈ R as entries. For
example, for nx = 4,

A =


0 0 0 0
α1|0 0 0 0
α2|0 α2|1 0 0
α3|0 α3|1 α3|2 0

 . (27.20)

If we now represent the multinodes x. and u. as column vectors x and u, we get

x = Ax+ u . (27.21)

Note that

x = (1− A)−1u . (27.22)

Therefore,

xi = fi(u≤i) . (27.23)

Therefore, if i > j, 〈
ui, xj

〉
=
〈
ui, fj(u≤j)

〉
= 0 . (27.24)

Thus, if i > j,

〈
xi, xj

〉
=

∑
k<i

αi|k
〈
xk, xj

〉
+
〈
ui, xj

〉
(27.25)

=
∑
k<i

αi|k
〈
xk, xj

〉
. (27.26)

In matrix notation, Eq.(27.26) becomes〈
x, xT

〉
L

= A[
〈
x, xT

〉
L

+
〈
x, xT

〉
D

] (27.27)

where we are using
〈
x, xT

〉
i,j

=
〈
xi, xj

〉
and denoting the strictly lower triangular

part and diagonal part of a matrix M by ML and MD. Thus,

A =
〈
x, xT

〉
L

[
〈
x, xT

〉
L

+
〈
x, xT

〉
D

]−1 . (27.28)

This gives an estimate for the α’s in terms of the covariances
〈
xi, xj

〉
.
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27.3 Non-linear DEN diagrams

This chapter is dedicated to linear DEN diagrams. This implicitly assumes that the
deterministic nodes x. of the DEN diagram have an interval of real values as their
possible states. A trivial but very useful generalization of linear DEN diagrams is to
replace Eq.(27.14) for the TPMs of the deterministic nodes of the diagram by

P (xi|x<i, ui) = 1(xi = fi(x<i, ui)) , (27.29)

with structural equations

xi = fi(x<i, ui) , (27.30)

for i = 0, 1, . . . , nx− 1. Here the fi are possibly non-linear functions that depend the
states x<i and ui of nodes x<i and ui. If a node xi has no arrows entering it (i.e., is
a root node), then

P (xi|x<i, ui) = P (xi) = δ(xi, a) (27.31)

and

xi = a (27.32)

for some a ∈ Sxi .
With this generalization, we can make any fi() represent a continuous proba-

bility distribution such as a Gaussian, or a discrete-valued Boolean function such as
an OR gate.

Eqs.(27.29) and (27.30) are the TPMs and structural equations for a fully
connected, non-linear DEN diagram. For a non-fully connected diagram,

• replace the multinode x<i by a subset of itself, in Eqs.(27.29) and (27.30) , and

• delete the corresponding arrows from the graph.
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Chapter 28

Markov Blankets

This chapter is based on the Wikipedia article, Ref.[66]. Markov blankets and Markov
boundaries of bnets were apparently invented by Judea Pearl. His 1988 book Ref.[25],
instead of a research paper, is usually given as the original reference.

Figure 28.1: In a bnet, the minimal Markov blanket, aka Markov boundary, of node
a.

We will treat vectors of random variables as if they were sets when using the
∈, ⊂ and − operations. For example, if x = (x0, x1, x2, x3) and b = (x1, x2), then
x1 ∈ b ⊂ x and x− b = (x0, x3).

Below, H(a : b|c) denotes the conditional mutual information of random vari-
ables a and b conditioned on random variable c. H(a : b|c) is used in Shannon
Information Theory, where it is defined by

H(a : b|c) =
∑
a,b,c

P (a, b, c) ln
P (a, b|c)

P (a|c)P (b|c)
. (28.1)

H(a : b|c) = 0 iff a and b are independent (uncorrelated) when c is held fixed.
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Suppose a ∈ X, B ⊂ X, but a /∈ B. Then B is a Markov blanket of a if

H(a : X − a|B) = 0 . (28.2)

In other words, one may assume that a depends on B only, and is independent of all
random variables in X − (a ∪B).

The minimal Markov blanket is called the Markov boundary.
In a bnet, the Markov boundary of a node a, contains:

1. the parents of a,

2. the children of a,

3. the parents, other than a, of the children of a.

This is illustrated in Fig.28.1.
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Chapter 29

Markov Chain Monte Carlo
(MCMC)

Monte Carlo methods are methods for using random number generation to sample
probability distributions. The subject of Monte Carlo methods has many branches,
as you can see from its Wikipedia category list, Ref.[69]. MCMC (Markov Chain
Monte Carlo) is just one of those branches, albeit a major one. Metropolis-Hastings
(MH) sampling is a very important MCMC method. Gibbs sampling is a special case
of MH sampling. This chapter covers both, MH and Gibbs sampling. It also covers
a few other types of sampling.

Throughout this chapter, we use Px : Sx → [0, 1] to denote the target proba-
bility distribution that we wish to obtain samples from.

29.1 Inverse Cumulative Sampling

For more info about this topic and some original references, see Ref.[59].
This is one of the simplest methods for obtaining samples from a probability

distribution Px, but it requires knowledge of the inverse cumulative distribution of
Px, which is often not available.

The cumulative distribution function is defined by:

CUMx(x) = P (x < x) =

∫
x′<x

dx′ Px(x
′) . (29.1)

Note that

Px(x) =
d

dx
CUMx(x) . (29.2)

For t = 0, 1, . . . , T − 1, let
u(t) ∈ [0, 1]= random variable, uniformly distributed over [0, 1].
~x(t) = (x(t)[σ])σ=0,1,...,nsam(t)−1 where x(t)[σ] ∈ Sx for all σ. Vector of samples

collected up to time t.
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u(0)

��

u(1)

��

u(2)

��

~x(0) // ~x(1) // ~x(2)

Figure 29.1: bnet for Inverse Cumulative Sampling

The TPMs, printed in blue, for the nodes of bnet Fig.29.1, are:

P (u(t)) = 1 (29.3)

P (~x(t)|~x(t−1), u(t)) = δ( ~x(t), [~x(t−1), CUM−1
x (u(t))] ) (29.4)

Motivation

Figure 29.2: Motivation for Inverse Cumulative Sampling.

See Fig.29.2.
Note that if u is uniformly distributed over the interval [0, 1] and a ∈ [0, 1],

then

P (u < a) = a . (29.5)

Thus

P (CUM−1
x (u) < x) = P (u < CUMx(x)) (29.6)

= CUMx(x) . (29.7)

Therefore,

dP (CUM−1
x (u) < x) = Px(x)dx . (29.8)
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29.2 Rejection Sampling

For more info about this topic and some original references, see Ref.[78].
This method samples from a “candidates” probability distribution Pc : Sx →

[0, 1], in cases where sampling directly from the target probability distribution Px :
Sx → [0, 1] is not possible.

u(0)

��

u(1)

��

u(2)

��
~x(0) ))

a(0) // ~x(1) ))
a(1) // ~x(2) ))

a(2) // ~x(3)

c(0)

OO ==

c(1)

OO ==

c(2)

OO ==

Figure 29.3: bnet for Rejection Sampling

For t = 0, 1, . . . , T − 1, let
u(t) ∈ [0, 1]= random variable, uniformly distributed over [0, 1].
a(t) ∈ {0, 1}= accept candidate? (no=0, yes=1)
c(t) ∈ Sx= sample that is a candidate for being accepted

~x(t) = (x(t)[σ])σ=0,1,...,nsam(t)−1 where x(t)[σ] ∈ Sx for all σ. Vector of samples
collected up to time t.

This algorithm requires a priori definition of a candidate probability distribu-
tion Pc : Sx → R such that

Px(x) < βPc(x) (29.9)

for all x ∈ Sx, for some β ∈ R.
The TPMs, printed in blue, for the nodes of bnet Fig.29.3, are:

P (u(t) = u) = 1 (29.10)

P (c(t) = c) = Pc(c) (29.11)

P (a(t) = a|c(t) = c, u(t) = u) =

{
δ(a, 0) if uβPc(c) ≥ Px(c)
δ(a, 1) if uβPc(c) < Px(c)

(29.12)

P (~x(t)|~x(t−1), a(t) = a, c(t) = c) =

{
δ(~x(t), ~x(t−1)) if a = 0
δ(~x(t), [~x(t−1), c]) if a = 1

(29.13)
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This last equation is only defined for t > 0. For t = 0, the left hand side reduces to
P (~x(0)) which must be specified a priori.
Motivation

Figure 29.4: Motivation for Rejection Sampling.

See Fig.29.4.

29.3 Metropolis-Hastings Sampling

For more info about this topic and some original references, see Refs.[1] and [67].
An advantage of this method is that it can sample unnormalized probability

distributions (constant)Px because it only uses ratios of Px at two different points.
Another advantage of this method is that it scales much better than other sampling
methods as the number of dimensions of the sampled variable x increases.

This method produces samples that take a finite amount of time to reach
steady state. The samples are also theoretically correlated instead of being i.i.d.
as one desires. To mitigate for the steady state problem, one discards an initial
set of samples (the “burn-in” period). To mitigate for the correlation problem, one
calculates the autocorrelation between the samples and keeps only samples separated
by a time interval after which the samples cease to be autocorrelated to a good
approximation.

For t = 0, 1, . . . , T − 1, let
u(t) ∈ [0, 1]= random variable, uniformly distributed over [0, 1].
a(t) ∈ {0, 1}= accept candidate? (no=0, yes=1)
c(t) ∈ Sx= sample that is a candidate for being accepted
m(t) ∈ Sx= memory of last accepted sample

~x(t) = (x(t)[σ])σ=0,1,...,nsam(t)−1 where x(t)[σ] ∈ Sx for all σ. Vector of samples
collected up to time t.

A proposal TPM Pc|x : S2
x → [0, 1] must be specified a priori for this algo-

rithm.
The TPMs, printed in blue, for the nodes of bnet Fig.29.5, are:

P (u(t) = u) = 1 (29.14)
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u(0)

��

u(1)

��

u(2)

��
~x(0) ))

a(0) // ~x(1) ))

��

a(1) // ~x(2) ))

��

a(2) // ~x(3)

c(0)

OO ==

c(1)

OO ==

c(2)

OO ==

m(0)

OO

HH

m(1)

OO

HH

m(2)

OO

HH

Figure 29.5: bnet for Metropolis-Hastings Sampling

P (c(t) = c|m(t) = m) = Pc|x(c|m) (29.15)

P (a(t) = a|c(t) = c, u(t) = u,m(t) = m) =

{
δ(a, 0) if u ≥ α(c|m)
δ(a, 1) if u < α(c|m)

(29.16)

where the acceptance probability α is defined as

α(c|m) = min

(
1,
Pc|x(m|c)Px(c)
Pc|x(c|m)Px(m)

)
. (29.17)

Note that if the proposal distribution is symmetric, then

α(c|m) = min

(
1,
Px(c)

Px(m)

)
. (29.18)

P (~x(t)|~x(t−1), a(t) = a, c(t) = c) =

{
δ(~x(t), ~x(t−1)) if a = 0
δ(~x(t), [~x(t−1), c]) if a = 1

(29.19)

This last equation is only defined for t > 0. For t = 0, the left hand side reduces to
P (~x(0)) which must be specified a priori.

P (m(t) = m|~x(t)) = δ(m, last component of ~x(t)) . (29.20)

This last equation is only defined for t > 0. For t = 0, the left hand side reduces to
P (m(0) = m) which must be specified a priori.
Motivation

See Fig.29.6.
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Figure 29.6: Motivation for Metropolis-Hastings Sampling.

Consider a time homogeneous (its TPM is the same for all times) Markov chain
with TPM P (x′|x) = [T ]x′,x. Its stationary distribution, if it exists, is defined as

π = lim
n→∞

T nπ0 . (29.21)

Suppose the prob distribution Px(x) that we wish to sample from satisfies

Px(x) = π(x) . (29.22)

Reversibility (detailed balance): For all x, x′ ∈ Sx,

P (x′|x)π(x) = P (x|x′)π(x′) . (29.23)

Detailed balance is a sufficient (although not necessary) condition for a unique sta-
tionary prob distribution π to exist.1

Let

P (x′|x) = P (a = 1|x′, x)Pc|x(x
′|x) + δ(x, x′)P (a = 0|x) , (29.24)

where

P (a = 0|x) =
∑
x′

P (a = 0|x′, x)Pc|x(x
′|x) . (29.25)

Claim 21 If

P (a = 1|x′, x) = α(x′|x) , (29.26)

1 As explained lucidly in Ref.[1], besides detailed balance, 2 other properties must also be satisfied
by the Markov chain, irreducibiity and aperiodicity. However, because of how it is constructed, the
Metropolis-Hastings algorithm automatically produces a Markov chain that has those 2 properties.
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then detailed balance is satisfied.

proof: Assume x 6= x′.

P (x′|x)P (x) = P (a = 1|x′, x)Pc|x(x
′|x)Px(x) (29.27)

= min

(
1,
Pc|x(x|x′)Px(x′)
Pc|x(x′|x)Px(x)

)
Pc|x(x

′|x)Px(x) (29.28)

= min
(
Pc|x(x

′|x)Px(x), Pc|x(x|x′)Px(x′)
)

(29.29)

= P (x|x′)P (x′) (29.30)

QED

29.4 Gibbs Sampling

For more info about this topic and some original references, see Ref.[55].
Gibbs sampling is a special case of Metropolis-Hastings sampling. Gibbs sam-

pling is ideally suited for application to a bnet, because it is stated in terms of the
conditional prob distributions of N random variables, and conditional prob distribu-
tions are part of the definition of a bnet.

Consider a bnet with nodes x0, x1, . . . , xN−1

Identify the random variable x = (x0, x1, . . . , xN−1) with the random variable
x used in Metropolis-Hastings sampling. For Gibbs sampling, we use the following
proposal distribution:

Pc|x(c|m) =
N−1∏
j=0

P (cj | [mi]i 6=j) . (29.31)

Eq.(29.31) can be simplified using Markov Blankets (see Chapter 28) to the following:

Pc|x(c|m) =
N−1∏
j=0

P (cj | [mi : ∀i 3 xi ∈MB(xj)]) , (29.32)

where, for any node a, we denote its Markov blanket by MB(a).
An alternative proposal distribution that leads to much faster convergence is

as follows. The idea is to make the components c
(t)
j of candidate sample c(t) depend

on the previous components (c
(t)
i )i<j. See the bnet Fig.29.7. The TPM for the nodes

of that bnet are

P (c
(t)
j = cj | (c(t)

i )i<j = (ci)i<j,m
(t−1) = m) = P (cj|(ci)i<j, (mi)i>j) (29.33)
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Figure 29.7: In Gibbs sampling, the proposal distribution Pc|x can be defined by mak-

ing the components c
(t)
j of candidate sample c(t) depend on the previous components

(c
(t)
i )i<j.

for j = 0, 1, . . . , N − 1. This implies

Pc|x(c
(t) = c|m(t−1) = m) =

N−1∏
j=0

P (cj|(ci)i<j, (mi)i>j) . (29.34)

As before, we can condition only on the Markov blanket of each node xj.

Pc|x(c
(t) = c|m(t−1) = m) =

N−1∏
j=0

P (cj|(ci)i<j, (mi)i>j, use only ci and mi 3 xi ∈MB(xj)) .

(29.35)

29.5 Importance Sampling

For more info about this topic and some original references, see Ref.[57].
Suppose random variables x[σ] ∈ Sx for σ = 0, 1, . . . , nsam− 1 are i.i.d. with

probability distribution Px. Then

Ex[f(x)] ≈ 1

nsam

nsam−1∑
σ=0

f(x[σ]) (29.36)

for any f : Sx → R. Sometimes, instead of using i.i.d. samples x[σ] ∈ Sx where
x[σ] ∼ Px, we wish to use i.i.d. samples y[σ] ∈ Sx where y[σ] ∼ Py.
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Ex[f(x)] =
∑
x

Px(x)f(x) (29.37)

=
∑
x

Py(x))
Px(x)

Py(x)
f(x) (29.38)

= Ey[
Px(y)

Py(y)
f(y)] (29.39)

Sampling from Py(y) instead of Px(x) might reduce (or increase) variance for
a particular f : Sx → R.

V arx[f(x)] = Ex[(f(x))2]− (Ex[f(x)])2 (29.40)

V ary[
Px(y)

Py(y)
f(y)] = Ey[(

Px(y)

Py(y)
f(y))2]− (Ey[

Px(y)

Py(y)
f(y)])2 (29.41)

= Ex[
Px(x)

Py(x)
(f(x))2]− (Ex[f(x)])2 (29.42)
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Chapter 30

Markov Chains

A Markov Chain is simply a bnet with the graph structure of a chain. For example,
Fig.30.1 shows a chain with n = 4 nodes.

x0
// x1

// x2
// x3

Figure 30.1: Markov chain with n = 4 nodes.

Because of its graph structure, the TPM of each node only depends on the
state of the previous node:

P (xt|(xa)a6=t) = P (xt|xt−1) , (30.1)

where (xa)a6=t are all the nodes except xt itself and t = 1, 2, . . . , n− 1.
If there exists a single TPM Px1|x0 such that

P (xt|xt−1) = Px1|x0(xt|xt−1) (30.2)

for t = 1, 2, . . . , n− 1, then we say that the Markov chain is time homogeneous.

Claim 22 (Data Processing Inequality (DPI))
Consider a Markov chain x0 → x1 · · · → xn−1. Suppose 0 ≤ a < m < b ≤

n− 1. Then
H(xa : xb) ≤ min[H(xa : xm), H(xm : xb)] (30.3)

See Ref.[49] for references where the DPI is proven. This inequality confirms our
intuitive expectations that the information transmitted (i.e., the mutual informa-
tion(MI)) from a to b (or vice versa since MI is symmetric) is smaller or equal to the
one transmitted from a to m or from m to b because a and b are “farther apart” and
“some info can get lost during transmission through the mediator node m”.
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Chapter 31

Message Passing (Belief
Propagation)

Belief Propagation was first proposed in 1982 Ref.[24] by Judea Pearl to simplify
the exact evaluation of the probability of one node conditioned on other nodes of a
bnet (exact inference). It gives exact results for trees and polytrees (i.e. bnets with a
single connected component and no loops). For bnets with loops, it gives approximate
results (loopy belief propagation), and it has been generalized to the junction tree
algorithm (see Chapter 24) which can do exact inference for general bnets with loops.
The basic idea behind the junction tree algorithm is to eliminate loops by clustering
them into single nodes.

In his book Ref.[25], Pearl explains two types of Message Passing (i.e., dis-
tributed computing in a bnet). In Chapter 4, he discusses one type of MP which
he calls Belief Propagation (BP) or Belief Updating. In Chapter 5, he introduces
a second type of MP which is he calls Belief Revision, but which I prefer to call
Explanation Optimization (EO). This chapter will be devoted to BP only.

This chapter is mostly based on chapter 4 of Ref.[25] by Pearl. Refs.[42], and
[18] were also helpful in writing this chapter.

31.1 Distributed Soldier Counting

Consider a group of soldiers marching single file. Fig.31.1 shows several methods by
which a member of the group can obtain a count of the soldiers without breaking
the line to do global operations. This can be done in a distributed fashion, with
every soldier doing only local operations (i.e., each soldier can only send messages to
either the soldier in front or the one in back). Such distributed soldier counting is a
rudimentary type of BP. In the next section, we will generalize this BP for soldiers
to BP for a Markov chain.
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Figure 31.1: Distributed soldier counting (This example comes from Chapter 4 of
Ref.[25]). Green dots indicate the beginning and red dots the end of a count. Only
first soldier can calculate total count in (a). Only third soldier can calculate total
count in (b,c). All soldiers can calculate the total count in (d,e). One starting point
in (a,b,e). Two ends as starting points in (c,d).
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31.2 Spring Systems

Figure 31.2: Spring system. Point masses connected by springs.

See Ref.[81] for an introduction to spring systems. Ideal springs between the
point mass nodes would not be sufficient. One would have to add damping to the
springs so as to reach an equilibrium. Time dependent forces (loads) pointing into
or out of the page, applied to the point masses, would generate signals that would
propagate like BP messages.

31.3 BP for Markov Chains

ε+
oo

πε+⇐x

λε+⇒x

//
xoo
oo

πx⇐ε−

λx⇒ε−
//
ε−oo

Figure 31.3: 3 node Markov chain ε+ ← x ← ε−. The π messages (probability
functions) travel downstream (i.e., they carry info in the direction of the graph arrows,
towards the future) and are indicated by a dashed arrow or by a left double arrow⇐.
The λ messages (likelihood functions) travel upstream (i.e., they carry info opposite
to direction of the graph arrows, towards the past) and are indicated by a dotted
arrow or by a right double arrow ⇒. ε+ stands for future evidence and ε− for past
evidence.
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Consider the 3 node Markov chain ε+ ← x← ε− shown in Fig.31.3. Define1

πε+⇐x(x) = P (x|ε−) (past of x) (31.1)

λε+⇒x(x) = P (ε+|x) (future of x) (31.2)

πx⇐ε−(ε−) = P (ε−) = δ(ε−, ε−0 ) (past of ε−) (31.3)

λx⇒ε−(ε−) = P (ε+|ε−) (future of ε−) . (31.4)

Furthermore, define the Belief BEL in x to be

BELx(x) = P (x|ε) , (31.5)

where

ε = ε+ ∪ ε− . (31.6)

It follows that

BELx(x) = P (x|ε+, ε−) = (31.7)

= N (!x)P (ε+, x, ε−) (31.8)

= N (!x)P (ε+|x)P (x|ε−) (31.9)

= N (!x)λε+⇒x(x)πε+⇐x(x) . (31.10)

Note that Bayes rule would affirm that2

P (x|ε+) = N (!x)P (ε+|x)︸ ︷︷ ︸
λε+⇒x(x)

P (x) . (31.11)

Thus, Eq.(31.10) is like a 2-sided Janus Bayes rule.
Note that the π messages and λ messages propagate independently of each

other, via the TPM P (x|ε−):

πε+⇐x(x)︸ ︷︷ ︸
P (x|ε−0 )

=
∑
ε−

P (x|ε−) πx⇐ε−(ε−)︸ ︷︷ ︸
δ(ε−,ε−0 )

(31.12a)

1The pattern behind these definitions, in case it eludes you, is as follows: the π’s always carry
information about the past and the λ’s about the future. But the past or future of what? Of the
argument of the function. Out of the two random variables in the subscript of the function, the
one on the right hand side of the subscript, the one which is adjacent but beneath the argument, is
always the argument.

2As usual in this book, N (!x) means a constant that is independent of x.
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λx⇒ε−(ε−)︸ ︷︷ ︸
P (ε+|ε−)

=
∑
x

P (x|ε−)λε+⇒x(x)︸ ︷︷ ︸
P (ε+|x)

(31.12b)

Eqs.(31.12) suggest that we define an edge bnet for the π and λ messages
(these messages live in the edges between the nodes ε+, x, ε−). Such an edge bnet,
shown in Fig.31.4, is complementary to bnet for the nodes themselves. We will call
it the BP 2-track bnet for the bnet Fig.31.3, because it has two “tracks”, one for
π messages and another for λ ones. The TPMs, shown in blue, for the nodes of bnet
Fig.31.4, are as follows:

πε+⇐x

""

πx⇐ε−oo

Bx

λε+⇒x //

<<

λx⇒ε−

Figure 31.4: BP 2-track bnet for the bnet Fig.31.3.

P (πx⇐ε−) =
∏
ε−

1(πx⇐ε−(ε−) = P (ε−)) (31.13)

P (πε+⇐x|πx⇐ε−) =
∏
x

1

(
πε+⇐x(x) =

∑
ε−

P (x|ε−)πx⇐ε−(ε−)

)
(31.14)

P (Bx|πε+⇐x, λε+⇒x) =
∏
x

1 (Bx(x) = BELx(x)) (31.15)

P (λε+⇒x) =
∏
x

1
(
λε+⇒x(x) = P (ε+|x)

)
(31.16)

P (λx⇒ε−|λε+⇒x) =
∏
ε−

1

(
λx⇒ε−(ε−) =

∑
x

P (x|ε−)λε+⇒x(x)

)
(31.17)
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ε+
oo

πε+⇐b

λε+⇒b

//
boo
oo

πb⇐x

λb⇒x
//
xoo
oo

πx⇐a

λx⇒a
//
aoo
oo

πa⇐ε−

λa⇒ε−
//
ε−oo

Figure 31.5: 5 node Markov chain

So far in this section, we have considered Markov chains with 3 nodes. Before
concluding our discussion of BP for Markov chains, let us consider BP for a slightly
longer chain. Let us consider the 5 node Markov chain ε+ ← b← x← a← ε− shown
in Fig.31.5. We have already dealt with the end nodes of a Markov chain in the 3
node Markov chain example above, so in the 5 node case, let us focus on the internal
(i.e., not at an end) node x and its neighbors a and b. Define

πb⇐x(x) = P (x|ε−) (past of x) , (31.18)

λb⇒x(x) = P (ε+|x) (future of x) , (31.19)

πx⇐a(a) = P (a|ε−) (past of a) (31.20)

and

λx⇒a(a) = P (ε+|a) (future of a) . (31.21)

Define the Belief BEL in x to be

BELx(x) = P (x|ε) , (31.22)

where

ε = ε+ ∪ ε− . (31.23)

Then

BELx(x) = N (!x)P (ε+|x)P (x|ε−) (31.24)

= N (!x)λb⇒x(x)πb⇐x(x) . (31.25)

In analogy with the case of BP for a 3 node Markov chain, we can define the
bnet Fig.31.6, which we refer to as the BP 2-track bnet for Fig.31.5. The TPMs,
printed in blue, for the nodes of bnet Fig.31.6, are as follows:

P (πb⇐x|πx⇐a) =
∏
x

1

(
πb⇐x(x) =

∑
a

P (x|a)πx⇐a(a)

)
(31.26)
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πε+⇐b

""

πb⇐xoo

""

πx⇐aoo

""

πa⇐ε−oo

Bb Bx Ba

λε+⇒b //

<<

λb⇒x //

==

λx⇒a //

==

λa⇒ε−

Figure 31.6: BP 2-track bnet for the bnet Fig.31.5.

P (Bx|πb⇐x, λb⇒x) =
∏
x

1 (Bx(x) = BELx(x)) (31.27)

P (λx⇒a|λb⇒x) =
∏
a

1

(
λx⇒a(a) =

∑
x

P (x|a)λb⇒x(x)

)
(31.28)

Let us represent the Markov chain of Fig.31.5 by xnx−1 ← . . . , x2 ← x1 ← x0

where nx = 5. For any node xi with parent px
i

= xi−1 and child cxi = xi+1, define
the memory matrixMxi

for node xi as

Mxi
= [M+

xi
,M−

xi
] , (31.29)

where + =future, − =past, and

M+
xi

=

[
πcxi⇐xi(·)
λcxi⇒xi(·)

]
, M−

xi
=

[
πxi⇐pxi(·)
λxi⇒pxi(·)

]
. (31.30)

Note that

M−
xi

=M+
px
i

(31.31)

for all nodes xi. We will refer to Eqs.(31.31) as the memory overlap conditions.
We will also use a permuted version of the memory matrix

M′
xi

= [MOUT
xi

,MIN
xi

] , (31.32)

where

MOUT
xi

=

[
πcxi⇐xi(·)
λxi⇒pxi(·)

]
, MIN

xi
=

[
πxi⇐pxi(·)
λcxi⇒xi(·)

]
. (31.33)

Unfortunately, 2-track bnets cannot be generalized in any obvious way from
Markov chains to more complicated DAGs. An alternative to 2-track bnets that still
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Mε+ Mb
oo Mx

oo Ma
oo Mε−

oo

Figure 31.7: BP Memory Bnet for the bnet Fig.31.5.

carries message info in its nodes, are memory bnets. An BP memory bnet is a
bnet which takes each node of an original bnet and adds a local memory to it. More
specifically, it keeps tha DAG but replaces each node xi by a memory Mxi

. Fig.31.7
shows the memory bnet for the bnet Fig.31.5. The TPM, printed in blue, for the
node Mx of the memory bnet Fig.31.7, is as follows

P (Mxi
|Mn∈nb(xi)) = AB , (31.34)

where

A = 1(M−
xi

=M+
px
i
) , (31.35)

and

B = 1(MOUT
xi

= C(MIN
xi

)) . (31.36)

The function C, which we will call the BP local computation, maps MIN
xi

into

MOUT
xi

. More explicitly, C is defined so that

B = P (πb⇐x|πx⇐a)︸ ︷︷ ︸
Bπ

P (λx⇒a|λb⇒x)︸ ︷︷ ︸
Bπ

, (31.37)

where Bπ and Bλ are given by Eqs.(31.26) and (31.28), respectively.
The BP memory bnet Fig. 31.7 is a deterministic bnet. A deterministic bnet

is basically just a coupled system of equations (CSE) for some unknowns xi. A CSE
per se does not include with it a method for solving for the xi. Such methods are
not unique. For example, for the distributed soldier counting problem, the various
methods that we described for counting soldiers are just different methods for solving
the same CSE. One can describe a method for solving a CSE using a dynamic bnet.3

To solve the CSE represented by the memory bnet Fig.31.7, we will use the dynamic
bnet Fig.31.8. Henceforth, we will refer to Fig.31.8 as an BP dynamic bnet for
Fig.31.7.

Next, we will explain the meaning of Fig.31.8. Fig.31.8 is a step by step
recipe (i.e., algorithm) for solving a SCE, where the unknowns are memory matrices.
Each step encoded in Fig.31.8 corresponds to a specific message sending event, where
the messages are sent along the edges of the Markov chain Fig.31.5. These message
sending events are portrayed in chronological order in Fig.31.9. In that figure, π

3 The term dynamic bnet was used in Chapter 15 to mean a time inhomogeneous Markov chain,
but here we are stretching its meaning to include Markov chains that aren’t time inhomogeneous.
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ε−

��

M(0)

ε−
//

""

M(1)

ε−
//M(2)

ε−
//M(3)

ε−
//M(4)

ε−

a

��

M(0)
a

//M(1)
a

//

""

M(2)
a

//M(3)
a

//

<<

M(4)
a

x

��

M(0)
x

//M(1)
x

//M(2)
x

//

""

<<

M(3)
x

//M(4)
x

b

��

M(0)
b

//M(1)
b

//

<<

M(2)
b

//M(3)
b

//

!!

M(4)
b

ε+ M(0)

ε+
//

==

M(1)

ε+
//M(2)

ε+
//M(3)

ε+
//M(4)

ε+

Figure 31.8: BP dynamic bnet for the bnet Fig.31.7.

ε+
//
boo xoo aoo ε−oo

oo

ε+ boo
//
xoo aoo
oo

ε−oo

ε+ boo xoo
//

oo
aoo ε−oo

ε+ boo
oo

xoo aoo
//
ε−oo

Figure 31.9: Steps encoded in the bnet Fig.31.8. Note the similarity of this figure to
Fig.31.1 (d) for soldier counting.

messages are indicated by dashed red arrows, and λ messages by dotted red arrows.
These steps, or message sending events, lead to an updating of the memory matrices
that we are solving for. Each step propagates information between the memory nodes.
In the usual Pearl BP algo, the evidence nodes initiate the BP chain of message passing
events. These events continue until the memory matrices reach an equilibrium and
the SCE is solved.

To use bnet Fig.31.8, we need to specify the initial conditions (i.e., the value

of M(0)
xi for all i). For that, one can use

π(0)
px

0
⇐x0 = P (x0) , (31.38)
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λ(0)
cxi⇒xnx−1

(xnx−1) = δ(xnx−1, x
′
nx−1) . (31.39)

All other M(0)
xi entries for all i can be set to 1.

The TPMs, printed in blue, for the nodes of Fig.31.8, can all be summarized
by

P (M(t)
xi
|M(t−1)

n∈nb(xi)
,M(t−1)

xi
) = AB , (31.40)

where

A =


1(M(t)−

xi =M(t−1)+
px
i

) if input from px
i

1(M(t)+
xi =M(t−1)−

cxi ) if input from cxi

, (31.41)

and

B = 1(M(t)OUT
xi

= C(M(t)IN
xi

)) . (31.42)

The function C, which we will call the BP local computation, maps M(t)IN
xi into

M(t)OUT
xi . More explicitly, C is defined so that

B = BπBλ (31.43)

where

Bπ =
∏
x

1

π(t)
b⇐x(x)︸ ︷︷ ︸
OUT

=
∑
a

P (x|a) π(t)
x⇐a(a)︸ ︷︷ ︸
IN

 (31.44)

and

Bλ =
∏
a

1

λ(t)
x⇒a(a)︸ ︷︷ ︸
OUT

=
∑
x

P (x|a)λ
(t)
b⇒x(x)︸ ︷︷ ︸
IN

 . (31.45)

The basic idea behind Eq.(31.42), which we will call the memory updating
equation, is simple: the memory overlap conditions translate the information from
time t− 1 to t, and then the local computation translates IN to OUT at fixed time
t.

31.4 BP Algorithm for Polytrees

Consider Fig.31.10, which illustrates a bnet node x receiving and sending messages
to its neighbors. The π messages (probability functions) travel downstream (i.e.,
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they carry info in the direction of the graph arrows, towards the future) and are
indicated by a dashed arrow or by a left double arrow⇐. The λ messages (likelihood
functions) travel upstream (i.e., they carry info opposite to direction of the graph
arrows, towards the past) and are indicated by a dotted arrow or by a right double
arrow ⇒.

Note that argument arg of the π(arg) and λ(arg) functions is always the same
as the letter in the subscript that is closest to the argument.

Note that in Fig.31.10, we indicate messages that travel “downstream” (resp.,
“upstream”), by arrows with dashed (resp., dotted) lines as shafts. Mnemonic: think
of the shaft as a velocity vector field for the message. You travel faster when you
swim downstream as opposed to upstream.

pa(x) = parents of node x
ch(x) = children of node x
nb(x) = pa(x) ∪ ch(x) = neighbors of node x

Figure 31.10: Node x receiving and sending messages to its neighbors. (neighbors=
parents and children).

We define a memory matrixMx for node x as

Mx = [M+
x ,M−

x ] , (31.46)

where + =future, − =past, and

M+
x =

[
πb⇐x(·) λb⇒x(·)

]
b∈ch(x)

= [M+
b,x]b∈ch(x) , (31.47)

M−
x =

[
πx⇐a(·)
λx⇒a(·)

]
a∈pa(x)

= [M−
x,a]a∈pa(x) . (31.48)

Note that

M−
x,a =M+

a,x (31.49)
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for every arrow x ← a. We will refer to Eqs.(31.49) as the memory overlap con-
ditions.

We will also use a permuted version of the memory matrix

M′
x = [MOUT

x ,MIN
x ] , (31.50)

where

MOUT
x =

(
[πb⇐x(·)]b∈ch(x)

[λx⇒a(·)]a∈pa(x) ,

)
= [MOUT

x,n ]n∈nb(x) , (31.51)

MIN
x =

(
[πx⇐a(·)]a∈pa(x)

[λb⇒x(·)]b∈ch(x)

)
= [MIN

x,n]n∈nb(x) . (31.52)

For times t = 0, 1, . . . , T − 1, we calculateM(t)
x in two steps: first we calculate

M(t)IN
x from earlier memories at time t− 1, then we calculate M(t)OUT

x :

Figure 31.11: Subgraph of a bnet showing two cases (RULE 1 and RULE 2) of message
info flow. The yellow node is a gossip monger. It receives messages from all the green
nodes, and then it relays a joint message to the red node. Union of green nodes and
the red node = full neighborhood of yellow node. There are two possible cases: the
red node is either a parent or a child of the yellow one. As usual, we use arrows with
dashed (resp., dotted) shafts for downstream (resp., upstream) messages. Blue boxes
indicate Markov chain case.

An evidence node is a node whose TPM is a delta function set to a particular
state of the node. We will assume, without loss of generality, that all evidence nodes
are leaf nodes. If that is not the case, any evidence node e that is not a leaf node,
can be given a new companion leaf node l connected to e by an arrow l ← e, and
such that l has a delta function TPM.
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1. CalculatingM(t)IN
x from signals received from n ∈ nb(x), sent at earlier

time t− 1:

Set

M(t)−
x,a |π =M(t−1)+

a,x |π , (31.53)

for all a ∈ pa(x), and

M(t)+
b,x |λ =M(t−1)−

x,b |λ , (31.54)

for all b ∈ ch(x). By X|λ (resp., X|π) we mean the λ (resp., π) component of
X.

2. Calculating M(t)OUT
x from already calculated M(t)IN

x :

Let ana = (ai)i=0,1,...,na−1 denote the parents of x and bnb = (bi)i=0,1,...,nb−1 its
children.

Define

πx(x) =
∑
ana

P (x|ana)
∏
i

πx⇐ai(ai) (31.55)

= Eana [P (x|ana)] (31.56)

(boundary case: if x is a root node, use πx(x) = P (x).) and

λx(x) =
∏
i

λbi⇒x(x) . (31.57)

(boundary case: if x is a leaf node, use λx(x) = 1.)

• RULE 1: (red parent)

From the λx⇒a panel of Fig.31.11, we get

λx⇒ai(ai)︸ ︷︷ ︸
OUT

= N (!ai)
∑
x

λx(x)︸ ︷︷ ︸
IN

∑
(ak)k 6=i

P (x|ana)
∏
k 6=i

πx⇐ak(ak)︸ ︷︷ ︸
IN

 (31.58)

= N (!ai)
∑
x

[
λx(x)E(ak)k 6=i [P (x|ana)]

]
(31.59)

= N (!ai)E(ak)k 6=iEx|anaλx(x) (31.60)

(boundary case: if x is a root node, use λx⇒ai(ai) = N (!ai).)
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• RULE 2: (red child)

From the πb⇐x panel of Fig.31.11, we get

πbi⇐x(x)︸ ︷︷ ︸
OUT

= N (!x) πx(x)︸ ︷︷ ︸
IN

∏
k 6=i

λbk⇒x(x)︸ ︷︷ ︸
IN

(31.61)

(boundary case: if x is a leaf node, use πbi⇐x(x) = N (!x)πx(x) .)

In the above equations, if the range set of a product is empty, then define the product
as 1; i.e.,

∏
k∈∅ F (k) = 1.

Claim: Define

BEL(t)(x) = N (!x)λ(t)
x (x)π(t)

x (x) . (31.62)

Then

lim
t→∞

BEL(t)(x) = P (x|ε) . (31.63)

This says that the belief in x = x converges to P (x|ε) and it equals the product of
messages received from all parents and children of x = x.

31.4.1 How BP algo for polytrees reduces to the BP algo for
Markov chains

It is instructive to see how the BP algo for polytrees reduces to BP algo for Markov
chains.

For a Markov chain, node x has a single parent (i.e., ancestor) a and a single
child b.

Therefore, Eqs.(31.55) and (31.57) reduce to

πx(x) =
∑
a

P (x|a)πx⇐a(a) (31.64)

and

λx(x) = λb⇒x(x) . (31.65)

RULE 1 given by Eq.(31.58) reduces to

λx⇒a(a) = N (!a)
∑
x

λx(x)P (x|a) (31.66)

= N (!a)
∑
x

λb⇒x(x)P (x|a) (31.67)

RULE 2 given by Eq.(31.61) reduces to
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πb⇐x(x) = N (!x)πx(x) (31.68)

=
∑
a

P (x|a)πx⇐a(a) . (31.69)

31.5 Derivation of BP Algorithm for Polytrees

This derivation is taken from the 1988 book Ref.[25] by Judea Pearl, where it is
presented very lucidly. We only made some minor changes in notation.
Notation

The BP algorithm yields an expansion for P (x|ε).
x= the focus node, arbitrary node of bnet that we are focusing on to calculate

its P (x|ε).
(ai)i=0,1,...,na−1. = parent nodes (mnemonic: a=ancestor) of x
(bi)i=0,1,...,nb−1. = children nodes of x.
ε= set of nodes for which there is evidence; that is, ε = ε, so the state of these

nodes is fixed.
ε−x = ε ∩ an(x) (evidence in past of x)4

ε−xai = ε−x ∩ an(ai).
Note that ε−x = ∪iε−xai
ε+x = ε ∩ [de(x) ∪ x] (evidence in future of x)

ε+xbi = ε+x ∩ [de(bi) ∪ bi].
Note that ε+x = ∪iε+xbi
Note that ε = ε+x ∪ ε−x

πx(x) = P (x|ε−x ) (31.70)

πx⇐ai(ai) = P (ai|ε−xai) (31.71)

πbi⇐x(x) = P (x|ε−xbi) (31.72)

λx(x) = P (ε+x |x) (31.73)

λbi⇒x(x) = P (ε+xbi |x) (31.74)

λx⇒ai(ai) = P (ε+xai |ai) (31.75)

Expansions of λx(x) and πx(x) into products of single node messages.

4 Careful: Chapter 4 of Ref.[25] uses − indicate the future and + to indicate the past. This is
the opposite of our notation.
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P (x|ε−x )︸ ︷︷ ︸
πx(x)

= P (x| ∪i ε−xai) (31.76)

=
∑
ana

P (x|ana)P (ana| ∪i ε−xai) (31.77)

=
∑
ana

P (x|ana)
∏
i

P (ai|ε−xai)︸ ︷︷ ︸
πx⇐ai (ai)

(31.78)

P (ε+x |x)︸ ︷︷ ︸
λx(x)

=
∏
i

P (ε+xbi |x)︸ ︷︷ ︸
λbi⇒x(x)

(31.79)

Note that past and future evidences ε−x and ε+x that are causally connected to
x are conditionally independent at fixed x:

P (ε+x , ε
−
x |x) = P (ε+x |x)P (ε−x |x) . (31.80)

This observation is key to the proof of the following claim:

Claim 23

P (x|ε+x , ε−x ) = P (ε+x |x)P (x|ε−x )
1

P (ε+x |ε−x )
(31.81)

= N (!x)P (ε+x |x)P (x|ε−x ) (31.82)

= N (!x) (ε+x ← x← ε−x ) (31.83)

= N (!x)λx(x)πx(x) (31.84)

proof:

P (x|ε+x , ε−x ) = P (ε+x , ε
−
x |x)

P (x)

P (ε+x , ε
−
x )

(31.85)

= P (ε+x |x)P (ε−x |x)
P (x)

P (ε+x , ε
−
x )

(31.86)

= P (ε+x |x)P (x|ε−x )
P (ε−x )

P (ε+x , ε
−
x )

(31.87)

= P (ε+x |x)P (x|ε−x )
1

P (ε+x |ε−x )
(31.88)

QED
Next we prove BP rules 1 and 2.

173



Figure 31.12: This figure is used in the derivation of the BP RULE 1.

• RULE 1 (red parent)

Note that

ε+x ∪ ∪k 6=iε−xak = (ε+x ∪ ε−x )− ε−xai (31.89)

= ε+xai (31.90)

Let y = (ak)k 6=i and ε−y = (ε−xak)k 6=i.

P (ε+xai|ai)︸ ︷︷ ︸
λx⇒ai (ai)

= P (ε+x , ε
−
y |ai) (31.91)

=
∑
x

∑
y

P (ε+x , ε
−
y |x, y)P (x, y|ai) (31.92)

=
∑
x

∑
y

P (ε+x |x)P (ε−y |y)P (x|y, ai)P (y|ai) (31.93)

= P (ε−y )
∑
x

∑
y

P (ε+x |x)
P (y|ε−y )

P (y)
P (x|y, ai)P (y|ai)︸ ︷︷ ︸

=P (y)

(31.94)

= N (!ai)
∑
x

∑
y

P (ε+x |x)P (x| y, ai︸︷︷︸
ana

)P (y|ε−y ) (31.95)

= N (!ai)
∑
x

P (ε+x |x)︸ ︷︷ ︸
λx(x)

∑
(ak)k 6=i

P (x|ana)
∏
k 6=i

P (ak|ε−xak)︸ ︷︷ ︸
πx⇐ak (ak)

(31.96)
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Figure 31.13: This figure is used in the derivation of the BP RULE 2.

• RULE 2 (red child)

Note that

(∪k 6=iε+xbk) ∪ ε
−
x = (ε+x ∪ ε−x )− ε+xbi (31.97)

= ε−xbi (31.98)

P (x|ε−xbi)︸ ︷︷ ︸
πbi⇐x(x)

= P (x|(ε+xbk)k 6=i, ε
−
x ) (31.99)

= N (!x)P ((ε+xbk)k 6=i|x)P (x|ε−x ) (31.100)

= N (!x)

∏
k 6=i

P (ε+xbk |x)︸ ︷︷ ︸
λbk⇒x(x)

P (x|ε−x )︸ ︷︷ ︸
πx(x)

(31.101)

31.6 Example of BP algo for a Tree

In this section, we describe how to apply the BP algo to the tree bnet Fig.31.14. In
Fig.31.14, if we replace each integer i by the random variable Ai, we get an original
bnet, and if we replace each i byMAi

, we get the BP memory bnet of the original
bnet. In Fig.31.14, the magenta nodes are evidence nodes and the green ones aren’t.
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We want to solve for the memory matrices of the memory bnet. To do so, we
use the BP dynamic bnet Fig.31.15. The steps encoded in the dynamic bnet are
shown in Fig.31.16. Fig.31.16 has frames in chronological order, showing the direction
of travel of the π&λ information. This sequence of frames also indicates the order in
which we solve for the entries of the memory matrices. The information first emanates
from the evidence nodes. It propagates generally upstream, although some nodes can
generate downstream flow. Some of the info reaches the root node and is reflected
there. The root node is the only one that is capable of reflection (i.e., instant output
along an arrow, in response to input along that arrow). Eventually, all info reaches
the leaf nodes via downstream propagation and is absorbed there.

Figure 31.14: Example tree bnet used to illustrate BP.
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//M(1)
A1

//M(2)
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FF
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M(2)
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//M(3)
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M(4)
A3
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A3

A4 M(0)
A4
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A5

//M(5)
A5

A6 M(0)
A6

//M(1)
A6
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//M(5)
A9

Figure 31.15: BP dynamic bnet for the bnet Fig.31.14.
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Figure 31.16: Steps encoded in the bnet Fig.31.15.
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31.7 Bipartite bnets

By a bipartite bnet we will mean a bnet in which all nodes are either root nodes
(parentless) or leaf nodes (childless). BP simplifies when dealing with bipartite bnets.
In this section, we will explain how it simplifies. But before doing so, let us explain
how the following two types of diagrams can be replaced by equivalent bipartite bnets:

• Factor Graphs

• Tree bnets

Consider a product g =
∏

α fα of scalar functions fα : Sx0×Sx1×. . . Sxnx−1
→ R

for α = 0, 1, . . . , nf − 1. For instance, consider g : Sx0 × Sx1 × Sx2 → R defined by:

g(x0, x1, x2) = f0(x0)f1(x0, x1)f2(x0, x1)f3(x1, x2) . (31.102)

The factor graph for this function g is given by Fig.31.17.

x0 x1 x2

f0 f1 f2 f3

Figure 31.17: Factor graph for function g defined by Eq.(31.102).

x0

�� �� ''

x1

�� �� ''

x2

��
f

0
f

1
f

2
f

3

Figure 31.18: Bipartite bnet corresponding to factor graph Fig.31.17.

One can map any factor graph (the “source”) to a special bipartite bnet (the
“image”), as follows. Replace each xi by xi ∈ Sxi for i = 0, 1, . . . , nx − 1 and each
fα by f

α
for α = 0, 1, . . . , nf − 1. Then replace the connections (edges) of the factor

graph by arrows from xi to f
α
. For example, Fig.31.18 is the image bipartite bnet of

the source factor graph Fig.31.17.
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Let xnx = (x0, x1, . . . , xnx−1) and fnf = (f
0
, f

1
, . . . , f

nf−1
). Let5 fα ∈ {0, 1}

for all α, and yα = fα(xnb(f
α

)). Here we are using nb(f
α
) to denote the neighborhood

of node f
α

in the image bipartite bnet, and we are using xS to denote (xi)i∈S. Without
loss of generality, we will assume that yα ∈ [0, 1] for all α. Then we define the node
TPMs, printed in blue, for the image bipartite bnet, as follows.

P (fα|xnx(f
α

)) = yαδ(fα, 1) + [1− yα]δ(fα, 0) (31.103)

for α = 0, 1, . . . , nf − 1 and

Pxi(xi) = arbitrary prior (31.104)

for i = 0, 1, . . . , nx− 1.
Note that

P (fnf = 1nf |xnx) =
∏
α

fα(xnb(f
α

)) . (31.105)

A tree bnet is a bnet for which all nodes have exactly one parent except for
the apex root node which has none. A tree bnet is very much like the filing system
in a computer.

One can map a tree bnet (the “source”) into an equivalent bipartite bnet (the
“image”) as follows. Replace each arrow

x // y (31.106)

of the tree bnet by

x // Py|x yoo . (31.107)

For example, the tree bnet Fig.31.19 has the image bipartite bnet given by Fig.31.20.
The bnet Fig.31.21 is just a different way of drawing the bnet Fig.31.20.

The node TPMs, printed in blue, for the image bipartite bnet Fig.31.20, are as
follows. We express the TPMs of the image bnet in terms of the TPMs of the source
bnet Fig.31.19. Let

P (Py|x|x, y) = Py|x(y|x)δ(Py|x, 1) + (1− Py|x(y|x))δ(Py|x, 0) (31.108)

for all the leaf nodes Py|x ∈ {0, 1} of the image bipartite bnet. Also, let

Py(y) = arbitrary prior (31.109)

5 Note that we are using fα to denote both a function fα(·) and a boolean value. Which one we
mean will be clear from context. fα could also be used to denote, besides a function and a boolean
value, the real number yα = fα(xnb(f

α
)). However, we won’t be using it that third way in this

chapter.
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A

�� ((
A0

�� !!

A1

A00 A01

Figure 31.19: Example of a tree bnet.

A

�� **
PA0|A PA1|A

A0

OO

�� $$

A1

OO

PA00|A0
PA01|A0

A00

OO

A01

OO

Figure 31.20: Bipartite bnet corresponding to tree bnet Fig.31.19.

A

!! ((

A0

�� )) ++

A1

��

A00

��

A01

��
PA0|A PA1|A PA00|A0

PA01|A0

Figure 31.21: Different way of drawing the bnet Fig.31.20.

for all the root nodes y of the image bipartite bnet except when y corresponds to the
root node A of the source tree bnet. In that exceptional case,

Py(y) = PA(y) . (31.110)
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31.8 BP for bipartite bnets (BP-BB)

For a bipartite bnet as defined above, with root nodes xi and leaf nodes f
α
, let

nb(i) = {α : f
α
∈ nb(xi)} , (31.111)

nb(α) = {i : xi ∈ nb(fα)} , (31.112)

mα⇐i(xi) = πf
α
⇐xi(xi) , (31.113)

mα⇒i(xi) = λf
α
⇒xi(xi) , (31.114)

Figure 31.22: Fig.31.11 becomes this figure for the special case of a bipartite bnet.
Union of green nodes and the red node = full neighborhood of yellow node. There
are two possible cases: the red node is either a parent or a child of the yellow node.

Next we will show how to find m
(t)
α⇐i and m

(t)
α⇒i from m

(t−1)
α⇐i and m

(t−1)
α⇒i .

1. Traversing an x (i.e., root) node.

See the mf
2
⇐x2 panel of Fig.31.22.

For i = 0, 1, . . . , nx− 1, if α ∈ nb(i), then,

m
(t)
α⇐i(xi) =

∏
β∈nb(i)−α

m
(t−1)
β⇒i (xi) , (31.115)

whereas if α /∈ nb(i)

m
(t)
α⇐i(xi) = m

(t−1)
α⇐i (xi) . (31.116)

2. Traversing an f (i.e., leaf) node.

See the mf
2
⇒x2 panel of Fig.31.22.
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For α = 0, 1, . . . , nf − 1, if i ∈ nb(α), then

m
(t)
α⇒i(xi) =

∑
(xk)k∈nb(α)−i

fα(xnb(α))
∏

k∈nb(α)−i

m
(t−1)
α⇐k (xk) (31.117)

= E
(t−1)
(xk)k∈nb(α)−i

[fα(xnb(α))] , (31.118)

whereas if i /∈ nb(α)

m
(t)
α⇒i(xi) = m

(t−1)
α⇒i (xi) . (31.119)

In the above equations, if the range set of a product is empty, then define the
product as 1; i.e.,

∏
k∈∅ F (k) = 1.

Claim:

P (xi|ε) = lim
t→∞
N (!xi)

∏
α∈nb(i)

m
(t)
α⇒i(xi) (31.120)

and

P (xnb(α)|ε) = lim
t→∞
N (!xnb(α))fα(xnb(α))

∏
k∈nb(α)

m
(t)
α⇐k(xk) . (31.121)

31.8.1 BP-BB and general BP agree on Markov chains

It is instructive to compare the belief values (i.e., P (xi|ε)) obtained by applying the
general (i.e., polytree) BP and BP-BB algorithms to a Markov chain. Next we show
that both algorithms yield the same belief values.

2

������

β α

^^ 2

���� ��
β

@@

α

(a) (b)

Figure 31.23: Traversing a root node of a Markov chain (a)Propagation towards left
(i.e., towards future). (b)Propagation towards right (i.e., towards past).

Consider the BP-BB rule for traversing a root node. When traveling towards
the left as in Fig.31.23 (a), it implies that

mα⇒2(x2) = mβ⇐2(x2) , (31.122)
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and when traveling towards the right as in Fig.31.23 (b), it implies that

mβ⇒2(x2) = mα⇐2(x2) . (31.123)

3

��

2

������

1

�� ��β α

^^ 3

��

2

���� ��

1

��
β

@@

α

@@

(a) (b)

Figure 31.24: Traversing a leaf node of a Markov chain (a)Propagation towards left
(i.e., towards future). (b)Propagation towards right (i.e., towards past).

Now consider the BP-BB rule for traversing a leaf node. When traveling to
the left as in Fig.31.24 (a), it implies that

mα⇒2(x2)︸ ︷︷ ︸
λ

=
∑
x1

P (x2|x1)mα⇐1(x1)︸ ︷︷ ︸
π

. (31.124)

One can rewrite the left and right hand sides (LHS, RHS) of Eq.(31.124) as follows

RHS =
∑
x1

P (x2|x1)πα⇐1(x1) , (31.125)

and

LHS = mα⇒2(x2) = mβ⇐2(x2) = πβ⇐2(x2) , (31.126)

Therefore

πβ⇐2(x2)
∑
x1

P (x2|x1)πα⇐1(x1) . (31.127)

Once again, consider the BP-BB rule for traversing a leaf node. When traveling
to the right as in Fig.31.24 (b), it implies that

mα⇒1(x1)︸ ︷︷ ︸
λ

=
∑
x2

P (x2|x1)mα⇐2(x2)︸ ︷︷ ︸
π

. (31.128)

One can rewrite the left and right hand sides (LHS, RHS) of Eq.(31.128) as follows

RHS = =
∑
x2

P (x2|x1)πα⇐2(x2) (31.129)

=
∑
x2

P (x2|x1)λβ⇒2(x2) , (31.130)
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and

LHS = λα⇒1(x1) . (31.131)

Therefore,

λα⇒1(x1) =
∑
x2

P (x2|x1)λβ⇒2(x2) . (31.132)

Finally, note that Eq.(31.120) becomes

P (x2|ε) = N (!x2)mβ⇒2(x2)mα⇒2(x2) (31.133)

= N (!x2)mα⇐2(x2)mα⇒2(x2) (31.134)

= N (!x2)πα⇐2(x2)λα⇒2(x2) (31.135)

= N (!x2)P (x2|ε−)P (x2|ε+) (31.136)

and Eq.(31.121) becomes

P (x2, x1) = N (!x2, !x1)P (x2|x1)mα⇐1(x1)mα⇐2(x2) (31.137)

= N (!x2, !x1)P (x2|x1)πα⇐1(x1)πα⇐2(x2) . (31.138)

31.8.2 BP-BB and general BP agree on tree bnets.

It is instructive to compare the belief values (i.e., P (xi|ε)) obtained by applying the
general (i.e., polytree) BP and BP-BB algorithms to a tree bnet. Next we show that
both algorithms yield the same belief values.

Applying to the left panel of Fig.31.25 the BP-BB rule for traversing a root
node, we get

mα⇐x(x) =
∏
i

mβi⇒x(x) . (31.139)

Applying to the left panel of Fig.31.25 the BP-BB rule for traversing a leaf node, we
get

mα⇒a(a) = N (!a)
∑
x

mα⇐x(x)P (x|a) . (31.140)

Combining Eqs.(31.139) and (31.140), we get

mα⇒a(a) = N (!a)
∑
x

P (x|a)
∏
i

mβi⇒x(x) , (31.141)
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Figure 31.25: Subgraph of a tree bnet. This is the same as Fig.31.11, except that
here the yellow node has a single parent because this is a subgraph of a tree bnet, not
of an arbitrary bnet like Fig.31.11. The subgraph has been converted to a subgraph
of a bipartite bnet by inserting a collider leaf node, labeled by a Greek letter, at the
center of each edge of the tree bnet. Red arrows indicate the direction of message
info flow.

which can be rewritten as

λx⇒a(a) = N (!a)
∑
x

P (x|a)
∏
i

λbi⇒x(x)︸ ︷︷ ︸
λx(x)

. (31.142)

Eq.31.142 is just RULE 1 for general BP.
Applying to the right panel of Fig.31.25 the BP-BB rule for traversing a root

node, we get

mβi⇐x(x) = N (!x)mα⇒x(x)
∏
k 6=i

mβk⇒x(x) (31.143)

Applying to the right panel of Fig.31.25 the BP-BB rule for traversing a leaf node,
we get

mα⇒x(x) =
∑
a

P (x|a)mα⇐a(a) (31.144)

=
∑
a

P (x|a)πx⇐a(a) (31.145)

= πx(x) . (31.146)
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Combining Eqs.(31.143) and (31.146), we get

πbi⇐x(x) = N (!x)πx(x)
∏
k 6=i

λbk⇒x(x) . (31.147)

Eq.(31.147) is just RULE 2 of general BP.

31.9 BP-BB and sum-product decomposition

BP-BB yields what is often referred to as a sum-product decomposition. I don’t
like that name because it is unnecessarily confusing, and it fails to convey the recursive
nature6 of the decomposition. I prefer to call it a recursive sum of products
(RSOP) decomposition, and will call it so henceforth in this chapter.

Expressing the marginals of a bnet as RSOPs, which is what BP does, reduces
the complexity of the calculation. (i.e., the total number of additions and multiplica-
tions that need to be performed) That makes using the BP algo very advantageous.
For instance, consider a Markov chain xn−1 ← · · · ← x1 ← x0, where xi ∈ {0, 1, 2}
for all i. Note that if we calculate P (xn−1) as follows

P (xn−1) =

[∑
xn−2

P (xn−1|xn−2) . . .

[∑
x1

P (x2|x1)

[∑
x0

P (x1|x0)P (x0)

]]
. . .

]
,

(31.148)
we need to perform 2(n − 1) additions and 3(n − 1) multiplications. On the other
hand, if we calculate P (xn−1) as follows

P (xn−1) =
∑
xn−2

. . .
∑
x1

∑
x0

P (xn−1|xn−2) . . . P (x2|x1)P (x1|x0)P (x0) , (31.149)

we need to perform 3n − 1 additions and 3n(n− 1) multiplications.

6 By “recursive nature”, we mean bootstraped definitions that lead to nested sums. The recursive
nature of BP is evident from RULES 1 and 2 that define λ’s and π’s in terms of other λ’s and π’s.
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Chapter 32

Missing Data, Imputation

This chapter assumes that the reader has read some parts of Chapter 16 on the
Expectation Maximization (EM) algo and Chapter 29 on Markov Chain Monte Carlo
(MCMC).

h0 x0 x1 x2

1 NA 0 1 1
2 NA 0 0 0
3 NA 1 1 0
4 NA NA 1 NA
5 NA 0 NA 1
6 NA 0 0 1

h0 x0 x1 x2 m
1 NA 0 1 1 (0,0,0)
2 NA 0 0 0 (0,0,0)
3 NA 1 1 0 (0,0,0)

4 NA

0
0
1
1

1

0
1
0
1

(1,0,1)

5 NA 0
0
1

1 (0,1,0)

6 NA 0 0 1 (0,0,0)

Table 32.1: Left Table: Dataset with nsam = 6 and some missing entries, for
4 binary variables h0, x0, x1, x2. NA=not available. The h0 column is completely
missing because h0 is an unobserved latent variable. Right Table: All possibilities
for xi = NA cells of left table have been enumerated. A new column labeled m has
been added. mi = 1(xi is missing) for i = 0, 1, 2.

Suppose that you have compiled a dataset ~x = (x[σ])σ=0,1,...,nsam−1 where
x = (x0, x1, . . . , xnx−1) from a study or survey. It consists of nsam number of samples
(sample= row), and nx columns (each column is a different feature, or observation).
Suppose that some of the cells in this matrix are empty. Throwing away all the
incomplete rows is okay if the number of incomplete rows is much smaller than nsam.
If not, throwing them away would throw away a substantial amount of information
contained in all the filled cells in those incomplete rows, plus it might bias your
dataset. This chapter deals with how to fill those empty cells with plausible fake
data. A fancy name for this process is imputation. There is no unique way of
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fabricating fake data, but some fakes are better than others by some metrics. This
chapter will consider two popular ways (EM and MCMC) of filling those empty cells
with their “most likely” values based on the cells of the dataset that aren’t missing,
and also based on some bnet model that is expected to describe well the dataset.

Notation: ~a = (a[σ])σ=0,1,...,nsam−1, where nsam is the number of samples. Will
sometimes denote a[σ] by a[σ].

For concreteness, we will apply the concepts of this chapter to the dataset with
missing data given by Table 32.1.

32.1 Imputation via EM

We begin by augmenting Fig.16.1 (the first figure in Chapter 16) by adding to it
a new node ~m called the missingness variable. Recall that node θ represents
the unknown parameters, node ~x represents the observed variables, and node ~h
represents the latent variables. Both θ and ~h are hidden (i.e., unobserved). Fig.32.1
shows 3 popular ways of connecting node ~m to the other nodes in the graph Fig.16.1.

θ

���� ��
~m ~x ~hoo

θ

���� ��
~m ~xoo ~hoo

θ

���� ��
~m ~xoo ~hoogg

Seldom assumed MAR not-MAR (NMAR)

Figure 32.1: The left bnet is seldom assumed. The middle bnet is referred to as the
MAR (missing at random) assumption. The right bnet is referred to as the not-MAR
(NMAR) assumption.

From Fig.32.1, we have

P (~m|~x,~h, θ) =


P (~m|θ) Seldom assumed. Called missing-CAR (MCAR)
P (~m|~x, θ) MAR

P (~m|~x,~h, θ) not-MAR (NMAR)

.

(32.1)
For doing imputation via EM, we connect node ~m as shown in the middle bnet

(called MAR) of Fig.32.1.

For the example of Table 32.1, we have variables ~m,~x and ~h whose values
range over the following sets:

~x = (~x0, ~x1, ~x2)
~h = (~h0)
h0[σ] ∈ {0, 1},
xi[σ] ∈ {0, 1} for i = 0, 1, 2,
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m[0] x[0]oo h[0]oo

m[1] x[1]oo h[1]oo

m[2] x[2]oo h[2]oo

Figure 32.2: MAR bnet with nsam = 3.

m[0] x[0]oo h[0]oo = m[0] x0[0]oo

��

��

h[0]

||

��

oo

x1[0]

bb

��
x2[0]

YY

Figure 32.3: Our example for imputation via EM assumes this bnet between nodes
m[σ], x[σ], h[σ].

mi[σ] ∈ {0, 1} for i = 0, 1, 2.
For concreteness, we will assume that the Markov chain m[σ] ← x[σ] ← h[σ]

has a finer grained DAG structure given by Fig.32.3. where we will omit the dashed
arrows. If one doesn’t want to assume that the data can be fitted well by the bnet of
Fig.32.3 without the dashed arrows, one can include those arrows too, at the expense
of more unknown parameters (i.e., degrees of freedom) to be lumped into θ. We will
parmaterize the TPMs corresponding to Fig.32.3 using a Categorical Distribution for
each column of the TPMs. We will thus assume that the bnet of Fig.32.3 has the
following TPMs, printed in blue.

P (h
[σ]
0 |θ) = 1− θ0

1 θ0

(32.2)

P (x
[σ]
0 |θ) = 0 1− θ1

1 θ1

(32.3)
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P (x
[σ]
1 | x

[σ]
0 , h[σ], θ) =

00 01 10 11

0 1− θ2 1− θ3 1− θ4 1− θ5

1 θ2 θ3 θ4 θ5

(32.4)

P (x
[σ]
2 | x

[σ]
1 , x

[σ]
0 , θ) =

00 01 10 11

0 1− θ6 1− θ7 1− θ8 1− θ9

1 θ6 θ7 θ8 θ9

(32.5)

P (m[σ]|x[σ], θ) =
1

nsam
P ((xi)∀i3mi=1 | (xi)∀i3mi=0, θ) (32.6)

Eq.(32.6) can be illustrated as follows. In Table 32.2, we added a P (m) column
to Table 32.1.

h0 x0 x1 x2 m P (m)
1 NA 0 1 1 (0,0,0) 1

nsam

2 NA 0 0 0 (0,0,0) 1
nsam

3 NA 1 1 0 (0,0,0) 1
nsam

4 NA

0
0
1
1

1

0
1
0
1

(1,0,1)

1
nsam

P (x0 = 0, x2 = 0 | x1 = 1, θ)
1

nsam
P (x0 = 0, x2 = 1 | x1 = 1, θ)

1
nsam

P (x0 = 1, x2 = 0 | x1 = 1, θ)
1

nsam
P (x0 = 1, x2 = 1 | x1 = 1, θ)

5 NA 0
0
1

1 (0,1,0)
1

nsam
P (x1 = 0 | x0 = 0, x2 = 1, θ)

1
nsam

P (x1 = 1 | x0 = 0, x2 = 1, θ)
6 NA 0 0 1 (0,0,0) 1

nsam

Table 32.2: P (m) column added to Table 32.1. Note that
∑

m P (m) = 1.

θ = (θi)i=0,1,...,9 (32.7)

P (m[σ], x[σ], h[σ]|θ) = P (m[σ]|x[σ], θ)P (x[σ]|h[σ], θ)P (h[σ]|θ) (32.8)

P (x[σ]|h[σ], θ) = P (x
[σ]
2 |x

[σ]
1 , x

[σ]
0 , θ)P (x

[σ]
1 |x

[σ]
0 , h[σ], θ)P (x

[σ]
0 |θ) (32.9)

P (x
[σ]
1 |x

[σ]
0 , θ) =

∑
h

P (x
[σ]
1 |x

[σ]
0 , h[σ], θ)P (h[σ]|θ) (32.10)

P (x[σ]|θ) = P (x
[σ]
2 |x

[σ]
1 , x

[σ]
0 , θ)P (x

[σ]
1 |x

[σ]
0 , θ)P (x

[σ]
0 |θ) (32.11)
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Q(θ|θ(t)) =
∑
~m,~h

P (~m,~h | ~x, θ(t)) lnP (~m, ~x,~h|θ) (32.12)

=
∑
~m,~h

[∏
σ

P (m[σ], h[σ] | x[σ], θ(t))

]
ln

[∏
σ

P (m[σ], x[σ], h[σ]|θ)

]
(32.13)

=
∑
σ

∑
m[σ],h[σ]

P (m[σ], h[σ] | x[σ], θ(t)) lnP (m[σ], x[σ], h[σ]|θ) (32.14)

=
∑
σ

∑
m[σ],h[σ]

P (m[σ], h[σ], x[σ] | θ(t))

P (x[σ] | θ(t))
lnP (m[σ], x[σ], h[σ]|θ) (32.15)

Once you find optimal parameters θ∗ by recursing this Q(θ|θ(t)), you can eval-
uate numerically the P (m) column of Table 32.2. In Table 32.2, out of the 4 sub-rows
for row 4, choose the one with the highest probability. Similarly, out of the 2 sub-rows
for row 5, choose the one with the highest probability.

32.2 Imputation via MCMC

A simple and popular way to do inputation via MCMC is described in Ref.[37]. It
goes as follows.

Let
H[σ] = (h[σ],m[σ]) (32.16)

for σ = 0, 1, . . . , nsam−1. Initialize θ(0) to a random value within the allowed ranges.
Do the following 2 steps, for t = 0, 1, . . . , T − 1, where T is large enough that θ(t)

has reached a steady value that is independent of θ(0). To do the sampling, use a
standard sampling technique such as Gibbs sampling.

• STEP 1: For σ = 0, 1, . . . , nsam− 1, find a sample

(H [σ])(t+1) ∼ P (H [σ]|x[σ], θ(t)) . (32.17a)

• STEP 2: Find a sample
θ(t+1) ∼ P (t+1)(θ) (32.17b)

where

P (t+1)(θ) = N (!θ)P (~x, ~H(t+1)|θ) (32.17c)

= N (!θ)
∏
σ

P (x[σ], (H [σ])(t+1)|θ) . (32.17d)

Fig.32.4 illustrates this two step recursive process using a bnet.
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(3)

OO

~x

== 66 44

Figure 32.4: bnet illustrating Eqs.(32.17) for doing imputation via MCMC. The same
node ~x appears twice to make the graph clearer.

32.3 Multiple Imputations

Multiple imputations means calculating θ∗ (i.e., the optimum θ) and the concomi-

tant dataset ~x∗, ~H∗ , via any method (such as EM or MCMC), a large number of times,
starting from different, randomly chosen θ(0) initial parameters. Then calculating the
average and the variance of θ∗, ~x∗, ~H∗ and functions thereof.
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Chapter 33

Monty Hall Problem

c

��

y

��
m

Figure 33.1: Monty Hall Problem.

Mr. Monty Hall, host of the game show “Lets Make a Deal”, hides a car
behind one of three doors and a goat behind each of the other two. The contestant
picks Door No. 1, but before opening it, Mr. Hall opens Door No. 2 to reveal a goat.
Should the contestant stick with No. 1 or switch to No. 3?

The Monty Hall problem can be modeled by the bnet Fig.33.1, where

• c= the door behind which the car actually is.

• y= the door opened by you (the contestant), on your first selection.

• m= the door opened by Monty (game host)

We label the doors 1,2,3 so Sc = Sy = Sm = {1, 2, 3}.
Node matrices printed in blue:

P (c) =
1

3
for all c (33.1)

P (y) =
1

3
for all y (33.2)

P (m|c, y) = 1(m 6= c)

[
1

2
1(y = c) + 1(y 6= c)1(m 6= y)

]
(33.3)
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It’s easy to show that the above node probabilities imply that

P (c = 1|m = 2, y = 1) =
1

3
(33.4)

P (c = 3|m = 2, y = 1) =
2

3
(33.5)

So you are twice as likely to win if you switch your final selection to be the
door which is neither your first choice nor Monty’s choice.

The way I justify this to myself is: Monty gives you a piece of information. If
you don’t switch your choice, you are wasting that info, whereas if you switch, you
are using the info.
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Chapter 34

Naive Bayes

c

��   (( **x0 x1 x2 x3

Figure 34.1: bnet for Naive Bayes with 4 features

Class node c ∈ Sc. |Sc| = nc= number of classes.
Feature nodes xi ∈ Sxi for i = 0, 1, 2, . . . , F − 1. F=number of features.
Define

x. = [x0, x1, . . . , xF−1] . (34.1)

For the bnet of Fig.34.1,

P (c, x.) = P (c)
F−1∏
i=0

P (xi|c) . (34.2)

Given x. values, find most likely class c ∈ Sc.
Maximum a Posteriori (MAP) estimate:

c∗ = argmax
c

P (c|x.) (34.3)

= argmax
c

P (c, x.)

P (x.)
(34.4)

= argmax
c

P (c, x.) . (34.5)
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Chapter 35

Neural Networks

In this chapter, we discuss Neural Networks (NNs) of the feedforward kind, which
is the most popular kind. In their plain, vanilla form, NNs only have deterministic
nodes. But the nodes of a bnet can be deterministic too, because the TPM of a node
can reduce to a delta function. Hence, NNs should be expressible as bnets. We will
confirm this in this chapter.

Henceforth in this chapter, if we replace an index of an indexed quantity by a
dot, it will mean the collection of the indexed quantity for all values of that index.
For example, x. will mean the array of xi for all i.

x0

(( $$

��   ((

// x1

((

~~ ��   

// x2

vv ~~ ��

// x3

tt ww ��
h0

0

�� ��

h0
1

�� ��

h0
2

ww ��
h1

0

��   

h1
1

~~ ��
Y 0 Y 1

Figure 35.1: Neural Network (feed forward) with 4 layers: input layer x., 2 hidden
layers h0., h1. and output layer Y .

Consider Fig.35.1.
xi ∈ {0, 1} for i = 0, 1, 2, . . . , nx− 1 is the input layer.
hλi ∈ R for i = 0, 1, 2, . . . , nh(λ)−1 is the λ-th hidden layer. λ = 0, 1, 2, . . . ,Λ−

2. A NN is said to be deep if Λ > 2; i.e., if it has more than one hidden layer.
Y i ∈ R for i = 0, 1, 2, . . . , ny − 1 is the output layer. We use a upper case y

here because in the training phase, we will use pairs (x.[σ], y.[σ]) where yi[σ] ∈ {0, 1}
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for i = 0, 1, . . . , ny − 1. Y = ŷ is an estimate of y. Note that lower case y is either 0
or 1, but upper case y may be any real. Often, the activation functions are chosen so
that Y ∈ [0, 1].

The number of nodes in each layer and the number of layers are arbitrary.
Fig.35.1 is fully connected (aka dense), meaning that every node of a layer is impinged
arrow coming from every node of the preceding layer. Later on in this chapter, we
will discuss non-dense layers.

Let wλi|j, b
λ
i ∈ R be given, for i ∈ [0, nh(λ))Z, j ∈ [0, nh(λ − 1))Z, and λ ∈

[0,Λ)Z.
These are the TPMs, printed in blue, for the nodes of the bnet Fig.35.1:

P (xi | xi−1, xi−1, . . . , x0) = given (35.1)

P (hλi | hλ−1
. ) = δ

(
hλi ,Aλi (

∑
j

wλi|jh
λ−1
j + bλi )

)
, (35.2)

where P (h0
i |h−1) = P (h0

i |x).

P (Yi | hΛ−2
. ) = δ

(
Yi,AΛ−1

i (
∑
j

wΛ−1
i|j hΛ−2

j + bΛ−1
i )

)
. (35.3)

35.1 Activation Functions Aλi : R→ R
Activation functions must be nonlinear.

• Step function (Perceptron)

A(x) = 1(x > 0) (35.4)

Zero for x ≤ 0, one for x > 0.

• Sigmoid function

A(x) =
1

1 + e−x
= sig(x) (35.5)

Smooth, monotonically increasing function. sig(−∞) = 0,sig(0) = 0.5, sig(∞) =
1.
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sig(x) + sig(−x) =
1

1 + e−x
+

1

1 + ex
(35.6)

=
2 + ex + e−x

2 + ex + e−x
(35.7)

= 1 (35.8)

• Hyperbolic tangent

A(x) = tanh(x) =
ex − e−x

ex + e−x
(35.9)

Smooth, monotonically increasing function. tanh(−∞) = −1,tanh(0) = 0,
tanh(∞) = 1.

Odd function:
tanh(−x) = − tanh(x) (35.10)

Whereas sig(x) ∈ [0, 1], tanh(x) ∈ [−1, 1].

• ReLU (Rectified Linear Unit)

A(x) = x1(x > 0) = max(0, x) . (35.11)

Compare this to the step function.

• Swish
A(x) = x sig(x) (35.12)

• Softmax

A(xi|x.) =
exi∑
i e
xi

(35.13)

It’s called softmax because if we approximate the exponentials, both in the
numerator and denominator of Eq.(35.13), by the largest one, we get

A(xi|x.) ≈ 1(xi = max
k
xk) . (35.14)

The softmax definition implies that the bnet nodes within a softmax layer are
fully connected by arrows to form a “clique”.

For 2 nodes x0, x1,

A(x0|x.) =
ex0

ex0 + ex1
(35.15)

= sig(x0 − x1) , (35.16)

A(x1|x.) = sig(x1 − x0) . (35.17)
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35.2 Weight optimization via supervised training

and gradient descent

The bnet of Fig.35.1 is used for classification of a single data point x.. It assumes
that the weights wλi|j, b

λ
i are given.

To find the optimum weights via supervised training and gradient descent, one
uses the bnet Fig.35.2.

In Fig.35.2, the nodes in Fig.35.1 become sampling space vectors. For example,
x. becomes ~x., where the components of ~x. in sampling space are x.[σ] ∈ {0, 1}nx for
σ = 0, 1, . . . , nsam(~x)− 1.

nsam(~x) is the number of samples used to calculate the gradient during each
stage (aka iteration) of Fig.35.2. We will also refer to nsam(~x) as the mini-batch
size. A mini-batch is a subset of the training dataset.

To train a bnet with a data set (d-set), the standard procedure is to split the
d-set into 3 parts:

1. training d-set,

2. testing1 d-set, for tuning of hyperparameters like nsam(~x), Λ, and nunh(i)
for each i.

3. testing2 d-set, for measuring how well the model tuned with the testing1 d-set
performs.

The training d-set is itself split into mini-batches. An epoch is a pass through
all the training d-set.

Define
W λ
i|j = [wλi|j, b

λ
i ] . (35.18)

These are the TPMs, printed in blue, for the nodes of the bnet Fig.35.2:

P (x.[σ]) = given . (35.19)

P (y.[σ] | x.[σ]) = given . (35.20)

P (hλi [σ] | hλ−1
. [σ]) = δ

(
hλi [σ],Aλi (

∑
j

wλi|jh
λ−1
j [σ] + bλi )

)
(35.21)

P (Yi[σ] | hΛ−2
. [σ]) = δ

(
Yi[σ],AΛ−1

i (
∑
j

wΛ−1
i|j hΛ−2

j [σ] + bΛ−1
i )

)
(35.22)
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Figure 35.2: bnet for finding optimum weights of the bnet Fig.35.1 via supervised
training and gradient descent.

P (W .
.|.) = given (35.23)

The first time it is used, W .
.|. is arbitrary. After the first time, it is determined by

previous stage.

P (W λ
.|.|W .

.|.) = δ(W λ
.|., (W

.
.|.)

λ) (35.24)

P (E|~y., ~Y .) =
1

nsam(~x)

∑
σ

∑
i

d(yi[σ], Yi[σ]) , (35.25)

where

d(y, Y ) = |y − Y |2 . (35.26)

If y, Y ∈ [0, 1], one can use this instead

d(y, Y ) = XE(y → Y ) = −y lnY − (1− y) ln(1− Y ) . (35.27)

P ((W ′)λi|j|E ,W .
.|.) = δ((W ′)λi|j,W

λ
i|j − η∂Wλ

i|j
E) (35.28)

η > 0 is called the learning rate. This method of minimizing the error E is called
gradient descent. W ′ −W = ∆W = −η∂WE so ∆E = −1

η
(∆W )2 < 0.
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35.3 Non-dense layers

The TPM for a non-dense layer is of the form:

P (hλi [σ] | hλ−1
. [σ]) = δ(hλi [σ], Hλ

i [σ]) , (35.29)

where Hλ
i [σ] will be specified below for each type of non-dense layer.

• Dropout Layer

The dropout layer was invented in Ref.[35]. To dropout nodes from a fixed
layer λ: For all i of layer λ, define a new node rλi with an arrow rλi → hλi . For
r ∈ {0, 1}, and some p ∈ (0, 1), define

P (rλi = r) = [p]r[1− p]1−r (Bernouilli dist.) . (35.30)

Now one has

P (hλi [σ] | hλ−1
. [σ], rλi ) = δ(hλi [σ], Hλ

i [σ]) , (35.31)

where

Hλ
i [σ] = Aλi (rλi

∑
j

wλi|jh
λ−1
j [σ] + bλi ) . (35.32)

This reduces ovefitting. Overfitting might occur if the weights follow too closely
several similar minibatches. This dropout procedure adds a random component
to each minibatch making groups of similar minibatches less likely.

The random rλi nodes that induce dropout are only used in the training bnet
Fig.35.2, not in the classification bnet Fig.35.1. We prefer to remove the rλi
stochasticity from classification and for Fig.35.1 to act as an average over sam-
pling space of Fig.35.2. Therefore, if weights wλi|j are obtained for a dropout

layer λ in Fig.35.2, then that layer is used in Fig.35.1 with no rλi nodes but with
weights

〈
rλi
〉
wλi|j = pwλi|j.

Note that dropout adds non-deterministic nodes to a NN, which in their vanilla
form only have deterministic nodes.

• Convolutional Layer

• 1-dim

Filter function F : {0, 1, . . . , nf − 1} → R.

σ=stride length
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For i ∈ {0, 1, . . . , nh(λ)− 1}, let

Hλ
i [σ] =

nf−1∑
j=0

hλ−1
j+iσ[σ]F(j) . (35.33)

For the indices not to go out of bounds in Eq.(35.33), we must have

nh(λ− 1)− 1 = nf − 1 + (nh(λ)− 1)σ (35.34)

so

nh(λ) =
1

σ
[nh(λ− 1)− nf ] + 1 . (35.35)

• 2-dim

hλi [σ] becomes hλ(i,j)[σ]. Do 1-dim convolution along both i and j axes.

• Pooling Layers (MaxPool, AvgPool)

Here each node i of layer λ is impinged by arrows from a subset Pool(i) of the
set of all nodes of the previous layer λ − 1. Partition set {0, , 1, . . . , nh(λ −
1) − 1} into nh(λ) mutually disjoint, nonempty sets called Pool(i), where i ∈
{0, 1, . . . , nh(λ)− 1}.

• AvgPool

Hλ
i [σ] =

1

|Pool(i)|
∑

j∈Pool(i)

hλ−1
j [σ] (35.36)

• MaxPool
Hλ
i [σ] = max

j∈Pool(i)
hλ−1
j [σ] (35.37)

35.4 Autoencoder NN

If the sequence

nx, nh(0), nh(1), . . . , nh(Λ− 2), ny (35.38)

first decreases monotonically up to layer λmin, then increases monotonically until
ny = nx, then the NN is called an autoencoder NN. Autoencoders are useful for
unsupervised learning and feature reduction. In this case, Y estimates x. The layers
before layer λmin are called the encoder, and those after λmin are called the decoder.
Layer λmin is called the code.
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Chapter 36

Noisy-OR gate

The Noisy-OR gate was first proposed by Judea Pearl in his 1988 book Ref.[25].

x0

((

x1

��

x2

��

π0

��

π1

��

π2

��
λ // y

Figure 36.1: Noisy-OR gate y ∈ {0, 1} with n = 3, Boolean inputs (xi)i=0,1,2 and
parameters λ, (π)i=0,1,2.

Let
λ ∈ [0, 1] =gate leakage.
y ∈ {0, 1} = gate output
xn = (xi)i=0,1,...,n−1, where xi ∈ {0, 1} are gate inputs.
πn = (πi)i=0,1,...,n−1, where πi ∈ [0, 1] are gate parameters.
The TPM, printed in blue, for the Noisy-OR gate y shown in Fig.36.1, is

P (y = 1|xn, λ, πn) = 1− (1− λ)
∏
i

[1− πixi] (36.1)

P (y = 0|xn, λ, πn) = 1− P (y = 1|xn, λ, πn) (36.2)

Note that if λ = 0 and πi = 1 for all i, then this becomes a deterministic
OR-gate. Indeed,

P (y = 1|xn, λ = 0, πn = 1n) = 1−
∏
i

[1− xi] = ∨n−1
i=0 xi , (36.3)
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so

P (y|xn, λ = 0, πn = 1n) = δ(y,∨n−1
i=0 xi) . (36.4)

36.1 3 ways to interpret the parameters πi

1. Note that if λ = 0 and xn is one hot (i.e., xn = eni , where eni is the vector with
all components zero except for the i-th component which equals 1), then

P (y = 1|xn = eni , λ = 0, πn) = 1− [1− πi] = πi . (36.5)

This gives an interpretation to the parameters πi.

h0

��

h1

��

h2

��

x0

  

x1

��

x2

~~
A0

  

A1

��

A2

~~
λ // y

Figure 36.2: Fig.36.1 after replacing parameters (πi)i=0,1,2 by hidden nodes (hi)i=0,1,2.

2. Another way of interpreting the parameters πi is to associate each of them with
a hidden variable hi ∈ {0, 1} whose average equals πi. More precisely, consider
Fig.36.2.

Let xi, hi, Ai, y ∈ {0, 1}.
The TPMs, printed in blue, for the nodes of the bnet Fig.36.2, are as follows:

P (hi) = πiδ(hi, 1) + (1− πi)δ(hi, 0) (36.6)

P (Ai|hi, xi) = δ(Ai, hi ∧ xi) = δ(Ai, hixi) (36.7)
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P (y = 1|An) = 1− (1− λ) ∧n−1
i=0 Ai (36.8)

= 1− (1− λ)
∏
i

(1− Ai) (36.9)

P (y = 0|An) = 1− P (y = 1|An) (36.10)

Note that

P (y = 1|xn, λ) =
∑
hn

∑
An

[
1− (1− λ)

∏
i

(1− Ai)

]
[
∏
i

δ(Ai, hixi)]P (hn)

(36.11)

= Ehn

[
[1− (1− λ)

∏
i

(1− hixi)

]
. (36.12)

But

Ehi [hixi] =
∑
hi=0,1

P (hi)hixi = πixi (36.13)

so

P (y = 1|xn, λ) = 1− (1− λ)
∏
i

(1− πixi) . (36.14)
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Figure 36.3: Fig.36.2 after replacing the hidden nodes (hi)i=0,1,2 by vectors of samples

(~hi)i=0,1,2.
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3. Another way to interpret the parameters πi is to associate each of them with a
vector of samples ~hi whose average is πi. More precisely, consider Fig.36.3.

Suppose hi ∈ {0, 1} and define

Phi(hi) = πiδ(hi, 1) + (1− πi)δ(hi, 0) . (36.15)

Suppose ~hi = (hi[σ])s=0,1,...,nsam−1 and the Boolean samples hi[σ] ∈ {0, 1} are
i.i.d. with hi[σ] ∼ Phi for all σ.

Note that for each i, an estimate P̂hi(hi) of Phi(hi) can be obtained from the

vector of samples ~hi as follows:

P̂hi(hi) =
1

nsam

nsam−1∑
σ=0

1(hi[σ] = hi) . (36.16)

Let xi, hi[σ], Ai, y ∈ {0, 1}.
The TPMs, printed in blue, for the nodes of the bnet Fig.36.3, are as follows:

P (~hi) =
nsam−1∏
σ=0

Ph(hi[σ]) (36.17)

P (Ai | ~hi, xi) = δ(Ai,
1

nsam

∑
σ

hi[σ] ∧ xi) (36.18)

= δ(Ai, πixi) (36.19)

P (y = 1|An) = 1− (1− λ) ∧n−1
i=0 Ai (36.20)

= 1− (1− λ)
∏
i

(1− Ai) (36.21)

P (y = 0|An) = 1− P (y = 1|An) (36.22)

Note that

P (y = 1|xn, λ,~hn) =
∑
An

[
1− (1− λ)

∏
i

(1− Ai)

]∏
i

δ(Ai, πixi) (36.23)

= 1− (1− λ)
∏
i

(1− πixi) . (36.24)
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Chapter 37

Non-negative Matrix Factorization

Based on Ref.[74].
Given matrix V , factor it into product of two matrices

V = WH , (37.1)

where all 3 matrices have non-negative entries.
V ∈ Rnv×na

≥0 : visible info matrix

W ∈ Rnv×nh
≥0 : weight info matrix

H ∈ Rnh×na
≥0 : hidden info matrix

Usually, nv > nh < na so compression of information (aka dimensional reduc-
tion, clustering)

37.1 Bnet interpretation

Express node v as a chain of two nodes.

v aoo = w hoo aoo

Figure 37.1: B net interpretation of non-negative matrix factorization.

Node TPMs, printed in blue, for Fig.37.1.

P (v = w|a) =
Vw,a∑
w Vw,a

(37.2)

P (w|h) =
Ww,h∑
wWw,h

(37.3)
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P (h|a) =

∑
wWw,h∑
w Vw,a

Hh,a (37.4)

37.2 Simplest recursive algorithm

Initialize: Choose nh. Choose W (0) and H(0) that have non-negative entries.
Update: For n = 0, 1, . . . , do

H
(n+1)
i,j ← H

(n)
i,j

[(W (n))TV ]i,j

[(W (n))T W (n)H(n)︸ ︷︷ ︸
≈V

]i,j
(37.5)

and

W
(n+1)
i,j ← W

(n)
i,j

[V (H(n+1))T ]i,j

[W (n)H(n+1)︸ ︷︷ ︸
≈V

(H(n+1))T ]i,j
. (37.6)

After each step, record error defined by

E (n) =‖ V −W (n)H(n) ‖2 . (37.7)

Using 2-norm, aka Frobenius matrix norm. Continue until reach acceptable error.
Can also use Kullback-Lieber divergence for error:

E =
∑
a

P (a)DKL(P (v = w|a) ‖
∑
h

P (w|h)P (h|a)) , (37.8)

for some arbitrary choice of prior P (a). For example, can choose P (a) uniform.
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Chapter 38

Observational Equivalence of
DAGs

This chapter is based on Chapter 1 of Ref.[26] and on a blog post by Bruno Gonçalves
(Ref.[8]).

A probability distribution P is compatible with a DAG G if P and G
have the same random variables, and they can be combined to form a bnet without
contradictions; i.e., one can calculate all the TPMs from P and multiply them together
to obtain P again. Let

P(G) = {P : P is compatible with G} . (38.1)

Two DAGs G and G′ are observationally equivalent (OE) if P(G) =
P(G′). Hence, any total probability distribution that is compatible with one of them
is compatible with the other. For example, a→ b and a← b are OE because

P (a|b)P (b) = P (a, b) = P (b|a)P (a) . (38.2)

We’ll say two bnets are OE if their DAGs are OE.
Two DAGs G and G′ are d-separation equivalent if DS(G) = DS(G′). See

Chapter 14 for definition of DS(G).

Claim 24 Two DAGs are OE iff their DAGs are d-separation equivalent.

The skeleton of a DAG is its undelying undirected graph.
A v-structure in a DAG consists of two arrows converging to a node and

such that their tails are not connected by a third arrow. Fig.38.1 shows in red all the
v-structures of a particular DAG.

Claim 25 Observational Equivalence Theorem (by Verma and Pearl, 1990)
Two DAGs are OE iff they have the same skeletons and the same v-structures.
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z1

��

!!

z2

��

}}
z3

~~ !!
x // w // y

(a)

z1

��

!!

z2

��

}}
z3

~~   
x // w // y

(b)

z1

��

!!

z2

��

}}
z3

~~   
x // w // y

(c)

Figure 38.1: Example showing in red all v-structures of a particular DAG.

x1

}} !!
x2

!!

x3

}}
x4

��
x5

(a)

x1

!!
x2

!!

==

x3

}}
x4

��
x5

(b)

x1

}}
x2

!!

x3

}}

aa

x4

��
x5

(c)

Figure 38.2: These 3 DAGs are observational equivalent (OE).

38.1 Examples

The 3 DAGs in Fig.38.2 are OE. They form an equivalence class of OE DAGs that
represent the same probability distribution. This equivalence class of DAGs can be
represented by the partially directed graph Fig.38.3. These 3 DAGs can be proven to
be OE in the following 3 ways:

1. Write the generic probability distributions represented by the 3 DAGs, and
show that they are equal, as we did in Eq.38.2. That is the low brow way of
proving OE.

2. Use d-separation (see Chapter 14). Consider DAG (a) first. Rename the nodes
as τ j with j = 1, 2, . . . so that the names are in topological order (i.e., so that
the parents of τ j have indices that are smaller than j). The node names xj of
DAG (a) are already in topologigal order, so we skip this step for DAG (a).
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x1

x2

!!

x3

}}
x4

��
x5

(c)

Figure 38.3: This partially directed graph represents the 3 DAGs in Fig.38.2.

Now write down its total probability distribution and notice which parents of a
fully connected DAG were omitted.

P (x1, x2, x3, x4, x5) = P (x5|x4)︸ ︷︷ ︸
x3,x2,x1 omitted

P (x4|x3, x2)︸ ︷︷ ︸
x1 omitted

P (x3|x1)︸ ︷︷ ︸
x2 omitted

P (x2|x1)P (x1) (38.3)

The observations of which parents were omitted can be stated in d-separation
lingo as the following 3 orthogonality relations:1

x3 ⊥P x2 | x1 (38.4a)

x4 ⊥P x1 | x2, x3 (38.4b)

x5 ⊥P (x1, x2, x3) | x4 . (38.4c)

Going through the same procedure for the other 2 DAGs yields, for each of
them, an equivalent set of 3 orthogonality equations.2

This is enough to conclude that the 3 DAGs of Fig.38.2 are OE.

Note that Eqs.(38.4) encompass all that there is to say about the observability
of DAG (a). These 3 equations can be checked empirically to assess how well

1 Normally, if we had changed from the original node names to the τ j node names, these orthog-
onality relations would first be stated in terms of the τ j names, and we could translate them so that
they were stated in terms of the original node names. But for DAG (a) there was no need to use
the τ j names.

2 The xj node names are no longer in topological order for DAGs (b) and (c) so for them you
should go through the intermediate step of renaming the nodes τ j , and then, after obtaining the
orthogonality relations in terms of the τ j names, translating them back to the original xj names.
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the DAG fits the data. For example, one can do OLS (ordinary least squares)
regression x5 ∼ x1 +x2 +x3 +x4 on the data, i.e., try to fit x5 = β0 +

∑4
i=1 βixi

to the data, and find that, to a good approximation, β1 = β2 = β3 = 0.

3. Use the OE Theorem. All three DAGs have the same skeleton, and the same
single v-structure x2 → x4 ← x3.
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Chapter 39

Potential Outcomes

This chapter is based on Ref.[3], a book by Stephen Cunningham entitled “Causal
inference: the mixtape”.

The theory of potential outcomes (PO) was for the most part invented in a
seminal 1974 paper by Donald B. Rubin. Rubin has also made important extensions to
PO theory since 1974. However, he refuses to use Pearl’s causal DAGs to discuss PO
theory. Pearl has shown that PO theory can be substantially clarified and extended
by using the language of causal DAGs. The d-separation theorem that we discuss in
Chapter 14 is especially useful in this regard.

In this chapter, we stress the connection of PO theory to bnets, and, in partic-
ular, to the do and imagine operators defined in Chapter 9. Hence, before reading this
chapter, the reader is expected to have at least skimmed Chapter 9, so that he/she
understands the definition of do and imagine operators.

σ dσ yσ yσ(0) yσ(1)

Edith 0 5 5 .
Frank 0 7 7 .
George 0 8 8 .
Hank 0 10 10 .
Andy 1 10 . 10
Ben 1 5 . 5
Chad 1 16 . 16
Daniel 1 3 . 3

Table 39.1: PO dataset describing whether individual σ took a treatment dose (dσ =
1) or didn’t (dσ = 0). The treatment outcome is measured by the real number yσ.

Suppose a population of individuals σ = 0, 1, 2, . . . , nsam − 1 is given
(dσ = 1) or not given (dσ = 0) a treatment discrete drug dose dσ, and that
the treatment outcome (i.e., response) is measured by a real number yσ. Table
39.1 gives a possible PO dataset for this scenario. As you can see from that table,
each individual either takes a drug dose or doesn’t, but not both. PO theory can be
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viewed as a missing data (MD) problem. MD problems are discussed in Chapter
32. However, the PO MD problem is much more specialized than the generic MD
problems discussed in Chapter 32. In the PO MD problem, we can fill in the blank
cells by matching each individual that took the drug with another similar individual
that didn’t. We will have much more to say about this matching strategy later in
this chapter.

One can define similar individuals as individuals that have the same value for
nx features xσ = (xσi )i=0,1,...,nx−1. One can add to Table 39.1 nx extra columns giving
the value of the feature vector xσ for each individual. Members of a population with
the same xσ are referred to as a subpopulation or stratum (ie., layer).

In a randomized clinical trial (RCT) 1, the effect of the variable xσ on
the value of dσ is eliminated by randomizing the population and therefore making the
effect of xσ average out to zero. However, there are many situations in which carrying
out an RCT is not possible. PO theory is a way of predicting the result of an RCT
in situations where doing a real RCT is not physically possible.

In this chapter, xσ will be called the confounders. Implicit throughout this
chapter is the assumption that there are no unmeasured confounders. Because if
there are some unmeasured confounders, those can send secret messages that influence
the value that dσ takes. This would ruin the predictions of someone trying to predict
the results of an RCT without being privy to those secret messages. When there are
some unmeasured confounders, it might still be possible to predict the effect of
an RCT. This might be possible using instrumental variables. See Chapter 23 for a
discussion of instrumental variables.

39.1 G and Gden, bnets, the starting point bnets

In this chapter, we will abbreviate X[σ] = Xσ for X ∈ {d, x, y} and for σ =
{0, 1, 2, . . . , nsam− 1}.

For each individual (aka unit, sample) σ = 0, 1, 2, . . . nsam− 1, let:
dσ ∈ {0, 1}: treatment discrete drug dose, 1 if treated and 0 if untreated
yσ ∈ R: treatment potential outcome
xσ: column vector of treatment confounders (aka covariates, because they are

often used as covariates (i.e., independent variables) in linear regression.)
Consider bnets G and Gden in Fig.39.1. G reflects the language used in Ref.[3]

to discuss PO theory. And Gden reflects the language that Judea Pearl prefers to use
to discuss PO theory. Both languages are equivalent. To go from one language to
the other, one need only perform the following swaps, where u is the external noise
of the DEN bnet.

Xσ ↔ X(u) for X ∈ {d, x, y}.
1The term A/B test is often used to mean a RCT where A anb B are the treated and con-

trol groups. However, sometimes the term is used to refer to an experiment that conditions on
confounders, which violates the definition of a RCT, and is the same as a PO test.
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x[σ]

}} !!
d[σ] // y[σ]

ud

��

ux

��

uy

��

x

~~   
d // y

G Gden

Figure 39.1: Bnets G and Gden are our starting point in discussing PO theory. G is
for a single individual σ of the population. Bnet Gden is the DEN counterpart to G.
DEN (Deterministic with External Noise) bnets are discussed in Chapter 27.

P (σ) = 1
nsam

↔ P (u)∑
σ P (σ)(·)↔

∑
u P (u)(·)

The TPMs, printed in blue, for the bnet G in Fig.39.1, are as follows:

P (xσ) = Px(x
σ) (39.1)

P (dσ|xσ) = Pd|x(d
σ|xσ) (39.2)

P (yσ|xσ, dσ) = Py|x,d(y
σ|xσ, dσ) (39.3)

Now let:
d ∈ {0, 1}: treatment discrete drug dose, 1 if treated and 0 if untreated
y ∈ R: treatment potential outcome
x: column vector of treatment confounders (aka covariates)
u = (ud, ux, uy): external noise

The TPMs, printed in blue, for the bnet Gden in Fig.39.1, are as follows:

P (x|ux) = 1( x = ux ) (39.4)

P (d|x, ud) = 1( d = fd(x, ud) ) (39.5)

P (y|d, x, uy) = 1( y = fy(d, x, uy) ) (39.6)
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If we linearize fy in Eq.(39.6), we get

y = δd+ βx+ uy , (39.7)

where δ, β ∈ R. Assuming that x, y ∈ R and d ∈ {0, 1}, Eq.(39.7) can be plotted.
The resulting plot is given in Fig.39.2. This plot is a very special case of the PO
problem, but it gives a crude idea of the “effects” δ = y(1) − y(0) that PO theory
gives estimates for. Any individual participating in the experiment experiences either
y(1) or y(0), but not both.

Figure 39.2: Plot of Eq.(39.7)

39.2 Gdo+ bnet

xσ

����
dσ // yσ

xσ

��
ρdσ = d̃σ // yσ

xσ

��
ρdσ // yσ

G Gdo = ρdσ(d̃σ)G Gdo+

Figure 39.3: Bnet Gdo = ρdσ(d̃σ)G is obtained by applying the do operator to node

dσ of bnet G. Bnet Gdo+ is obtained by adding a prior probability distribution P (d̃σ)
to node ρdσ of bnet Gdo.

Fig.39.3 shows how bnet Gdo is obtained by applying the do operator to bnet
G, and how bnet Gdo+ is obtained by adding a prior probability distribution to one
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of the nodes of Gdo. In bnet Gdo, node dσ has been stripped of all outside influences
and fixed to a specific state d̃σ. This is what an RCT does.

The TPMs, printed in blue, for the bnets Gdo and Gdo+, are as follows. Note
that the TPMs for bnets Gdo and Gdo+ are defined in terms of the TPMs of bnet G.

P (xσ) = Px(x
σ) (39.8)

Pρd(d) =
∑
x

Pd|x(d|x)Px(x) (39.9)

P (d̃σ) =

{
δ(d̃σ, (d̃σ)′) for Gdo

Pρd(d̃
σ) for Gdo+

(39.10)

P (yσ|xσ, d̃σ) = Py|x,d(y
σ|xσ, d̃σ) (39.11)

It is convenient to define the following expected values of yσ in terms of the
TPMs of bnet Gdo+:

Y|d̃,x = Eσ|d̃,x[y
σ]→ Ey|d̃,x[y] =

∑
y

yP (y|d̃, x) (39.12)

Y|d̃ = Eσ|d̃[y
σ]→ Ey|d̃[y] =

∑
x

Y|d̃,xP (x) (39.13)

Y|x = Eσ|x[y
σ]→ Ey|x[y] =

∑
d̃

Y|d̃,xP (d̃) (39.14)

Y = Eσ[yσ]→ Ey[y] =
∑
d̃,x

Y|d̃,xPd|x(d̃|x)P (x) (39.15)

39.3 Gim+ bnet

Fig.39.4 shows how bnet Gim is obtained by applying an imagine operator to bnet G,
and how bnet Gim+ is obtained by adding a prior probability distribution to one of
the nodes of Gim. d ∈ {0, 1} represents the dose that a patient is told to take by a
doctor, and d̃ ∈ {0, 1} represents the dose he actually takes. If d = d̃, the patient is
compliant, and if d 6= d̃, he is non-compliant.

The TPMs, printed in blue, for the nodes of bnets Gim and Gim+, are as
follows. Note that the TPMs for bnets Gim and Gim+ are defined in terms of the
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xσ

�� ��
dσ // yσ

xσ

{{ ##
dσ d̃

σ
= d̃σ // yσ

xσ

�� ��
dσ d̃

σ // yσ

G Gim = κdσ→yσ(d̃σ)G Gim+

Figure 39.4: Bnet Gim = κdσ→yσ(d̃σ)G is obtained by applying the imagine operator
to arrow dσ → yσ of bnet G. Bnet Gim+ is obtained by adding a prior probability

distribution P (d̃σ) to node d̃
σ

of bnet Gim.

TPMs of bnet G. Note that the prior P (d̃) is not arbitrary; it’s calculated from the
TPMs of bnet G.

P (xσ) = Px(x
σ) (39.16)

P (dσ|xσ) = Pd|x(d
σ|xσ) (39.17)

πd̃ = P (d̃) =
∑
x

Pd|x(d̃|x)Px(x) (39.18)

P (d̃σ) =

{
δ(d̃σ, (d̃σ)′) for Gim

πd̃σ for Gim+
(39.19)

P (yσ|xσ, d̃σ) = Py|x,d(y
σ|xσ, d̃σ) (39.20)

39.4 Gim+ bnet with nodes yσ(0), yσ(1) added to it.

Consider Fig.39.5, which was obtained by adding two new nodes yσ(0) and yσ(1) to
bnets Gim and Gim+ in Fig.39.4. The TPMs, printed in blue, for bnets Gim and Gim+,
are as follows. Note that we define them in terms of the TPMs for bnet G.

P (xσ) = Px(x
σ) (39.21)

P (dσ|xσ) = Pd|x(d
σ|xσ) (39.22)
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xσ

�� ��
dσ // yσ

xσ

��

�� $$
yσ(0)
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yσ(1)

��
dσ d̃

σ
= d̃σ //

OO ::

yσ

xσ

��

�� ##
yσ(0)

""

yσ(1)

��
dσ d̃

σ //

OO <<

yσ

G Gim = κdσ→yσ(d̃σ)G Gim+

Figure 39.5: Fig.39.4 with two new nodes yσ(0) and yσ(1) added to bnets Gim and
Gim+.

πd̃ = P (d̃) =
∑
x

Pd|x(d̃|x)Px(x) (39.23)

P (d̃σ) =

{
δ(d̃σ, (d̃σ)′) for Gim

πd̃σ for Gim+
(39.24)

P (yσ(0)|d̃σ, xσ) = Py(0)|d̃,x(y
σ(0)|d̃σ, xσ) (39.25)

P (yσ(1)|d̃σ, xσ) = Py(1)|d̃,x(y
σ(1)|d̃σ, xσ) (39.26)

P (yσ|yσ(0), yσ(1), d̃σ) = = 1(yσ = d̃σyσ(1) + (1− d̃σ)yσ(0)) (39.27)

= 1(yσ = yσ(d̃σ)) (39.28)

For this bnet, the following is true:

P (yσ|d̃σ, xσ) =
∑
yσ(0)

∑
yσ(1)

1(yσ = yσ(d̃σ))P (yσ(0)|d̃σ, xσ)P (yσ(1)|d̃σ, xσ) (39.29)

=

{
Py(0)|d̃,x(y

σ|d̃σ, xσ) if d̃σ = 0

Py(1)|d̃,x(y
σ|d̃σ, xσ) if d̃σ = 1

. (39.30)

Note that Py(0)|d̃,x and Py(1)|d̃,x are possibly different functions and that Py|d̃,x is defined

in terms of both of them. Eq.39.30 implies that for this bnet,
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yσ = 1(d̃s = 1)yσ(1) + 1(d̃s = 0)yσ(0) (39.31)

= d̃σyσ(1) + (1− d̃s)yσ(0) (39.32)

= yσ(d̃σ) (39.33)

These are all different ways of saying the same thing.
It is convenient to define the following expected values of yσ in terms of the

TPMs of bnet Gim+:

Yd|d̃,x = Eσ|d̃,x[y
σ(d)]→ Ey|d̃,x[y(d)] =

∑
y

P (y(d̃)|d̃, x)y(d̃) (39.34)

Yd|d̃ = Eσ|d̃[y
σ(d)]→ Ey|d̃[y(d)] =

∑
x

Yd|d̃,xP (x) (39.35)

Yd|x = Eσ|x[y
σ(d)]→ Ey|x[y(d)] =

∑
d̃

Yd|d̃,xP (d̃) (39.36)

Yd = Eσ[yσ(d)]→ Ey[y(d)] =
∑
d̃,x

Yd|d̃,xPd|x(d̃|x)P (x) (39.37)

Y0|0,Y1|1 are said to be factual (indicating compliant patients) whereas Y0|1,Y1|0
are said to be counterfactual (indicating non-compliant patients).

39.5 Conditional Independence Assumption

The Conditional Independence Assumption (CIA) is said to hold if

(yσ(0), yσ(1), yσ, d̃
σ
) ⊥P dσ|xσ . (39.38)

This is satisfied by Gim. To prove this, check that

(yσ(0), y(1), yσ, d̃
σ
) ⊥Gim dσ|xσ (39.39)

and then invoke the d-separation theorem (see Chapter 14).
Note that the following are also true

(yσ(0), y(1)) ⊥Gim d̃
σ|xσ (39.40)

(yσ(0), y(1)) ⊥Gim d̃
σ

(39.41)
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by the d-separation theorem, because yσ acts as a collider on all paths from yσ(d) to

d̃
σ

for d ∈ {0, 1}. However,

yσ ⊥Gim d̃
σ|xσ is FALSE. (39.42)

Note that even though CIA means d̃
σ ⊥Gim dσ|xσ, this does not mean that

Yd|d̃,x = Yd|x. The reason is that Yd|d̃,x = E|d̃σ=d̃,x[y
σ(d)] so Yd|d̃,x = Yd|x if yσ(d) ⊥Gim

d̃
σ|xσ, which is false. It is possible for Yd|d̃,x = Yd|x to be true. We discuss that

situation in Section 39.9.

39.6 Y|d̃,x and Gdo

Note that Yd|x and Y|d̃,x are not the same thing.

Yd|x = E|x[y(d)] (39.43)

whereas

Y|d̃,x = E|d̃,x[y] . (39.44)

Claim 26
Y|d̃,x = Yd̃|d̃,x (39.45)

proof:

Yd̃|d̃,x = d̃Y1|d̃,x + (1− d̃)Y0|d̃,x (39.46)

= d̃E|d̃,x[y(1)] + (1− d̃)E|d̃,x[y(0)] (39.47)

= E|d̃,x[d̃y(1)] + (1− d̃)y(0)] (39.48)

= E|d̃,x[y] (39.49)

= Y|d̃,x (39.50)

QED
Y|d̃,x is connected to the do operator as follows.

Y|d̃,x =
∑
y

yP (y = y|ρd = d̃, x = x) , (39.51)

where

P (y = y|ρd = d̃, x = x) = P (y|d̃, x) . (39.52)

In particular, when y is binary (i.e., y ∈ {0, 1}), Eq.(39.51) becomes

Y|d̃,x = P (y = 1|ρd = d̃, x = x) . (39.53)
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39.7 Translation Dictionary

In standard PO notation In our notation (for Gim or Gim+)

i, individual (i.e., unit, sample) index σ

Di = di, treatment dose dσ = dσ

Yi = yi, treatment outcome yσ = yσ

Xi = xi, treatment confounders xσ = xσ

E[Yi(d)] Eσ[yσ(d)] = Yd
E[Yi|Di = d̃] Eσ|d̃[y

σ] = Y|d̃
E[Yi(d)|Di = d̃] Eσ|d̃[y

σ(d)] = Yd|d̃
E[Yi(d)|Di = d̃, Xi = x] Eσ|d̃,x[y

σ(d)] = Yd|d̃,x

Table 39.2: Dictionary for translating from standard PO notation of Ref.[3] to our
notation.

Table 39.2 gives a dictionary for translating from the standard PO notation
of Ref.[3] to our notation. d, d̃ ∈ {0, 1}. I find the standard PO notation confusing
because it often uses Di to represent two different nodes, dσ and d̃

σ
in Gim+. This

confusion becomes particularly distressing when we are told in PO notation that

Yi(d) = dYi(1) + (1− d)Yi(0) , (39.54)

and

E
[
Yi(d)|Di = d̃, Xi = x

]
= Yd|d̃,x . (39.55)

In our notation, this is saying that

yσ(d) = dyσ(1) + (1− d)yσ(0) , (39.56)

and

Eσ|d̃σ=d̃,xσ=x[y
σ(d)] = Yd|d̃,x . (39.57)

39.8 Yd|d̃ differences (aka treatment effects)

It is convenient to define the following treatment effects. See Fig.39.6. Note that
we use the word “effect” to refer to a difference of two Yd|d̃.
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Figure 39.6: Different treatment effects. An effect is a difference of two Yd|d̃.

• average controlled causal effect (ACE), used when doing an RCT.

ACE = Y|1 − Y|0 = Y1|1 − Y0|0 = SDO (39.58)

• average treatment effect2 (ATE).

ATE = Y1 − Y0 = δ (39.59)

• average treatment effect of the treated (ATT)

ATT = Y1|1 − Y0|1 (39.60)

• average treatment effect of the untreated (ATU)

ATU = Y1|0 − Y0|0 (39.61)

• selection bias (SB)
SB = Y0|1 − Y0|0 (39.62)

• simple difference in outcomes (SDO)

SDO = Y1|1 − Y0|0 (39.63)

Note that some of these effects are linearly related

Y1 − Y0︸ ︷︷ ︸
ATE

= (Y1|1 − Y0|1)︸ ︷︷ ︸
ATT

π1 + (Y1|0 − Y0|0)︸ ︷︷ ︸
ATU

π0 (39.64)

Y1|1 − Y0|0︸ ︷︷ ︸
SDO

= (Y1|1 − Y0|1)︸ ︷︷ ︸
ATT

+Y0|1 − Y0|0︸ ︷︷ ︸
SB

(39.65)

2 Note that effects in which d̃ varies are called “controlled”, whereas those in which d varies
instead, are called simply “treatments”. y is averaged over in both cases.
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Y1|1 − Y0|0︸ ︷︷ ︸
SDO

= (Y1|1 − Y0|1)π1 + (Y1|0 − Y0|0)π0︸ ︷︷ ︸
ATE

(39.66)

+Y0|1 − Y0|0︸ ︷︷ ︸
SB

(39.67)

+ (Y1|1 − Y0|1)︸ ︷︷ ︸
ATT

π0 (39.68)

− (Y1|0 − Y0|0)︸ ︷︷ ︸
ATU

π0 (39.69)

Let E ∈ {ACE,ATE,ATT,ATU, SDO, SB}. E can be defined for a fixed
stratum x by replacing Yd|d̃ with Yd|d̃,x. We will denote such an extension by E|x,
or, sometimes, simply by E . ATE|x is sometimes called the Conditional Average
Treatment Effect (CATE). We will use the term ATE to refer to CATE too.3

39.9 Zero ACE, Y1|0 = Y1

Figure 39.7: Figure 39.6 with added information about probability distributions used
to obtain each expected value Yd|d̃.

SDO = 0 is the hypothesis tested by a Randomized Control Trial (RCT). But
some people test for ATE = 0 instead.

1. Is it possible for SDO = 0 but ATE 6= 0 or vice versa, and what is going on
when this is true?

2. What is going on when two treatment effects are equal; for instance, when
ATT = ATU?

3Careful: We define ATE|x = ATT|xPd|x(1|x) + ATU|xPd|x(0|x). Therefore, ATE|x 6=
ATT|xPd(1) +ATU|xPd(0).
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3. When is Y1|0 = Y1, and what is going on when this is true?

Fig.39.7 gives some intuition about what is going on when any of these things happen.
Recall that each expected value Y has a probability distribution P .

Yd|d̃,x =
∑
y

yPy(d)|d̃,x(y|d̃, x) (39.70)

for d, d̃ ∈ {0, 1}. Fig.39.7 reminds us of which P is used to generate each Y . From
this figure, we see that

1. A sufficient condition for SDO = 0 is that Py(1)|d̃=1,x = Py(0)|d̃=0,x. Since ATE =

0 iff ATT = ATU = 0, a sufficient condition for ATE = 0 is that Py(1)|d̃=0,x =

Py(0)|d̃=0,x and Py(1)|d̃=1,x = Py(0)|d̃=1,x.

2. A sufficient condition for ATT = ATU is that Py(1)|d̃=0,x − Py(0)|d̃=0,x equals

Py(1)|d̃=1,x − Py(0)|d̃=1,x.

3. If we assume that all yσ > 0, Y1|0 = Y1 iff Py(1)|d̃=0,x = Py(1)|x.

SDO = 0 depends on two corners of the square whereas Y1|0 = Y1 depends on just
one corner.

39.10 (SDO,ATE) space

If we substitute yσ → yσ(d̃σ) and ys(σ) → yσ(!d̃σ), where !0 = 1 and !1 = 0, into the
estimator Eq.(39.81) for ATE and the estimator Eq.(39.87) for SDO, we get

ÂTE =
1

Nx

∑
σ∈Ax

(2d̃σ − 1)[yσ(d̃σ)− yσ(!d̃σ)] (39.71)

=
1

Nx

∑
σ∈Ax

[yσ(1)− yσ(0)] (39.72)

and

ŜDO =
1

N1,x

∑
σ∈Ax

d̃σyσ(d̃σ)− 1

N0,x

∑
σ∈Ax

(1− d̃σ)yσ(d̃σ) (39.73)

=
1

N1,x

∑
σ∈A1,x

yσ(1)− 1

N0,x

∑
σ∈A0,x

yσ(0) . (39.74)

SDO = 0 is the hypothesis tested by a Randomized Clinical Trial (RTC).
Suppose that the treatment outcome yσ has only two possible values, 0 and

1. Then, −1 ≤ ATE ≤ 1 and −1 ≤ SDO ≤ 1. But does ATE = 0 imply SDO = 0
or vice versa? Next, we answer that question and more by finding the region of
accessibility in the (SDO,ATE) plane, assuming yσ ∈ {0, 1}.
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σ d̃σ yσ(0) yσ(1)
1 0 1 0
2 0 1 0
3 0 1 0
4 1 1 0
5 1 1 0
6 1 1 0

(a) ATE = −1 (SDO = −1)
point A

σ d̃σ yσ(0) yσ(1)
1 0 0 1
2 0 0 1
3 0 0 1
4 1 0 0
5 1 0 0
6 1 0 0

(b) ATE = 1
2 (SDO = 0)

point B

σ d̃σ yσ(0) yσ(1)
1 0 0 1
2 0 0 1
3 0 0 1
4 1 0 1
5 1 0 1
6 1 0 1

(c) ATE = 1 (SDO = 1)
point C

Figure 39.8: Examples of PO datasets. Exploring ATE extremes.

σ d̃σ yσ(0) yσ(1)
1 0 1 1
2 0 1 1
3 0 1 1
4 1 0 0
5 1 0 0
6 1 0 0

(a) SDO = −1 (ATE = 0)
point D

σ d̃σ yσ(0) yσ(1)
1 0 1 0
2 0 1 0
3 0 1 0
4 1 1 1
5 1 1 1
6 1 1 1

(b) SDO = 0 (ATE = − 1
2 )

point E

σ d̃σ yσ(0) yσ(1)
1 0 0 0
2 0 0 0
3 0 0 0
4 1 1 1
5 1 1 1
6 1 1 1

(c) SDO = 1 (ATE = 0)
point F

Figure 39.9: Examples of PO datasets. Exploring SDO extremes.

Figure 39.10: Green parallelogram is accessible region in (SDO,ATE) plane, assum-
ing yσ ∈ {0, 1}. Each of the six points A, B, . . . F corresponds to one of the six tables
in Figs. 39.8 and 39.9. Point C is ideal. The segment BE is the set of accessible
points with zero effect in an RCT.
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39.11 Matching Strata

For a situation described by the bnet Gim+, we can match similar individuals to fill
the blank cells of Table 39.1. By “similar”, we mean that they have the same or
almost the same value of xσ.

IMPORTANT: Matching only makes sense if the individuals are treatment
blind (i.e., have no knowledge of whether they are in the treated or control groups.)

39.11.1 Exact strata-match

For d̃ ∈ {0, 1} and all strata x, define the sets of individuals Ad̃,x = {σ : d̃σ = d̃, xσ =
x}, Ax = A0,x ∪ A1,x and A = ∪xAx. Let Nd,x = |Ad,x|, Nx = |Ax| and N = |A|.

In an exact strata-match, we match each individual with d̃σ = 1, xσ = x with
exactly one individual with d̃σ = 0, xσ = x and vice versa. Define a map s : A → A
such that, for each x, s(A0,x) ⊂ A1,x and s(A1,x) ⊂ A0,x. This assumes A0,x and A1,x

are non-empty for all x. The purpose of map s() is to fill in the missing data in the
PO dataset. See Fig.39.3 for a pictorial representation of this.

yσ(0) yσ(1)

d̃σ = 0 yσ ys(σ)

d̃σ = 1 ys(σ) yσ

Table 39.3: Illustration of the purpose of the map s(). Note that yσ = yσ(d̃σ) and
ys(σ) = yσ(!d̃σ), where !0 = 1 and !1 = 0.

Note that

E|x[d̃
σ
yσ] 6= E|x[d̃

σ
] E|x[y

σ] (39.75)

but
E|x[d

σyσ] = E|x[d
σ] E|x[y

σ] (39.76)

because, by d-separation, at fixed x, yσ and d̃
σ

are not independent but yσ and dσ

are. Table 39.4 evaluates various expected values of the type E|x[d̃
σ
yσ].

Recall that

ACE = SDO (39.77a)

ATE = ATT Pd|x(1|x) + ATU Pd|x(0|x) (39.77b)

ATT = Y1|1,x − Y0|1,x (39.77c)

ATU = Y1|0,x − Y0|0,x (39.77d)
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yσ(0) yσ(1)

d̃σ = 0
E|x[(1− d̃

σ
)yσ] = E[1− d̃σ]Y0|0,x

E|x

[
1

N0,x

∑
σ∈Ax(1− d̃

σ
)yσ
]

= Y0|0,x

E|x[(1− d̃
σ
)ys(σ)] = E[1− d̃σ]Y1|0,x

E|x

[
1

N0,x

∑
σ∈Ax(1− d̃

σ
)ys(σ)

]
= Y1|0,x

d̃σ = 1
E|x[d̃

σ
yσ] = E[d̃

s(σ)
]Y0|1,x

E|x

[
1

N1,x

∑
σ∈Ax d̃

σ
ys(σ)

]
= Y0|1,x

E|x[d̃
σ
yσ] = E[d̃

σ
]Y1|1,x

E|x

[
1

N1,x

∑
σ∈Ax d̃

σ
yσ
]

= Y1|1,x

Table 39.4: Expected Values of the type E|x[d̃
σ
yσ].

SB = Y0|1,x − Y0|0,x (39.77e)

SDO = Y1|1,x − Y0|0,x (39.77f)

Eqs.(39.77) can be estimated from the data via the following estimators.

ÂCE = ŜDO (39.78)

ÂTE =
1

Nx

[ÂTTN1,x + ÂTUN0,x] (39.79)

=
1

Nx

[∑
σ∈Ax

d̃σ[yσ − ys(σ)] +
∑
σ∈Ax

(1− d̃σ)[ys(σ) − yσ]

]
(39.80)

=
1

Nx

∑
σ∈Ax

(2d̃σ − 1)[yσ − ys(σ)] (39.81)

ÂTT =

Y1|1,x︷ ︸︸ ︷
1

N1,x

∑
σ∈Ax

d̃σyσ−

Y0|1,x︷ ︸︸ ︷
1

N1,x

∑
σ∈Ax

d̃σys(σ) (39.82)

=
1

N1,x

∑
σ∈Ax

d̃σ[yσ − ys(σ)] (39.83)

ÂTU =

Y1|0,x︷ ︸︸ ︷
1

N0,x

∑
σ∈Ax

(1− d̃σ)ys(σ)−

Y0|0,x︷ ︸︸ ︷
1

N0,x

∑
σ∈Ax

(1− d̃σ)yσ (39.84)

=
1

N0,x

∑
σ∈Ax

(1− d̃σ)[ys(σ) − yσ] (39.85)
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ŜB =

Y0|1,x︷ ︸︸ ︷
1

N1,x

∑
σ∈Ax

d̃σys(σ)−

Y0|0,x︷ ︸︸ ︷
1

N0,x

∑
σ∈Ax

(1− d̃σ)yσ (39.86)

ŜDO =

Y1|1,x︷ ︸︸ ︷
1

N1,x

∑
σ∈Ax

d̃σyσ−

Y0|0,x︷ ︸︸ ︷
1

N0,x

∑
σ∈Ax

(1− d̃σ)yσ (39.87)

We’ve said before that strata matching makes no sense unless every individual
is treatment blind. This means that if the individuals are not treatment blind, the
above estimators for ATE,ATT,ATU, SB are invalid because they depend on s().
Only the estimator for SDO is valid because it doesn’t depend on s().

Let

gd(x) = Pd|x(d|x) (39.88)

for d ∈ {0, 1}. Note that g0(x) + g1(x) = 1. g1(x) is called the propensity score.
One can do propensity weighting within the above estimators to improve their
behavior. This is done by making the following replacements.

N1,x → Nxg1(xσ) , N0,x → Nxg0(xσ) . (39.89)

These replacements are equal under
∑

σ∈Ax to the terms they replace.

Example, calculation of estimators for a treatment

For σ ∈ {1, 2, . . . , 10}, define

s(σ) =

{
σ + 5 if σ ≤ 5
σ − 5 if σ > 5

(39.90)

LetN(S) be the number of individuals σ that satisfy condition S. For example,
N(d̃σ = d̃) is the number of individuals such that d̃σ = d̃.

N1 = N(d̃σ = 1) = 5 (39.91)

N0 = N(d̃σ = 0) = 5 (39.92)

N = N0 +N1 = 10 (39.93)

Y1|1 =
1

N1

∑
σ

d̃σyσ =
4

5
(39.94)
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σ d̃σ yσ d̃σyσ (1− d̃σ)yσ d̃σys(σ) (1− d̃σ)ys(σ)

1 0 0 0 0 0 0

2 0 0 0 0 0 1

3 0 1 0 1 0 1

4 0 1 0 1 0 1

5 0 1 0 1 0 1

6 1 0 0 0 0 0

7 1 1 1 0 0 0

8 1 1 1 0 1 0

9 1 1 1 0 1 0

10 1 1 1 0 1 0

Table 39.5: Estimators of treatment effects are calculated for this example.

N(d̃, y) y = 0 y = 1

d̃ = 0 2 3

d̃ = 1 1 4

Table 39.6: N(d̃σ = d, yσ = y) for the data in Table 39.5.

Y0|0 =
1

N0

∑
σ

(1− d̃σ)yσ =
3

5
(39.95)

Y0|1 =
1

N1

∑
σ

d̃σys(σ) =
3

5
(39.96)

Y1|0 =
1

N0

∑
σ

(1− d̃σ)ys(σ) =
4

5
(39.97)

ATT = Y1|1 − Y0|1 =
1

5
(39.98)

ATE = ATT = ATU = SDO =
1

5
, SB = 0 (39.99)

This example is unusual in that it has a single stratum x, and for that stratum,
the treated and untreated populations are balanced (of equal size). Also, the map
s() is 1-1 onto. If, for instance, s(σ) = 6 for all σ ∈ A0 and s(σ) = 5 for σ ∈ A1, then
ATE,ATT,ATU, SDO would not all be same, and SB would not be zero. In fact,
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whenever there is a single balanced stratum and the map s() is 1-1 onto, Eq.39.99
can be proven to be true using the methods of section 39.9.

39.11.2 Approximate strata-match

It is very often the case that one can’t find for a given individual σ another individual
that has opposite dσ but exactly the same value of xσ. In such cases, one can discard
all matchless individuals. But that would entail a loss of precious information. Instead
of discarding orphans, a better way is to relax our demands and match individual σ
with another individual s(σ) such that xσ and xs(σ) are very close in some metric.
Alternatively, the matching individual might not be real; it might be a composite of
individuals.

More precisely, for some arbitrary parameter ε > 0, and an individual σ with
dσ = 1, define the strata-matching setMε(σ) by4

Mε(σ) = {s : dσ = 1, ds = 0, dist(xσ, xs) ≤ ε} , (39.100)

where

dist(xσ, xs) = [xσ]T [Σ]−1xs , (39.101)

where Σ =
〈
xσ, [xs]T

〉
. This metric dist(xσ, xs) is called the Mahalanobis distance.

We will call the case ε = 0 an exact strata-match, and the case ε 6= 0 an approx-
imate strata-match.. To do an approximate strata-match, replace ys(σ) by 〈y〉σ in
the estimators given above for an exact strata-match. 〈y〉σ is defined by

〈y〉σ =
1

|Mε(σ)|
∑

s∈Mε(σ)

ys . (39.102)

Ref.[3] calculates the mean and variance of estimator ÂTT . The mean is
biased, but one can define a new bias-corrected estimator.

39.11.3 Positivity

Positivity is defined as the requirement that for all layers x,

0 < P (dσ = 1|xσ = x) < 1 (39.103)

or, equivalently,

P (dσ = 1|xσ = x) > 0 and P (dσ = 0|xσ = x) > 0 . (39.104)

4 One can use an ε that depends on σ. Let ε(σ, 5) be the radius necessary so that Mε(σ,5)(σ)
contains exactly 5 elements s. Thus,Mε(σ,5)(σ) contains the s of the 5 points xs that are the nearest
neighbors of xσ in the dist() metric.
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In other words, for each layer x, there is a non-zero probability of being both treated
and untreated.

Recall that

Yd|d̃,x =
∑
y

yPy(d)|d̃,x(y|d̃, x) . (39.105)

Also recall that the estimator Eq.(39.83) for ATT|x divides by N1,x = P (d = 1|x)Nx

and the estimator Eq.(39.85) for ATU|x divides by N0,x = P (d = 0|x)Nx. The
estimator Eq.39.81 for ATE|x divides by neither N0,x nor N1,x so it is safe.

If positivity is violated, then for some layer x, Yd|d̃=0,x or Yd|d̃=1,x is undefined.
Furthermore, the estimator ATT|x or ATU|x is undefined. If ATT|x (or any other
treatment effect) can be estimated, one says it is identifiable (i.e., calculable). If
Positivity is violated, then either ATT|x or ATU|x is not identifiable.

When P (dσ|xσ = x) becomes 0 or 1 for some x, the arrow x → d becomes
deterministic for some x. This situation is the very antithesis of RCTs, wherein the
influence exerted by xσ on dσ is uniformly random and therefore ignorable. Hence,
it is perhaps not too surprising that a violation of positivity makes ATT or ATU
non-identifiable.

39.12 Propensity Score

It is often the case that the discrete vector xσ has too many possible values to make
matching possible. In such cases, it is convenient to map the space of vectors xσ to
the real line. One very convenient choice for that map is the propensity score,
which is defined as

g(xσ) = P (dσ = 1|xσ) . (39.106)

The propensity score is usually approximated by a sigmoid function using logistic
regression5

g(xσ) = sig(α + βxσ) (39.107)

To use the propensity score, one replaces the bnet Gim+ by the bnet Gps shown
in Fig.39.11. The TPMs, printed in blue, for the 2 nodes of Gps that differ from the
nodes of Gim+, are as follows:

P (gσ|xσ) = δ(gσ, g(xσ)) (39.108)

P (dσ|gσ) = gσdσ + (1− gσ)(1− dσ) (39.109)

5 The sigmoid function is defined in Chapter Notational Conventions and Preliminaries to be
sig(x) = 1/(1− e−x).
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gσ

��

xσ

��

oo

dσ d̃
σ // yσ

Gps

Figure 39.11: Bnet Gps used when doing propensity scoring.

Note that these TPMs are self-consistent because

P (d|x) =
∑
g

P (d|g)P (g|x) (39.110)

= g(x)d+ [1− g(x)](1− d) (39.111)

= P (d = 1|x)d+ [1− P (d = 1|x)](1− d) (39.112)

= P (d|x) (39.113)

We would like to do propensity score strata-matching by matching g-
strata instead of x-strata. PO calculations for x-strata matching use the TPMs for
P (d|x), P (x) and P (y|d, x). To do g-strata matching using the same equations, but
with x replaced by g, we would need to solve for P (d|g), P (g) and P (y|d, g) in terms
of P (d|x), P (x) and P (y|d, x). We solve for those next.

From the TPMs for Gps, one has

P (d|g) = gd+ (1− g)(1− d) (39.114)

and

P (g) =
∑
x

P (g|x)︷ ︸︸ ︷
δ(g, g(x))P (x) . (39.115)

Next, note that

P (y|d, g) =
∑
x

P (y|d, x)P (x|g) (39.116)

so we need to find P (x|g). Since
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P (x|g) =
P (g|x)P (x)

P (g)
(39.117)

=
δ(g, g(x))P (x)

P (g)
(39.118)

we finally get

P (y|d, g) =
∑
x

P (y|d, x)
δ(g, g(x))P (x)

P (g)
. (39.119)

39.13 Multi-time PO bnets (Panel Data)

In this section, we will discuss Multi-time PO bnets (MT-PO).
A time-series is a function f : D → R whose domain D is a discrete set. A

time-series usually describes a single unit σ (i.e., an individual) in a population.
An observational study (or analysis or model) can be cross-sectional

or longitudinal. A cross-sectional study collects and analyzes a cross-sectional
dataset; i.e., a dataset for a population at a single time. A longitudinal study
or panel study collects and analyzes a longitudinal dataset; i.e., a dataset for
a population at multiple times. Thus, a longitudinal study consists of one or more
time-series.

Let T = {t0, t1, . . . , tntimes−1}. For any time-series at : T → R, define

Etat =
1

ntimes

∑
t∈T

at (39.120)

∆tat = at − Etat (39.121)

〈at, bt〉t = Et∆tat∆tbt (39.122)

Consider a quantity aσt that is a function of the time t and of the particular
unit σ in a population. aσt is said to be a fixed (in time) effect if it is t-independent.
aσt is said to be a homogeneous effect (antonym: heterogeneous effect) if it is
σ-independent. Henceforth, we will avoid using the word “effect” for these, because
that word has already been used for something else in PO theory. Instead, we will
use the word “quantity”.

Fig.39.12 gives an example of a multi-time PO bnet (MT-PO). Note that in
this example, xσ and uσ are fixed quantities (i.e., they are t−independent). uσ is
an unobserved confounder and xσ is an observed confounder. For convenience and
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Figure 39.12: Example of multi-time PO bnet with fixed quantities xσ, uσ. The 3
nodes xσ should be identified as a single node. Likewise, the 3 nodes uσ should be
identified as a single node.

simplicity, we will assume linear deterministic TPMs for the internal (i.e., non-root)
nodes. The TPMs for the bnet Fig.39.12, printed in blue, are as follows:

P (xσ) = Px(x
σ) (39.123)

P (uσ) = Pu(u
σ) (39.124)

P (yσt |dσt , xσ, uσ) = 1( yσt = δdσt + βxσ + uσ ) (39.125)

P (dσt+1|dσt , xσ, uσ) = 1( dσt+1 = αdσt + γxσ + uσ ) (39.126)

Taking time averages of the treatment dose and treatment outcome, we get

Ety
σ

t
= δEtd

σ
t + βxσ + uσ , (39.127)

Etd
σ
t+1 = αEtd

σ
t + γxσ + uσ . (39.128)

Subtracting the time averages from the quantities being averaged, we get

∆ty
σ

t
= δ∆td

σ
t , (39.129)

∆td
σ
t+1 = α∆td

σ
t . (39.130)
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This allows us to find estimators for δ and α:

Eσ

〈
yσ
t
, yσ

t

〉
t

= δEσ

〈
yσ
t
, dσt

〉
t

(39.131)

δ =
Eσ

〈
yσ
t
, yσ

t

〉
t

Eσ

〈
yσ
t
, dσt

〉
t

(39.132)

Eσ
〈
dσt+1, d

σ
t+1

〉
t

= αEσ
〈
dσt+1, d

σ
t

〉
t

(39.133)

α =
Eσ
〈
dσt+1, d

σ
t+1

〉
t

Eσ
〈
dσt+1, d

σ
t

〉
t

(39.134)

As shown in Fig.39.13, subtraction of time averages from each node removes
the confounder nodes from the bnet of Fig.39.12 (However, this assumes that the
confounders are time independent and that the TPMs for the internal nodes are
linear deterministic, two very strong assumptions).

∆td
σ
t

δ

��

α
// ∆td

σ
t+1

��
∆ty

σ
t

∆ty
σ
t+1

Figure 39.13: time-average-subtracted (TAS) bnet for the bnet of Fig.39.12.
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Chapter 40

Program evaluation and review
technique (PERT)

This chapter is based on Refs.[38] and [76].
PERT diagrams are used for scheduling a project consisting of a series of

interdependent activities and estimating how long it will take to finish the project.
PERT diagrams were invented by the NAVY in 1958 to manage a submarine project.
Nowadays they are taught in many business and management courses.

A PERT diagram is a Directed Acyclic Graph (DAG) with the following
properties. (See Fig.40.2 for an example of a PERT diagram). The nodes Ei for
i = 1, 2, . . . , ne of a PERT diagram are called events. The edges i → j of a PERT
diagram are called activities. An event represents the starting (kickoff) date of one
or more activities. A PERT diagram has a single root node (i = 1, start event) and
a single leaf node (i = ne, end event).

The PERT diagram user must initially provide a Duration Times (DT)
table which gives (DOi→j, DPi→j, DMi→j) for each activity i→ j, where

DOi→j= optimistic duration time of activity i→ j
DPi→j= pessimistic duration time of activity i→ j
DMi→j= median duration time of activity i→ j
From the DT table, one calculates:
Duration time of activity i→ j

Di→j =
1

6
(DOi→j +DPi→j + 4DMi→j) (40.1)

Duration Variance of activity i→ j

Vi→j =

(
DOi→j −DPi→j

DMi→j

)2

(40.2)

Often, it is convenient to define “dummy” edges with Di→j = 0. That is
perfectly fine.

Define:
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TESi = Earliest start time for event i
TLSi = Latest start time for event i
slacki = TLSi − TESi = slack for event i
TEFi→j = TESi +Di→j = Earliest finish time for activity i→ j.
TLFi→j = TLSj −Di→j = Latest finish time for activity i→ j. See footnote

below. 1

A critical path is a directed path (i.e., a chain of connected arrows, all
pointing in the same direction) going from the start to the end node, such that slack
equals zero at every node visited. In a DAG, the neighbors of a node is the union
of its parent and children nodes. A critical path must also have all other nodes as
neighbors; i.e, the union of the neighbors of every node in the path plus the nodes in
the path itself, equals all nodes in the graph.

GOAL of PERT analysis: The main goal of PERT analysis is to find, based
on the data of the DT table, the interval [TESi, TLSi] giving a lower and an upper
bound to the starting time of each node i. Another goal is to find a critical path
for the PERT diagram (which represents an entire project). By adding the Di→j of
each edge of the critical path, one can get the mean value of the total duration of the
entire project, and by adding the variances of each edge along the critical path, one
can get an estimate of the total variance of the total duration. Knowing the mean and
variance of the total duration and assuming a normal distribution, one can predict
the probability that the actual duration will deviate by a certain amount from its
mean.

To calculate the interval [TESi, TLSi], one follows the following two steps.

1. Assume TES1 = 0 and solve

TESi = max
a∈pa(i)

(TESa +Da→i︸ ︷︷ ︸
TEFa→i

) (40.3)

for i ∈ [2, ne]. This recursive equation is solved by what is called “forward
propagation”, wherein one moves up the list of nodes i in order of increasing i
starting at i = 1 with TES1 = 0.

2. Assume TLSne = TESne and solve

TLSi = min
b∈ch(i)

(TLSb −Di→b︸ ︷︷ ︸
TLFi→b

) (40.4)

1 In the popular educational literature, the edge variables TEFi→j and TLFi→j are sometimes
associated with the nodes, but they are clearly edge variables. This makes things confusing. The
reason this is done is that some software draws PERT diagrams as trees whereas other software
draws them as DAGs. For trees, storing TEFi→j and TLFi→j in a node makes some sense but
not for DAGs. You will notice that giving specific names to the variables TEFi→j and TLFi→j is
unnecessary. It is possible to delete all mention of their names from this chapter without losing any
details. I only declare their names in this chapter so as tell the reader what they are in case he/she
hears them mentioned and wonders what they are equal to in our notation.
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for i ∈ [1, ne−1]. This recursive equation is solved by what is called “backward
propagation”, wherein one moves down the list of nodes i in order of decreasing
i starting at i = ne with TLSne = TESne. TESne is known from step 1.

Eqs.(40.3) and (40.4) are illustrated in Fig.40.1.

Figure 40.1: TESi defined from info received from parents of i and TLSi defined from
info received from children of i.

40.1 Example

To illustrate PERT analysis, we end with an example. We present the example in the
form of an exercise question and then provide the answer. This example comes from
Ref.[38], except for part (e) about bnets, which is our own.

Question: For the PERT diagram of Fig.40.2, calculate the following:

(a) Interval [TESi, TLSi] for all i.

(b) A critical path for this PERT diagram.

(c) The mean and variance of the total duration of the critical path.

(d) The probability that the total duration will be 225 days or less.

(e) A bnet interpretation of this problem.

Answer to (a) [TESi, TLSi] are given by Fig.40.3.

Answer to (b) The critical path is given in red in Fig.40.3. Note that this path does
indeed have zero slack at each node it visits and the union of its neighborhood
and the path itself encompasses all nodes.

Answer to (c) The mean and variance of the total duration are calculated in Table
40.1.

Answer to (d)

P (x < 225) = P

[
x− µ
σ
≤ 225− 220√

7.73

]
(40.5)

= P [z ≤ 1.80] (40.6)

= 0.9641 (40.7)
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40(0.25)// E6
10(1.00)
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50(2.56)// E2

20(1.00)
>>

60(0.44)   

20(0.25)// E4

60(2.56)// E7
40(1.31)

  

E9

30(1.00)// E10

E5

30(1.78)
>>

20(1.00)
// E8

10(0.64)

>>

Figure 40.2: Example of a PERT diagram. The numbers attached to the arrows are
the duration times Di→j in days followed by, enclosed in parentheses, the variance
Vi→j of that duration. The info given in this PERT diagram was derived from a DT
table in Ref.[38]. The info in this PERT diagram is sufficient for calculating TESi
and TLSi for each node i. The results of that calculation are given in Fig.40.3.

E370 40 // E6110
10

**
E10 50 // E250

20
::

60 $$

20 // E470 60 // E7140
40

$$

E9190 30 // E10220

E5110

30
::

20
// E8180

10

::

TESi (given after the node name) for node Ei for all i

E3140 40 // E6180
10

**
E10 50 // E250

20
::

60 $$

20 // E480 60 // E7140
40

$$

E9190 30 // E10220

E5110

30
::

20
// E8180

10

::

TLSi (given after the node name) for node Ei for all i

Figure 40.3: Results of calculating TESi for all i via a forward pass, followed by
calculating TLSi for all i via a backward pass. Critical path indicated in red.

Answer to (e) Define 2 bnets.

1. The first PERT bnet is for calculating TESi for all i and is given by
Fig.40.4.
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edge
i→ j

duration
Di→j

variance
Vi→j

A (1→ 2) 50 2.56
D (2→ 5) 60 0.44
G (5→ 7) 30 1.78
J (7→ 8) 40 1.31
K (8→ 9) 10 0.64
L (9→ 10) 30 1.00
Total 220 7.73

Table 40.1: Calculation of mean and variance of total duration along critical path.

TES3
// TES6

**
TES1

// TES2

::

$$

// TES4
// TES7

$$

TES9
// TES10

TES5

::

// TES8

::

Figure 40.4: bnet for TESi calculation.

The node TPMs, printed in blue, for the bnet Fig.40.4 are given by (this
equation is to be evaluated recursively by a forward pass through the bnet):

P (TESi|(TESa)a∈pa(i)) = δ(TESi, max
a∈pa(i)

(TESa +Da→i)) (40.8)

2. The second PERT bnet is for calculating TLSi for all i and is given by
Fig.40.5. Note that the directions of all the arrows in the PERT diagram
Fig.40.2 have been reversed so Fig.40.5 is a time reversed graph.

The node TPMs, printed in blue, for the bnet Fig.40.5 are given by (this
equation is to be evaluate recursively by a backward pass through the
bnet):

P (TLSi|(TLSb)b∈pa(i)) = δ(TLSi, min
b∈pa(i)

(TLSb −DT
b→i)) , (40.9)

where DT
i→j = Dj→i.
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Figure 40.5: bnet for TLSi calculation.
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Chapter 41

Recurrent Neural Networks

This chapter is mostly based on Ref.[19].
This chapter assumes you are familiar with the material and notation of Chap-

ter 35 on plain Neural Nets.

x(·)

�� ## ))
x(0)

��

x(1)

��

x(2)

��
h(0)

��

// h(1)

��

// h(2)

��
Y (0) Y (1) Y (2)

Figure 41.1: Simple example of RNN witb T = 3

Suppose
T is a positive integer.
t = 0, 1, . . . , T − 1,
xi(t) ∈ R for i = 0, 1, . . . , numx− 1,
hi(t) ∈ R for i = 0, 1, . . . , numh− 1,
Y i(t) ∈ R for i = 0, 1, . . . , numy − 1,
W h|x ∈ Rnumh×numx,
W h|h ∈ Rnumh×numh,
W y|h ∈ Rnumy×numh,
by ∈ Rnumy,
bh ∈ Rnumh.
Henceforth, x(·) will mean the array of x(t) for all t.
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The simplest kind of recurrent neural network (RNN) has the bnet Fig.41.1
with arbitrary T . The node TPMs, printed in blue, for this bnet, are as follows.

P (x(·)) = given (41.1)

P (x(t)) = δ(x(t), [x(·)]t) (41.2)

P (h(t) | h(t− 1), x(t)) = δ(h(t),A(W h|xx(t) +W h|hh(t− 1) + bh)) , (41.3)

where h(−1) = 0.

P (Y (t) | h(t)) = δ(Y (t),A(W y|hh(t) + by)) (41.4)

Define

W h = [W h|x,W h|h, bh] , (41.5)

and

W y = [W y|h, by] . (41.6)

The bnet of Fig.41.1 can be used for classification once its parameters W h and
W y have been optimized. To optimize those parameters via gradient descent, one can
use the bnet of Fig.41.2.

Let σ = 0, 1, . . . , nsam(~x) − 1 be the labels for a minibatch of samples. The
node TPMs, printed in blue, for bnet Fig.41.2, are as follows.

P (x(·)[σ]) = given (41.7)

P (x(t)[σ]) = δ(x(t)[σ], [x(·)]t[σ]) (41.8)

P (h(t)[σ] | h(t− 1)[σ], x(t)[σ]) = δ(h(t)[σ],A(W h|xx(t)[σ] +W h|hh(t− 1)[σ] + bh)
(41.9)

P (Y (t)[σ] | h(t− 1)[σ]) = δ(Y (t)[σ],A(W y|hh(t− 1)[σ] + by) (41.10)
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ww

(W h)′

(W y)′

Figure 41.2: RNN bnet used to optimize parameters W h and W y of RNN bnet
Fig.41.1.

P (y(·)[σ] | x(·)[σ]) = given (41.11)

P (E(t) | ~y(·), ~Y (t)) =
1

nsam(~x)

∑
σ

d(y(t)[σ], Y (t)[σ]) , (41.12)

where

d(y, Y ) = |y − Y |2 . (41.13)
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If y, Y ∈ [0, 1], one can use this instead

d(y, Y ) = XE(y → Y ) = −y lnY − (1− y) ln(1− Y ) . (41.14)

P (E | [E(t)]∀t) = δ(E ,
∑
t

E(t)) (41.15)

For a = h, y,
P (W a) = given . (41.16)

The first time it is used, W a is fairly arbitrary. Afterwards, it is determined by
previous horizontal stage.

P ((W a)′|E ,W a) = δ((W a)′,W a − ηa∂WaE) . (41.17)

ηa > 0 is the learning rate for W a.

41.1 Language Sequence Modeling

Figs.41.1, and 41.2 with arbirary T can be used as follows to do Language Sequence
Modeling.

For this usecase, one must train with the following TPM for node ~y(·):

P (y(·)[σ] | x(·)[σ]) =
∏
t

1( y(t)[σ] = P (x(t)[σ] | [x(t′)[σ]]t′<t) ) (41.18)

With such training, one gets

P (Y (t)|h(t)) = 1( Y (t) = P (x(t) | [x(t′)]t′<t) ) . (41.19)

Therefore,

Y (0) = P (x(0)) , (41.20)

Y (1) = P (x(1)|x(0)) , (41.21)

Y (2) = P (x(2)|x(0), x(1)) , (41.22)

and so on.
We can use this to:

• predict the probability of a sentence,

example: Get P (x(0), x(1), x(2)).
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• predict the most likely next word in a sentence,

example: Get P (x(2)|x(0), x(1)).

• generate fake sentences.

example:

Get x(0) ∼ P (x(0)).

Next get x(1) ∼ P (x(1)|x(0)).

Next get x(2) ∼ P (x(2)|x(0), x(1)).

41.2 Other types of RNN

x(·)

�� ""
x(0)

��

x(1)

��
h(0) // h(1) // h(2)

��

// h(3)

��
Y (2) Y (3)

Figure 41.3: RNN bnet of the many to many kind. This one can be used for trans-
lation. x(0) and x(1) might denote two words of an English sentence, and Y (2) and
Y (3) might be their Italian translation.

Let T = {0, 1, . . . , T − 1}, and T x, T y ⊂ T . Above, we assumed that x(t) and
Y (t) were both defined for all t ∈ T . More generally, they might be defined only for
subsets of T : x(t) for t ∈ T x and Y (t) for t ∈ T y. If |T x| = 1 and |T y| > 1, we say
the RNN bnet is of the 1 to many kind. In general, can have 1 to 1, 1 to many,
many to 1, many to many RNN bnets.

Plain RNNs can suffer from the vanishing or exploding gradients prob-
lem. There are various ways to mitigate this (good choice of initial W h and W y, good
choice of activation functions, regularization). Or by using GRU or LSTM (discussed
below). GRU and LSTM were designed to mitigate the vanishing or exploding
gradients problem. They are very popular in NLP (Natural Language Processing).
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41.2.1 Long Short Term Memory (LSTM) unit (1997)

This section is based on Wikipedia article Ref.[65]. In this section, � will denote the
Hadamard matrix product (elementwise product).

x(t)

��

||

��

		

i(t)

��

f(t)

��

o(t)

��

c̃(t)

��
c(t− 1) // c(t)

��
h(t− 1)

II

GG

CC ;;

h(t)

��
Y (t)

Figure 41.4: bnet for a Long Short Term Memory (LSTM) unit.

Let
x(t) ∈ Rnumx: input vector to the LSTM unit
f(t) ∈ Rnumh: forget gate’s activation vector

i(t) ∈ Rnumh: input/update gate’s activation vector
o(t) ∈ Rnumh: output gate’s activation vector
h(t) ∈ Rnumh: hidden state vector also known as output vector of the LSTM

unit
c̃(t) ∈ Rnumh: cell input activation vector
c(t) ∈ Rnumh: cell state vector
Y (t) ∈ Rnumy: classification of x(t).
W ∈ Rnumh×numx, U ∈ Rnumh×numh and b ∈ Rnumh: weight matrices and bias

vectors, parameters learned by training.
Wy|h ∈ Rnumy×numh: weight matrix
Fig.41.4 is a bnet net for a LSTM unit. The node TPMs, printed in blue, for

this bnet, are as follows.
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P (f(t)|x(t), h(t− 1)) = 1( f(t) = sig(W f |xx(t) + U f |hh(t− 1) + bf ) ) , (41.23)

where h(−1) = 0.

P (i(t)|x(t), h(t− 1)) = 1( i(t) = sig(W i|xx(t) + U i|hh(t− 1) + bi) ) (41.24)

P (o(t)|x(t), h(t− 1)) = 1( o(t) = sig(W o|xx(t) + U o|hh(t− 1) + bo) ) (41.25)

P (c̃(t)|x(t), h(t− 1)) = 1( c̃(t) = tanh(W c|xx(t) + U c|hh(t− 1) + bc) ) (41.26)

P (c(t)|f(t), c(t− 1), i(t), c̃(t)) = 1( c(t) = f(t)� c(t− 1) + i(t)� c̃(t) ) (41.27)

P (h(t)|o(t), c(t)) = 1( h(t) = o(t)� tanh(c(t)) ) (41.28)

P (Y (t)|h(t)) = 1( Y (t) = A(Wy|hh(t) + by) ) (41.29)
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41.2.2 Gated Recurrence Unit (GRU) (2014)

This section is based on Wikipedia article Ref.[54]. In this section, � will denote the
Hadamard matrix product (elementwise product).

GRU is a more recent (17 years later) attempt at simplifying LSTM unit.

r(t)

!!

x(t)

��}}

oo

z(t)

!!

ĥ(t)

��
h(t− 1)

;;

//

55

DD

h(t)

��
Y (t)

Figure 41.5: bnet for a Gated Recurrent Unit (GRU).

Let
x(t) ∈ Rnumx: input vector
h(t) ∈ Rnumh: output vector
ĥ(t) ∈ Rnumh: candidate activation vector
z(t) ∈ Rnumh: update gate vector
r(t) ∈ Rnumh: reset gate vector
Y (t) ∈ Rnumy: classification of x(t).
W ∈ Rnumh×numx, U ∈ Rnumh×numh and b ∈ Rnumh: weight matrices and bias

vectors, parameters learned by training.
Wy|h ∈ Rnumy×numh: weight matrix
Fig.41.5 is a bnet net for a GRU. The node TPMs, printed in blue, for this

bnet, are as follows.

P (z(t)|x(t), h(t− 1)) = 1( z(t) = sig(W z|xx(t) + U z|hh(t− 1) + bz) ) , (41.30)

where h(−1) = 0.

P (r(t)|x(t), h(t− 1)) = 1( r(t) = sig(W r|xx(t) + U r|hh(t− 1) + br) ) (41.31)

P (ĥ(t)|x(t), r(t), h(t− 1)) = 1( ĥ(t) = tanh(W h|xx(t) + Uh|h(r(t)� h(t− 1)) + bh) )
(41.32)
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P (h(t)|z(t), h(t− 1), ĥ(t)) = 1( h(t) = (1− z(t))� h(t− 1) + z(t)� ĥ(t) )
(41.33)

P (Y (t)|h(t)) = 1( Y (t) = A(Wy|hh(t) + by) ) (41.34)
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Chapter 42

Regression Discontinuity Design

This chapter is based on Ref.[3].
This chapter assumes that the reader has read Chapter 39 on Potential Out-

comes (PO).
In Regression Discontinuity Design (RDD), one switches the treatment dose d

from 0 when x < ξ to 1 where x > ξ, where x is an observed confounder (call it the
switch confounder) and ξ is a threshold value for x. One measures the jump δ in the
treatment outcome y as x passes through x = ξ. Then one makes the very reasonable
assumption that δ equals1 Y1|x=ξ −Y0|x=ξ = ATE|x=ξ for an imaginary experiment in
which the confounder x acts as a normal confounder that doesn’t switch the treatment
dose d.

For example, dσ might be whether an individual is admitted to Harvard Univ.,
yσ might be how much money the individual earns for the first 20 years after graduat-
ing from Harvard, and xσ might be his SAT scores. We assume Harvard only admits
students with an SAT score higher than ξ.

42.1 PO analysis

xσ

����
dσ // yσ

xσ = x

""||
dσ // yσ

G Gdisc

Figure 42.1: 2 bnets used in the PO analysis of RDD. The TPMs for Gdisc are defined
in terms of the TPMs for G. The TPM P (dσ|xσ) for Gdisc is discontinuous in xσ.

1 ATE, which stands for “average treatment effect”, is defined in Chapter 39.
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The TPMs, printed in blue, for the bnet Gdisc shown in Fig.42.1, are as follows.
Note that the TPMs for the bnet Gdisc are defined in terms of the TPMs for the bnet
G.

P (xσ) = δ(xσ, x) (42.1)

P (yσ|dσ, xσ = x) = Py|d,x(y
σ|dσ, x) (42.2)

P (dσ|xσ = x) =

{
Pd|x(d

σ|xσ = x) for x > ξ
δ(dσ, 0) for x < ξ

(42.3)

Define

Eσ|x[y
σ(d)] = Ey|x[y(d)] = Yd|x (42.4)

and

ξ± = ξ ± ε (42.5)

for some infinitesimal ε > 0.
See Fig.42.2. In RDD, we assume that if we define the following 2 δ’s, one for

bnet G and the other for bnet Gdisc, then the two δ’s are equal, and they equal a
conditional ATE.

δGdisc = Y1|x=ξ+ − Y0|x=ξ− (42.6)

δG = Y1|x=ξ − Y0|x=ξ (42.7)

δG = δGdisc = δ (42.8)

δ = ATE|x=ξ (42.9)

42.2 Linear Regression

In this section, we show how to apply linear regression (LR) to the PO analysis of
RDD.
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Figure 42.2: The jump δ between Y1|x and Y0|x is the same for G and Gdisc.

yσ can be fitted as a function of x ∈ R, for dσ ∈ {0, 1}, as follows. Here εσ is
the residual for individual σ and b0,m0, b1,m1 ∈ R are the fit parameters.

yσ = [b0 +m0(x− ξ)](1− dσ) + [b1 +m1(x− ξ)]dσ + εσ . (42.10)

Note that Eq.(42.10) yields a straight line in the yσ − x plane for dσ = 0, and
another straight line for dσ = 1. These 2 lines are colored magenta in Fig.42.2. We
are using the standard symbols b to denote the y-intercept, and m to denote the slope
of a straight line.

Taking the expected value of Eq.(42.10), we get

Yd|x = [b0 +m0(x− ξ)](1− d) + [b1 +m1(x− ξ)]d . (42.11)

Hence,

Y1|x=ξ+ = b1 , Y0|x=ξ− = b0 (42.12)

δ = b1 − b0 (42.13)
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Chapter 43

Reinforcement Learning (RL)

Figure 43.1: Axes for episode time and episode number.

I based this chapter on the following references. Refs.[7][14]
In RL, we consider an “agent” or robot that is learning.
Let T ∈ Z>0 be the duration time of an episode of learning. If T =∞, we say

that the episode has an infinite time horizon. A learning episode will evolve towards
the right, for times t = 0, 1, . . . , T − 1. We will consider multiple learning episodes.
The episode number will evolve from top to bottom. This is illustrated in Fig.43.1.

Let st ∈ Ss for t ∈ [0, T − 1]Z be random variables that record the state of
the agent at various times t.

Let at ∈ Sa for t ∈ [0, T − 1]Z be random variables that record the action of
the agent at various times t.
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Figure 43.2: State-Action-Reward dynamical bnet

Let θt ∈ Sθ for t ∈ [0, T − 1]Z be random variables that record the policy
parameters at various times t.

For X ∈ {s, a, θ}, define X followed by a dot to be the vector

X. = [X0, X1, . . . , XT−1] . (43.1)

Also let
X≥t = [X t, X t+1, . . . , XT−1] . (43.2)

Fig.43.2 shows the basic State-Action-Reward bnet for an agent that is learn-
ing. The TPMs for the nodes of Fig.43.2 are given in blue below:

P (at|st, θt) = given. (43.3)

P (at|st, θt) is called a policy with parameter θt.

P (st|st−1, at−1) = given. (43.4)

P (st|st−1, at−1) is called the TPM of the model. P (st|st−1, at−1) reduces to P (s0)
when t = 0.

P (rt|st, at) = δ(rt, r(st, at))) . (43.5)

r : Ss × Sa → R is a given one-time reward function.
Note that

P (s., a.|θ.) =
T−1∏
t=0

{P (st|st−1, at−1)P (at|st, θt)} . (43.6)

Define the all times reward Σ by

Σ(s., a.) =
T−1∑
t=0

γtr(st, at) . (43.7)
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Here 0 < γ < 1. γ, called the discount rate, is included to assure convergence of Σ
when T →∞. If r(st, at) < K for all t, then Σ < K 1

1−γ .

Define the objective (i.e. goal) function EΣ(θ.) by

EΣ(θ.) = Es.,a.|θ.Σ(s., a.) =
∑
s.,a.

P (s., a.|θ.)Σ(s., a.) (43.8)

The goal of RL is to maximize the objective function over its parameters θ.. The
parameters θ∗. that maximize the objective function are the optimum strategy:

θ.∗ = argmax
θ.

EΣ(θ.) (43.9)

Define a future reward for times ≥ t as:

Σ≥t((st′ , at′)t′≥t) =
T−1∑
t′=t

γt
′−tr(st′ , at′) (43.10)

Define the following expected conditional future rewards (rewards for
times ≥ t, conditioned on certain quantities having given values):

vt = v(st, at; θ.) = Es.,a.|st,at,θ.[Σ≥t] (43.11)

Vt = V (st; θ.) = Es.,a.|st,θ.[Σ≥t] = Eat|st,θ.[v(st, at; θ.)] (43.12)

v is usually called Q in the literature. We will refer to Q as v in order to follow
a convention wherein an at-average changes a lower case letter to an upper case one.

We will sometimes write v(st, at) instead of v(st, at; θ.).
Since EΣ≥t only depends on θ≥t, v(st, at; θ.) = v(st, at; θ≥t), and V (st; θ.) =

V (st; θ≥t).
Note that the objective function EΣ can be expressed in terms of v0 by aver-

aging over its unaveraged parameters:

EΣ(θ.) = Es0,a0|θ0v(s0, a0; θ.) (43.13)

Define a one-time reward and an expected conditional one-time reward
as:

rt = r(st, at) (43.14)

Rt = R(st; θt) = Eat|st,θt [r(st, at)] . (43.15)

Note that

Σ≥t = rt + γrt+1 + γ2rt+2 + . . .+ γT−1−trt+(T−1−t) (43.16)

= rt + γΣ≥t+1; . (43.17)
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If we take Es.,a.|st,at,θ.[·] of both sides of Eq.(43.17), we get

vt = rt + γEst+1,at+1|θ.[vt+1] . (43.18)

If we take Es.,a.|st,θ.[·] of both sides of Eq.(43.17), we get

Vt = Rt + γEst+1|θ.[Vt+1] . (43.19)

Note that

∆rt = rt −Rt (43.20)

= rt − (Vt − γEst+1|θ.[Vt+1]) (43.21)

= rt + γEst+1|θ.[Vt+1]− Vt . (43.22)

Define
∆vt = vt − Vt . (43.23)

Note that
∆vt = ∆rt . (43.24)

Next, we will discuss 3 RL bnets

• exact RL bnet (exact, assumes policy is known)

• Actor-Critic RL bnet (approximate, assumes policy is known)

• Q function learning RL bnet (approximate, assumes policy is NOT known)

43.1 Exact RL bnet

An exact RL bnet is given by Fig.43.3.
Fig.43.3 is the same as Fig.43.2 but with more nodes added in order to optimize

the policy parameters. Here are the TPMs, printed in blue, for the nodes not already
discussed in connection to Fig.43.2.

P (θt|θ.) = δ(θt, (θ.)t) (43.25)

∀(st, at) : P (vt(st, at)|rt, vt+1(·), θ.) = δ(vt(st, at), rt + γEst+1,at+1|θ.[vt+1]) (43.26)

P (θ.′|θ., v0(·)) = δ(θ′., θ.+ α∂θ.Es0,a0|θ0v(s0, a0; θ.)︸ ︷︷ ︸
EΣ(θ.)

) (43.27)
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Figure 43.3: Exact RL bnet. vt(·) means the array [vt(st, at)]∀st,at The following
arrows are implicit: for all t, arrow from θ. → vt(·). We did not draw those arrows
so as not to clutter the diagram.

260



α > 0 is called the learning rate. This method of improving θ. is called gradient
ascent.

Concerning the gradient of the objective function, note that

∂θtEΣ(θ.) =
∑
s.,a.

∂θtP (s., a.|θ.)Σ(s., a.) (43.28)

=
∑
s.,a.

P (s., a.|θ.)∂θt lnP (s., a.|θ.)Σ(s., a.) (43.29)

= Es.,a.|θ. {∂θt lnP (at|st, θt)Σ(s., a.)} . (43.30)

If we run the agent nsam(~st) times and obtain samples st[i], at[i] for all t and for
i = 0, 1, . . . , nsam(~st)− 1, we can express this gradient as follows:

∂θtEΣ(θ.) ≈ 1

nsam(~st)

∑
i

T−1∑
t=0

∂θt lnP (at[i] | st[i], θt)r(st[i], at[i]) . (43.31)

The exact RL bnet Fig.43.3 is difficult to use to calculate the optimum pa-
rameters θ∗.. The problem is that st propagates towards the future and the vt(·)
propagates towards the past, so we don’t have a Markov Chain with a chain link for
each t (i.e., a dynamical bnet) in the episode time direction. Hence, people have come
up with approximate RL bnets that are doubly dynamical (i.e., dynamical along the
episode time and episode number axes.) We discuss some of those approximate RL
bnets next.

43.2 Actor-Critic RL bnet

For the actor-critic RL bnet, we approximate Eq.(43.31) by

∂θtEΣ(θ.) ≈ 1

nsam(~s)

∑
i

T−1∑
t=0

∂θt lnP (at[i] | st[i], θt)︸ ︷︷ ︸
Actor

∆rt(st[i], at[i])︸ ︷︷ ︸
Critic

(43.32)

The actor-critic RL bnet is given by Fig.43.4. This bnet is approximate and
assumes that the policy is known. The TPMs for its nodes are given in blue below.

P (θt) = given (43.33)

P (st[i] | st−1[i], at−1[i]) = given (43.34)
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Figure 43.4: Actor-Critic RL bnet.

P (at[i] | st[i], θt) = given (43.35)

P (rt[i] | st[i], at[i]) = δ(rt[i], r(st[i], at[i])) (43.36)

r : Ss × Sa → R is given.

P (∆vt[i] | st[i], at[i], st+1[i]) = δ(∆vt[i], r(st[i], at[i]) + γV̂ (st+1[i];φ′)− V̂ (st[i]);φ) .
(43.37)

P (θ′.) = δ(θ′., θt + α∂θt
∑
i

lnP (at[i] | st[i], θt)∆vt[i]) (43.38)

V̂ (st[i]);φ) is obtained by curve fitting (see Chapter 4) using samples (st[i], at[i])
∀t, i with

y[i] =
T∑
t′=t

r(st′ [i], at′ [i]) (43.39)
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Figure 43.5: Q function learning RL bnet.

and

ŷ[i] = V̂ (st[i];φ) . (43.40)

Eq.(43.39) is an approximation because (st′ , at′)t′>t are averaged over in the exact
expression for V (st). V̂ (st+1[i]);φ′) is obtained in the same way as V̂ (st[i]);φ) but
with t replaced by t+ 1 and φ by φ′.

43.3 Q function learning RL bnet

The Q-function learning RL bnet is given by Fig.43.5. This bnet is approximate and
assumes that the policy is NOT known. The TPMs for its nodes are given in blue
below. (Remember that Q = v).

P (st|st−1, at−1) = given (43.41)

P (at|st, vt(·)) = δ(at, argmax
a

vt(st, a)) (43.42)

P (rt|st, at) = δ(rt, r(st, at)) (43.43)

r : Ss × Sa → R is given.

∀(st, at) : P (vt(st, at)|vt−1(·)) =

= δ(vt(st, at), r(st, at) + γmaxaEst+1|st,atvt−1(st+1, a)) (43.44)

263



s0
//

��

��

s1
//

��

��

��

s2
//

��

��

��

s3

��

a0

��

::

a1

��

::

a2

��

::

a3

r0 r1 r2 r3

Q
0
(·)

WW

// Q
1
(·)

WW

// Q
2
(·)

WW

// Q
3
(·)

Figure 43.6: Q function learning RL bnet. Same as Fig.43.5 but with new arrow
passing st to Qt−1.

This value for vt(st, at) approximates vt = rt + γEst+1,at+1
vt+1.

Some people use the bnet of Fig.43.6) instead of Fig.43.5 and replace Eq.(43.44)
by

∀(st, at) : P (vt(st, at)|st+1, vt−1(·)) =

= δ(vt(st, at), r(st, at) + γmaxavt−1(st+1, a)) . (43.45)
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Chapter 44

Reliability Box Diagrams and
Fault Tree Diagrams

This chapter is based on Refs.[31] and [41].
In this chapter, we assume that reader is familiar with Boolean Algebra. See

the Notational Conventions Chapter Notational Conventions and Preliminaries for a
quick review of what we recommend that you know about Boolean Algebra to fully
appreciate this chapter.

Figure 44.1: Example of rbox diagram.

Figure 44.2: An ftree diagram equivalent to Fig.44.1. It represents e = (φ1 ∧ φ3) ∨
(φ2 ∧ φ3).

Complicated devices with a large number of components such as airplanes or
rockets can fail in many ways. If their performance depends on some components

265



Figure 44.3: How to map an rbox diagram to a bnet.

φ
1

��

φ
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��
x1

// x2

��
b

//

//

A // e

x3

OO

φ
3

OO

Figure 44.4: bnet corresponding the rbox diagram Fig.44.1.

working in series and one of the components in the series fails, this may lead to
catastrophic failure. To avert such disasters, engineers use equivalent components
connected in parallel instead of in series, thus providing multiple backup systems.
They analyze the device to find its weak points and add backup capabilities there.
They also estimate the average time to failure for the device.

The two most popular diagrams for finding the failure modes and their rates
for large complicated devices are

• rbox diagrams = Reliability Box diagrams. See Fig.44.1 for an example.

• ftree diagrams = Fault Tree Diagrams. See Fig.44.2 for an example.

In an ftree diagram, several nodes might stand for the same component of a physical
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device. In an rbox diagram, on the other hand, each node represents a distinct
component in a device. Hence, rbox diagrams resemble the device they are addressing
whereas ftree diagrams don’t. Henceforth, we will refer to this desirable property as
physical resemblance.

As we will show below with an example, it is pretty straightforward to translate
an rbox to an ftree diagram. Going the other way, translating an ftree to an rbox
diagram is much more difficult.

Next we will define a new kind of bnet that we will call a failure bnet that
has physical resemblance. Then we will describe a simple method of translating (i.e.,
mapping) any rbox diagram to a failure bnet. Then we will show how a failure bnet
can be used to do all the calculations that are normally done with an rbox or an ftree
diagram. In that sense, failure bnets seem to afford all the benefits of both ftree and
rbox diagrams.

A failure bnet contains nodes of 5 types, labeled b, e, xi, φi, and Ai. All
nodes have only two possible states S = Success = 0, F = Failure = 1.

1. The bnet has a beginning node labeled b which is always set to success. The b
node and the φ

i
nodes are the only root nodes of the bnet.

2. The bnet has a single leaf node, the end node, labeled e. e is fixed. In rbox
diagrams, e = S whereas in ftree diagrams, e = F .

3. xnx = (x0, x1, . . . , xnx−1). xi ∈ {S, F} for all i.

Suppose xi has parents φ
i

and ana = (a0, a1, . . . ana−1). Then the TPM of node
xi is defined to be

P (xi|φi, ana) = δ(xi, φi ∨ ∨na−1
i=0 ai) (44.1)

4. For each node xi, the bnet has a “performance” root node φ
i
∈ {0, 1} with an

arrow pointing from it to xi (i.e, φ
i
→ xi). For all i,

P (φi) = εiδ(φi, F ) + εiδ(φi, S) . (44.2)

εi is the failure probability and εi = 1− εi is the success probability. We name
the failure probability εi because it is normally very small. It is usually set to
1 − e−λit ≈ λit when λit << 1, where λi is the failure rate for node xi and t
stands for time. The rblock literature usually calls εi = Ri the reliability of
node xi, and εi = (1−Ri) = Fi its unreliability.

5. The nodesAi ∈ {0, 1} are simply AND gates. IfAi has inputs yny = (y
0
, y

1
, . . . , y

ny−1
),

then the TPM of Ai is

P (Ai|yny) = δ(Ai,∧ny−1
i=0 yi) . (44.3)

267



An instance (instantiation) of a bnet is the bnet with all nodes set to a specific
state. A realizable instance (r-instance) of a bnet is one which has non-zero
probability.

Fig.44.3 shows how to translate any rbox diagram to a failure bnet. To illus-
trate this procedure, we translated the rbox diagram Fig.44.1 into the failure bnet
Fig.44.4.

For the failure bnet Fig.44.4, one has:

P (b) = 1(b = 0)
P (x1|φ1, b) = 1(x1 = φ1 ∨ b)
P (x2|φ2, x1) = 1(x2 = φ2 ∨ x1)
P (x3|φ3, b) = 1(x3 = φ3 ∨ b)
P (A|x2, x3)e = 1(x2 ∧ x3)
P (e|A) = 1(e = A)

. (44.4)

Therefore, all r-instances of this bnet must satisfy

e = (φ1 ∨ φ2) ∧ φ3 (44.5)

= (φ1 ∧ φ3) ∨ (φ2 ∧ φ3) . (44.6)

Eq.(44.6) proves that Fig.44.2 is indeed a representation of Fig.44.1.
Next, we consider r-instances of this bnet for two cases: e = S and e = F .

• rblock analysis: e = S = 0.
Table 44.1 shows the probability of all possible r-instances that end in success
for the failure bnet Fig.44.4. (These r-instances are the main focus of rblock
analysis). The first 4 of those probabilities (those with φ3 = 0) sum to ε3 so the
sum P (e = S) of all 5 is

P (e = S) = ε3 + ε1ε2ε3 , (44.7)

or, expressing it in reliability language in which ε = R,

P (e = S) = R3 +R1R2R3 . (44.8)

• ftree analysis: e = F = 1.
Table 44.2 shows the probability of all possible r-instances that end in failure
for the failure bnet Fig.44.4. (These r-instances are the main focus of ftree
analysis). If we set εi = ε and εi ≈ 1 for i = 1, 2, 3, then the first two of
those r-instances have probabilities of order(ε2) and the third has probability of
order(ε3). The two lowest order (order(ε2)) r-instances are called the “minimal
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Table 44.1: Probabilities of all possible r-instances with e = S = 0 for failure bnet
Fig.44.4.

269



instance probability

0
��

1
��

x1
// x2

��
0

//

//

A // 1

x3

OO

1

OO

ε1ε2ε3

1
��

0
��

x1
// x2

��
0

//

//

A // 1

x3

OO

1

OO

ε1ε2ε3

1
��

1
��

x1
// x2

��
0

//

//

A // 1

x3

OO

1

OO

ε1ε2ε3

Table 44.2: Probabilities of all possible r-instances with e = F = 1 for the failure
bnet Fig.44.4.

cut sets” of the ftree. We will have more to say about minimal cut sets later
on. For now, just note from Eq.(44.6) that the ftree Fig.44.2 is just the result
of joining together with ORs two expressions, one for each of the two minimal
cut sets.

More general xi.
Failure bnets can actually accommodate xi nodes of a more general kind than what
we first stipulated. Here are some possibilities:

For any an ∈ {0, 1}n, let

len(an) =
∑
i

ai (44.9)

• OR gate

P (xi|φi, ana) = δ(xi, φi ∨ ∨jaj) (44.10)

= δ(xi, φi ∨ 1(len(ana) > 0)) (44.11)
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• AND gate

P (xi|φi, ana) = δ(xi, φi ∨ ∧jaj) (44.12)

= δ(xi, φi ∨ 1(len(ana) = na)) (44.13)

• Fail if least K failures (less than K successes)

P (xi|φi, ana) = δ(xi, φi ∨ 1(len(ana) ≥ K)) (44.14)

• Fail if less than K failures (at least K successes)

P (xi|φi, ana) = δ(xi, φi ∨ 1(len(ana) < K)) (44.15)

• Fail if exactly one failure

P (xi|φi, ana) = δ(xi, φi ∨ 1(len(ana) = 1)) (44.16)

This equals an XOR (exclusive OR) gate when na = 2.

• General gate
f : {0, 1}na → {0, 1}

P (xi|φi, ana) = δ(xi, φi ∨ f(ana)) (44.17)

44.1 Minimal Cut Sets

Suppose x ∈ {0, 1} and f : {0, 1} → {0, 1}. Then by direct evaluation, we see that

f(x) = [xf(0)] ∨ [xf(1)] . (44.18)

Let

!x = 1− x,
!0x = x,
!1x =!x

(44.19)
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Then Eq.44.18 can be rewritten as

f(x) = ∨a∈{0,1}[(!ax)f(a)] . (44.20)

Now suppose xn ∈ {0, 1}n and f : {0, 1}n → {0, 1}. Eq.(44.20) generalizes to

f(xn) = ∨an∈{0,1}n [
∏
i

(!aixi)f(an)] . (44.21)

Eq.(44.21) is called an ors-of-ands normal form expansion. There is also an ands-of-
ors normal form expansion obtained by swapping multiplication and ∨ in Eq.(44.21),
but we won’t need it here.

A cut set is a set of φi’s such that if they are all equal to F , then e = F
for all the r-instances. A minimal cut set is a cut set such that there are no
larger cut sets that contain it. From the failure bnet, we can always find a function
f : {0, 1}nx → {0, 1} such that e = f(φnx) for all the r-instances. We did that for our
example failure bnet and obtained Eq.(44.6). We can then express f(φnx) as an ors-
of-ands expansion to find all the minimal cut sets. The ands terms in that ors-of-ands
expansion each gives a different minimal cut set, after some simplification. The ors-of-
ands expression is not unique and it may be necessary to simplify (using the Boolean
Algebra identities given in Chapter Notational Conventions and Preliminaries) to
remove those redundancies.
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Chapter 45

Restricted Boltzmann Machines

In what follows, we will abbreviate ”restricted Boltzmann machine’ by rebo.
Let
v ∈ {0, 1}numv
h ∈ {0, 1}numh
b ∈ Rnumv (mnemonic, v and b sound the same)
a ∈ Rnumh

W v|h ∈ Rnumv×numh

Energy:
E(v, h) = −(bTv + aTh+ vTW v|hh) (45.1)

Boltzmann distribution:

P (v, h) =
e−E(v,h)

Z
(45.2)

Partition function:

Z =
∑
v,h

e−E(v,h) = Z(a, b,W v|h) (45.3)

P (v|h) =
eb
T v+aT h+vTW v|hh∑

v e
bT v+aT h+vTW v|hh

(45.4)

=
eb
T v+vTW v|hh∑

v e
bT v+vTW v|hh

(45.5)

=
∏
i

evi(bi+
∑
jW

v|h
i,j hj)∑

vi=0,1 e
vi(bi+

∑
jW

v|h
i,j hj)

(45.6)

=
∏
i

P (vi|h) (45.7)

P (vi|h) =
evi(bi+

∑
jW

v|h
i,j hj)

Zi(h)
(45.8)
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h

��   ''
v0 v1 v2

Figure 45.1: bnet for a Restricted Boltzmann Machine (rebo) with numv = 3

Eq.45.8 implies that a rebo can be represented by the bnet Fig.45.1.
Let

xi = bi +
∑
j

W
v|h
ij hj . (45.9)

Then

P (vi = 1|h) =
exi

1 + exi
(45.10)

=
1

1 + e−xi
(45.11)

= sig(xi) . (45.12)

One could also expand the node h in Fig.45.1 into numh nodes. But note that
P (h) 6=

∏
j P (hj) so there would be arrows among the hj nodes.

Note that the rebo bnet is a special case of Naive Bayes (See Chapter 34) with
vi, hi ∈ {0, 1} and specific P (h) and P (vi|h) node matrices.
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Chapter 46

ROC curves

This chapter is based on Ref.[77].
ROC stands for Receiver Operating Characteristic. ROC curves are used

in binary classification (BC).
To do BC, we are given the value x ∈ R for an individual. From this, we want

to decide whether that individual has a = T = True or a = F = False. The decision
will depend on the value of a threshold parameter τ ∈ R.

x aoo

Figure 46.1: bnet for BC.

Fig.46.1 shows the bnet used for BC.

Figure 46.2: x-distribution for two hypotheses a = F, T .

Fig.46.2 is a plot of P (x|a), i.e., the TPM for node x of the bnet in Fig.46.1.
Whereas a is binary, x is continuous. But we can replace x by a binary variable

b = 1(x > τ) . (46.1)

P (b|a) for b ∈ {0, 1} and a ∈ {F, T} is called the confusion matrix or contingency
table for BC. The confusion matrix can be calculated from the TPM P (x|a). Fig.46.3
illustrates the confusion matrix P (b|a) for BC. In that figure, the rates R are defined
as follows.
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Figure 46.3: The confusion matrix P (b|a) for BC.

• False Positive rate

RFP (τ) = P (x > τ |a = F ) =

∫
x>τ

dx P (x|a = F ) (46.2)

In Hypothesis Testing, RFP is also called the p-value that x > τ assuming
curve F is the null hypothesis.

• False Negative rate

RFN(τ) = 1−RFP (τ) (46.3)

= P (x < τ |a = F ) =

∫
x<τ

dx P (x|a = F ) (46.4)

• True Positive rate

RTP (τ) = P (x > τ |a = T ) =

∫
x>τ

dx P (x|a = T ) (46.5)

In Hypothesis Testing, RTP is called the p-value that x > τ assuming curve
T is the null hypothesis.

• True Negative rate

RTN(τ) = 1−RTP (τ) (46.6)

= P (x < τ |a = T ) =

∫
x<τ

dx P (x|a = T ) (46.7)

The Receiver Operating Characteristic (ROC) is a parametric plot with
X = RFP (τ) and Y = RTP (τ), where τ ∈ R. The Area Under the Curve (AUC)
is the area under the ROC. Fig.46.4 shows an example of a ROC and its AUC.

Fig.46.5 shows situations that give AUC=.5 (random classifier), AUC=.85,
and AUC=1 (perfect classifier). It’s also possible to get an AUC ∈ [0, 0.5], but we
will ignore those models becauses they are useless for BC.

Note that
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Figure 46.4: Example of ROC. Green shaded area is the AUC of the ROC.

Figure 46.5: ROC curves for 3 different separations between the T and F x-
distributions.

AUC =

∫ 1

x=0

dτ RTP (τ)
dRFP (τ)

dτ
(46.8)

=

∫ −∞
∞

dτ

{∫ ∞
−∞

dx 1(x > τ)P (x|a = T )

}
(−1)P (x = τ |a = F )(46.9)

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dx 1(x > x′)P (x|a = T )P (x′|a = F ) . (46.10)
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Chapter 47

Scoring the Nodes of a Learned
Bnet

Chapter 49 discusses how to learn a bnet from data. Many algorithms for doing this
require scoring how well a particular bnet fits the data. This chapter is an introduction
to such scoring.

Normally, each node of a bnet is scored separately, and then those node scores
are summed to get the bnet score.

In this chapter, scores are defined so that a higher score means a better fit.
By taking the negative of such a score, one can always get a score such that a lower
score means a better fit.

There are 2 main types of bnet scores: Maximum Likelihood (ML) scores,
and Shannon Information Theory (SIT) scores. ML scores consist of the log of a
maximum likelihood function P (~x|θ) for i.i.d. samples ~x = (x[σ])σ=0,1,...,nsam−1, where
x[σ] ∼ Px|θ(x|θ):

ML-score = ln(P (~x|θ)) (47.1)

= ln
∏
σ

P (x[σ] | θ) (47.2)

=
∑
σ

lnP (x[σ] | θ) (47.3)

≈ nsam
∑
x

P (x|θ) lnP (x|θ) (47.4)

= −nsamH(Px|θ) , (47.5)

and SIT scores consist of a negative entropy:

Info-score = −H(Px|θ) . (47.6)

Thus, up to a factor of nsam, they are the same thing. Maximizing a log likelihood
function for i.i.d. samples or minimizing the corresponding entropy, are the same

278



thing, and they both yield a good estimate of the hidden parameters θ.

47.1 Probability Distributions and Special Func-

tions

While writing this chapter, I briefly consulted the following Wikipedia articles about
the definitions and properties of certain probability distributions and special func-
tions.

• Categorical Distribution, Ref.[47]

• Multinomial Distribution, Ref.[70]

• Dirichlet Distribution, Ref.[50]

• Multivariate Normal Distribution, Ref.[72]

• Beta function, Ref.[44]

• Multinomial Coefficients, Ref.[71]

• Gamma Function Ref.[53]

Here are a few results from those Wikipedia articles that we will use later on
in this chapter.

Below, we will abbreviate q+ =
∑

i qi, and q. = (q0, q1, . . . , qnq−1) for various
quantities q

Gamma function. If n > 0 is an integer,

Γ(n+ 1) = n! (47.7)

The multivariate Beta function is defined by

B(α.) =

∏
k Γ(αk)

Γ(α+)
(47.8)

where αk > 0 for all k.
The multinomial coefficient is defined by

C(N.) =
N+!∏
kNk!

(47.9)

where Nk are non-negative integers.
The inverse of the multinomial coefficient will be denoted by

CI(N.) =
1

C(N.)
=

∏
kNk!

N+!
(47.10)
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The Categorical Distribution is defined by

Cat(x; π.) = πx =
∏
k

π
1(k=x)
k (47.11)

for k, x ∈ Sx, where π. is a probability dist.(i.e., πk ≥ 0 for all k, and π+ = 1).
The Multinomial Distribution is defined by

Mul(N.; π.,N) = C(N.) , (47.12)

where Nk is a non-negative integer for all k, N+ = N , and π. is a probability dist.
Mul() satisfies:

E[Nk] = Nπk . (47.13)

The Dirichlet Distribution is defined by

Dir(π.;α.) =
1

B(α.)

∏
k

παk−1
k (47.14)

where αk > 0 for all k, and π. is a probability dist. The α. are called concentration
parameters or hyperparameters. Dir() satisfies:

E[πk] =
Nk

N+

. (47.15)

Dir() is conjugate prior of Mul()
Note that

Mul(N.; π.,N)Dir(π.;α.) = K(N., α.)Dir(π.;N.+ α.) , (47.16)

where

K(N., α.) =
B(N.+ α.)

CI(N.)B(α.)
. (47.17)

Dir() is replaceable by a Mul() for large concentration parameters
Note that if Nk is a positive integer and αk = Nk + 1 for all k, then

Dir(π.;αk = Nk + 1) = C(N.)
∏
k

πNkk (47.18)

= Mul(N.; π.,N+) . (47.19)
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47.2 Single node with no parents

In this section, we consider a learned bnet consisting of a single node with no parents.
We will consider arbitrary learned bnets in the next section. But we start with this
simplified case so as to reduce the number of indices in most quantities from 3 to 1. All
the results that we derive in this section will be used in the next section after adding
the extra indices. This way, we will avoid carrying the extra indices throughout the
intermediate steps of many derivations.

For state k ∈ {0, 1, . . . , nk − 1} of a single node x, let
Nk= current count number (an integer, data)
π.= a probability dist, the TPM for the node
αk= prior count number

N. π.oo α.oo

Figure 47.1: For a bnet consisting of a single node with no parents, this is a Markov
chain of current counts (N.), TPM (π.), and prior counts (α.) .

Consider the Markov chain bnet of Fig.47.1, with the following TPMs, given
in blue.

P (N.|π.) = Mul(N.; π.,N+) (47.20)

P (π.|α.) = Dir(π.;α.) (47.21)

It follows that

P (N., π.|α.) = P (N.|π.)P (π.|α.) (47.22)

= Mul(N.; π.,N+)Dir(π.;α.) (47.23)

= K(N., α.)Dir(π.;N.+ α.) . (47.24)

From Eq.(47.15) for the expected value of Dir(), we get

π̂. = E[π.] =
N.+ α.

N+ + α+

. (47.25)

Integrating both sides of Eq.(47.24) over π., we find that

P (N.|α.) = K(N., α.) . (47.26)

If Nk >> 1 for all k, then the Dir() in Eq.(47.24) can be replaced by a Mul()

P (N., π.|α.) ≈ K(N., α.)Mul(N.+ α.; π.,N+ + α+) . (47.27)
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Therefore,

P (N.|π., α.) =
P (N., π.|α.)
P (N.|α.)

(47.28)

= Mul(N.+ α.; π.,N+ + α+) . (47.29)

Claim 27

lnP (N.|π̂., α.) = −(N+ + α+)H

(
N.+ α.

N+ + α+

)
+ lnC(N.+ α.) (47.30)

> −(N+ + α+)H

(
N.+ α.

N+ + α+

)
− 1

2
(nk − 1) lnN+ (47.31)

proof:

lnP (N.|π̂., α.) =
∑
k

(Nk + αk) ln π̂k + lnC(N.+ α.) (47.32)

=
∑
k

(Nk + αk) ln
Nk + αk
N+ + α+

+ lnC(N.+ α.) (47.33)

= −(N+ + α+)H

(
N.+ α.

N+ + α+

)
+ lnC(N.+ α.) (47.34)

Recall Stirling’s approximation of a factorial, valid for large integers n:

lnn! ≈ (n+
1

2
) lnn− n . (47.35)

Assume Nk >> 1 for all k. Applying Stirling’s approximation to all factorials in
C(N), we get

lnC(N.) ≈ (N+ +
1

2
) lnN+ −N+ −

∑
k

[
(Nk +

1

2
) lnNk −Nk

]
(47.36)

= (N+ +
1

2
) lnN+ −

∑
k

(Nk +
1

2
) lnNk . (47.37)

Next assume that

Nk ≈
N+

nk
. (47.38)

Then
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lnC(N.) = (N+ +
1

2
) lnN+ − nk(

N+

nk
+

1

2
)[lnN+ − lnnk] (47.39)

= −1

2
(nk − 1) lnN+ + (N+ +

nk

2
) lnnk (47.40)

> −1

2
(nk − 1) lnN+ . (47.41)

QED

47.3 Multiple nodes with any number of parents

In the previous section, we considered a bnet consisting of a single node with no
parents, so we only needed a single index k for the states of the single node. In this
section, we consider an arbitrary bnet with multiple nodes each of which may have
multiple parents. Most of the results in the previous section are valid for the general
case if we make the following replacements: π. → πi·|µ N. → N i

·,µ α. → αi·,µ. Upon
this replacement, Fig.47.1 becomes Fig.47.2. The TPMs, printed in blue, of the new
Markov chain, are as follows:

N i
·,µ πi·|µ
oo αi·,µoo

Figure 47.2: Generalization of Fig.47.1. For a bnet with multiple nodes each of which
may have multiple parents, this is a Markov chain of current counts (N i

·,µ), TPM

(πi·|µ), and prior counts (αi·,µ) .

P (N i
·,µ|πi·|µ) = Mul(N i

·,µ; πi·|µ, N
i
+,µ) (47.42)

P (πi·|µ|αi·,µ) = Dir(πi·|µ;αi·,µ) (47.43)

In these TPMs,
i ∈ Si = {0, 1, . . . , ni− 1}= node index
x. = (xi)i∈Si= the nodes of the learned bnet.
k ∈ Ski = {0, 1, . . . , nki − 1}= states of node xi
µ ∈ Sµi = {0, 1, . . . , nµi − 1}= states of parents of node xi.
In the previous section, we assumed a single node (ni = 1) with no parents

(nµ0 = 1) so that we could drop the i, µ indices. In this section, we eliminate that
restriction.
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It is convenient to define the magnitude of a bnet B to equal the sum over
nodes of the number of free parameters in each TPM:

|B| =
∑
i

(nki − 1)nµi . (47.44)

Suppose that we are given nsam samples ~xi = (xi[σ])σ=0,1,...,nsam−1 of our
learned bnet. The count numbers N i

k,µ are defined in terms of those samples as
follows:

N i
k,µ =

∑
σ

1(xi[σ] = k, pa(xi[σ]) = µ) . (47.45)

It is also convenient to defined count number ratios

N i
k|µ =

N i
k,µ

N i
+,µ

. (47.46)

Note that N i
k,µ is a positive integer whereas N i

k|µ ∈ [0, 1].

Let’s denote the components of the TPMs by πik|µ:

πik|µ = P (xi = k | pa(xi) = µ) ≈ N i
k|µ . (47.47)

The rest of this section lists equations that we obtained from the previous
section, by adding the new indices i, µ:

K(N i
·,µ, α

i
·,µ) =

B(N i
·,µ + αi·,µ)

CI(N i
·,µ)B(αi·,µ)

(47.48)

π̂ik|µ =
N i
k,µ + αik,µ

N i
+,µ + αi+,µ

(47.49)

P (N i
·,µ|αi·,µ) = K(N i

·,µ, α
i
·,µ) (47.50)

P (N i
·,µ|πi·|µ, αi·,µ) ≈Mul(N i

·,µ + αi·,µ; πi·|µ, N
i
+,µ + αi+,µ) (47.51)

Claim 28

lnP (N i
·,µ|π̂i·|µ, αi·,µ) =

∑
k

(N i
k,µ + αik,µ) ln

(
N i
k,µ + αik,µ

N i
+,µ + αi+,µ

)
+ lnC(N i

·,µ + αi·,µ) (47.52)

>
∑
k

(N i
k,µ + αik,µ) ln

(
N i
k,µ + αik,µ

N i
+,µ + αi+,µ

)
− 1

2
(nki − 1) lnN i

+,µ

(47.53)
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47.4 Bayesian Scores

• Bayesian Information Criterion (BIC)

BIC-score = −
∑
i

∑
k,µ

N i
k,µ ln

(
N i
k,µ

N i
+,µ

)
+

[
−|B|

2
lnN+

+,+

]
︸ ︷︷ ︸∑

i

∑
µ lnC(N i

·,µ) would be more accurate

(47.54)

≈
∑
i

∑
µ

lnP (N i
·,µ|π̂i·|µ, αi·,µ = 0) (47.55)

• Bayesian Dirichlet (BD)

BD-score =
∑
i

∑
µ

ln
B(N i

·,µ + αi·,µ)

B(N i
·,µ)

(47.56)

=
∑
i

∑
µ

ln
[
CI(N i

·,µ)P (N i
·,µ|αi·,µ)

]
(47.57)

• BD equivalent (BDe)

BDe-score = BD-score
(
αik,µ = α′N i

k,µ

)
, (47.58)

where α′ is a free parameter.

• BD equivalent unified (BDeu)

BDeu-score = BD-score

(
αik,µ =

α′

nkinµi

)
, (47.59)

where α′ is a free parameter. The BDeu score satisfies score equivalence; i.e.,
it is the same for all DAGs in an equivalence class of observational equivalent
DAGs. See Chapter 38 for more information about observational equivalence.

47.5 Information Theoretic scores

• Maximum likelihood

ML-score =
∑
i

∑
k,µ

N i
k,µ lnN i

k|µ (47.60)

= −
∑
i

H(ki|µi) , (47.61)

where Pki|µi(k|µ) = N i
k|µ and Pki,µi(k, µ) = N i

k,µ.
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• Bayesian Information Criterion (BIC), aka Minimum Description Length (MDL)

BIC-score = ML-score− |B|
2

lnN+
+,+ (47.62)

≈
∑
i

∑
k,µ

N i
k,µ ln

N i
k|µ√
N+

+,+

(47.63)

• Akaike Information Criterion (AIC)

AIC-score = ML-score− |B| (47.64)

≈
∑
i

∑
k,µ

N i
k,µ

[
lnN i

k|µ − 1
]

(47.65)
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Chapter 48

Simpson’s Paradox

This chapter is based on Chapter 6 of “The Book of Why”, Ref.[30]. See also Ref.[80]
and references therein.

Simpson’s paradox is a recurring nightmare for all statisticians overseeing a
clinical trial for a medicine. It is possible that if they leave out a certain ”confounding”
variable from a study, the study’s conclusion on whether a medicine is effective or
not, might be, without measuring that confounding variable, the opposite of what it
would have been had that variable been measured.

Simpson’s Paradox is greatly clarified by Judea Pearl’s theory of causality. At
the end of this chapter, we explain how.

Here is a simple example of Simpson’s Paradox.
An equal number of patients of male and female genders are given a heart

medicine or a placebo in a double blind study. Some subsequently have a heart
attack. Let

a = heart attack? No=0, Yes=1
t = took medicine? No=0, Yes=1
g = gender? Female=0, Male=1

g

��
a t

]]

oo

Figure 48.1: bnet for a simple example of Simpson’s paradox. Here node g is a chain
junction and a mediator.

This situation can be modeled by either bnet Fig.48.1. or bnet Fig.48.2. The
two bnets are probabilistically equivalent (i.e., they both represent the same proba-
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g

�� ��
a too

Figure 48.2: bnet that is probabilistically but not physically equivalent to bnet
Fig.48.1. Here node g is a fork junction and a confounder.

bility distribution P (a, t, g)) because

P (g|t)P (t) = P (g, t) = P (t|g)P (g) . (48.1)

For the bnet Fig.48.1, one has

P (a, g, t) = P (a|g, t)P (g|t)P (t) . (48.2)

Therefore,

P (a = 1|t) =
∑
g

P (a = 1|t, g)P (g|t) = Eg|tP (a = 1|t, g) , (48.3)

where Eg|t is a conditional expected value (a kind of weighted average).
Suppose q0, q1 are non-negative real numbers. For the vector ~q = (q0, q1):
Define a negative outcome (or failure or qt increasing with t) if q0 ≤ q1.
Define a positive outcome (or success or qt decreasing with t) if q0 ≥ q1.
Let

~q g = [P (a = 1|t, g)]t=0,1 (48.4)

for g = 0, 1, and

~q ∗ = [P (a = 1|t)]t=0,1 . (48.5)

It is possible (see Fig.48.3 for a graphical explanation of how) to find perverse
cases in which P (a = 1|t, g = 0) and P (a = 1|t, g = 1) increase with t but P (a = 1|t)
decreases with t. So it is possible to conclude that the medicine is a failure for each of
the two g populations considered separately, yet the medicine is a success when both
populations are “amalgamated”. The lesson is that a “trend reversal” is possible
upon amalgamation. Trends are not necessarily preserved when we do a weighted
average of type Eg|t. Eg|t is an expected value on the random variable g conditioned
on the root random variable t.

So far, we have proven that probabilistically, the drug can be a failure for
the populations of both sexes considered separately, but a success for the aggregate
population.
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Figure 48.3: ~q 0, ~q 1 vectors and bounding box for vector ~q ∗.

48.1 Pearl Causality

Pearl Causality would add the following two important insights to this problem:

1. bnets Fig.48.1 and Fig.48.2, although they are probabilistically equivalent, do
not represent the same physical situation. In fact, only Fig.48.2 occurs in this
case.

2. To decide whether the medicine is effective, we must apply a do() operator to
the t variable in Fig.48.2. The effect of that do() operator is to erase the arrow
going from g to t. This in turn means that the average Eg|t in our equation for
P (a = 1|t) becomes a simpler average Eg which is independent of t. But for
such an average, the bounding box in Fig.48.3 degenerates to its diagonal line
that connects the tips of the two vectors ~q 0 and ~q 1. The vector ~q ∗ must now
fall on that diagonal line and must therefore also fall in the success region.

In conclusion, as Judea Pearl would say, if we ask the right question to Nature, i.e.,
what is P [a = 1|do(t = t)] for t = 0, 1, we get as an answer that the aggregate
population preserves rather than reverses the unanimous trend of the two gendered
populations.
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48.2 Numerical Example

(a, t, g)
number of patients
segregated by gender

number of patients
of either gender

0,0,0 19 47
0,0,1 28
0,1,0 37 49
0,1,1 12
1,0,0 1 13
1,0,1 12
1,1,0 3 11
1,1,1 8

Table 48.1: Data for numerical example of Simpson’s Paradox. This fictitious data
was taken directly from Table 6.4, page 210 of “The Book of Why”, Ref.[30].

P (a|t, g) =
0,0 0,1 1,0 1,1

0 19/20 28/40 37/40 12/20
1 1/20 12/40 3/40 8/20

(48.6)

P (a|t) =
0 1

0 47/60 49/60
1 13/60 11/60

(48.7)

P (a=1,t=1,g=0)∑
a P (a,t=1,g=0)

= P (a = 1|t = 1, g = 0) = 3
40

P (a=1,t=0,g=0)∑
a P (a,t=0,g=0)

= P (a = 1|t = 0, g = 0) = 1
20

= 2
40

(48.8)

P (a=1,t=1,g=1)∑
a P (a,t=1,g=1)

= P (a = 1|t = 1, g = 1) = 8
20

= 16
40

P (a=1,t=0,g=1)∑
a P (a,t=0,g=1)

= P (a = 1|t = 0, g = 1) = 12
40

(48.9)

∑
g P (a=1,t=1,g)∑
g

∑
a P (a,t=1,g)

= P (a = 1|t = 1) = 11
60∑

g P (a=1,t=0,g)∑
g

∑
a P (a,t=0,g)

= P (a = 1|t = 0) = 13
60

(48.10)

Note that the right hand side of Eq.48.8 is higher for t = 1 than for t = 0.
Same trend occurs in Eqs.48.9 but is reversed in Eqs.48.10.
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Chapter 49

Structure and Parameter Learning
for Bnets

Learning a bnet from data is a computationally intensive NP-complete problem.
Therefore, the best one can hope for is for heuristic algorithms that solve this problem
approximately. A huge number of such algorithms have been tried and continue to
be tried. Luckily, there exists a free open source software library called bnlearn that
covers many of them. The goal of this chapter is to give a brief overview of the subject
of bnet learning, after which we recommend to those readers who want to pursue this
subject further, to learn bnlearn .

This chapter is based on the bnlearn website Ref.[33], and on a 2019 survey
paper [34] by Scutari et al. I highly recommend looking at both. Refs. [2] and [15]
were also helpful to me in understanding this subject.

bnlearn (Ref.[33]) (free, open source) is very comprehensive and well main-
tained. It is written mostly in C with an R frontend. It was developed by Marco
Scutari and collaborators over a time period of more than 10 years, and is still under
active development. How things stand in the field of bnet learning software reminds
me of how things stand in the field of linear algebra (LA) software. Perfecting and
optimizing LA software takes many years so I would not advise you to write your
own LA software library starting from scratch. There is no need to do so. Instead,
you can use LAPACK (free, open source), which has been perfected and expanded
for decades by world experts. I view bnlearn as the LAPACK of bnet learning.

49.1 Overview

To give the reader an overview of the subject and of bnlearn itself, here is a highly
simplified tree, compiled from the bnlearn website and documentation, of some of
the subjects covered by bnlearn .

Parameter Learning

missing data

Structure Learning
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tree-like structures given a priori

Naive Bayes

Chow-Liu tree

Tree Augmented Naive Bayes (TAN)

ARACNE

score based

algorithms

hill climbing (HC)

HC with random restarts

HC with Tabu list (Tabu)

simulated annealing

genetic algorithms

scoring functions

Information Theoretic scores

Bayesian Information Criterion (BIC)

Bayesian Dirichlet (BD) family

constraint based

algorithms

PC family

Grow-Shrink (GS)

Incremental Association Markov Blanket (IAMB) family

conditional independence tests

mutual information (parametric, semiparametric and permutation

tests)

shrinkage-estimator for the mutual information

hybrid

Max-Min Hill Climbing (MMHC)

Hybrid HPC (H2PC)

General 2-Phase Restricted Maximization (RSMAX2)

parallel mode structure learning

node types

all-discrete

all-continuous

mixed

utility functions

model comparison and manipulation

random data generation

arc orientation testing

simple and advanced plots

parameter estimation (maximum likelihood and Bayesian)

inference, conditional probability queries

cross-validation
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bootstrap

model averaging
Let

• PL=parameters learning (i.e, learning the TPMs)

• SL= structure learning (i.e., learning the DAG)

PL is easy, once the structure is known. PL assuming no missing data goes as
follows. Using the notation of Chapter 47, define

πik|µ = P (xi = k | pa(xi) = µ) . (49.1)

Then πik|µ can be estimated from the data N i
k,µ using:

πik|µ ≈ N i
k|µ =

N i
k,µ

N i
+,µ

. (49.2)

PL described by Eq.(49.2) is only for discrete nodes with no missing data. bnlearn can
also do PL with missing data and continuous (Gaussian linear only) nodes. See Chap-
ter 32 on missing data and Chapter 19 on Gaussian linear nodes. SL actually does
PL and SL at the same time.

There are 3 main types of SL: score based, constraint based, and hybrid.
bnlearn can perform many algorithms of each of these 3 types of SL. It can perform
most of them with either all-discrete, or all-continuous or mixed nodes. It can perform
many of them in parallel mode. The 2019 survey paper Ref.[34] by Scutari et al
compares the performance of many different bnet learning algorithms.

49.2 Score based SL algorithms

Score based SL algorithms require scoring bnets (with either all-discrete, all-continuous
or mixed nodes). See Chapter 47 for an introduction to scoring bnets. The BIC score
explained in that chapter is very popular and works for all-discrete, all-continuous or
mixed nodes.

Score-based SL algorithms apply standard optimisation techniques. In the
Hill Climbing algorithm, the current best bnet is changed slightly and then given a
score that measures how well it fits the data. The bnet with the highest (=best)
score so far, as well as that highest score, are stored. (Hence, this is called a greedy
search). The process continues until the latest highest score stops changing. The
problem with being greedy all the time is that the answer might converge to a local
maximum. To mitigate this problem and allow some probability of visiting more than
one local maximum, one uses a Tabu Table, random restarts, simulated annealing,
genetic algorithms, etc.
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49.3 Constraint based SL algorithms

To fully understand constraint based SL algorithms, the reader is advised to read
Chapters 14 and 38 first.

Constraint based SL algorithms require estimating from the data the condi-
tional independence x. ⊥P y.|a. for any 3 disjoint multinodes x., y., a.. This can
be done by estimating the conditional mutual information (CMI) H(x. : y.|a.).
bnlearn can calculate CMI and other metrics of x. ⊥P y.|a.. All these metrics are
very similar; they all measure how close P (x.|y., a.) and P (x.|a.) are.

The first constraint-based SL algorithm was the Inductive Causation (IC) al-
gorithm proposed by Pearl and Verma in 1991. Incremental improvements have been
proposed since then, such as the PC family of algorithms, Grow-Shrink and the In-
cremental Association Markov Blanket (IAMB) family of algorithms.
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49.4 Pseudo-code for some bnet learning algorithms

Algorithm 2: Pseudo-code for Hill Climbing algorithm

Input : Data D, Vertices V
Output: a bnet B = (G, T ), where G = (V,E) is a DAG, where V are its

vertices (nodes) and E are its edges (arrows). T are all its
Transition Probability Matrices (TPMs) T = TPMs(G,D).

E ← ∅
T ← ∅
B ← (V,E, T )
maxscore← −∞
// DE= all possible directed edges

DE = {x→ y ∈ V × V : x 6= y}
again← True
while again do

for all x→ y ∈ DE do
// add arrow

E+ ← E ∪ {x→ y}
// delete arrow

E− ← E − {x→ y}
// reverse arrow

ER ← E− ∪ {y → x}
for E ′ = E+, E−, ER do

if E ′ 6= E and G′ = (V,E ′) is a legal DAG then
T ′ ← TPMs(G′, D)
B′ ← (G′, T ′)
newscore = BIC-score(B′)
if newscore > maxscore then

B ← B′

maxscore← newscore

else
again← False

return B

295



Algorithm 3: Pseudo-code for PC-Stable algorithm

Input : Data D, Vertices (nodes) V , tolerance in CMI ε > 0
Output: partially oriented acyclic graph G = (V,E, UE), where V are the

vertices (nodes), E are the oriented edges (arrows) and UE are the
unoriented edges.

E ← ∅
// initialize UE to fully-connected undirected graph

UE ← {x− y ∈ V × V : x− y = y − x, x 6= y}
// Shrink phase. Deletes edges from E.

for λ = 0, 1, 2, . . . , |V | − 2 do
for all x− y ∈ UE do

for all S = {a ∈ V : x− a ∈ UE, a 6= x, y} 3 |S| = λ do
if H(x : y|S) < ε then

/* If there were an arrow between x and y, then

conditioning on S would not be enough to interrupt

info transmission H(x : y|S) between x and y */

UE ← UE − {x− y}
S(x− y)← S

// Growth phase. Adds v structures to E.

for all x, y, a such that x− a ∈ UE, a− y ∈ UE, x− y 6∈ UE, a 6∈ S(x− y) do
/* If there were no collider at a, then there would be info

transmission between x and y */

UE ← UE − {x− a, a− y}
E ← E ∪ {x→ a, y → a}

// Orienting edges.

again← True
size← |UE|
while again do

for all x− y ∈ UE do
if x→ y ∈ E, y − z ∈ UE, x− z 6∈ UE, 6 ∃w 3 w → y ∈ E then

// to avoid introducing new v structure

UE ← UE − {y − z}
E ← E ∪ {y → z}

if x→ y ∈ E and there is directed path from x to y in E then
// to avoid introducing cycles

UE ← UE − {x− y}
E ← E ∪ {x→ y}

newsize← |UE|
if size == newsize then

again← False
else

size← newsize

return G = (V,E, UE)

296



Chapter 50

Synthetic Controls

This chapter is based on Refs.[5] and [3].
This chapter assumes that the reader has read Chapter 11 on the Difference-

in-Differences (DID) method.
The Synthetic Controls (SC) method is a simple enhancement of the DID

method. SC enhances DID in two simple yet powerful ways:

1. Better time resolution. DID considers just 2 time-snapshots (i.e., a time-
series with only 2 times) whereas SC considers arbitrarily many time-snapshots
(i.e., a time-series with more than 2 times).

2. Weighted average of controls. DID divides the population of individuals
into just 2 kinds: the treated and the untreated (aka controls). SC divides the
total population into treated and controls just like DID does, but it goes further
and divides the control population into multiple subpopulations, and calculates
a weighted average, called a “synthetic control”, of those subpopulations. The
weights of the synthetic control are chosen so that it mimics as closely as pos-
sible the behavior of the treated population for all times measured before the
treatment was applied.

Let us describe these two enhancements more precisely.

• timing: Let tk for k = 0, 1, . . . , npre − 1 be the pre-treatment times at which
a measurement occurs. Let tk for k = npre, npre + 1, . . . , ntimes − 1 be the
post-treatment times at which a measurement occurs. Note that npre+npost =
ntimes. Note that t∗ = tnpre+1 is the first measurement time after the treatment
is applied, t0 is the first measurement time, and tfin = tntimes−1 is the last one.

• subpopulations: Let S1 = {σ1} be the set of treated units (just one). Let
S0 = {σ : σ 6= σ1} be the set of untreated units (i.e., controls). Let nsam =
number of all units σ, n1 = |S1| = 1, and n0 = |S0| = nsam− 1.

• weights:
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Figure 50.1: Pictorial representation of the Synthetic Controls (SC) method. The
outcome y of the synthetic control unit is colored red and that of the treated unit is
colored blue. They roughly agree for t < t∗.

We want to define a time-independent weight wσ for each unit σ in such a way
that the output yσt for the synthetic control unit behaves like the output for the
treated unit σ1 for t < t∗.

Let
wσ1 = 0 (50.1)

and

wn0 = {wσ}σ 6=σ1 . (50.2)

Define a cost function C:

C(wn0) =
∑
t<t∗

(
yσ1t −

∑
σ 6=σ1

wσyσt

)2

(50.3)

Then calculate wn0 by minimizing the cost function, subject to the constraint
that wn0 be a probability distribution:

wn0 = argmin
Wn0

{
C(W n0) : W σ ≥ 0,

∑
σ 6=σ1

W σ = 1

}
. (50.4)

Now that we have defined a weight wσ for every unit σ, we can define

yξt =

{
yσ1t if ξ = 1∑

σ 6=σ1 w
σyσt if ξ = 0

(50.5)

and

δt = yξ=1
t − yξ=0

t (50.6)

298



δt is illustrated in Fig.50.1. It measures the time dependent gap (causal effect) be-
tween the outcome (i.e., y) of the treated unit σ1 and the outcome of the synthetic
control unit.

50.1 A bnet Gt with weighted treatment outcomes

Our next goal is to analyze the SC method using the formalism of PO theory. To
attain that goal, we will first define in this section a bnet Gt. The bnet Gt in this
chapter differs in two important respects from the bnet Gt defined in Chapter 11 on
the DID method. First, the Gt in the DID chapter is defined for only 2 measurement
times whereas the Gt in this chapter is defined for more than 2 measurement times.
Second, the Gt in this chapter defines y

t
for d = 0 as a weighted average over control

subpopulations.

xσ

�� ��
dσ // yσ

t

x

�� ��
d // y

t

Gt,unit Gt

Figure 50.2: t ∈ {t0, t1, . . . , tfin}. The bnet Gt is defined by counting units σ for the
bnet Gt,unit.

Suppose t ∈ {t0, t1, . . . , tfin}. For ξ ∈ {0, 1}, define the following unit counts:

N ξ
d,yt,x

=
∑
σ∈Sξ

1(d = dσ, yt = yξt , x = xσ) . (50.7)

Define also

Nd,yt,x =
∑

ξ∈{0,1}

1(ξ, d)N ξ
d,yt,x

. (50.8)

Henceforth, sums over the subscripts of Nd,yt,x will be indicated by a dot. For
example, N·,yt,x =

∑
dNd,yt,x.

The TPMs, printed in blue, for the bnet Gt shown in Fig.50.2, are as follows.

Px(x) =
N·,·,x
N·,·,·

(50.9)

Pd|x(d|x) =
Nd,·,x

N·,·,x
(50.10)
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Py
t
|d,x(yt|d, x) =

Nd,yt,x

Nd,·,x
(50.11)

50.2 PO analysis

In this section, we show how to analyze the SC method using the formalism of PO
theory.

x

�� ��
d // y

t

x

{{ !!
d = d d̃ = d̃ // y

t

Gt Gt,im

Figure 50.3: t ∈ {t0, t1, . . . , tfin}. Bnet Gt,im = κd→y
t
(d̃)Gt is obtained by applying

the imagine operator to arrow d→ y
t

of bnet Gt.

As usual for PO theory, we will consider expected values of yσt :

Eσ|d̃,x[y
σ
t (d)] = Eyt|d̃,x[yt(d)] = Yd|d̃,x(t) (50.12)

To calculate these expected values, we need a “model” with probability dis-
tributions. In this case, the needed model and probability distributions are provided
by the bnets depicted in Fig.50.3. The TPMs, printed in blue, for the bnet Gt,im in
Fig.50.3, are as follows. Note that the TPMs for the bnet Gt,im are defined in terms
of the TPMs for the bnet Gt.

P (x) = Px(x) (50.13)

P (d|x) = Pd|x(d|x) (50.14)

P (yt|d̃, x) = Py
t
|d,x(yt|d̃, x) (50.15)

P ((d̃)′) = δ((d̃)′, d̃) (50.16)
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Figure 50.4: Four different time-dependent expected values Yd|d̃(t) of yσt for bnet Gt,im

The 2 ∗ ntimes magenta stars represents the 2 ∗ ntimes SC measurements.

Henceforth, for simplicity, we will omit the confounder state x from the indices
of Y ; i.e., we will write Yd|d̃(t) instead of Yd|d̃,x(t). The fact that we will not explicitly
mention x does not mean that it doesn’t exist or that it doesn’t affect our analysis.
If there are confounders, they cannot be neglected. As discussed in Chapter 39 under
the subject of strata-matching in PO, one must condition Y on a single x stratum
and, later on, one must average over all the possible x strata.

Let MYd|d̃(t) denote the measured Yd|d̃(t). We define this quantity as

MYd|d̃(t) = Yd|d̃(t)
[
1(d = 0, t < t∗) + 1(d = d̃, t ≥ t∗)

]
(50.17)

Now we claim that the SC δt calculated in the previous section can be expressed in
PO formalism as follows:

δt = Y1|1(t)− Y0|0(t) = SDOt (50.18)

for t ≥ t∗. Fig.50.4 depicts the four functions Yd|d̃(t) for t in the interval [t0, tfin] and

for d, d̃ ∈ {0, 1}. The Y coordinates of the 2 ∗ ntimes magenta stars in Fig.50.4 can
be calculated using bnet Gt. Note that in Fig.50.4, we display a large gap between
the curves Y0|d̃(t) for d̃ ∈ {0, 1}. In reality, P (yt|d̃, x) has been constructed so as to
make that gap as small as possible. Thus, to a good(?) approximation,

δt ≈ ATTt (50.19)

Hence, unlike in the DID method, in the SC method, to a good(?) approximation,
we don’t have to worry about parallel trends.
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Chapter 51

Transportability: COMING SOON

Ref.[28]

z

�� ��
x // y

P ∗(y|ρx = x) =
∑

z P (y|ρx = x)P ∗(z)

h

�� ��

// z

x // y

P ∗(y|ρx = x) = P (y|ρx = x)

h

�� ��
x // $$

z // y

P ∗(y|ρx = x) =
∑

z P (y|ρx = x, z)P ∗(z|x)

302



s // z

�� ��

22


x //ff 88 y

P (y|ρx = x, s) =
∑

z P (y|ρx = x)P (z|s)

s
""

h

�� ��

//22

��

z

x //ff 88 y

P (y|ρx = x, s) = P (y|ρx = x)

s

��

h

�� ��

22

��
x //ff 88z // y

P (y|ρx = x, s) =
∑

z P (y|ρx = x, z)P (z|x, s)
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Chapter 52

Turbo Codes

This chapter is based on Ref.[17].
In this chapter, vectors with n components will be indicated by an n super-

script. For example, an = (a0, a1, . . . , an−1).
Consider an n-letter message un = (u0, u1, . . . , un−1), where for all i, ui ∈ A

is an element of an alphabet A, and where for all i, the ui are i.i.d.. Suppose un

is encoded deterministically in two different ways, e1(un) and e2(un). After passing
through the same memoryless channel, the variables un, e1, e2 become ũn, ẽ1, ẽ2, re-
spectively. The letter u stands for unencoded, and e for encoded. Quantities with a
tilde ũn, ẽ1, ẽ2 occur after channel passage and are visible (measurable). Quantities
without a tilde un, e1, e2 are hidden (unmeasurable).

The situation just described can be represented by the bnet Fig.52.1, or by its
abridged version Fig.52.2. But note that the abridged version does not show explicitly
that the ui are i.i.d. or that the channel is memoryless (i.e., that the ui for all i pass
independently through the channel).

Define

x = (un, e1, e2) (52.1)

and

x̃ = (ũn, ẽ1, ẽ2) . (52.2)

Fig.52.1 implies that

P (x, x̃) = P (ũn|un)

[∏
r=1,2

P (ẽr|er)P (er|un)

]
P (un) . (52.3)

Because the un are i.i.d.,

P (un) =
∏
i

P (ui) . (52.4)
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u0
//

��

��

ũ0

u1
//

��

��

ũ1

u2
//

��

��

ũ2

e1
// ẽ1

e2
// ẽ2

Figure 52.1: Turbo coding B net representing a message being encoded two different
ways and then the original message and the 2 encodings pass through a memoryless
channel.

un //

��

��

ũn

e1
// ẽ1

e2
// ẽ2

Figure 52.2: Abridged version of Fig.52.1.

Because the channel is memoryless,

P (ũn|un) =
∏
i

P (ũi|ui) . (52.5)

Because the encoding is deterministic, we must have for r = 1, 2

P (er|un) = δ(er, er(u
n)) . (52.6)

Define the belief functions

BELi = BELi(ui = a) = P (ui = a|x̃) . (52.7)
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The best estimate of uj given all visible evidence x̃ is

ûi = argmax
ui

BELi(ui) . (52.8)

Define the probability functions

πi = πi(ui) = P (ui) , (52.9)

and the likelihood functions

λi = λi(ui) = P (ũi|ui) . (52.10)

For r = 1, 2, define the Kernel functions

Kr = Kr(u
n) = P (ẽr|er = er(u

n)) . (52.11)

In this book, N (!a) denotes a normalization constant that does not depend on
a. Define

Ni = N (!ui) . (52.12)

Claim 29
BELi = NiλiπiT K1K2

i [
∏
j 6=i

λjπj] , (52.13)

where T Ki (·) with K = K1K2 is an operator (transform) that acts on functions of un:

T Ki (·) =
∑
un

δ(ui, a)K(un)(·) . (52.14)

proof:

P (ui = a|x̃) =

=
∑
x

δ(ui, a)P (x|x̃) (52.15)

=
∑
x

δ(ui, a)
P (x̃|x)P (x)

P (x̃)
(52.16)

= N (!a)
∑
x

δ(ui, a)P (x̃|x)P (x) (52.17)

= N (!a)
∑
x

δ(ui, a)P (un)

[∏
r=1,2

P (ẽr|er)δ(er, er(un))

]∏
j

P (ũj|uj) (52.18)

= N (!a)λi(a)πi(a)R , (52.19)

where
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R =
∑
un

δ(ui, a)

[∏
r=1,2

P (ẽr|er(un))

]∏
j 6=i

P (ũj|uj)P (uj) (52.20)

=
∑
un

δ(ui, a)

[∏
r=1,2

Kr(u
n)

]∏
j 6=i

λj(uj)πj(uj) (52.21)

= T K1K2
i [

∏
j 6=i

λj(uj)πj(uj)] . (52.22)

Hence

BELi(a) = N (!a)λi(a)πi(a)T K1K2
i [

∏
j 6=i

λj(uj)πj(uj)] . (52.23)

QED

52.1 Decoding Algorithm

The Turbo algorithm for decoding the encode message is as follows. For m = 0, let

π
(0)
j (uj) =

1

nuj
. (52.24)

Then for m = 1, 2, . . . , let

π
(m)
i = NiT Km%2

i [
∏
j 6=i

λjπ
(m−1)
j ] , (52.25)

where m%2 = 1 if m is odd and m%2 = 2 if m is even. Furthermore, for m > 0, let

BEL
(m)
i = Niλiπ(m−1)

i π
(m)
i (52.26)

= Niλiπ(m−1)
i T Km%2

i [
∏
j 6=i

λjπ
(m−1)
j ] . (52.27)

As m → ∞, BEL
(m)
i given by Eq.(52.27) is expected to converge to the the exact

BELi given by Eq.(52.13).
Turbo decoding can be represented by the bnets Figs.52.3 and 52.4.
The node TPMs, printed in blue, for Fig.52.3, are given by:

P (d
(m)
i = a | ũn, ẽm%2) = BEL

(m)
i (a) . (52.28)

307



ũn // )) ** ++ ,,d
(1)
i d

(2)
i d

3)
i d

(4)
i d

(5)
i

ẽ1

>>
44 22

ẽ2

>> 66

Figure 52.3: B net describing Turbo code generation of BEL
(m)
i (a) for m = 1, 2, . . ..

BELn(1)(·) BELn(2)(·) BELn(3)(·) BELn(4)(·)

un πn(0)(·) //

88

πn(1)(·) //

OO 77

πn(2)(·) //

OO 77

πn(3)(·) //

OO 77

πn(4)(·)

OO

ẽ1

44 11

ẽ2

EE 55 22

ũn // λn(·)

Figure 52.4: B net describing Turbo code generation of BELn(m)(·) and πn(m)(·) for
m = 0, 1, 2 . . .. The following arrows were not drawn so as not to unduly clutter
the diagram: Arrows pointing from node λn(·) to nodes πn(m)(·) and BELn(m)(·) for
m = 0, 1, 2, . . ..

The TPMs, printed in blue, for Fig.52.4, are given by:

P ((λn)′(·)|ũn) = δ((λn)′(·), λn(·)) (52.29)

P (πn(m)(·)|λn(·), πn(m−1)(·), ẽm%2) =
∏
i

∏
ui

δ(π
(m)
i (ui),NiT Km%2

i [
∏
j 6=i

λjπ
(m−1)
j ])

(52.30)
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P (BEln(m)(·)|λn(·), πn(m)(·), πn(m−1)(·)) =
∏
i

∏
ui

δ(BELi(ui),Niλiπ(m−1)
i π

(m)
i )

(52.31)

52.2 Message Passing Interpretation of Decoding

Algorithm

Ref.[17] shows that the Turbo code decoding algo can be interpreted as an application
of Message Passing. We leave all talk of Message Passing to a separate chapter,
Chapter 31.
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Chapter 53

Uplift Modelling

This chapter is based on many references, including Ref.[10, 6, 82, 32].
Uphill Modelling (UP) deals with the application of Rubin’s Theory of Poten-

tial Outcomes (PO) to advertisement and marketing.
PO, which is discussed in Chapter 39, is a subset of Pearl’s Causal Inference.

Besides UP, other applications of PO theory that are discussed in this book are:
Regression Discontinuity (Chapter 42), Difference-in-Differences (Chapter 11) and
Synthetic Controls (Chapter 50).

In UP, each participant person is interrogated at two well anticipated, fairly
closely spaced times t0 and t1 (as opposed to Difference-in-Differences (DID), where
t0 and t1 might be years apart, and long before the DID analysis is attempted.). In
between those two times, a treatment which we will refer to as the UP diagnostic
test is applied. For example, at times t0 and t1, every participant might be asked
how important he/she rates climate change on a scale of 1 to 10. In between times
t0 and t1, every participant might be sent a brochure on climate change. In UP, as
in all other PO applications, each sample σ is in the treated or control groups, but
not both. But in UP, the same participant can be in both the treated and control
groups. If so, that participant is considered two different samples σ; for example,
σ = treatedBob, controlBob. In UP, the samples are aware of which of those groups
they are in, so they are not “treatment blind”. As explained in Chapter 39, strata
matching is only valid if the samples of the test are treatment blind. Therefore, the
only treatment effect that makes sense for UP is SDO, because it does not require
strata matching.

53.1 UP types

Let yBt ∈ R for t = t0, t1 be the treatment response at time t for participant B. (We are
using here the same notation as in Chapter 39). Call δB = yBt1 − y

B
t0

the participant
uplift for participant B. As shown in Fig.53.1, UP classifies participants into 4
UP-types: Persuadables, SureThings, LostCauses, and SleepyDogs. The UP-type
of a participant depends on the changes that are induced on that participant by an
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Figure 53.1: UP diagnostic test can be used to classify all participants of the pop-
ulation into 4 UP-types. This figure assumes y ∈ {0, 1}. More generally, y ∈ R. t
represents time. t = t0 corresponds to d = 0 = untreated, and t = t1 corresponds to
d = 1 = treated.

UP-diagnostic-test.

• For a Persuadable participant, δB > 0.

• For a SleepyDogs participant, δB < 0.

• For a SureThings participant, δB ≈ 0 and yBt0 is high.

• For a LostCauses participant, δB ≈ 0 and yBt0 is low.

Suppose B belongs to stratum Ax. What is commonly called the uplift is
the stratum-uplift δx = SDO. Strata can also be classified into the 4 UP-types,
depending on the sign and size of their δx. A participant may not be typical for his
stratum and may have different participant and stratum UP-types. For example,
he may have positive participant uplift and therefore have a Persuadable participant
UP-type, but his stratum-uplift might be negative, so he has the SleepyDogs stratum
UP-type.

Advertisers are very interested in finding the Persuadable strata in a popula-
tion so as to focus their resources on them. For example, UP was used very successfully
during the Obama presidential campaigns. Team Obama conducted UP-diagnostic
tests much like the climate change one described earlier. This allowed them to iden-
tify voters who might be sitting on the fence on whether to vote for Obama or not.
Then Team Obama spent the lion share of resources on those fence-sitters.
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53.2 Some Relevant Technical Facts from Chapter

39

Some relevant technical facts about SDO that were proven in Chapter 39 are

• SDO = 0 is the hypothesis tested by a Randomized Clinical Trial (RTC).

• Using y = y(d̃) and Fig.39.7, we get

SDO =
∑
y

y
[
Py(1)|d̃,x(y|1, x)− Py(0)|d̃,x(y|0, x)

]
(53.1)

=
∑
y

y
[
Py|d̃,x(y|1, x)− Py|d̃,x(y|0, x)

]
. (53.2)

If y ∈ {0, 1}, then

SDO︸ ︷︷ ︸
δx

= Py|d̃,x(1|1, x)︸ ︷︷ ︸
Y 1
x

−Py|d̃,x(1|0, x)︸ ︷︷ ︸
Y 0
x

. (53.3)

• Recall that in Chapter 39, we used Ad,x = {σ : d̃σ = d, xσ = x}, Ax = A0,x∪A1,x

and A = ∪xAx; also Nd,x = |Ad,x|, Nx = |Ax| and N = |A|. From Eq.(39.87),
we get

ŜDO︸ ︷︷ ︸
δx

=
1

N1,x

∑
σ∈A1,x

yσ︸ ︷︷ ︸
Y 1
x

− 1

N0,x

∑
σ∈A0,x

yσ︸ ︷︷ ︸
Y 0
x

. (53.4)

53.3 UP Analysis

The input to UP is a PO dataset DS = {(σ, dσ, xσ, yσ) : σ = 0, 1, 2, . . . , nsam − 1}.
where dσ ∈ {0, 1}, xσ ∈ Sx, yσ ∈ R. A participant B is assigned two different σ if
he/she belongs to both the treated and control groups. We will assume Sx is a finite
set. In general, x = (x0, x1, . . . , xn−1) is an n dimensional vector of features xi. If
any of the xi is a priori continuous, we will assume it has been binned into a finite
number of bins.

Starting with DS, UP performs the following steps. Fig.53.2 is a pictorial
representation of the quantities that are calculated during these steps.

1. Find Ax for each observed x ∈ Sx. Set Ax = ∅ for unobserved x ∈ Sx.
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Figure 53.2: Pictorial representation of the sequence {(Xc,∆c)}c=0,1,...,nc−1.

2. Calculate δx for each x ∈ Sx. Set δx = 0 if Ax = ∅.

3. Calculate the set

{∆c}c=0,1,...,nc−1 = {δx : x ∈ Sx} (53.5)

of distinct uplifts δx. The class labels c should be assigned so that the sequence
of ∆c is monotonic and non-increasing; i.e.,

∆0 ≥ ∆1 ≥ · · · ≥ ∆nc−1 . (53.6)

Now calculate

Xc = {x : δx = ∆c} (53.7)

for each c. By the end of this step, we will have calculated {(Xc,∆c)}c=0,1,...,nc−1.
We will refer to the Xc as strata-bins. Note that

∆c =
1

|Xc|
∑
x∈Xc

δx (53.8)

=
1

|Xc|
∑
x∈Xc

Y 1
x︸ ︷︷ ︸

Y 1
c

− 1

|Xc|
∑
x∈Xc

Y 0
x︸ ︷︷ ︸

Y 0
c

. (53.9)

4. For each c, calculate

Σd,c = ∪x∈XcAd,x (53.10)
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for d ∈ {0, 1} and

Σc = Σ0,c ∪ Σ1,j . (53.11)

Figure 53.3: Plot of UP results. Alternative to Qini curves.

Fig.53.3 is a way of plotting the results of UP in an intuitive way that even a
business type can understand. UP software often plots something called a Qini curve,
but I find Qini curves opaque, confusingly defined in the literature, unnecessary and
not very well motivated. So I don’t use them.

53.4 UP Decision Trees

In this section, we will describe how to build UP decision trees (UP dtrees), and
explain why they are needed for UP.

Generic dtrees are described in Chapter 10. This section complements rather
than replaces that chapter so the reader is advised to read that chapter first.

Ref.[32] is an excellent paper on the use of dtrees in UP.
The analysis described previously in Section 53.3, although theoretically cor-

rect, will work very poorly in practice. The strata-bins of Section 53.3 correspond to
the classification classes of a dtree. But strata-bins are very specific so they severely
overfit the data. Although dtrees can also suffer from overfitting, there are known
methods of preventing or mitigating overfitting in dtrees.

314



There are also tasks that dtrees can do well and the methods explained so far
cannot do well. For example, suppose we have a classless dataset DS− = {(σ, xσ) :
σ ∈ Σ−} and we want to predict the class cσ and uplift ∆cσ for each of these individuals
σ ∈ Σ−. A dtree can easily do that. The alternative is to use the classy dataset
DS = {(σ, xσ, cσ) : σ ∈ Σ} to prepare a dictionary that orders the elements of Sx
and gives a class c and an uplift value ∆c for each feature vector x ∈ Sx. But such
a dictionary overfits and says nothing for feature vectors x that do not show up in
the classy dataset DS; i.e., the dictionary doesn’t guess (interpolate). Dtrees, on the
other hand, do guess.

So, without further ado, let us describe how to modify the results of Chapter
10 on generic dtrees to the case of UP dtrees. The main difference, as we will explain
in detail next, is that the Information Gain metric used for generic dtrees needs to
be replaced by another metric.

xk′

xj xj=xj
//

xj=x
′
j

44

xk

{Nd
j (c)}c∈Sc {Nd

k (c)}c∈Sc

∑
c∈Sc N

d
j (c) = Nd

j

∑
c∈Sc N

d
k (c) = Nd

k

∑
k∈ch(j)N

d
k (c) = Nd

j (c)

Figure 53.4: Fig.10.4 with d dependence added. d ∈ {0, 1} is the treatment dose.

Fig.53.4 was obtained from Fig.10.4 in Chapter 10 by adding d dependence.
d ∈ {0, 1} is the treatment dose. Since d ∈ {0, 1}, in UP, we build two dtrees of the
type that were built in Chapter 10 (both with the same structure but with different
probabilities associated with each node). Nd

j (c) is the number of individuals σ in the

d

�� &&
j // k // c

Figure 53.5: Bnet derived from population numbers in Fig.53.4
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population that reaches node xj with d ∈ {0, 1} and belonging to class c ∈ Sc. From
these population numbers, we can define the bnet in Fig.53.5. The TPMs, printed in
blue, for the (non-root) nodes of this bnet, are as follows

P (c|k, d) =
Nd
k (c)

Nd
k

(53.12)

P (k|j, d) =
Nd
k

Nd
j

1(k ∈ ch(j)) (53.13)

In Chapter 10, we used Information Gain (a mutual information) as the SAM
(Separation Ability Measure) in SL (Structure Learning) of dtrees (Decision Trees).
Information Gain is not an ideal SAM for SL of UP dtrees, because UP trees have a
more specialized classification goal than the generic dtrees of Chapter 10. Both UP
trees and generic trees want to separate the sample population into classes, but the
classes for an UP dtree are specifically uplift bins (i.e., uplift intervals).

Ref.[32] proposes and studies the following 3 SAMs. These SAMs are more
efficient than Information Gain for doing SL of UP dtrees.

1. SAM DD (DD=Delta Delta)

For d ∈ {0, 1} and c, c′ ∈ Sc, define the increments

∂df(d) = f(1)− f(0) (53.14)

and

∂c′,cf(c) = f(c′)− f(c) . (53.15)

Let

∆c|j = P (c|j, 1)− P (c|j, 0) (53.16)

= ∂dP (c|j, d) (53.17)

SAM DDj = max
c,c′
|∂c′,c∂dP (c|j, d)| (53.18)

= max
c,c′
|∂c′,c∆c|j| (53.19)
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2. SAM KL (KL=Kullback Liebler)

SAM KLj =

 ∑
k∈ch(j)

P (k|j)DKL(Pc|k,1 ‖ Pc|k,0)

−DKL(Pc|j,1 ‖ Pc|j,0)

(53.20)

=

 ∑
k∈ch(j)

P (k|j)
∑
c∈Sc

P (c|k, 1) ln
P (c|k, 1)

P (c|k, 0)

−∑
c∈Sc

P (c|j, 1) ln
P (c|j, 1)

P (c|j, 0)

(53.21)

SAM KLj can be negative.

3. SAM E (E=Euclidean)

SAM Ej is defined the same way as SAM KLj except with the KL divergence
DKL(P ‖ Q) in SAM KL replaced by the Euclidean distance squared.

D(P,Q) =
∑
x

(P (x)−Q(x))2 (53.22)

The intuitive reason for using these quantities as SAMs is that they maximize
the change in uplift between successive tree levels, so that the uplift increases as
quickly as possible as we descend down the UP tree. In the case of generic dtrees for
which we use Information Gain as SAM, we are maximizing the correlation between
classes and nodes as we descend down the tree. These two goals are related. In fact,
in the limit where the number of control individuals becomes zero, SAM KLj and
INFO gainj become the same, as will be shown later.

Next we show that SAM KLj satisfies the following 3 axioms1

Claim 30 .

1. SAM KLj is minimum iff P (c|k, 0) = P (c|k, 1) for all c and k ∈ ch(j).

2. If P (c|j, d) = P (c|d) for all c, d, then SAM KLj = 0.

3. Suppose N0
r = 0 for all nodes r ∈ J0 (i.e., no control population) and we use

the Laplace Correction when warranted. Then

SAM KLj = H(c : k|j, 1) (53.23)

= INFO gainj for treated population . (53.24)

1 We won’t show it here, but according to Ref.[32], SAM Ej also satifies these 3 axioms, but
SAM DDj satisfies only the first two.

317



proof:
The proof of items 1 and 2 follow by inspection of Eq.53.21. Item 3 is proven

in Claim 31 below.
QED

Let Nc = |Sc|. Define the uniform probability distribution

Uc(c) =
1

Nc

(53.25)

for all c ∈ Sc.
Eq.(53.12) for the TPM of node c in the bnet Fig.53.5 can be ”Laplace Cor-

rected” as follows so that it is no longer undefined when its denominator vanishes:

P (c|j, d) =

{
Nd
j (c)

Nd
j

if Nd
j > 0

Uc(c) if Nd
j = 0 (Laplace Correction)

(53.26)

Claim 31 Suppose N0
r = 0 for all dtree nodes r ∈ J0 and we use the Laplace Correc-

tion when warranted. Then

SAM KLj = H(c : k|j, 1) . (53.27)

proof:
For all nodes r ∈ J0, we must have

Pc|r,0 = Uc (53.28)

so

DKL(Pc|r,1 ‖ Pc|r,0) = DKL(Pc|r,1 ‖ Uc) (53.29)

= ln(Nc)−H(c|r, 1) . (53.30)

For all k ∈ ch(j), we must also have

Nj = N1
j , Nk = N1

k (53.31)

so

P (k|j) = P (k|j, 1) . (53.32)

Now using Eqs.(53.30) and (53.32), we get
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SAM KLj = −

 ∑
k∈ch(j)

P (k|j)H(c|k, 1)

+H(c|j, 1) (53.33)

= −

 ∑
k∈ch(j)

P (k|j, 1)H(c|k, 1)

+H(c|j, 1) (53.34)

= −H(c|k, j, 1) +H(c|j, 1) (using Claim 8) (53.35)

= H(c : k|j, 1) (53.36)

QED

53.4.1 Appendix, connection between ∆c and ∆c|j

Recall Eq.53.9:

∆c =
1

|Xc|
∑
x∈Xc

Y 1
x︸ ︷︷ ︸

Y 1
c

− 1

|Xc|
∑
x∈Xc

Y 0
x︸ ︷︷ ︸

Y 0
c

(53.37)

= ∂dY
d
c . (53.38)

Compare that to Eq.(53.17):

∆c|j = P (c|j, 1)− P (c|j, 0) (53.39)

= ∂dP (c|j, d) (53.40)

What is the connection between these 2 deltas, ∆c and ∆c|j? Are they equal?
First off, notice that ∆c|j is defined for all nodes j of the dtree. Let j(c) be

the leaf node for which ∆c ≈ ∆c|j(c). Assume yσ ∈ {0, 1}. Then

P (c|j = j(c), d) =
Nd
j(c)(c)

Nd
j(c)

≈ Y d
c (53.41)

So the two deltas are indeed approximately equal when yσ ∈ {0, 1} and j = j(c).
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Chapter 54

Variational Bayesian
Approximation

For more info and references about this topic, see Ref.[83].
The Variational Bayesian approximation (VBA) is an analytic (as opposed

to numerical) approximation to the probability distribution P (h|~x), where h are the
hidden variables and ~x is the data.

More precisely, suppose h ∈ Sh and q ∈ Sh. Suppose ~x ∈ Snsamx is a vec-
tor of nsam samples and the samples x[σ] ∈ Sx are i.i.d.. The VBA is simply an
approximation Pq|~x to Ph|~x:

Ph|~x(h|~x) ≈ Pq|~x(h|~x) (54.1)

obtained by minimizing the Kullback-Liebler divergenceDKL(Pq|~x ‖ Ph|~x) over all Pq|~x.
The minimization is usually subject to some constraints on the admissible forms of
Pq|~x.

DKL(Q ‖ P ) 6= DKL(P ‖ Q); i.e., DKL is not symmetric. So why do we use
DKL(Pq|~x ‖ Ph|~x) instead of DKL(Ph|~x ‖ Pq|~x)? Because DKL(Ph|~x ‖ Pq|~x) requires
knowledge of Ph|~x, but calculating Ph|~x is what we are trying to do in the first place.

Figure 54.1: If Pq(h) is Gaussian shaped and Ph(h) has multiple bumps (modes) then
DKL(Pq ‖ Ph) is minimized when Pq fits one of the modes of Ph. That is because

DKL(Pq ‖ Ph) =
∑

h Pq(h) ln
Pq(h)

Ph(h)
is a weighted average with weights Pq, so nothing

going on outside the support of Pq influences much the final average.

See Fig.54.1 for some intuition on what minimizing DKL(Pq|~x ‖ Ph|~x) means.
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Figure 54.2: q and h have nh = 2 mirroring components and those of q are indepen-
dent at fixed ~x.

Suppose h = (h0, h1, . . . , hnh−1) and q = (q
0
, q

1
, . . . , q

nh−1
) where hi ∈ Shi and

q
i
∈ Shi for all i. We say q and h have nh mirroring components and those of q are

independent at fixed ~x if

Pq|~x(h|~x) =
∏
i

Pq
i
|~x(hi|~x) . (54.2)

The bnet Fig.54.2 describes the scenario that we have in mind: The samples x[σ] are
i.i.d.. Each component hi of h has a mirroring component q

i
in q. The components

of h are correlated whereas those of q are independent at fixed ~x.

Claim 32 If q and h have nh mirroring components and those of q are independent
at fixed ~x and DKL(Pq|~x ‖ Ph|~x) is minimum over all Pq|~x, then

Pq
i
|~x(qi|~x) = N (!qi)e

E(q
j
)j 6=i [lnPh|~x(h=q|~x)]

(54.3)

= N (!qi)e
E(q

j
)j 6=i [lnPh,~x(h=q,~x)]

(54.4)

for all i.

proof:
Since all quantities in Eq.(54.3) are conditioned on ~x, let us omit all mention

of ~x in this proof.
Let

L = L0 + L1 (54.5)
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where

L0 = DKL(Pq ‖ Ph) (54.6)

=
∑
h

Pq(h) ln
Pq(h)

Ph(h)
(54.7)

=
∑
h

Pq(h) lnPq(h)−
∑
h

Pq(h) lnPh(h) (54.8)

=
∑
i

∑
hi

Pq
i
(hi) lnPq

i
(hi)−

∑
h

Pq(h) lnPh(h) (54.9)

and

L1 =
∑
i

λi

[∑
hi

Pq
i
(hi)− 1

]
. (54.10)

Then

δL =
∑
i

∑
hi

δPq
i
(hi)

lnPq
i
(hi) + 1 + λi −

1

nh

∑
(hj)j 6=i

∏
(hj)j 6=i

{Pq
j
(hj)} lnPh(h)

 .

(54.11)
Hence,

Pq
i
(hi) = N (!hi)e

∑
(hj)j 6=i

{∏
(hj)j 6=i

Pq
j
(hj)

}
lnPh(h)

. (54.12)

QED
Note that Eq.(54.3) yields a system of nh nonlinear equations in nh unknowns

(Pq
i
|~x)i=0,1,...,nh−1. This system is usually solved recursively.

54.1 Free Energy F(~x)
To simplify the notation below, let us introduce the following abbreviations:

P (h|~x) = Ph|~x(h|~x) (54.13)

P (h, ~x) = Ph,~x(h, ~x) (54.14)

P (~x) = P~x(~x) (54.15)
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Note that

DKL(Pq|~x ‖ Ph|~x) =
∑
h

Pq|~x(h|~x) ln
Pq|~x(h|~x)

P (h|~x)
(54.16)

=
∑
h

Pq|~x(h|~x) ln
Pq|~x(h|~x)

P (h, ~x)
+ lnP (~x) (54.17)

= F(~x) + lnP (~x) (54.18)

Hence, the Free energy F(~x) is defined as

F(~x) =
∑
h

Pq|~x(h|~x) ln
Pq|~x(h|~x)

P (h, ~x)
(54.19)

= Eq|~x

[
ln
Pq|~x(q|~x)

Ph,~x(q, ~x)

]
. (54.20)

The name free energy is justified because

F(~x) = −
∑
h

Pq|~x(h|~x) lnPh,~x(h, ~x)︸ ︷︷ ︸
U, Internal Energy

+
∑
h

Pq|~x(h|~x) lnPq|~x(h|~x)︸ ︷︷ ︸
−S, minus Entropy

. (54.21)

It is also common to define a quantity called “ELBO” to be the negative of
the free energy.

ELBO(~x) = −F(~x) (54.22)

ELBO stands for “Evidence Lower BOund”. That name is justified because

lnP~x(~x)︸ ︷︷ ︸
evidence≤0

= DKL(Pq|~x ‖ Ph|~x)︸ ︷︷ ︸
≥0

−|ELBO(~x)| . (54.23)

Some properties of F are:

• F is non-negative.

DKL(Pq|~x ‖ Ph|~x)︸ ︷︷ ︸
≥0

+ ln
1

P~x(~x)]︸ ︷︷ ︸
≥0

= F(~x) (54.24)

• KL divergence is min iff F is min at fixed P (~x).

323



Figure 54.3: DKL + ln 1
P (~x)

= F .

During a variation δ that holds P (~x) fixed, the KL divergence and F change by
the same amount:

δDKL(Pq|~x ‖ Ph|~x) = δF(~x) (54.25)
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Chapter 55

Zero Information Transmission
(Graphoid Axioms)

This chapter assumes that you have read Chapter 14 on d-separation.
The following quantities play a very prominent role in the d-separation Theo-

rem that we enunciated in Chapter 14.

• the mutual information (MI)
(aka information transmission) H(a : b)

• the conditional mutual information (CMI)
(aka conditional information transmission) H(a : b|c)

MI can be viewed as the special case of CMI, when the set of variables being condi-
tioned on is empty. Particularly prominent in d-separation discussions are probability
distributions for which CMI vanishes. The goal of this chapter is to study such prob-
ability distributions.

Recall that CMI is non-negative and symmetric in its first two variables (i.e.,
H(a : b|c) = H(b : a|c)). Another very useful property of CMI is its chain rule (easy
to prove from the definition of CMI):

H(y : xn) =
∑
i

H(y : xi|x<i) , (55.1)

where xn = (x0, x1, . . . , xn−1) and x<i = (x0, x1, . . . , xi−1).
A trivial but very useful consequence of the chain rule for CMI is:

H(y : xn) = 0 ⇐⇒ H(y : xi|x<i) = 0 for all i . (55.2)

55.1 Consequences of Eq.(55.2)

Table 55.1 gives a set of statements about CMI referred to as the Graphoid Axioms in
chapter 1 of Ref.[26]. See Ref.[26] to learn the history of these axioms. The purpose
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of this section is to prove that the graphoid axioms are all a simple consequence of
Eq.(55.2).

Symmetry
a ⊥P b =⇒ b ⊥P a
H(a : b) = 0 =⇒ H(b : a) = 0

Decomposition
a ⊥P b, c =⇒ a ⊥P b and a ⊥P c
H(a : b, c) = 0 =⇒ H(a : b) = 0 and H(a : c) = 0

Weak Union
a ⊥P b, c =⇒ a ⊥P b|c and a ⊥P c|b
H(a : b, c) = 0 =⇒ H(a : b|c) = 0 and H(a : c|b) = 0

Contraction
a ⊥P b|c and a ⊥P c =⇒ a ⊥P b, c
H(a : b|c) = 0 and H(a : c) = 0 =⇒ H(a : b, c) = 0

Intersection
a ⊥P b|c, d and a ⊥P d|c, b =⇒ a ⊥P b, d|c
H(a : b|c, d) = 0 and H(a : d|c, b) = 0 =⇒ H(a : b, d|c) = 0

Table 55.1: Graphoid Axioms

Claim 33 Table 55.1 is true.

proof:

• Symmetry

Follows trivially from H(a : b) = H(b : a).

• Decomposition

From the chain rule for CMI, we have

H(a : b, c) = H(a : b|c) +H(a : c) , (55.3)

and
H(a : b, c) = H(a : c|b) +H(a : b) . (55.4)

Hence,
H(a : b, c) = 0 (55.5)

implies

H(a : b|c) = H(a : c) = 0 , (55.6)

and

H(a : c|b) = H(a : b) = 0 . (55.7)

• Weak Union

Already proven in proof of Decomposition.

326



• Contraction

From chain rule for CMI, we have

H(a : b, c) = H(a : b|c) +H(a : c) . (55.8)

• Intersection

From the chain rule for CMI, we have

H(a : b, d|c) = H(a : b|d, c) +H(a : d|c) , (55.9)

and

H(a : b, d|c) = H(a : d|b, c) +H(a : b|c) . (55.10)

Thus,

H(a : b, d|c) = 0 (55.11)

implies

H(a : b|d, c) = H(a : d|c) = 0 , (55.12)

and

H(a : d|b, c) = H(a : b|c) = 0 . (55.13)

.
QED
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