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Through an examination of the Bohm-Aharonov experiment an intrinsic and complete description of
electromagnetism in a space-time region is formulated in terms of a nonintegrable phase factor. This concept,
in its global ramifications, is studied through an examination of Dirac s magnetic monopole field.
Generalizations to non-Abelian groups are carried out, and result in identification with the mathematical

concept of connections on principal fiber bundles.

I. MOTIVATION AND INTRODUCTION

The concept of the electromagnetic field was
conceived by Faraday and Maxwell to describe
electromagnetic effects in a space-time region.
According to this eoneept, the field strenght f „
describes electromagnetism. It was later real-
ized, ' however, that f„„by itself does not, in
quantum theory, completely describe all electro-
magnetic effects on the wave function of the elec-
tron. The famous Bohm-Aharonov experiment,
first beautifully performed by Chambers, ' showed
that in a multiply connected region where f „=0
everywhere there are physical experiments for
which the outcome depends on the loop integral

A dx~

exp — A „dx' (2)

and not the phase (1), is physically meaningful. In
other words, the phase (1) contains more infor-
mation than the phase factor (2). But the addition-
al information is not measurable. This simple
point, probably implicitly recognized by many
authors, is discussed in Sec. II. It leads to the
concept of nonintegrable (i.e. , pa. th-dependent)
phase factor as the basis of a description of elec-
tromagnetism.

This concept has been taken' as the basis of the
definition of a gauge field. The discussions in
Ref. 3, however, centered only on the local prop-
erties of gauge fields. To extend the concept to

around an unshrinkable loop. This raises the
question of what constitutes an intrinsic and com-
plete descriPtion of electromagnetism. In the
present paper we wish to discuss this question and
also its generalization to non-Abelian gauge fields.

An examination of the Bohm-Aharonov experi-
ment indicates that in fact only the phase factor

global problems we analyze in Sec. III the field
produced by a magnetic monopole. We demon-
strate how the quantization of the pole strength,
a striking result due to Dirac, ' is understood in
this concept of electromagnetism. The demon-
stration is closely related to that in the original
Dirac paper. Dirac discussed the phase factor of
the wave function of an electron (which, among
other things, depends on the electron energy). Our
emphasis is on the nonintegrable electromagnetic
phase fa.etor (which does not depend on such quan-
tities as the energy of the electron).

The monopole discussion leads to the recognition
that in general the phase factor (and indeed the
vector potentials ) can only be properly defined
in each of many overlapping regions of space-
time. In the overlap of any two regions there ex-
ists a gauge transformation relating the phase
factors defined for the two regions. This discus-
sion is made more precise in Sec. IV. It leads to
the definition of global gauges and global gauge
transf ormations.

In Sec. V generalizations to non-Abelian gauge
groups are made. The special cases of SU, and

So, gauge fields are discussed in Secs. VI and VII.
A surprising result is that the monopole types are
quite different for SU, and So, gauge fields and for
electromagnetism.

The mathematics of these results is in fact well
known to the mathematicians in fiber bundle theo
~y. An identification table of terminologies is
given in Sec. V. We should emphasize that our in-
terest in this paper does not lie in the beautiful,
deep, and general mathematical development in
fiber bundle theory. Rather we are concerned with
the necessary concepts to descrtbe the physics of
gauge theories. It is remarkable that these con-
cepts have already been intensively studied as
mathematical constructs.

Section VII discusses a "gedankee" generalized
Bohm-Aharonov experiment for SU, gauge fields.
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Unfortunately, the experiment is not feasible un-
less the mass of the gauge particle vanishes. In
the last section we make several remarks.

II. DESCRIPTION OF ELECTROMAGNETISM
electron

beam

interference

plane

The Bohm-Aharonov experiment explores the
electromagnetic effect on an electron beam (Fig.
1) in a doubly connected region where the electro-
magnetic field is zero. As predicted' by Aharonov
and Bohm, the fringe shift is dependent on the
phase factor (2), which is equal to

F&G. 1. Bohm-Aharonov experiment (Refs. 1, 2). A
magnetic Qux is in the cylinder. Outside of the cylinder
the field strength f» =0.

exp 0

where 0 is the magnetic flux in the cylinder. Thus
two cases a and b for which

0, —Q, =integer && (hc je)

give the same interference fringes in the experi-
ment. This we shall state and prove as follows.

Theorem 1: If (3) is satisfied, no experiment
outside of the cylinder can differentiate between
cases a and b.

Consider first an electron outside of the cylin-
der. We look for a gauge transformation on the
electron wave function g, and the vector potential

(A„),for case a, which changes them into the
corresponding quantities for case b, i.e. we try
to find S=e ' such that

C ~~= exp A, dx' (7)

provided that an arbitrary gauge transformation

We conclude: (a) The field strength f„„under-
describes electromagnetism, i.e. , different
physical situations in a region may have the same
f„„. (b) The phase (1) overdescribes electromag-
netism, i.e. , different phases in a region may
describe the same physical situation. What pro-
vides a complete description that is neither too
much nor too little is the phase factor (2).

Expression (2) is less easy to use (especially
when one makes generalizations to non-Abelian
groups) as a fundamental concept than the concept
of a phase factor for any path from P to Q

S=S.,=(S,.)-',
g~=S 'g, , or g~=e' g, , (4)

exp A, dx'

(A ),=(A ),— S „, or (A„)~=(A ),+—
(5}

-exp —a exp — A„dx' exp a P

For this gauge transformation to be definable, S
must be single-valued, but n itself need not be.
Now (A ), —(A ), is curlless; hence (5) can always
be solved for n. But it is multiple-valued with an
increment of

an= — A ~
—A, dx

(6}

does not change the prediction of the outcome of
any physical measurements. Following Ref. 3,
we shall call the phase factor (7) a nonintegrable
(i.e., path-dependent) phase factor.

Electromagnetism is thus the gauge-invariant
manifestation of a nonintegrable phase factor. We
shall develop this theme further in the next sec-
tion.

every time one goes around the cylinder. If (3)
is satisfied, An=2m x integer and S is single-
valued. Case a and case b outside of the cylinder
are then gauge-transformable into each other, and
no physically observable effects would differentiate
them. The same argument obviously holds if one
studies the wave function of an interacting system
of particles provided the charges of the particles
are all integral multiples of e. Thus we have
shown the validity of Theorem 1.

III. FIELD DUE TO A MAGNETIC MONOPOLE

The definition of a nonintegrable phase factor
(7) in a general case may present problems. To
illustrate the problem, let us study the magnetic
monopole field of Dirac. 4 Consider a static mag-
netic monopole of strength gc0 at the origin
r = 0 and take the region R of space-time under
consideration to be all space-time minus the ori-
gin r =0. We shall now show the following:
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Theozerpg 2: There does not exist a singularity-
free A „over all R.

If a singularity-free A does exist throughout R,
consider the loop integral g A „dx" for time f = 0
around a circle at fixed spherical coordinates
r and 8 with azimuthal angle /=0-2v. This in-
tegral, denoted by Q(r, 8) for r & 0, is equal to the
magnetic flux through a cap bounded by the loop,
or more explicitly Q(r, 8) = 2'(1 —cos8). At 8 = 0,
Q(r, 0) =0. Increasing 8 leads to a continuous in-
crease in 0 till one approaches 8=m, at which

2gggS=S,„=exp(-io.) =exp (12)

This is an allowed gauge transformation if and
only if S is single-valued, i.e. ,

2gg = integer =D,Sc (13)

which is Dirac' s quantization. With (13) we have

The gauge transformation in the overlap of the two
regions is

Q(r, v) =4'. S,»=exp(iDQ) . (12')

But at 8= w the loop shrinks to a point. Therefore
Q(r, z) =0 since A, has no singularity. We have
thus reached a contradiction and Theorem 2 is
proved.

%ith an A, which has singularities, the nonin-
tegrable phase factor becomes undefined if the path
goes through a singularity. This difficulty must be
resolved in order to use a nonintegrable phase
factor as a fundamental concept to describe elec-
tromagnetism. It can be resolved in the following
way. Let us seek to divide R into two overlapping
regions R, and R, and to define (A„), and (A„)„
each singularity-free in their respective regions,
so that (i) their curls are equal to the magnetic
field and (ii) in the overlapping region (A„), and
(A )» are related by a gauge transformation. One
possible choice is to take the regions to be

R,: 0~8&v/2+5 0&r, 0~/&2', all f
(10)

R, : w/2 —5&8~v 0&r, 0~/&2', all f

with an overlap extending throughout B/2 —i5& 8
&v/2+5. (We assume 0&5~~/2. ) Take

(A,).= (A„),= (A,),= 0, (A, ), = ~ (1 —cos8)

(11)

(A, )b = (A„)b =(Ab)b =0, (Ab)»= . (1+cos8) .

To define the phase factor for a path we refer to
Fig. 2, where a point in the overlapping region,
such as point P, is regarded as two points P, and

P, . If apath is entirelywithin regiona or b, we de-
fine C along the path by (7) with (A„), or (A„), in
the integrand in the exponent. If the path Q -P is
entirely within the overlapping region we have
then two possible phase factors C ~ and 4 ~ ~, .
It is easy to prove that

C, =S-'(q)C, S(f ), (14)

(14')

OBDCBA @BDa ab(D)~D»CB» ba( )4 B A

Notice that fixing the path but sliding the points
B and D along it does not change l»cBA [because
of formulas like (14')] so long as B and D remain
in the overlapping region.

The phase factor so defined satisfies the group
property, e.g. ,

C, , S{Z)=S(q)e. ,.
which merely states that (A,), and (A,), are related
by a gauge transformation with the transformation
factor (12).

For a path that crisscrosses in and out of the
overlapping region, such as A-B-C-D-E in
Fig. 2, the definition of 4 is

I
I

I
I

I

I

I

I

!
~aa t=l: E

Ra

@EDCBA @EDg DgCBA

EDy DyCBA

C'»cc'c», etc. (16)

The relationship between the electromagnetic field
and the phase factor around a loop is the same as
usual. One only has to be careful that if the start-
ing and terminating point A is in the overlapping
region, the phase factor is taken to be 4»„
=4»„, and not 4»~ or 4»„. The phase
factor around the loop is then equal to

FIG. 2. Schematic diagram illustrating the relation-
ship bebveen R, and B&.

exp 0,
where 0 is the magnetic flux through a cap bor-
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dered by the loop. Notice that because of Dirac's
quantization condition, the phase factor is the
same whichever way one chooses the cap provided
it does not pass through the point r =0 (any t).

We have satisfactorily resolved the difficulty
mentioned at the beginning of this section, pro-
vided Dirac s quantization condition (13) is satis-
fied. We shall now prove the following.

Theorem 8: If (13) is not satisfied (the above
method of resolving the difficulty would not work
since) there exists no division of R into overlap-
ping regions R„R„,R„.. . so that condition (i) and

(ii) stated above, properly generalized to the case
of more than two regions, would hold.

To prove this statement, observe that if such a
division is possible, one could generalize (15) and

arrive at a satisfactory definition of the phase
factor. The phase factor around a loop is then a
continuous function of the loop. Take the loop to
be a parallel on the sphere y fixed, t =0, 0 fixed,
Q =0-2w. The phase factor defined by the gener-
alization of (15) is equal to

4

exp — A(x, 8) = exp —2'(1 —cos8) . (1V)
@C SC

This is not equal to unity when 8 = v, since (13) is
assumed to be invalid. Thus we have a contradic-
tion.

Theorem 3 shows that if Dirac s quantization
condition (13) is not satisfied, then the field of a
magnetic monopole of strength g cannot be taken
as a realizable physical situation in R. (Of course,
if one excludes the half-line x=y =0, @ &0, or any
half-line starting from r =0 leading to infinity,
then it is possible to have any value for g.) This
conclusion is the same as Dirac's, but viewed
from a somewhat different point of emphasis.

IV. GENERAL DEFINITION OF GAUGE

AND GLOBAL GAUGE TRANSFORMATION

Assuming that (13) holds, to round out our con-
cept of a nonintegrable phase factor the question
of the flexibility in the choice of the overlapping
regions and the flexibility in the choice of A„ in the
regions must be faced. Both of these questions are
related to gauge transformations.

Consider a gauge transformation $ in R, (] will
be assumed to be many times differentiable, but
not necessarily analytic), resulting in a new po-

tential (A„)',. We shall illustrate schematically
the transformation by "elevating" the region b in
Figure 3(a).

One could extend the region b. One could also
contract it, provided the whole R remain covered.

One could create a new region by considering a
subregion of b as an additional region R, [Figure
3(b)], and define the gauge transformation connect-
ing them as the identity transformation so that
(A ),= (A )„. One can then "elevate" R, and con-
tract R„which results in Fig. 3(c).

Through operations of the kind mentioned in the
last three paragraphs, which we shall call distor-
tions, we arrive at a large number of possibilities,
each with a par ticula, r choice of overlapping re-
gions and with a particular choice of gauge trans-
formation from the original (A,), or (A „),to the
new A, in each region. Each of such possibilities
will be called a gauge (or global gauge). This
definition is a natural generaliza, tion of the usual
concept, extended to deal with the intricacies of
the field of a magnetic monopole.

For each choice of gauge there is a definition of
a nonintegrable phase factor for every path. The
group condition 4 ~ » = 4~ ~ 4» is always

6 c 5 Q g
satisfied.

Notice that the original gauge we started with
was characterized by (a) specifying [in (10)] the
regions [R, and R,] and (b) specifying the gauge
transformation factor (12') in the overlap (between
R and R,) It does n.ot xefex to any sPecific A, .
[ A distortion may of course lead to no changes in
characterizations (a) and (b). Thus two different
gauges may share the same characterizations (a)
and (b).] In the case of the monopole field, we
had chosen the vector potential to be given by (11).
But, in fact, we can attach to this gauge any (A ),
and (A )~ provided they are gauge-transformed
into each other by (12') in the region of overlap.
(The resultant f „ is, of c'ourse, not a monopole
field in general. ) Thus a gauge is a concePt not
tied to any specific vector potential. We shall call
the process of distortion leading from one gauge to
another a global gauge transformation. It is also
a concept not tied to any specific vector potential.
It is a natural generalization of the usual gauge
transf ormation.

The collection of gauges that can be globally
gauge-transformed into each other will be said to

I

b—

FIG. 3. Distortions allowed in gauge transformation.
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A&»=t(A. )& &+(1 t)(A„)&~&, 0 (18)

In an overlap between regions a and b this inter-
polating vector potential assumes values (A,),'"'
and (A „),'"' which are related by the proper gauge
transformation belonging to this overlap. Thus
we have proved Theorem 7.

Now go back to Theorem 6 and assume it to be
invalid. Then we can gauge-transform the vector
potential belonging to the monopole of strength
D'Sc/2e to the gauge 9o. For this gauge we have
then two monopole fields of different pole
strengths. Using Theorem 7 we interpolate be-
tween them and obtain unquantized magnetic mon-
opoles, which contradict Theorem 3.

Notice that although in this proof of Theorem 6
we have used two specific gauge fields, the the-
orem itself does not refer to any specific gauge
fields at all.

By the same argument as used in the proof of
Theorem 7, any gauge field defined on 9D must
have a magnetic monopole of strength DKc/2e at
the excluded point r =0, in addition to possible
fields produced by electric charges and currents.
Thus the total magnetic flux around the origin
r =0 is equal to (2m5c/e)D for any gauge field de-
fined on 9D. We shall state this as a theorem and

give another proof of it.
Theorem 8: Consider gauge 9~ and define any

gauge field on it. The total magnetic flux through
a sphere around the origin r =0 is independent of

belong to the same gauge tyPe.
The phase factor around a loop starts and ends

at the same point in the same region. Thus it does
not change under any global gauge transformation,
i.e. we have, for Abelian gauge fields, the follow-
1ng.

Theorem 4a: The phase factor around any loop
is invariant under a global gauge transformation.

It follows trivially from this, by taking an in-
finitesimal loop, that

Theorem 5a: The field strength f „is invariant
under a global gauge transformation.

For a given value of D, the gauge defined by (10)
and (12) will be denoted by 9o. For DxD', the re-
lationship, or rather the lack of relationship, be-
tween 9D and 9D, is shown by Theorem 6.

Theo~em 6: For D &D', 9~ and 9D, are not re-
lated by a global gauge transformation, i.e., they
are not of the same gauge type.

To prove this theorem we use Theorem 7.
Theo~em 7: Between two gauge fields defined on

the same gauge there exists a continuous interpo-
lating gauge field defined on the same gauge.

To prove Theorem 7, we simply make a linear
interpolation between the two original gauge fields
which we shall denote by (A,)' ' and (A „}'~'.

the gauge field and only depends on the gauge:

„dx"dx"=
~ lnS b dx~, (19)

where S is the gauge transformation defined by
(12}for the gauge 9o in question, and the integral
is taken around any loop around the origin r=0 in
the overlap between R, and Rb, such as the equa-
tor on a sphere x= 1.

To prove this theorem we observe that the flux
through the upper half of the sphere x=1 is equal
to the following integral around the equator:

f &d, &.dx'. (20a)

The flux through the lower half is equal to a simi-
lar integral around the equator:

A bdx" . (20b)

Hence

total flux=, ,—2, b
dx'

-ZSc
(21)

Rc

Rb

FIG. 4. Case of three regions for Theorem 8. The
three paths from P to Q are in the three overlapping
regions between (R, , Rb), (Rb, R, ), and (R, , R,).

which completes the proof. Using (13) and (12),
the right-hand side of (21) is equal to 4&&g, as ex-
pected.

If one starts with any gauge which is of the same
gauge type as 9D, and makes a global gauge trans-
formation on it, the total flux is not changed by
Theorem 5a. Thus (19), which depends only on the

gauge, is in fact the same for all gauges of the
same type. Notice that if there are more regions
in a gauge than two, (19) should be replaced by a
sum of line integrals along paths that are in the
various overlaps between the regions. For a case
of three regions there are three paths, which are
illustrated in Fig. 4. Along each path the integral
is of the form (19) with S denoting the gauge trans-
formation factor, such as (12), between the two
regions containing the path. To prove Theorem 8 in
this case one need only add three loop integrals to-
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gether, each of the form of (20a) and (20b), and
notice that along each path the integrand is always
the difference of the vector potential A„between
two regions, very much as in (21).

The first proof we gave above of Theorem 8 is
easy and is "obvious" to a physicist. The second
proof is more involved but is more intrinsic. The
theorem is a special case of the Chem-Well
theorem which evolved from the famous Gauss-
Bonnet-Allendoerfer-Weil- Chem theorem, a
seminal development in contemporary mathemat-
ics.' We want to emphasize two consequences of
the theorem. (i) The right-hand side of (19) is in-
dependent of the gauge field, and only depends on
the gauge type. (ii) The right-hand side of (19) has
as integrand the gradient of lnS. Since S is single-
valued, the integral must be equal to an integral
multip/e of a constant (in this case 2Bi). A re-
markable fact is that these consequences remain
valid in the general mathematical theorem, which
is very deep.

V. GENERALIZATION TO NON-ABELIAN

GAUGE FIELD

So far we have only considered electromagnetism
and described it in terms of an Abel. ian gauge field
that corresponds to the group V„or equivalently
SO, . On the basis of the discussions in the pre-
ceding section, the generalization to the non-
Abelian case can be carried out without much diffi-
culty. For a local region this has been done in Ref. 3.
Extension to global considerations is our present
focus of interest.

A gauge is defined by (a) a pa, rticular choice of
overlapping regions and (b) a particular choice of
single-valued gauge transformations S„in the
overlapping regions. The choice of gauge trans. -
formations clearly must satisfy the following two
conditions.

(1) In the overlapping region R, 3R„ the gauge
transformations S„from a to b and S„from b to
a are related by

S, Sq, =1,

@CABC @CA@ABCA@AC '

Hence changing the starting point does not change
the class.

Theorem 4 defines the class of a loop. This
concept is the generalization of the phase factor
for electromagnetism around a loop with the mag-
netic flux as the exponent. It is a gauge-invariant
concept.

These concepts have been extensively studied
by the mathematicians in the framework of more
general' mathematical constructs. A translation
of terminology is given in Table I.

VI. CASE OF SU2 GAUGE FIELD

For the SV, case we take the infinitesimal gen-
erators X, to satisfy

X,X, —X+, =X, , etc. (22)

and define the phase factor, as a generalization of
(7), by'

-e
4~= exp b'„X,dh'

I' ordered

i.e. , we make the replacement

(23)

is now an element of the gauge group. We shall
still call it a phase factor. Since these phase fac-

torss

do not in general commute with each other,
Theorems 4a and 5a for the Abelian case need to
be modified as follows.

Theorem 4: Under a global gauge transforma-
tion, the phase factor around any loop remains in
the same class. The class does not depend on
which point is taken as the starting point around
the loop.

Theorem 5: The field strength f'„„is covariant
under a global gauge transformation.

Only theorem 4 is not immediately transparent.
For a loop ABCA, under a gauge transformation'

@ABCA @ABCA ~( )@ABCA~ (+) '

Thus 4»cA and 4ABcA are in the same class. Also
around the same loop if we change the starting
point fromA to C,

where 1 is the identity element of the gauge group.
(2) If three regions R„R„,and R, overlap, then

there are gauge transformations S,~, S„,S„,S„,
S„,S„so that

or

ieA. - -eb" X~,

A, -ib', X, .

(24)

(25)
Say Syc ca 1

p
etc.

in R, RRqRR, .
As in the case of electromagnetism, both the

concept of a gauge and the concept of a global
gauge transformation are not tied to any specific
gauge potentials, denoted in general by b~.

The nonintegrable phase factor for a given path

[The subscript "ordered" means that, in the defini-
tion of the exponential in terms of a power series,
the factors b~ X~ are ordered along the path from
P to Q with the factor b'(P) X» at the right end of
the product. ] The algebraic operators X, can be
thought of as the collection of all irreducible repre-
sentations of (22). The eigenvalue of iX„with the
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TABLE I. Translation of terminology.

Gauge field terminology Bundle ter minology

gauge (or global gauge)
gauge type
gauge potential &&

Sq~(see Sec. V)
phase factor 4 ~p
field strength f~»
source ' J+

p
electromagnetis m
isotopic spin gauge field
Dirac' s monopole quantization

electromagnetis m without monopole
electromagnetis m with monopole

principal coordinate bundle
principal fiber bundle
connection on a principal
fiber bundle

trans ition function
parallel displacement
curvature

?
connection on a U~ P,) bund1e
connection on a SU2 bundle
classification of U& p.) bundle

according to first Chem class
connection on a trivial U&(1) bundle
connection on a nontrivial U~(1) bundle

' I.e. , electric source. This is the generalization (see Ref. 3) of the concept of electric
charges and currents.

minimum absolute value is +&. Therefore the
minimum "charge" of all physical states can be
read off from (24) by taking the 2 x 2 irreducible
representation of X,:

&O'nX =-
2 (26)

where o~ are the Pauli matrices. Thus

e
minimum "charge" =-.

2

The particle of the gauge field belongs to the ad-
joint representation. Its "charges" are e, 0, and

Thus

"charge" of gauge particle =2 for SU, .
minimum "charge" (28)

We shall now try to define a Dirac monopole field
as a special SU, field along only one isospin direc-
tion 4=3, i.e. , we define

which follows from the existence of half-integral
representations such as (26).

The phase factor (30) describes a great circle,
wound D times, on the manifold of SU, when Q var-
ies from 0-2m. Such a circle can be continuously
shrunk to the identity element, in contrast with the
situation for electromagnetism. Thus, by a global
gauge transformation S may be changed to S' =1,
and the two regions a and b after the global gauge
transformation can be fused into one si ngle re-
gion. The gauge potential b", is then defined eve~y-
soheye in R as a single region. Thus we have the
following theorem.

Theorem 9: For the SU, gauge group, the gauges

9~ for different D can be transformed into each
other by global gauge transformations. The dif-
ferent monopole fields are therefore of the same
type.

We shall only exhibit the global transformation
for the case 9, for which

y~ =b2=0 u~ (29) S„=exp(-2/X, ), (32)

where A„ is given in the two regions (10) by (11).
In the overlapping region, transformation factor
S of (12) and (14) now becomes

e
Sc g

The gauge transformations we shall seek are iDus-
trated in Fig. 5. We shall choose

S„=exp — X, (30)
$ = exp[8(X, sing -X, cos@)], (34)

8g
Sc
~ =integer =D

is satisfied because for SU,

exp(4', ) =1, exp(2wX, ) x1,

(31)

by replacement (25). This is single-valued if and
only if the quantization condition

q = exp[(v —8)(X, sing —X, cosP)] exp(vX, ) . (35)

It is easy to see that $ is analytic in the coordi-
nates x" at all points in R,. (One only has to verify
this statement at 8=0, which is easily done. )
Similarly q is analytic in R, . $ and q are therefore
allowed gauge transformations in, respectively,
R, and R~.
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Now one can prove after some algebra that'

S'„=rlS~, t = 1 .
Thus after the gauge transformations $ and q,
which together form a global gauge transformation,
regions R, and R, are related by the identity gauge
transformation in their overlap, i.e. , the two re-
gions can be fused into one. To calculate the gauge
potentials b'„after the global gauge transformation
we use

~(q) 1+-(b"„)',X,dx' ~ '(P}=1+-(b'„),X„dx'

1=1+—(A„),X,dx

(36)

where A„ is given by (11) and Q=P+dx. By
choosing dx' to be along the t and x directions,
one obtains b, =b~ =0. By choosing dx' to be
along the 8 direction, one obtains

Rb

Ra

FIG. 5. A global transformation after which R, and
Rt, can be fused.

Thus the new potential 5 is analytic in R,. Be-
cause qS„]=1 the new potential (in the overlapping
region) for R, must be the same as (40). By ana-
lyticity (40) is seen to be valid throughout R. No-
tice that (40) is the same potential as one of the
solutions [solution (12a)], for a sourceless gauge
field, in Ref. 9.

The global gauge transformation that transforms
9~ into 9, for D e-1 can be obtained by slightly
modifying (34) and (35).

We shall discuss Theorem 9 further in the next
section.

b~' = sing, b~' =—cosp, b~' =0. (37)
VII. CASE OF SO3 GAUGE FIELD

Now take dx' to be along the Q direction. We ob-
tain, to order d@,

1+ (b~~)'X, r s—in8dg

=
g '(Q)$(P)+-(A, ).r sin8dg $ '(P)x, )(P) .

1

(38) minimum "charge" = e, (42)

We turn to SO„which is locally the same as
SU„but for which

(41}

Equations (22) to (25) remain unaltered. The
minimum "charge" of all physical states is now

The first term on the right-hand side can be' com-
puted in a straightforward manner:

$ '(Q) $(P}=1 —sin8dp[(X, cosQ+X2 sing) —X, tan~8] .

giving

"charge" of gauge particle
1 f SO=1 for SO, .minimum "charge" (43)

b~' = cos8cosg,

b', = cos8sing, (39)

5' =—sin8.

Combining these results and remembering (33),
we obtain

l.e. y

gk p yk'e p 1 j
C

The second term also can be easily computed since

'(P) X,)(P) = sin8(X, cosp+X, sing)+X, cos8

and (A~), was given by (11). Finally one arrives at

This last formula differentiates physically the SO,
case from the SU, case.

We emphasize here a point already made in the
literature' for electromagnetism: The local
character of the gauge group is of course deter-
mined by the interactions (which determine the
conservation laws). We want to ask what deter-
mines the global character. The global character
(compact or noncompact in the case of electro-
magnetism, SU, or SO, in the isospin case) is de-
termined by the representations for all states which
physically exist. For example, in electromagne-.
tism, if all charges are integral multiples of a
single unit, the gauge group is compact, ' because
the group is Physically defined as the simultaneous
local phase factor change of all charge fields.
There is then no physically definable meaning to
the noncompact group. In the case of SU, or SO„
if (43) is satisfied, then all representations of X„
physically realizable are integral representations.
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Thus the simultaneous local changes of isospin
phase factor of all physical systems cannot dif
ferentiate the group element e"x~from the identity.
Therefore, the physical definition of e"x~ is unity
and the group must be SO, .

Turning now to the monopole field for SO, we
find that (30) is still correct. Equation (41) then
leads to the quantization condition

2eg = integer =D
SQ

(44)

in order that S (as an element of SO, ) be a single-
valued function of the coordinates x' in R.

As P increases from 0 to 2w, the phase factor
(30) describes a closed circuit in the group space
of SO„starting from the identity element and re-
turning to it. If one continuously traced the corre-
sponding element of the group SU„one would have
started from the identity and ended with the ele-
ment that corresponds to

in the 2 & 2 representation of SU, when D is odd.
In such a case, no distortion of the closed circuit
in SO, described by the phase factor (30) can
shrink it to the identity element. This means that
the gauge type for even D is not the same as that
for odd D. By constructing explicit gauge trans-
formations like (34) and (35) one can then com-
plete the proof of the following theorem.

Theorem 10: For SO„all gauges 9~ for D= even
are of one type, and all gauges 9D for D= odd are
of one type. These two types are different.

Summarizing the situation for U„SU„and SO,
we find that in each case the "magnetic" monopole
fields have quantized strengths. They belong to,
respectively, infinitely many types for U, gauge
group (electromagnetism), one type for the SU,
gauge group, and two types for SO, gauge groups.

The physical meaning of these statements are
as follows. In the SU, case, all magnetic monopole
fields can be continuously changed into each other
by the process of continuous changes' of "electric"
sources. For example, starting with the "mag-
netic monopole" field for 9, of Theorem 9 we
can, by a gauge transformation, obtain the poten-
tials b' [on Qo] given in (40). We can then consider
the potential (on 9,): b" = nb, where 0~ n ~1.
The gauge field for b" is no longer electrically
sourceless outside of the origin, but is magnetic-
ally sourceless except at the orgin, where it is
not sourceless either magnetically or electrically.
As n changes from 1 to 0 we thus have a continu-
ous change of the original magnetic monopole field
to empty space through a process during which
there are continuous changes of electric charge-

r= 1, 8=fixed, /=0-2m. (45)

As 8 changes from 0 to g the phase factor of the loop
changes and it describes a, continuous circuit (in
the space of the group) starting from and ending
at the identity element. Clearly any other way
of "looping" over the sphere only leads to a dis-
tortion of this circuit, without changing the start-
ing and ending point. We shall call this circuit the
total circuit for the gauge field around the origin
r =0. It is a concept that replaces the total mag-
netic flux around r =0 in electromagnetism

We can now prove the following generalization
of Theorem 8.

Theorem 12: Consider region R and the group
SU, or SO, . Consider a gauge 9 and define any
gauge field on it. The total circuit for the gauge
field around the origin r =0 is independent of the
gauge field and only depends on the gauge type of
9. For the case of 9~,

total circuit of the gauge field

= [S~,(g) for Q = 2w -0], (46)

where = means "can be continuously distorted
into. "

This last formula is the generalization of (19).
To prove Theorem 11, consider fi.rst the loop

(45). The phase factor in R, and R, will be denoted

current distributions. Such a process is not pos-
sible for electromagnetism, by Theorem 6. (In the

SO, case it is also not possible, although it is
possible to change the magnetic monopole strength
by two units by a similar process. ) Thus the
meaning of a magnetic monopole field in the non-
Abelian case is quite different from that in elec-
tromagnetism.

It is not really surprising that in the case of
electromagnetism one cannot change the magnetic
monopole strength by changing electric sources:
In the region R there are no magnetic monopoles.
The continuity of magnetic lines of forces in R is
guaranteed by the equation V H=O. No continuous
movement of magnetic lines of force could there-
fore increase or decrease the net total flux around
the origin. That this state of affairs does not
obtain for SU, and SO, is due to the fact that
in general V H'WO in the non-Abelian case, so
that one cannot define the magnetic flux through a
loop. However, we had seen before (Theorem 4)
that in the case of a non-Abelian gauge field what
takes the place of the magnetic flux is the phase factor
of a loop. One may then ask what takes the place of
the total magnetic flux outwards from a sphere
around the origin r=0. To answer this question
consider the loop
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by C'(8) and C'(8). They are related in the overlap
by

C'(8) = C'(8) (47}

since S(Q =0) =I. [One uses a generalization of
(14).] Next consider the loop L(8) which lies on the
sphere z =1 with its projection onto the z-y plane
given in Fig. 6. It consists of a first part (BA),
around the equator and a second part (AB), not on
the equator except for points A and B. It is clear
that

[loop(45) for 8 = 0- 7&/2] = [L(8) for 8 = 0- m/2]

because both sides "loop over" the upper hemi-
sphere. Thus

[C'(8) for 8=0- «/2] = [C~&e& for 8 = 0-7&/2]

[4 ~&& 4 &s~ for 8 0 w/2]

is continuous in 8, and. (AB)&

[C &„s, for 8=0-w/2]= identity element.

Thus

[C'(8) for 8=0-7&/2]=[4&» for 8=0-v/2].
(48)

Similarly

[C ~(8) for 8 = «/2- «] = [4 ~&»& for 8 = v/2 - «] .

(49)

At 8= «/2, the left-hand sides of (48) and (49)
match because of (47). Also the right-hand sides
match. Thus we can take (48) and (49) in tandem,
obtaining

total circuit of gauge field=[4&s„& for 8=0-«/2 followed by S C, „, for 8=«/2 «]
1 1

where we have used

(50)

(BA 1 B (BA 1 A B (BA j (51)

Now

[C&»& for 8=0-m/2 followed by C &», for 8=7&/2-«] (52)

is a loop that doubles back on itself, i.e. , (52} can be distorted to the identity element. Applying this
fact to (50) one obtains

total circuit of gauge field=[I for 8=0-«/2 followed by Ss for 8=m/2 7&]. (53)

Now Ss = S„(Q= 4v —48). As 8 = m/2 - 7&, Ss = S„(&t) for Q = 2v - 0. Substitution into (53) leads to (46).
To complete the proof of Theorem 11 we need the generalization of (46) to gauges that contain more than

two regions. This can be done without much difficulty, e.g. , for the case that region b is further divided
into regions c and d, as schematically illustrated in Fig. 7(a), (46) should be replaced by

total circuit of gauge field = [S„(B)S„(x)for x =A -A along direction of arrow,
followed by S„(y)S„(A)for y =B-B along direction of arrow].

(54)

For the case that 9 has four regions «, , 5, c,d as illustrated in Fig. 7(b), (46) should be replaced by

total circuit of gauge field =[S~,(x) for x=A-B,
followed by S„,(y)S„(x) for x=B-C, y =B-D,

followed by S~,(D)S,~(x)S„(C) for x =D- C,

followed by S~,(y)S„(x) for x=C-E, y =D-E,

followed by S„,(x) for x=E-A]. (55)
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(8
/

( (AB)p
\ I

0
A

B

FIG. 6. Projection onto x-y plane of loop L(0) . The
loop lies entirely on sphere r =1, and is in the upper
gower) hemisphere for 0 ~ 8 ~ x/2 (x/2 & 0 ~ x) . The
portion (BA)~ lies on the equator. Coordinates for
A: r=1, 8=~/2, Q =0. Coordinates for B:x=1, 8=m/2,
Q = h(8), where h(8) =40 for 0 ~ 0 ~ m/2 and h(0) =4~ -48
for x/2&0 ~ 7r.

Notice that the right-hand sides of (54) and (55)
are dependent only on the gauge type, and not on
the specific gauge field.

VII. GENERALIZED BOHM-AHARONOVEXPERIMENT

The concept of an SU, gauge field was first dis-
cussed in 1954. In recent years many theorists,
perhaps a majority, believe that SU, gauge fields
do exist. However, so far there is no experimen-
tal proof of this theoretical idea, since conserva-
tion of isotopic spin only suggests, and does not re-
quire, the existence of an isotopic spin gauge field.
What kind of experiment would be a definitive test
of the existence of an isotopic spin gauge field?
A generalized Bohm-Aharonov experiment would
be.

If the gauge particle for isospin group SU, is
massless, it is possible to design a gedanke~
generalized Bohm-Aharonov experiment as illus-
trated in Fig. 1. One constructs the cylinder of
material for which the total I, spin is not zero,
e.g., a cylinder made of heavy elements with a
neutron excess. One spins the cylinder around its
axis, setting up a "magnetic" flux inside the cyl-
inder, along the I, "direction. " If one scatters a
proton beam around the cylinder, the fringe shift
would be in the opposite direction from the corre-
sponding shift observed with a neutron beam. To
be more specific, imagine that one spins the cyl-
inder clockwise. The magnetic flux would be
emerging from the diagram towards the reader,
since the cylinder has a net negative value for I,.
This means that for a proton (neutron) beam. , the
flux produces an increment (decrement) of path
length counterclockwise around the cylinder. This
increment (decrement) produces a net downward
(upward) shift of the fringes, i.e. , a shift toward
the bottom (top) of the diagram.

If one scatters a coherent mixture of neutron and
proton in a pure state, in the interference plane
one would observe not only fluctuations of nucleon
intensity, but also fluctuations of the neutron-pro-
ton mixing ratio. A variation of this phenomenon

FIG. 7. Schematic diagrams for division lines in
overlaps between three or more regions. The drawings
are projections from the sphere ~=1. The projection is
from the south pole of the sphere onto the tangent plane
at the north pole. The south pole is underneath the plane
of the paper.

obtains if one imagines rotating a cylinder which
has an average (I) which is not zero, and is not
in the I, direction. A magnetic flux would then be
set up which is in a "direction" other than I,.
Scattering a beam of protons would then produce
some neutrons as well as protons in the interfer-
ence plane. This implies, of course, thai there is
electric charge transfer between the beam and the
cylinder together with the gauge field around it.

If the gauge parti. cle has a finite mass m &0, then
the experiment becomes difficult because the re-
turn flux would hug the outside surface of the
cylinder, to a distance - 5/mc. Unless the fringe
plane lies within this distance of the cylinder, the
effect of the flux will be negligible.

IX. REMARKS

(a) From the viewpoint of the present paper, the
electric charge and the magnetic charge play
completely unsymmetrical roles. This matter de-
serves further comments. In the non-Abelian
case it was in fact already pointed out" that the
dual of an unquantized sourceless gauge field is
not necessarily a gauge field. Thus the asymmetry
between electric and magnetic phenomena is not
due to the formalism, but is of an intrinsic nature
in the non-Abelian case. In contrast, in the Abel-
ian case the asymmetry is only formal since the
electric and magnetic charges interact with the
electromagnetic field in entirely symmetrical
ways. In other words, one can use the phase fac-
tor C associated with the magnetic charges to
describe the electromagnetic field, rather than
the phase factor C discussed in the present paper.
The mathematical relationship between these two
kinds of phase factors (or between the associated
vector potentials A" and A ) remains to be ex-
plored. So does the corresponding question in any
second-quantized theory of all the fields.

(b) In the proof of Theorem 9 we had shown ex- .

plicitly how a magnetic monopole field for the SU,
gauge group can be gauge-transformed into the
solution (12a) of Ref. 9. Now a magnetic monopole
field is not a gauge field at the origin r =0 since
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it does not satisfy the Bianchi identity at the ori-
gin. Thus, although solution (12a) of Ref. 9 is
(electrically) sourceless at all points, including
the origin, it is not a proper gauge field at the
origin, a fact we did not realize before. All three
solutions, (12a), (12d), and (12e), are, of course,
of the same gauge type.

(c) In Sec. II it was emphasized that f,„under-
describes electromagnetism because of the
Bohm-Aharonov experiment which involves a
doubly connected space region. For non-Abelian
cases, the field strength f~„underdescribes the
gauge field even in a singly connected region.
An example of this underdescription was given in
Ref. 13.

(d) For the region of space-time outside of the
cylinder of Fig. 1 there is only one gauge type.
All electromagnetic fields in the region can be
continuously distorted into each other by the move-
ment of electric charges and currents inside and
outside the cylinder.

(e) The phase factor for the group U, is the phase
factor of the algebra of complex numbers. It is
perhaps not accidental that such a phase factor
provides the basis for the description of a physi-
cally realized gauge field —electromagnetism. Now
the only possible more complicated division alge-
bra is the algebra of quaternions. The phase fac-
tors of the quaternions form the group SO, . It is
tempting to speculate that such a phase factor pro-
vides the basis for the description of a physically
realized gauge field —the SU, gauge field. Specula-

tion about the possible relationship between qua-
ternions and isospin has been made before. ' Such
speculations were, however, not made with ref-
erence to gauge fields. If one believes that gauge
fields give the underlying basis for strong and/or
weak interactions, then the fact that gauge fields
are fundamentally phase factors adds weight to the
speculation that quaternion algebra is the real
basis of isospin invariance.

(f) It is a widely held view among mathematicians
that the fiber bundle is a natural geometrical con-
cept." Since gauge fields, including in particular
the electromagnetic field, are fiber bundles, all
gauge fields are thus based on geometry. " To us
it is remarkable that a geometrical concept for-
mulated without reference to physics should turn out
to be exactly the basis of one, and indeed maybe
all, of the fundamental interactions of the physical
world.
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