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1 Introduction

Boosting is an ensemble based method which attempts to boost the accuracy of any given learning
algorithm by applying it several times on slightly modi�ed training data and then combining the
results in a suitable manner. The boosting algorithms that we covered in class were AdaBoost,
LPBoost, TotalBoost, SoftBoost, and Entropy Regularized LPBoost. The basic idea behind these
boosting algorithms is that at each iteration, a weak learner learns the training data with respect
to a distribution. The weak learner is then added to the �nal strong learner. This is typically done
by weighting the weak learner in some manner, which is typically related to the weak learner's
accuracy. After the weak learner is added to the �nal strong learner, the data is reweighted: exam-
ples that are misclassi�ed gain weight and examples that are classi�ed correctly lose weight. Thus,
future weak learners will focus more on the examples that previous weak learners misclassi�ed.

In this project we implemented all of the above mentioned boosting algorithms (AdaBoost,
LPBoost, TotalBoost, SoftBoost, and Entropy Regularized LPBoost), as well as a new boosting
algorithm in which the update is motivated by a softmax function over all hypothesis edges and a
relative entropy term as a regularizer. In this project, we refer to this new boosting algorithm as
Symmetric SoftmaxBoost. It has performance comparable to LPBoost and Entropy Regularized
LPBoost. It starts as quickly as LPBoost and Entropy Regularized LPBoost, and it levels o� as
it reaches the softmax over the edges. Moreover, Symmetric SoftMaxBoost quickly reaches low
generalization error and does not over�t the data. It takes fewer iterations than TotalBoost and
SoftBoost in reaching low generalization error, and it is competitive with LPBoost and Entropy Reg-
ularized LPBoost. However, we do not know of any iteration bound for Symmetric SoftMaxBoost
or whether it will perform as well on other types of data.

2 Project Goals

The main goals of this project were to get good understanding of the underlying theory and imple-
mentations of the boosting algorithms covered in class, and to implement a new boosting algorithm
which combined a softmax function over the hypothesis edges and a relative entropy regularizer. In
particular, we implemented AdaBoost, LPBoost, TotalBoost, SoftBoost, and Entropy Regularized
LPBoost and compared the Symmetric SoftmaxBoost against them.

In order to implement all of these booosting algorithms (with the exception of AdaBoost), we
not only had to learn certain techniques for solving their underlying optimization problems, but
also had to understand how to represent them in the Matlab optimization library. This turned out
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to be quite a challenging task, ,and we thank Karen Glocer for her continuous assistance regarding
implementation issues. We ran into some precision issues in Matlab for the Entropy Regularized
LPBoost, and thus we could not perform many experiments for di�erent η values.

3 Boosting Setting

In the boosting setting, a boosting algorithm takes as input a set of N training examples (x1, y1), ..., (xn, yn),
where each instance xi belongs to some domain X, and each label yi ∈ ±1. The algorithm also
maintains a distribution (i.e. a set of weights) dt ∈ [0, 1]m on the examples. Initially, all weights are
set to the uniform distribution. In each iteration t = 1, 2, 3, ..., a weak learner provides a new base
hypothesis ht using the current weighting of the examples based on dt, and then the distribution
dt is updated to dt+1. In the updated distribution the weights of incorrectly misclassi�ed examples
are increased, and thus, in the next iteration the weak learner is forced to focus on the remaining
�hard� examples in the training set.

We can use the edge of the base hypothesis as a measure of its performance with respect to the
current distribution dt. The edge is de�ned as

∑N
n=1 dnynh(xn), and ideally we want it to be close

to 1 (i.e. hypothesis predicts perfectly). Thus, higher edge values are associated with more useful
hypothesis for classifying the training examples. The edge of a set of hypothesis is de�ned as the
maximum edge in the set.

The �nal output of the boosting algorithm is always a convex combination of weak hypothesis
fα(x) =

∑T
t=1 αtht(x), where ht is the hypothesis added at iteration t, and αt is its coe�cient. The

margin of an example (xn, yn) is de�ned as ρn = ynfα(xn). This is also called the hard margin,
and it measures by how much an example is on the correct side of the hyperplane de�ned by fα.
When the training examples cannot be separated by a linear combination combination of the base
hypothesis, we can relax the margin constraint by replacing the hard margin with a soft margin.
This allows for some examples to lie below the margin but they are penalized linearly via slack
variables.

Boosting algorithms can also be corrective or totally corrective depending on the way they
update the distributions over the examples. Corrective algorithms update the current distribution
by placing a constraint only on the most recent hypothesis, where in totally corrective updates, the
current distribution is constrained to have a small edge w.r.t. all of the previous hypothesis. The
algorithms developed in this project used totally corrective updates based on [4, 6].

4 LPBoost

We implemented the hard and soft margin totally corrective version of LPBoost as proposed in
[4, 3]. Although, there is no known logarithmic iteration bound for LPBoost, it performs very well
on noisy data and this is one of the reasons we decided to explore it further. In the hard margin
case, for a given set of {h1, ..., ht}, the basic linear programming problem that de�nes LPBoost is
to predict with any distribution that minimizes the maximum edge of the t hypothesis seen so far.

dt ∈ argmin
d∈SN

max
t=1,...,T

ut · d (1)

where the vector ut is de�ned as ynht(x). It combines the current base hypothesis ht with
the true labels yn of the N examples. Moreover, by duality the minimum maximum edge of the
examples w.r.t. the hypothesis equals the maximum minimum margin:
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γ∗ = min
d∈SN

max
t=1,...,T

ut · d = max
α

min
n=1,...,N

ynfα(xn) = ρ∗

These optimization problems are de�ned for the hard margin case, when we assume that the
examples are linearly separable. In the soft margin case, we assume that the data is not linearly
separable and we allow for some examples to lie below the margin penalizing them via slack variables
ψn. The resulting optimization problem (2) again maximizes the minimum soft margin, and the
resulting dual problem (3) minimizes the maximum edge where the distribution is capped by 1/ν
for ν ∈ [1, N ]. That is

max
α∈St
ψ≥0

min
n=1,...,N

(
T∑
t=1

utnαt + ψn)− 1
ν

N∑
n=1

ψn (2)

dt ∈ min
d∈SN

d≤ 1
ν 1

max
t=1,...,T

ut · d (3)

LPBoost with soft margin is one of the most straightforward boosting algorithm for maximizing
the soft margin. By constraining the weight on the examples, it does well on inseparable data.

Algorithm 1 Totally Corrective LPBoost with Hard Margin

Input: S = 〈(x1, y1), ..., (xn, yn)〉 and accuracy parameter ε > 0
Initialize: d1 to the uniform distribution and γ̂1 to 1
Do for t = 1, ...

• Send dt to weak learner and obtain hypothesis ht.
Set utn = ht(xn)yn.

• Set γ̂t+1 = min (γ̂t,dt · ut)

• Update the distribution to any dt+1 that solves the LP problem

[dt+1, γ∗t ] ∈ min
d,γ

γ s.t. d · um ≤ γ, for 1 ≤ m ≤ t; d ∈ PN

• If γ∗t ≥ γ̂t+1 − ε then set T = t and break.

Output: fα(x) =
∑T
t=1 αtht(x), where the coe�cients αt realize the margin γ∗T .
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Algorithm 2 Totally Corrective LPBoost with Soft Margin

Input: S = 〈(x1, y1), ..., (xn, yn)〉, accuracy parameter ε > 0, and capping parameter ν ∈ [1, N ]
Initialize: d1 to the uniform distribution and γ̂1 to 1
Do for t = 1, ...

• Send dt to weak learner and obtain hypothesis ht.
Set utn = ht(xn)yn.

• Set γ̂t+1 = min (γ̂t,dt · ut)

• Update the distribution to any dt+1 that solves the LP problem

[dt+1, γ∗t ] ∈ min
d,γ

γ s.t. d · um ≤ γ, for 1 ≤ m ≤ t; d ∈ PN ,d ≤ 1
ν1

• If γ∗t ≥ γ̂t+1 − ε then set T = t and break.

Output: fα(x) =
∑T
t=1 αtht(x), where the coe�cients αt that realize the margin γ∗T .

5 Entropy Regularized LPBoost

Adding a relative entropy regularization to the linear objective of LPBoost (3), we get an algorithm
that not only maximizes the soft margin, but also has an iteration bound that is logarithmic
in the number of example [5]. To optimize the relative entropy, we used sequential quadratic
approximation per Karin Glocer's notes. For a given set of {h1, ..., ht}, the modi�ed optimization
problem is de�ned as follows:

min
d∈SN

d≤ 1
ν 1

max
t=1,...,T

ut · d +
1
η
4 (d,d1) (4)

where the factor 1/η is a trade-o� parameter between the relative entropy and the maximum
edge. To prove the Entropy Regularized LPBoost iteration bound in [5] η should be at least 2

ε ln
N
ν ,

where ε is an accuracy parameter. The Lagrange dual of (4) as derived in [5] is:

max
α
− 1
η
log

n∑
i=1

d1
i exp(−ηuiα)− 1

ν

n∑
i=1

ψi

s.t. ||α||1 = 1,α ≥ 0,ψ ≥ 0

The addition of relative entropy term in (4) makes the objective function strictly convex, and
thus, the Entropy Regularized LPBoost has a unique solution. Unlike LPBoost which predicts with
any distribution that minimizes the maximum edge of the t hypothesis seen so far. Adding the
relative entropy keeps the solution of the optimum distribution inside the simplex. When η →∞,
the Entropy Regularized LPBoost becomes the totally corrective version of LPBoost with soft
margin.
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Algorithm 3 Entropy Regularized LPBoost

Input: S = 〈(x1, y1), ..., (xn, yn)〉, accuracy parameter ε > 0, and capping parameter ν ∈ [1, N ]
Initialize: d1 to the uniform distribution
Do for t = 1, ...

• Send dt to weak learner and obtain hypothesis ht.
Set utn = ht(xn)yn.

• Set δt = min
q=1,...,t

P q(dq)− P t−1(dt)

• If δt ≤ ε/2 then set T = t− 1 and break

• Else Update the distribution to

[dt+1, γt] ∈ min
d,γ

γ + 1
η 4 (d,d1)

s.t. d · um ≤ γ, for 1 ≤ m ≤ t; d ∈ PN ,d ≤ 1
ν1

Output: fα(x) =
∑T
t=1 αtht(x), where the coe�cients αt that maximize the soft margin over the

hypothesis set using the LP problem (3).

The Entropy Regularized LPBoost computes the linear combination of the hypothesis based
on (3), and it updates the distributions based on (4). Moreover, we need to set η ≥ 2

ε ln
N
ν which

would ensure that the values of the regularized problems are always at most ε/2 bigger that the
corresponding unregularized problems.

6 TotalBoost and SoftBoost

Both TotalBoost and SoftBoost are totally corrective algorithms, the current distribution is con-
strained to have a small edge w.r.t. all of the previous hypothesis. TotalBoost is a hard margin
algorithm [4], whereas SoftBoost is a soft margin algorithm [3]. Unlike LPBoost which predicts
with any distribution that minimizes the maximum edge of the t hypothesis seen so far, the weights
update in both TotalBoost and SoftBoost is motivated by the minimum relative entropy principle
of Jaynes: among the solutions satisfying some linear constraint choose the one that minimizes a
relative entropy to the initial distribution d1. Therefore, among all the distributions d that are
solutions to (1) for TotalBoost or (3) for SoftBoost, the algorithms choose the distribution that
minimizes 4(d,d1). This ensures that the optimization problems of TotalBoost and SoftBoost
have unique solutions. TotalBoost solves the following optimization problem:

dt+1 = min
d
4 (d,d1) (5)

s.t. d · um ≤ γ̂t − ε, for 1 ≤ m ≤ t; d ∈ PN

where γ̂t = min
m=1,...,t

dm · um.
SoftBoost algorithm is the soft margin version of TotalBoost (i.e. it adds capping to the Total-

Boost algorithm). The corresponding optimization problem is de�ned as follows:

dt+1 = min
d
4 (d,d1) (6)

s.t. d · um ≤ γ̂t − ε, for 1 ≤ m ≤ t; d ∈ PN ,d ≤ 1
ν1
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To solve the optimization problems for (5) and (6), we again used sequential quadratic pro-
gramming as described in [4]. Removing the relative entropy from the objective, we arrive at the
optimization problem of LPBoost. The relative entropy term in the objective function ensures that
more weight is put on the examples with low margin (i.e. the ones that are hard to classify).

Algorithm 4 TotalBoost

Input: S = 〈(x1, y1), ..., (xn, yn)〉 and accuracy parameter ε < 0
Initialize: d1 to the uniform distribution and γ̂1 to 1
Do for t = 1, ...

• Send dt to weak learner and obtain hypothesis ht.
Set utn = ht(xn)yn.

• Set γ̂t+1 = min (γ̂t,dt · ut)

• Update the distribution to

dt+1 = argmin
d

4 (d,d1) s.t. d · um ≤ γ̂t+1 − ε, for 1 ≤ m ≤ t; d ∈ PN

• If above problem is infeasible or dt+1 contains a zero then T = t and break.

Output: fα(x) =
∑T
t=1 αtht(x), where the coe�cients αt maximize the hard margin over the

hypothesis using LP problem (1).

Algorithm 5 SoftBoost

Input: S = 〈(x1, y1), ..., (xn, yn) and accuracy parameter ε > 0
Initialize: d1 to the uniform distribution and γ̂1 to 1
Do for t = 1, ...

• Send dt to weak learner and obtain hypothesis ht.
Set utn = ht(xn)yn.

• Set γ̂t+1 = min (γ̂t,dt · ut)

• Update the distribution to

dt+1 = argmin
d

4 (d,d1) s.t. d · um ≤ γ̂t+1 − ε, for 1 ≤ m ≤ t; d ∈ PN ,d ≤ 1
ν1

• If above problem is infeasible or dt+1 contains a zero then T = t and break.

Output: fα(x) =
∑T
t=1 αtht(x), where the coe�cients αt maximize the soft margin over the hy-

pothesis using LP problem (3).

7 New Boosting Algorithm (Symmetric SoftMaxBoost)

The �nal boosting algorithm that we explored is based on one of the dual optimization problems
discussed in [7], for which the distribution update is motivated by minimizing a relative entropy
term plus a softmax function over all hypothesis edges. In this project we refer to this new algorithm
Symmetric SoftMaxBoost. For a given set of {h1, ..., ht}, the corresponding optimization problem
is de�ned as follows:
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min
d

1
η

n∑
i=1

dilog
di
d1
i

+ γlog(
t∑

j=1

exp(γ−1ξj)) (7)

s.t.||d||1 = 1

ujd = ξj

Unlike all of the previously discussed boosting algorithms where we always minimized the max-
imum edge, this algorithm minimizes the softmax over all of the edges. In other words, Symmetric
SoftMaxBoost minimizes the almost maximum edge. Moreover, the softmax function is convex,
thus (7) has a unique solution.

7.1 The dual optimization problem of Symmetric SoftMaxBoost

In this section we compute the dual of (7) and discuss the relationship between the primal and the
dual. The Lagrangian of (7) is:

L(ξ,d,α, β) =
1
η

n∑
i=1

dilog
di
d1
i

+ γlog(
t∑

j=1

exp(γ−1ξj)) +
t∑

j=1

αj(uj · d− ξj) + β(||d||1 − 1) (8)

Setting the derivatives to 0:

∂L

∂ξj
=

expξj/γ∑
q exp(ξq/γ)

= 0

∂L

∂di
=

1
η

(1 + log
di
d1
i

) + β + uiα = 0

This yields α ≥ 0, ||α||1 = 1 and

ξj = γlog(αjY ) where Y =
∑
q exp(ξq/γ)

di = d1
i exp(−ηβ − ηuiα− 1)

Plugging the optimal d into the Lagrangian (8) simpli�es to:

L(ξ,α, β) =
1
η

n∑
i=1

d1
i exp(−ηβ − ηuiα− 1) + γlog(

t∑
j=1

exp(γ−1ξj))− β −αT ξ (9)

By plugging the optimal ξ in (9) and enforcing the constraint ||α||1 = 1 , the dual function
simpli�es to:

Θ(α, β) =
1
η

n∑
i=1

d1
i exp(−ηβ − ηuiα− 1) + γlog(

t∑
j=1

αjY ))− β − γ
t∑

j=1

αj log(αjY )

=
1
η

n∑
i=1

d1
i exp(−ηβ − ηuiα− 1)− β − γ

t∑
j=1

αj logαj (10)

By di�erentiating Θ(α, β) with respect to β and setting the derivative to 0, we can determine
the optimal choice of β:

∂Θ
∂β

= −1 +
n∑
i=1

d1
i exp(−ηβ − ηuiα− 1) = 0

β =
1
η

(log(
n∑
i=1

d1
i exp(−ηuiα))− 1)
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Thus, the dual problem of (10) reduces to:

Θ(α) = −1
η
log

n∑
i=1

d1
i exp(−η/mathbfuiα)− γ

t∑
j=1

αj log(αj) (11)

The resulting optimization problem (11) maximizes the softmin over the margins of all examples.
It consists of a softmin function plus a relative entropy term as a regularizer.

max
α
− 1
η
log

n∑
i=1

d1
i exp(−ηuiα)− γ

t∑
j=1

αj log(αj) (12)

s.t. ||α||1 = 1,α ≥ 0

The primal (7) and the dual (11) of this boosting algorithm are in a way symmetric, and this
is why we called the algorithm Symmetric SoftMaxBoost. In the primal, we minimize the softmax
over all edges, whereas in the dual we maximize the softmin over the margins of all examples.

7.2 Connection to LPBoost and Entropy Regularized LPBoost

In the primal (7), if we let γ → 0 then we would get the maximum edge from the softmax function.
Thus, the Symmetric SoftMaxBoost becomes equivalent to the Entropy Regularized LPBoost.

max
j

ujd = lim
γ→0

γlog(
∑t
j=1 exp(γ−1ξj))

Moreover, if we let γ → 0 and η → ∞ then the Symmetric SoftMaxBoost becomes the totally
corrective version of LPBoost with hard margin.

In the dual domain (11), if η → ∞ then we would get the minimum margin from the softmin
function. This is equivalent to minimizing the softmax over the edges without relative entropy
regularizer in the primal domain.

min
i
uiα = − lim

η→∞
1
η log(

∑n
i=1 d

1
i exp(−ηuiα))

The Symmetric SoftMaxBoost has nice symmetries and this is why we have explored it in this
project per the recommendation of Professor Manfred Warmuth.

7.3 Algorithm

The algorithm that we used for the Symmetric SoftMaxBoost is based on the previously discussed
boosting algorithms. Moreover, as a result of the lack of time, we were unable to �gure out a good
stopping criterion for this algorithm. Thus, we run it for a set number of iterations and as long as
the optimization problem is feasible.
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Algorithm 6 Symmetric SoftMaxBoost

Input: S = 〈(x1, y1), ..., (xn, yn)〉 with parameters η and γ
Initialize: d1 to the uniform distribution
Do for t = 1, ..., T

• Send dt to weak learner and obtain hypothesis ht.
Set utn = ht(xn)yn.

• Update the distribution to

dt+1 = min
d

1
η

∑n
i=1 dilog

di
d1i

+ γlog(
∑t
j=1 exp(γ−1ξj))

s.t. ||d||1 = 1,utd = ξt

• If above problem is infeasible then T = t and break.

Output: fα(x) =
∑T
t=1 αtht(x), where the coe�cients αt maximize the hard margin over the

hypothesis using LP problem (1).

8 Experiments

We used two types of datasets in our experiments: a real one and simulated data. The �rst dataset
was the sonar dataset from the UCI benchmark repository. It contains information of 208 objects
and has 60 attributes, where the objects are classi�ed in two classes: �rock� and �mine�. We also
ran the algorithms on simulated data using the model in [8]:

P (Y = 1|x) = q + (1− 2q)I

 J∑
j=1

x(j) > J/2

 (13)

where X is distributed iid uniform on the d-dimensional unit cube [0, 1]d, q is the Bayes error
and J ≤ d is the number of e�ective dimensions. The constraints n, d, J, and, q can be set at di�erent
values. Using this model to generate data allows us to control for the Bayes error, and thus gives
us better understanding of the data.

Using the two types of datasets we separately compared the Symmetric SoftMaxBoost with
the hard margin (LPBoost and TotalBoost)and soft margin (LPBoost, SoftBoost, and Entropy
Regularized LPBoost) algorithms. In the reported results we used decision stumps as the base
classi�er, however, we also experimented with using the features as the weak learners (i.e. the
hypothesis). The accuracy parameter ε for all of the algorithms was set to 0.01. In general, the
capping parameter ν was set to two times the Bayes error (ν ≈ 2q) or ν/N = 0.1. Finally, in the
Entropy Regularized LPBoost, η was set to 2

ε ln
N
ν , however we also experimented with some much

bigger or much smaller values for η to see how the algorithm performs.

8.1 Sonar Data Results

We compared the Symmetric SoftMaxBoost against hard margin LPBoost and TotalBoost on the
Sonar dataset. In Figure 1, we show the results for two di�erent values of γ. In the �gures γ
is referred to as λ and Symmetric SoftMax Boost is referred to as Softmax Entropy Boost. We
apologize for the inconsistency, but we did not have time to regenerate all of the �gures using the
new notation. In the hard margin case, Symmetric SoftMaxBoost starts as quickly as LPBoost,
and it levels o� as it reaches the softmax over the edges. We tested the Symmetric SoftMax Boost
on di�erent γ, and the smaller the γ was, the closer to its margin got to the LPBoost margin.
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Moreover, all of the results that we report use 1
η = 0.025 since this turned out to be a good value

for the size of our datasets.

Figure 1: Comparison of Symmetric SoftMaxBoost (γ = 10 and γ = 0.1 respectively) with the hard
margin LPBoost and TotalBoost on the Sonar Dataset with ε = 0.01 and 1

η = 0.025.

In Figure 2, we compared the Symmetric SoftMaxBoost against the soft margin LPBoost, Soft-
Boost, and Entropy Regularized LPBoost again on the Sonar dataset for γ = 10andγ = 0.01. As
we can see, the Symmetric SoftMaxBoost again starts as quickly as the soft margin LPBoost and
the Entropy Regularized LPBoost, and then it levels o� as it reaches the softmax over the edges.
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Figure 2: Comparison of Symmetric SoftMaxBoost (γ = 10 and γ = 0.1 respectively) with the soft
margin LPBoost, SoftBoost, and Entropy Regularozed LPBoost on the Sonar Dataset with ε = 0.01,
ν/N = 0.1, and η = 2

ε ln
N
ν (for Entropy Regularized LP Boost). Symmetric SoftMaxBoost with

1
η = 0.025.

In Figure 3, we show the generalization error of Symmetric SoftMaxBoost against the other
boosting algorithms for γ = 10. Symmetric SoftMaxBoost quickly reaches low generalization error
and does not over�t the data. It takes fewer iterations than TotalBoost and SoftBoost in reaching
low generalization error. It is competitive with LPBoost and Entropy Regularized LPBoost.
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Figure 3: Generalization error of the boosting algorithms on the Sonar Dataset with ε = 0.01,
ν/N = 0.1, and η = 2

ε ln
N
ν (for Entropy Regularized LP Boost). Symmetric SoftMaxBoost with

γ = 10, 1
η = 0.025.

8.2 Dataset with Bayes error q = 0.1

Testing the boosting algorithms on the arti�cially generated data using (13) we got similar results.
Symmetric SoftMaxBoost starts as quickly as LPBoost and Entropy Regularized LPBoost, and it
levels o� as it reaches the softmax over the edges (Figure 4). Moreover, it quickly reaches low
generalization error and does not over�t the data. It takes fewer iterations than TotalBoost and
SoftBoost in reaching low generalization error, and it is competitive with LPBoost and Entropy
Regularized LPBoost.

12



Figure 4: Data model parameters: q = 0.1, n = 100, J = 20, d = 5. Boosting parameters: ε = 0.01,
ν/N = 0.1, and η = 2

ε ln
N
ν (for Entropy Regularized LP Boost). Symmetric SoftMaxBoost with

γ = 10, 1
η = 0.025.
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Figure 5: Data model parameters: q = 0.1, n = 100, J = 20, d = 5. Boosting parameters: ε = 0.01,
ν/N = 0.1, and η = 2

ε ln
N
ν (for Entropy Regularized LP Boost). Symmetric SoftMaxBoost with

λ = 10, 1
η = 0.025.

8.3 Di�erent η values for the Entropy Regularized LPBoost

We also preformed some experiments for di�erent η values for the Entropy Regularizzed LPBoost.
For the iteration bound proved in [5] to hold, eta has to be at least 2

ε ln
N
ν . Moreover, when η →∞,

the Entropy Regularized LPBoost becomes the totally corrective version of LPBoost with soft
margin. This is supported by Figure 6, where we present the results for three di�erent η values
(η = 2

ε ln
N
ν , η2 = 100( 2

ε ln
N
ν ), and η3 = 0.01( 2

ε ln
N
ν )).
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Figure 6: Entropy Regularized LPBoost with η = 2
ε ln

N
ν , η2 = 100η, and η3 = 0.01η.

For larger values of η, Entropy Regularized LPBoost performs better than for smaller values
(i.e. beats LPBoost margin more frequently).

9 Conclusion

We showed that Symmetric SoftMaxBoost has performance comparable to LPBoost and Entropy
Regularized LPBoost. It starts as quickly as LPBoost and Entropy Regularized LPBoost, and
it levels o� as it reaches the softmax over the edges. Moreover, SoftBoost and TotalBoost start
slower and take longer to reach the maximum margin. Moreover, Symmetric SoftMaxBoost quickly
reaches low generalization error and does not over�t the data. It takes fewer iterations than Total-
Boost and SoftBoost in reaching low generalization error, and it is competitive with LPBoost and
Entropy Regularized LPBoost. However, we do not know of any iteration bound for Symmetric
SoftMaxBoost or whether it will perform as well on other types of data.
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