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A. Details on Existing Node-based Approaches
We elaborate on our presentation in §3 and show how selected existing node-based attribution approaches are captured by
our graphical model framework. In particular, we discuss three existing approaches: (1) independent Shapley value (§A.1),
(2) conditional Shapley value (§A.2), and (3) asymmetric Shapley value (§A.3).

A.1. Independent Shapley Value (ISV)

ISV is arguably the simplest application of Shapley value (Shapley, 1953) to the posited attribution problem and has
appeared in various works (Strumbelj & Kononenko, 2010; Sun & Sundararajan, 2011; Sundararajan et al., 2020; Janzing
et al., 2020; Sundararajan & Najmi, 2020). In the underlying game, the set of players is N. The empty coalition corresponds
to the background input X(1). If a player (node) i ∈ N is added to a coalition, then Xi changes from X

(1)
i to X(2)

i . Hence, a
coalition N ⊆ N maps to a corresponding value of X, i.e.,

XISV(N) := (X
(2)
N ,X

(1)
N\N ).

It is possible for XISV(N) to violate the local relations in F and we interpret these violations via a do-operator (Pearl, 2009).
For instance, in the model corresponding to Example 1 (Figure A below), if N = {1}, then XISV(N) = (X

(2)
1 , X

(1)
2 ) =

(1, 0), which violates X2 = X1. The characteristic function is defined as

vISV(N) := f(XISV(N)),

which equals fn+1(XISV
Pn+1

(N)) given our do-operator interpretation. This results in node i ∈ N receiving an attribution
(Shapley value) of

πISV
i =

∑
N⊆N\{i}

wN(N)×
{
vISV(N ∪ {i})− vISV(N)

}
,

where wN(N) := |N |!(|N|−|N |−1)!
|N|! is the SV weight function. In general, given the do-operator interpretation, ISV attributes

all value to the parents of the output node, i.e.,
∑
i∈Pn+1

πISV
i = Y (2) − Y (1) and πISV

i = 0 ∀i ∈ N \ Pn+1. This formalizes
the following statement of Heskes et al. (2020) regarding ISV: “root causes with strong indirect effects (e.g. genetic markers)
are ignored”.

X1 X2 Y

Figure A. The graphical model for Example 1. The source variable X1 is set exogenously, X2 = X1, and Y = X2. We consider the
background value of X(1)

1 = 0 and the foreground value of X(2)
1 = 1. Hence, X(1)

2 = Y (1) = 0 and X(2)
2 = Y (2) = 1.
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As an illustration, in Example 1 introduced in §3 (Figure A), ISV attributes all the value to node 2, i.e., (πISV
1 , πISV

2 ) = (0, 1):

πISV
1 =

∑
N⊆N\{1}

wN(N)×
{
vISV(N ∪ {1})− vISV(N)

}
=

1

2

{
vISV({1})− vISV(∅)

}
+

1

2

{
vISV({1, 2})− vISV({2})

}
=

1

2

{
f(XISV({1}))− f(XISV(∅))

}
+

1

2

{
f(XISV({1, 2}))− f(XISV({2}))

}
=

1

2

{
f(X

(2)
1 , X

(1)
2 )− f(X

(1)
1 , X

(1)
2 )
}

+
1

2

{
f(X

(2)
1 , X

(2)
2 )− f(X

(1)
1 , X

(2)
2 )
}

=
1

2

{
f3(X

(1)
2 )− f3(X

(1)
2 )
}

+
1

2

{
f3(X

(2)
2 )− f3(X

(2)
2 )
}

=
1

2
{0− 0}+

1

2
{1− 1} = 0.

Similarly,

πISV
2 =

∑
N⊆N\{2}

wN(N)×
{
vISV(N ∪ {2})− vISV(N)

}
=

1

2

{
f(XISV({2}))− f(XISV(∅))

}
+

1

2

{
f(XISV({1, 2}))− f(XISV({1}))

}
=

1

2

{
f(X

(1)
1 , X

(2)
2 )− f(X

(1)
1 , X

(1)
2 )
}

+
1

2

{
f(X

(2)
1 , X

(2)
2 )− f(X

(2)
1 , X

(1)
2 )
}

=
1

2

{
f3(X

(2)
2 )− f3(X

(1)
2 )
}

+
1

2

{
f3(X

(2)
2 )− f3(X

(1)
2 )
}

=
1

2
{1− 0}+

1

2
{1− 0} = 1.

A.2. Conditional Shapley Value (CSV)

CSV has been studied by Štrumbelj & Kononenko (2014); Datta et al. (2016); Lundberg & Lee (2017); Aas et al. (2019);
Frye et al. (2020a). Similar to ISV, the set of players in the underlying game is N. However, the mapping from a coalition
N ⊆ N to the input X is different. In particular,

XCSV(N) := (X
(2)
N ,XN\N | X

(2)
N ).

That is, instead of setting the “missing” nodes N \ N to the background value X
(1)
N\N , their value is conditioned on the

values of the nodes that are present in N . This ensures the local relations in F are satisfied. In our deterministic setup, if a
source node i ∈ N0 \N is an ancestor (parent, grandparent, etc.) of a node in N , then it takes on its foreground value, i.e.,
XCSV
i (N) = X

(2)
i . The remaining source nodes in N0 \N take on their background values and the non-source nodes in

N \N are determined via the equations in F. The characteristic function is

vCSV(N) := f(XCSV(N))

and node i ∈ N receives an attribution of

πCSV
i =

∑
N⊆N\{i}

wN(N)×
{
vCSV(N ∪ {i})− vCSV(N)

}
.



Flow-based Attribution in Graphical Models (Online Supplement) 3

CSV splits the value equally in Example 1: (πCSV
1 , πCSV

2 ) = (1/2, 1/2). Thus, it violates source efficiency. Computations are
as follows:

πCSV
1 =

∑
N⊆N\{1}

wN(N)×
{
vCSV(N ∪ {1})− vCSV(N)

}
=

1

2

{
f(XCSV({1}))− f(XCSV(∅))

}
+

1

2

{
f(XCSV({1, 2}))− f(XCSV({2}))

}
=

1

2

{
f(X

(2)
1 , X

(2)
2 )− f(X

(1)
1 , X

(1)
2 )
}

+
1

2

{
f(X

(2)
1 , X

(2)
2 )− f(X

(2)
1 , X

(2)
2 )
}

=
1

2
{1− 0}+

1

2
{1− 1} =

1

2
.

Similarly,

πCSV
2 =

∑
N⊆N\{2}

wN(N)×
{
vISV(N ∪ {2})− vISV(N)

}
=

1

2

{
f(XCSV({2}))− f(XCSV(∅))

}
+

1

2

{
f(XCSV({1, 2}))− f(XCSV({1}))

}
=

1

2

{
f(X

(2)
1 , X

(2)
2 )− f(X

(1)
1 , X

(1)
2 )
}

+
1

2

{
f(X

(2)
1 , X

(2)
2 )− f(X

(2)
1 , X

(2)
2 )
}

=
1

2
{1− 0}+

1

2
{1− 1} =

1

2
.

A.3. Asymmetric Shapley Value (ASV)

ASV has been proposed by Frye et al. (2020b). In their words, “if Xi is known to be the deterministic causal ancestor of
Xj , one might want to attribute all the importance to Xi and none to Xj”. To formalize this intuition, Frye et al. (2020b)
consider a game with the set of players being N, but re-define the weight function wN(·) to account for the structure of the
graph. To facilitate comparison with ISV and CSV, we define ASV in an alternate but equivalent way, while keeping wN(·)
as in §A.1. We define the set of players to be just the source nodes N0. Empty coalition corresponds to X

(1)
N0

. If a node

i ∈ N0 is added to a coalition, then Xi changes from X
(1)
i to X(2)

i . The mapping from a coalition N0 ⊆ N0 to the input X is

XASV(N0) := (X
(2)
N0
,X

(1)
N0\N0

,XN\N0
| (X(2)

N0
,X

(1)
N0\N0

)).

Hence, the rest of the graph is determined via the values at source nodes and the equations in F. This ensures the local
relations in F are satisfied. The characteristic function is

vASV(N0) := f(XASV(N0))

and node i ∈ N0 receives an attribution of

πASV
i =

∑
N0⊆N0\{i}

wN0(N0)×
{
vASV(N0 ∪ {i})− vASV(N0)

}
.

In Example 1, ASV attributes all the value to node 1: (πASV
1 , πASV

2 ) = (1, 0). Though ASV obeys source efficiency, it does
not tell how the effect flows through the graph. Computations are as follows:

πASV
1 =

∑
N0⊆N0\{1}

wN0
(N0)×

{
vASV(N0 ∪ {1})− vASV(N0)

}
= f(XASV({1}))− f(XASV(∅))

= f(X
(2)
1 , X

(2)
2 )− f(X

(1)
1 , X

(1)
2 )

= 1− 0 = 1.

Node 2 is not a player in the game underlying ASV since the set of players only contains the source nodes N0. Hence, node
2 receives zero attribution and (πASV

1 , πASV
2 ) = (1, 0).
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Note that our definition of ASV corresponds to the “distal” variation in Frye et al. (2020b) (attribution to the “root causes”
N0). The “proximate” variation in Frye et al. (2020b) is the same as ISV (given our problem definition from §2) and it
attributes to the “immediate causes” Pn+1. Irrespective of the variation, ASV does not provide a flow-based view. Also, it is
not the case that Shapley values “ignore all causal structure”, as stated in Frye et al. (2020b). As we show in §4 and §5, if
the underlying game is defined appropriately (via a sequence of recursive games), then Shapley values capture the causal
structure and in fact, generalize ASV (cf. Proposition 3 in §5 and Proposition B in Appendix G).

Remark A (Causal SV). Though we do not define the causal SV approach (Heskes et al., 2020), we note that “symmetric
causal SV” attributes 1/2 to both nodes in Example 1 (violating source efficiency), whereas “asymmetric causal SV”
attributes 1 to node 1 and 0 to node 2 (not a flow-based view). This follows from Figure 1 in Heskes et al. (2020).
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B. Details on Shapley Flow (SF)
In this appendix, we provide details on Shapley Flow (SF) (Wang et al., 2021) and highlight how it differs from the proposed
flow-based approach in this work, recursive Shapley value (RSV), which is formally defined in §4. There are three significant
differences between the two. For illustration, consider the graphical model in Figure B.

X1

X2

X3

X4

X5

Y

Figure B. The graphical model used to illustrate SF. There are two source nodes (X1 and X2), three intermediate nodes (X3, X4, and
X5), and one output node (Y ). Suppose the structural equations are as follows: X3 = X1, X4 =

√
X2, X5 =

√
X2 and Y = X3X4X5.

There are three unique paths that connect a source node to the output node in this graph:

1. P1 : 1→ 3→ 6

2. P2 : 2→ 4→ 6

3. P3 : 2→ 5→ 6,

where “6” is used to denote the output node. We use P := {P1, P2, P3} to denote the set of all such paths. In contrast
to the edge-based RSV, SF is path-based (difference #1) as it considers each path in P as a player. With background
(X

(1)
1 , X

(1)
2 ) = (0, 0) and foreground (X

(2)
1 , X

(2)
2 ) = (1, 1), the output function YSF(·) under path-based SF equals 1 if all

three paths are present and 0 otherwise. There are 6 possible orderings of the players:

Π := {P1P2P3, P1P3P2, P2P1P3, P2P3P1, P3P1P2, P3P2P1}.

Thus, given the set of players P and the output function YSF(·), the Shapley value (SV) for path P ∈ P is

1

|Π|
∑
π∈Π

{YSF(Q ∈ P : πQ ≤ πP )− YSF(Q ∈ P : πQ < πP )} ,

where πQ < πP denotes whether path Q comes before path P in ordering π. However, SF modifies this definition by only
considering the four orderings that are consistent with a depth first search (DFS):

ΠDFS := {P1P2P3, P1P3P2, P2P3P1, P3P2P1}.

That is, orderings P2P1P3 and P3P1P2 are not present in ΠDFS. The SF attribution to path P ∈ P equals:

1

|ΠDFS|
∑

π∈ΠDFS

{YSF(Q ∈ P : πQ ≤ πP )− YSF(Q ∈ P : πQ < πP )} .

Given this modification (Π vs. ΠDFS), it is unclear what connection SF exhibits with SV (if any). To the best of our
knowledge, there is no underlying “game” for which SF is the SV of. On the other hand, the edge-based RSV comes out
naturally from a well-defined sequence of games, without any ad hoc modifications (difference #2).

The third difference concerns the definition of output Y (·) as a function of input edges. RSV uses the notion of “active
/ inactive edges” to define Y (E) for a subset E ⊆ E of edges. This notion is foundational in causality theory (see, for
example, Figure 3 in Pearl (2001)). On the other hand, SF uses the notion of “history”, which is a list (as opposed to a subset)
of edges, where an edge can appear twice. This notion is rather unnatural, since it can result in unrealistic counterfactuals.
For instance, in Figure 3 of the manuscript (chain graph), if “history” equals [(2, 3), (1, 2)], then the output function in SF
will equal its background value even though all the edges are present.
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C. RSV Computations for Example 1
In terms of the computations for Example 1, recall that RSV inserts a super-source node 0, as shown in Figure C.

0 X1 X2 Y

Figure C. The graphical model for Example 1 with a super-source node. X1 is set exogenously, X2 = X1, and Y = X2. We consider the
background value of X(1)

1 = 0 and the foreground value of X(2)
1 = 1. Hence, X(1)

2 = Y (1) = 0 and X(2)
2 = Y (2) = 1.

First, consider the game at node 0. The set of players is E0 = {(0, 1)} and the characteristic function given coalition
E0 ⊆ E0 equals v0(E0) = Y (E0,E1, . . . ,En), where Y (·) follows (1) and (2). Hence, the attribution received by edge
(0, 1) equals

πRSV
01 = π01(E1,E2,E3)

=
∑

E0⊆E0\{(0,1)}

wE0(E0)× {v0(E0 ∪ {(0, 1)})− v0(E0)}

= v0({(0, 1)})− v0(∅)
= Y ({(0, 1)},E1,E2)− Y (∅,E1,E2)

= Y (2) − Y (1) = 1− 0 = 1.

Second, consider the game at node 1. The set of players is E1 = {(1, 2)} and the characteristic function given coalition
E1 ⊆ E1 equals equals v1(E1) = π1(E0, E1,E2) = π01(E0, E1,E2). Hence, the attribution received by edge (1, 2) equals

πRSV
12 = π12(E1,E2,E3)

=
∑

E1⊆E1\{(1,2)}

wE1(E1)× {v1(E1 ∪ {(1, 2)})− v1(E1)}

= v1({(1, 2)})− v1(∅)
= π01(E0, {(1, 2)},E2)− π01(E0, ∅,E2)

= πRSV
01 − π01(E0, ∅,E2)

= (Y (2) − Y (1))− 0 = 1.

Above, we used the fact that π01(E0, ∅,E2) = 0, which is true because

π01(E0, ∅,E2) =
∑

E0⊆E0\{(0,1)}

wE0
(E0)× {v0(E0 ∪ {(0, 1)} | E1 = ∅)− v0(E0 | E1 = ∅)}

= v0({(0, 1)} | E1 = ∅)− v0(∅ | E1 = ∅)
= Y ({(0, 1)}, ∅,E2)− Y (∅, ∅,E2)

= Y (1) − Y (1) = 0.

Third, consider the game at node 2. The set of players is E2 = {(2, 3)} and the characteristic function given coalition
E2 ⊆ E2 equals equals v2(E2) = π2(E0,E1, E2) = π12(E0,E1, E2). Hence, the attribution received by edge (2, 3) equals

πRSV
23 = π23(E1,E2,E3)

=
∑

E2⊆E2\{(2,3)}

wE2
(E2)× {v2(E2 ∪ {(2, 3)})− v2(E2)}

= v2({(2, 3)})− v2(∅)
= π12(E0,E1, {(2, 3)})− π12(E0,E1, ∅)
= πRSV

12 − π12(E0,E1, ∅)
= (Y (2) − Y (1))− 0 = 1.
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Above, we used the fact that π12(E0,E1, ∅) = 0, which is true because

π12(E0,E1, ∅) =
∑

E1⊆E1\{(1,2)}

wE1(E1)× {v1(E1 ∪ {(1, 2)} | E2 = ∅)− v1(E1 | E2 = ∅)}

= v1({(1, 2)} | E2 = ∅)− v1(∅ | E2 = ∅)
= π01(E0,E1, ∅)− π01(E0, ∅, ∅)

=
∑

E0⊆E0\{(0,1)}

wE0(E0)× {v0(E0 ∪ {(0, 1)} | E2 = ∅)− v0(E0 | E2 = ∅)}

−
∑

E0⊆E0\{(0,1)}

wE0(E0)× {v0(E0 ∪ {(0, 1)} | E1 = ∅, E2 = ∅)− v0(E0 | E1 = ∅, E2 = ∅)}

= (Y (E0,E1, ∅)− Y (∅,E1, ∅))− (Y (E0, ∅, ∅)− Y (∅, ∅, ∅))
= (Y (1) − Y (1))− (Y (1) − Y (1)) = 0.

Hence, (πRSV
01 , π

RSV
12 , π

RSV
23 ) = (1, 1, 1).
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D. Proof of Theorem 1
Theorem 1. [πRSV

jk ](j,k)∈E is the unique solution to the flow-based axioms.

Proof of Theorem 1. First, consider the game at node 0. The set of players is E0 and the characteristic function given
coalition E0 ⊆ E0 is v0(E0) = Y (E0,E1, . . . ,En). RSV attributes the Shapley values of this game to the source edges, i.e.,

πRSV
0k =

∑
E0⊆E0\{(0,k)}

wE0(E0)× {v0(E0 ∪ {(0, k)})− v0(E0)} ∀(0, k) ∈ E0.

Invoking the uniqueness result of the classical Shapley value (Shapley, 1953) implies that [πRSV
0k ](0,k)∈E0

is the unique
solution to the flow-based axioms at node 0. In particular, flow symmetry, flow nullity, and flow linearity are equivalent
to the corresponding axioms (symmetry, nullity, and linearity) of the classical Shapley value. Furthermore, the efficiency
axiom of the classical Shapley value states

∑
k∈C0

πRSV
0k = v0(E0)− v0(∅), which is equivalent to flow conservation at node

0 since

v0(E0)− v0(∅) = Y (E0,E1, . . . ,En)− Y (∅,E1, . . . ,En)

= Y (2) − Y (1).

The last equality follows the definition of Y (·) (see (1) and (2)). In particular, Y (E0,E1, . . . ,En) = Y (2) and
Y (∅,E1, . . . ,En) = Y (1).

Second, consider the game at node j ∈ N \ {0}. The set of players is Ej and the characteristic function given coalition
Ej ⊆ Ej is vj(Ej) =

∑
i∈Pj

πij(E0, . . . , Ej , . . . ,En). RSV attributes the Shapley values of this game to edges Ej , i.e.,

πRSV
jk =

∑
Ej⊆Ej\{(j,k)}

wEj
(Ej)× {vj(Ej ∪ {(j, k)})− vj(Ej)} ∀(j, k) ∈ Ej .

Invoking the uniqueness result of the classical Shapley value (Shapley, 1953) implies that [πRSV
jk ](j,k)∈Ej

is the unique
solution to the flow-based axioms at node j. In particular, flow symmetry, flow nullity, and flow linearity are equivalent to
the corresponding axioms (symmetry, nullity, and linearity) of the classical Shapley value. Furthermore, the efficiency axiom
of the classical Shapley value states

∑
k∈Cj

πRSV
jk = vj(Ej)− vj(∅), which is equivalent to flow conservation at node j since

vj(Ej)− vj(∅) =
∑
i∈Pj

πij(E0, . . . ,Ej , . . . ,En)−
∑
i∈Pj

πij(E0, . . . , ∅, . . . ,En)

=
∑
i∈Pj

πRSV
ij .

The last equality is true because πij(E0, . . . ,Ej , . . . ,En) = πRSV
ij ∀i ∈ Pj (by definition) and πij(E0, . . . , ∅, . . . ,En) =

0 ∀i ∈ Pj since given Ej = ∅, node j passes no new information to its children (follows the definition of Y (·) as in (1)
and (2)) and hence, edge (i, j) will be a null player in the upstream game at each node i ∈ Pj . Putting the uniqueness of
[πRSV
jk ]k∈Cj

w.r.t. the axioms at each node j ∈ N implies that [πRSV
jk ](j,k)∈E is the unique solution to the flow-based axioms.

This completes the proof. �
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E. RSV Characterization under a Linear Model
In this appendix, we generalize our discussion around Example 2 and characterize RSV under a linear model. §E.1 presents
the characterization and §E.2 discusses a technical lemma we use to prove the characterization.

E.1. Characterization

Consider an arbitrary DAG G (containing node 0) with linear equations F:

Xj =
∑
i∈Pj

aijXi ∀j ∈ N+ \ {N0 ∪ 0}. (E.1)

Denote by Ein
j := {(i, j) : i ∈ Pj} the incoming edges of node j ∈ N+ \ {0}. Define the forward-looking weights ccc as

follows:

cj,n+1 := aj,n+1 ∀(j, n+ 1) ∈ Ein
n+1 (E.2a)

cij := aij
∑
k∈Cj

cjk ∀(i, j) ∈ E \ Ein
n+1, (E.2b)

where a0j := 1 ∀(0, j) ∈ E0. Similarly, define the backward-looking weights bbb as follows:

b0j := 1 ∀(0, j) ∈ E0 (E.3a)

bjk :=
∑
i∈Pj

bijajk ∀(j, k) ∈ E \ E0. (E.3b)

Since G is a DAG, weights (E.2) and (E.3) are well-defined. Then, the RSV attribution is as stated in Proposition A. (We
assume X(1)

i = 0 and X(2)
i = 1 ∀i ∈ N0 to keep the presentation clean. The generalization is straightforward.)

Proposition A. Consider DAG G and linear F as in (E.1), with ccc and bbb as in (E.2) and (E.3). Suppose X(1)
i = 0 and

X
(2)
i = 1 ∀i ∈ N0. Then,

πRSV0j = c0j ∀(0, j) ∈ E0

πRSVjk =
∑
i∈Pj

bijcjk ∀(j, k) ∈ E \ E0.

Proof of Proposition A. Plugging in E equal to E in Lemma A (§E.2) gives the following attributions to all outgoing edges
(0, j) ∈ E0 of node 0:

π0j(E) =
∑

k:(j,k)∈Ej

b0j(E0)cjk(Ej , . . . ,En)

=
∑

k:(j,k)∈Ej

b0jcjk

=
∑

k:(j,k)∈Ej

cjk.

The second equality is true because bbb = bbb(E) (see (E.3) and (E.5)) and ccc = ccc(E) (see (E.2) and (E.4)) and the third equality
is true because b0j = 1 ∀(0, j) ∈ E0. Similarly, plugging in E equal to E in Lemma A gives the following attributions to
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(j, k) ∈ E \ E0:

πjk(E) =
∑

`:(k,`)∈Ek

bjk(E0, . . . ,Ej)ck`(Ek, . . . ,En)

=
∑
`∈Ck

bjkck`

=
∑
`∈Ck

∑
i∈Pj

bijajkck`

=
∑
i∈Pj

bijajk
∑
`∈Ck

ck`

=
∑
i∈Pj

bijcjk.

The third and fifth equalities follow the definitions of bbb and ccc, respectively (see (E.3) and (E.2)). Recall that πRSVjk is defined
as πjk(E) for all (j, k) ∈ E. The proof is now complete. �

E.2. Details on Lemma A

The proof of Proposition A leverages a more general result (Lemma A), which we present now. We generalize the definitions
of the forward-looking and backward-looking weights ccc and bbb. In §E.1 (see Equations (E.2) and (E.3)), we implicitly
assumed all edges E to be active. We now define these weights as a function of subset E = (E0, . . . ,En) ⊆ E. We assume
wlog that the DAG G is topologically sorted, i.e., there is no edge (i, j) ∈ E with i > j (Cormen et al., 2009). The
generalized forward-looking weights ccc(E) are defined as follows:

cj,n+1(Ej) := aj,n+1I{(j, n+ 1) ∈ Ej} ∀(j, n+ 1) ∈ Ein
n+1 (E.4a)

cij(Ei, . . . ,En) := aijI{(i, j) ∈ Ei}
∑

k:(j,k)∈Ej

cjk(Ej , . . . ,En) ∀(i, j) ∈ E \ Ein
n+1, (E.4b)

where a0j := 1 ∀(0, j) ∈ E0 as before. Similarly, the generalized backward-looking weights bbb(E) are defined as follows:

b0j(E0) := I{(0, j) ∈ E0} ∀(0, j) ∈ E0 (E.5a)

bjk(E0, . . . ,Ej) :=
∑

i:(i,j)∈Ei

bij(E0, . . . ,Ei)ajkI{(j, k) ∈ Ej} ∀(j, k) ∈ E \ E0. (E.5b)

Note that plugging in E as E recovers the original weights of (E.2) and (E.3), i.e., bbb = bbb(E) and ccc = ccc(E). We are now in a
position to present Lemma A.

Lemma A. Consider DAG G and linear F as in (E.1), with ccc(·) and bbb(·) as in (E.4) and (E.5). Suppose X(1)
i = 0 and

X
(2)
i = 1 ∀i ∈ N0. Then, given E ⊆ E, for all i ∈ N,

πij(E) =
∑

k:(j,k)∈Ej

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En) ∀j : (i, j) ∈ E,

where E = (E0, . . . ,En) and the graph G is assumed to be topologically sorted (wlog).

Proof of Lemma A. First, consider the super-source node i = 0. By definition, π0j(E) corresponds to the Shapley value of
the following game. The set of players is E0 and for a given coalition E0 ⊆ E0, characteristic function equals

v0(E0 | E−0) = Y (E0,E1, . . . ,En)

=
∑

j:(0,j)∈E0

c0j(E0,E1, . . . ,En)

=
∑

j:(0,j)∈E0

a0jI{(0, j) ∈ E0}
∑

k:(j,k)∈Ej

cjk(Ej , . . . ,En)

=
∑

j:(0,j)∈E0

∑
k:(j,k)∈Ej

cjk(Ej , . . . ,En).
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The second equality follows the definition of ccc(·) (see (E.4)) and Y (·) (see (1) and (2)). The third equality follows the
definition of ccc(·) (see (E.4)). The final equality holds since a0j = 1 and I{(0, j) ∈ E0} = 1 for (0, j) ∈ E0. Given the
separability of v0(E0 | E−0) over the players (0, j) in E0, it directly follows that the Shapley value for player (0, j) ∈ E0 in
such a game equals

π0j(E) =
∑

k:(j,k)∈Ej

cjk(Ej , . . . ,En)

=
∑

k:(j,k)∈Ej

b0j(E0)cjk(Ej , . . . ,En),

where the second equality is true because b0j(E0) = 1 for (0, j) ∈ E0 by definition (see (E.5)). This completes the “base
case”.

Given the DAG structure, it suffices to show the statement holds at node j ∈ N by assuming the statement to hold at each of
its parent nodes i s.t. (i, j) ∈ Ei. That is, it suffices to show that

πij(E) =
∑

k:(j,k)∈Ej

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En) ∀j : (i, j) ∈ E (E.6)

implies

πjk(E) =
∑

`:(k,`)∈Ek

bjk(E0, . . . ,Ej)ck`(Ek, . . . ,En) ∀k : (j, k) ∈ E.

By definition, πjk(E) corresponds to the Shapley value of the following game. The set of players is Ej and for a given
coalition Ej ⊆ Ej , characteristic function equals

vj(Ej | E−j) =
∑

i:(i,j)∈Ei

πij(E0, . . . , Ej , . . . ,En)

=
∑

i:(i,j)∈Ei

∑
k:(j,k)∈Ej

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En)

=
∑

i:(i,j)∈Ei

∑
k:(j,k)∈Ej

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En)

=
∑

k:(j,k)∈Ej

∑
i:(i,j)∈Ei

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En).

The second equality follows (E.6). The third equality holds since cjk(Ej , . . . ,En) = cjk(Ej , . . . ,En) for (j, k) ∈ Ej (see
(E.4)). Given the separability of the characteristic function over the players, it directly follows that the Shapley value for
player (j, k) ∈ Ej in such a game equals

πjk(E) =
∑

i:(i,j)∈Ei

bij(E0, . . . ,Ei)cjk(Ej , . . . ,En)

=
∑

i:(i,j)∈Ei

bij(E0, . . . ,Ei)ajkI{(j, k) ∈ Ej}
∑

`:(k,`)∈Ek

ck`(Ek, . . . ,En)

= bjk(E0, . . . ,Ej)
∑

`:(k,`)∈Ek

ck`(Ek, . . . ,En)

=
∑

`:(k,`)∈Ek

bjk(E0, . . . ,Ej)ck`(Ek, . . . ,En),

where the second and third equalities follow the definitions of ccc(·) (see (E.4)) and bbb(·) (see (E.5)), respectively. This
completes the proof. �
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F. Further Details on the Additional Properties of RSV
In this appendix, we provide further details on the additional properties of RSV from §5: proof of Proposition 1 (§F.1),
implementation invariance example (§F.2), and proof of Proposition 2 (§F.3).

F.1. Proof of Proposition 1

Proposition 1. RSV obeys implementation invariance, sensitivity(a), and sensitivity(b).

Proof of Proposition 1. For implementation invariance, recall from §4 that RSV attributes to edges [πRSV
ij ](i,j)∈E and the

node attributions are defined as πRSV
j :=

∑
i∈Pj

πRSV
ij for all j ∈ N \ {0}. Furthermore, RSV adds a super-source node 0

with an edge directed to each source node. Hence, πRSV
j = πRSV

0j for all j ∈ N0. Now, for j ∈ N0, observe that

πRSV
j (M1) = πRSV

0j (M1)

=
∑

E0⊆E0\{(0,j)}

wE0(E0)× {v0(E0 ∪ {(0, j)} | M1)− v0(E0 | M1)}

=
∑

E0⊆E0\{(0,j)}

wE0(E0)× {Y (E0 ∪ {(0, j)},E−0 | M1)− Y (E0,E−0 | M1)}

=
∑

E0⊆E0\{(0,j)}

wE0
(E0)×

{
g(X

(2)
N0∪{j},X

(1)
N0\{N0∪{j}} | F1)− g(X

(2)
N0
,X

(1)
N0\N0

| F1)
}

(?)
=

∑
E0⊆E0\{(0,j)}

wE0
(E0)×

{
g(X

(2)
N0∪{j},X

(1)
N0\{N0∪{j}} | F2)− g(X

(2)
N0
,X

(1)
N0\N0

| F2)
}

=
∑

E0⊆E0\{(0,j)}

wE0
(E0)× {Y (E0 ∪ {(0, j)},E−0 | M2)− Y (E0,E−0 | M2)}

=
∑

E0⊆E0\{(0,j)}

wE0
(E0)× {v0(E0 ∪ {(0, j)} | M2)− v0(E0 | M2)}

= πRSV
0j (M2)

= πRSV
j (M2).

The notation v0(· | M) and Y (· | M) captures the dependence of the characteristic function v0(·) and the output Y (·)
on the model M. Given E0, N0 := {k : (0, k) ∈ E0} denotes the children nodes of 0 that are present in E0. To be
thorough, we should use N0(E0) but we omit the dependence on E0 for conciseness. The key step is (?), which is true
because g(· | F1) = g(· | F2). All other equalities directly follow the corresponding definitions. This proves RSV obeys
implementation invariance.

To see why RSV obeys sensitivity(a), suppose the qualifiers in Definition 4 hold. Then, it follows from the definition
of the game at the super-source node 0 that πRSV

0j = 0 for all j ∈ N0 \ {i} (flow nullity) and πRSV
0i = Y (2) − Y (1) (flow

conservation). Since πRSV
j = πRSV

0j for all j ∈ N0 (by definition), πRSV
i = πRSV

0i = Y (2) − Y (1) 6= 0 and hence, sensitivity(a)
holds. Similarly, for sensitivity(b), under the condition in Definition 5, flow nullity implies πRSV

i = 0. This completes the
proof. �

F.2. Implementation Invariance Example

We use the example from §8.2 of Dhamdhere et al. (2018), which shows that backpropagation-based approaches such as
DeepLIFT (Shrikumar et al., 2017), LRP (Binder et al., 2016), and DeepSHAP (Lundberg & Lee, 2017) do not satisfy
implementation invariance.

Example A. Consider the two models in Figure D. Both the models have the set of source nodes. Furthermore, the input-
output function is the same in both: g(X1, X2) = X1X2. The key difference between them is in the “internal” structure of
the graph. In particular, node 4 is split into two nodes in model 2, while preserving the input-output mapping. Consider
background (X

(1)
1 , X

(1)
2 ) = (0, 0) and foreground (X

(2)
1 , X

(2)
2 ) = (1, 1). Under backpropagation-based approaches

such as DeepLIFT, LRP, and DeepSHAP, the source nodes 1 and 2 receive an attribution of (1/2, 1/2) in model 1 and
(1/3, 2/3) in model 2. This illustrates their lack of robustness. On the other hand, our top-down approach attributes
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(πRSV
1 , πRSV

2 ) = (1/2, 1/2) in both the models. (Recall from §4 that (a) RSV attributes to edges [πRSV
ij ](i,j)∈E and the node

attributions are defined as πRSV
j :=

∑
i∈Pj

πRSV
ij for all j ∈ N \ {0}, and (b) RSV adds a super-source node 0. Hence,

πRSV
1 = πRSV

01 and πRSV
2 = πRSV

02 . The computation of πRSV
01 and πRSV

02 is straightforward in both the models.)

X1

X2

X3

X4 Y

Model 1

X1

X2

X3

X4

X5

Y

Model 2

Figure D. The two models corresponding to Example A. There are two source variables in both the models, X1 and X2. In model 1, the
structural equations are as follows: X3 = X1, X4 = X2, and Y = X3X4. On the other hand, in model 2, X3 = X1, X4 =

√
X2,

X5 =
√
X2 and Y = X3X4X5.

F.3. Proof of Proposition 2

Proposition 2. RSV obeys DM and ASI.

Proof of Proposition 2. To see why RSV obeys DM, recall the notation from Definition 6 and observe that

πRSV
i = πRSV

0i

=
∑

E0⊆E0\{(0,i)}

wE0(E0)× {v0(E0 ∪ {(0, i)})− v0(E0)}

=
∑

E0⊆E0\{(0,i)}

wE0
(E0)︸ ︷︷ ︸
≥0

×

g(X
(2)
N0
, xi,X

(1)
N0\{N0∪{i}})︸ ︷︷ ︸

monotone in xi

− g(X
(2)
N0
,X

(1)
N0\N0

)︸ ︷︷ ︸
constant w.r.t. xi

 .

N0 := {k : (0, k) ∈ E0} denotes the children nodes of 0 that are present in E0. To be thorough, we should use N0(E0) but
we omit the dependence on E0 for conciseness. The proof for ASI follows from first principles as well. �
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G. Further Details on RSV’s Connection to Existing Node-based Approaches
In this appendix, we provide further details on RSV’s connection to existing node-based approaches. In particular, we
provide a proof of Proposition 3 in §G.1 (hence, verifying RSV’s connection to distal ASV), followed by highlighting RSV’s
connection to ISV and proximate ASV in §G.2.

G.1. Proof of Proposition 3

Proposition 3. Source nodes receive the same attribution under RSV and distal ASV, i.e., πRSV
j = πASV

j ∀j ∈ N0.

Proof of Proposition 3. It suffices to show that the games underlying [πRSV
j ]j∈N0

and [πASV
j ]j∈N0

are equivalent. Recall
from §5 that g(·) denotes the mapping from source nodes to the output, i.e., Y = g(XN0

) (assuming all downstream edges
(E1, . . . ,En) to be active). For distal ASV, it follows from the definition in Appendix A.3 that the underlying game is as
follows. Set of players is N0. Given coalition N0 ⊆ N0, characteristic function is g(X

(2)
N0
,X

(1)
N0\N0

). For j ∈ N0, distal ASV
πASV
j is the corresponding Shapley value of this game. For RSV, it follows from the definition in §4.2 that the underlying

game is as follows. Set of players is E0 (outgoing edges of the super-source node 0). Given coalition E0 ⊆ E0, characteristic
function is g(X

(2)
N0
,X

(1)
N0\N0

), where N0 := {k : (0, k) ∈ E0} denotes the children nodes of 0 that are present in E0. To be
thorough, we should use N0(E0). For j ∈ N0, RSV πRSV

0j is the corresponding Shapley value of this game and by definition,
πRSV
j = πRSV

0j . Clearly, the two games are indentical and hence, πRSV
j = πASV

j ∀j ∈ N0. This completes the proof. �

G.2. Connection Between RSV and ISV / Proximate ASV

In this subsection, we establish a connection between our flow-based RSV and the node-based ISV (Appendix A.1) /
proximate ASV (Frye et al., 2020b). Recall from Appendix A that ISV and proximate ASV attribute all the value to the
parent nodes Pn+1 of the output. However, such an attribution is only apt if the graph is “flat” since otherwise, it violates
source efficiency. Interestingly, RSV recovers both ISV and proximate ASV under “flat” graphs, which we define next.

Definition A (Flat graph). We say a graph G (without super-source node 0) is flat if there are no edges between the nodes in
N. In other words, each edge is directed to the output node.

An example is provided in Figure E and we state our claim in Proposition B.

X1 X2 X3

Y

Figure E. An example of a flat graph.

Proposition B. Suppose the graph G is flat. Then, RSV recovers ISV, i.e., πRSV
j = πISV

j ∀j ∈ N.

The notation [πISV
j ]j∈N is defined in Appendix A.1. It is straightforward to prove Proposition B. In particular, it is easy to

verify that if the graph is flat, then the game corresponding to ISV (defined in Appendix A.1) is equivalent to the node 0
game in RSV (defined in §4.2). Furthermore, since proximate ASV is the same as ISV given our problem definition from §2,
equivalence between RSV and proximate ASV under flat graphs follows directly.
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H. Details on the Numerics Corresponding to Example 3
In this appendix, we provide details on the numerics corresponding to the causal unfairness example (Example 3) from
§6. We first discuss the underlying data generating process (§H.1), followed by our estimation procedure (§H.2). We then
discuss our computation of RSV in the estimated probabilistic graphical model (§H.3). Finally, we present some sensitivity
analysis (§H.4).

H.1. Data Generating Process

Recall that the true graph is as in Figure F. The data generating process is as follows. Sensitive attribute X1 ∈ [0, 1] is
drawn from a Uniform[0, 1] distribution. Test score X2 ∈ R follows a standard normal distribution, i.e., Normal(0, 1). If
X1 ≤ 1/2, then the department choice X3 equals 0 w.p. 4/5 and 1 w.p. 1/5 whereas if X1 > 1/2, then X3 equals 0 w.p.
1/5 and 1 w.p. 4/5. Similarly, if X1 ≤ 1/2, then the unreported referral X4 equals 0 w.p. 4/5 and 1 w.p. 1/5 whereas if
X1 > 1/2, then X4 equals 0 w.p. 1/5 and 1 w.p. 4/5. Hence, an applicant with a higher value of the sensitive attribute (X1)
is more likely to apply to department 1 and is more likely to have a referral. The admit outcome Y is a Bernoulli random
variable with mean equal to Φ(a2X2 +a3X3 +a4X4), where Φ(·) denotes the standard normal CDF and (a2, a3, a4) ∈ R3

+

are the probit weights. By construction, a4 captures the level of unfair influence.

X1

X2 X3 X4

Y

Figure F. True graph for Example 3.

The three parameters in our data generating process are the probit weights (a2, a3, a4). We fix a2 = a3 = 1 and generate
multiple datasets by varying a4 ∈ {0, 0.5, . . . , 6}. For each of the 13 values of a4, we generate 100 datasets by using 100
different seeds (s = 1, . . . , 100). Hence, we generate a total of 1300 datasets. In each dataset, we sample 1000 data points
{(x1i, x2i, x3i, x4i, yi)}1000

i=1 using the process defined above.

H.2. Estimation Procedure

For a given a4 ∈ {0, 0.5, . . . , 6}, we estimate a separate model for each of the 100 datasets to account for the randomness
due to finite data. Recall that the observed graph is as in Figure G, i.e., the referral data is missing. Accordingly, consider a
dataset without the unobserved variable X4: {(x1i, x2i, x3i, yi)}1000

i=1 .

X1

X2 X3

Y

Figure G. Observed graph for Example 3.

We use this dataset to estimate two quantities: (1) the distribution of X3 as a function of X1 and (2) the distribution of Y as
a function of (X1, X2, X3). To do so, we fit a probit regression model at each of the nodes. Denote the estimated coefficient
of X1 in the model at X3 by b̂13 and the estimated coefficients of (X1, X2, X3) in the model at Y by (b̂15, b̂25, b̂35).
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Accordingly, our estimated distribution for X3 (as a function of X1) is summarized by the following probit model:

X̂3 =

{
1 if b̂13X1 + U3 > 0

0 if b̂13X1 + U3 ≤ 0
(H.7a)

U3 ∼ Normal(0, 1). (H.7b)

Similarly, our estimated distribution for Y (as a function of (X1, X2, X3)) is summarized by the following probit model:

Ŷ =

{
1 if b̂15X1 + b̂25X2 + b̂35X3 + U5 > 0

0 if b̂15X1 + b̂25X2 + b̂35X3 + U5 ≤ 0

U5 ∼ Normal(0, 1).

U3 and U5 denote the error terms. Note that given (X1, X2, X3), the expected value of Ŷ equals

µ̂ := Φ(b̂15X1 + b̂25X2 + b̂35X3), (H.8)

which denotes the admit probability (under our estimated model).

H.3. RSV Computation

Consider the estimated model corresponding to an arbitrary a4 ∈ {0, 0.5, . . . , 6} and an arbitrary seed s ∈ {1, . . . , 100}. To
understand if the sensitive attribute (X1) has an unfair influence on the outcome, we consider the following two applicants:
(X

(1)
1 , X

(1)
2 ) = (0, 0) (background) and (X

(2)
1 , X

(2)
2 ) = (1, 0) (foreground), i.e., different value of X1 but same score.

Observe that the framework presented in the paper is for a deterministic model and our estimated model in this example is
probabilistic. To attribute in this probabilistic model, we use structural equations model with errors as follows. We insert
the error term U3 from (H.7) as a parent of node 3 (see Figure H). Furthermore, we replace the output node Y ∈ {0, 1} by
the estimated model’s admit probability µ̂ ∈ [0, 1] (see (H.8)) since we are interested in understanding the difference in
probabilities. We can choose to understand the difference in Ŷ too by simply adding the error term U5 as a parent of the
output node.

X1

X2 X̂3

U3

µ̂

Figure H. Estimated graph with error term. U3 and X̂3 as in (H.7). Output µ̂ as in (H.8). Given U3, the model is deterministic.

Figure H corresponds to a model in which the structural equations F are deterministic. In particular, given (X1, X2) and a
sample of U3 ∼ Normal(0, 1), (X1, U3) map deterministically to X̂3 via (H.7) and (X1, X2, X̂3) map deterministically to µ̂
via (H.8). Defining Y (1) := EU3

[µ̂ | (X(1)
1 , X

(1)
2 )] and Y (2) := EU3

[µ̂ | (X(2)
1 , X

(2)
2 )], we are interested in understanding

Y (2)−Y (1), which denotes the difference in the expected admit probabilities between applicant 2 and applicant 1 (under the
estimated model). To compute RSV, we generate 1000 samples of U3 and recycle our deterministic machinery since given
U3, the system is deterministic. Hence, we compute RSV for each sample of U3 and output the average RSV (averaged over
U3 samples), which is justified since RSV obeys the linearity axiom (Theorem 1). Note that we use the same sample of U3

for both the background and the foreground, i.e., U (1)
3 = U

(2)
3 . Hence, the edge from U3 to X̂3 satisfies flow nullity.

In Figure 11 of the paper, we show the RSV corresponding to each value of a4, where the error bars (± 1 standard deviation)
correspond to the uncertainty over 100 seeds. Note that given a seed (and hence, an estimated model) and a sample of U3,
we compute RSV exactly (as opposed to a Monte-Carlo estimation), which is possible in this relatively small graph.
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H.4. Sensitivity Analysis

Though model estimation is not our focus, we perform the following robustness check. We change the data generating process
to a sigmoid, but fit a probit model as before (model mismatch). In particular, we use the following data generating process.
Sensitive attribute (X1), test score (X2), department choice (X3), and unreported referral (X4) follow the same distribution
as in §H.1. The admit outcome Y follows a Bernoulli distribution but with mean equal to σ(a2X2 + a3X3 + a4X4), where
σ(x) := 1/(1 + exp(−x)) denotes the sigmoid function and (a2, a3, a4) ∈ R3

+ are the sigmoid weights.

As before, we fix a2 = a3 = 1 and generate multiple datasets by varying a4 ∈ {0, 0.5, . . . , 6} and use 100 seeds for each
value of a4. Our estimation procedure and the RSV computation remains the same as in §H.2 and §H.3, respectively. In
Figure I, we show attributions to the fair (X1 → X3 → Y ) and the unfair (X1 → Y ) channels as a function of a4. Similar
to Figure 11, attribution to the unfair channel increases with a4, which is logical. Furthermore, the unfair channel receives
zero attribution when there is no unresolved discrimination (a4 = 0) and the same attribution as the fair channel when the
two exert the same influence (a3 = a4 = 1).

0 1 2 3 4 5 6
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Figure I. Sensitivty analysis for Example 3. We change the data generating process to a sigmoid but fit a probit model. As before,
attribution to the unfair channel increases with the level of unfair influence a4.
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