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Abstract 

The motivation for this paper is to investigate the use of alternative novel neural 
network architectures when applied to the task of forecasting and trading the 
Euro/Dollar (EUR/USD) exchange rate. This is done by benchmarking three different 
neural network designs representing a Higher Order Neural Network (HONN), a Psi 
Sigma Network and a Recurrent Network (RNN) with three successful architectures, 
the traditional Mutilayer Perceptron (MLP), the Softmax and the Gaussian Mixture (GM) 
models, as reported in Dunis and Williams (2002, 2003) and Lindemann et al. (2004). 
More specifically, the trading performance of the six models is investigated in a forecast 
and trading simulation competition on the EUR/USD time series over a period of 8 
years. These results are also benchmarked with more traditional models such as a 
moving average convergence divergence technical model (MACD), an autoregressive 
moving average model (ARMA) and a logistic regression model (LOGIT).  

As it turns out, the MLP, the HONN, the Psi Sigma and the RNN models do all well and 
outperform the more traditional models in a simple trading simulation exercise. 
However, when more sophisticated trading strategies using confirmation filters and 
leverage are applied, the GM network produces remarkable results and outperforms all 
the other  network architectures. 
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1. INTRODUCTION 

Neural networks are an emergent technology with an increasing number of real-world 
applications including Finance (Lisboa et al. (2000)). However their numerous 
limitations are often creating scepticism about their use among practitioners. 

The motivation for this paper is to investigate the use of several new neural networks 
techniques that try to overcome these limitations. This is done by benchmarking three 
different neural network architectures representing a Higher Order Neural Network 
(HONN), a Psi Sgima network and a Recurrent Neural Network (RNN). Their trading 
performance on the  Euro/Dollar (EUR/USD) time series is investigated and is 
compared with the three best models reported by Dunis and Williams (2002, 2003) and 
Lindemann et al. (2004), the Multi-layer Perceptron (MLP), the Softmax and the 
Gaussian Mixture (GM) model. So in essence, this paper can be seen as a continuation 
of the research mentioned just above or as a forecasting competition among some of 
the most up-to-date forecasting techniques over a demanding series such as the 
EUR/USD exchange rate. 

The results of our three networks can also be compared to the more traditional 
approaches also studied by Dunis and Williams (2002, 2003), namely a moving 
average convergence divergence technical model (MACD), an autoregressive moving 
average model (ARMA) and a logistic regression model (LOGIT). 

As it turns out, the MLP, the HONN and the Psi Sigma demonstrate a similar good 
perfomance and outperform the more traditional models in a simple trading simulation 
exercise, while the GM model outperforms all models when more sophisticated trading 
strategies using confirmation filters and leverage are applied. This might be due to the 
ability of the GM model to use probability distributions to identify successfully trades 
with a high Sharpe ratio. 

The rest of the paper is organised as follows. In section 2, we present the literature 
relevant to the Recurent Networks, the Higher Order Neural Networks and their variant 
Psi Sigma. Section 3 describes the dataset used for this research, actually the same as 
in Dunis and Williams (2002, 2003) and Lindemann et al. (2004). An overview of the 
different neural network models is given in section 4. Section 5 gives the empirical 
results of all the models considered and investigates the possibility of improving their 
performance with the application of more sophisticated trading strategies. Section 6 
provides some concluding remarks. 

 

2. LITERATURE REVIEW 

The motivation for this paper is to apply some of the most promising new neural 
networks architectures which have been developed recently with the purpose to 
overcome the numerous limitations of the more classic neural architectures and to 
assess whether they can achieve a higher performance in a trading simulation.  

RNNs have an activation feedback which embodies short-term memory allowing them 
to learn extremely complex temporal patterns. Their superiority against feedfoward 
networks when performing nonlinear time series prediction is well documented in 
Connor et al. (1993) and Adam et al. (1994). In financial applications, Kamijo et al. 
(1990) applied them successfully to the recognition of stock patterns of the Tokyo stock 
exchange while Tenti (1996) achieved remarkable results using RNNs to forecast the 
exchange rate of the Deutsche Mark. Tino et al. (2001) use them to trade successfully 
the volatility of the DAX and the FTSE 100 using straddles while Dunis and Huang 
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(2002), using continuous implied volatility data from the currency options market, obtain 
remarkable results for their GBP/USD and USD/JPY exchange rate volatility trading 
simulation. 

HONNs were first introduced by introduced by Giles and Maxwell (1987) as a fast 
learning network with increased learning capabilities. Although their function 
approximation superiority over the more traditional architectures is well documented in 
the literature (see among others Redding et al. (1993), Kosmatopoulos et al. (1995) 
and Psaltis et al. (1998)), their use in finance so far has been limited. This has changed 
when scientists started to investigate not only the benefits of Neural Networks (NNs) 
against the more traditional statistical techniques but also the differences between the 
different NNs model architectures. Practical applications have now verified the 
theoretical advantages of HONNs by demonstrating their superior forecasting ability 
and put them in the front line of research in financial forecasting. For example Dunis et 
al. (2006b) use them to forecast successfully the gasoline crack spread while Fultcher 
et al. (2006) apply HONNs to forecast the AUD/USD exchange rate, achieving a 90% 
accuracy. However, Dunis et al. (2006a) show that, in the case of the futures spreads 
and for the period under review, the MLPs performed better compared with HONNs and 
recurrent neural networks. 

Psi Sigma networks were first introduced as an architecture capable of capturing higher 
order correlations within the data while avoiding some of the HONNs limitations such as 
the combinatorial increase in weight numbers. Shin et al. (1991) and Ghosh et al. 
(1992) demonstrate these benefits and present empirical evidence on their forecasting 
ability. For financial applications, Ghazali et al. (2006) compare them with HONNs on 
the IBM common stock closing price and the US 10-year government bond series and 
prove their forecasting superiority while, in a similar paper, Hussain et al. (2006) 
present satisfactory results of the Psi Sigma forecasting power on the EUR/USD, the 
EUR/GBP and the EUR/JPY exchange rates.  

 
3. THE EUR/USD EXCHANGE RATE AND RELATED FINANCIAL DATA 

Our benchmark test is to trade the EUR/USD exchange rate based on daily forecasts of 
its London closing prices1. All time series are daily closing data obtained from a 
historical database provided by Datastream and used in Dunis and Williams (2002, 
2003) and Lindemann et al. (2004). 
 

Name of period Trading days Beginning End 

Total dataset 1749 17 October 1994 03 July 2001

Training dataset 1459 17 October 1994 18 May 2000

Out-of-sample dataset [Validation set] 290 19 May 2000 03 July 2001
 

Table 1:  The EUR/USD dataset 

 

                                                 
1
 EUR/USD is quoted as the number of USD per Euro: for example, a value of 1.2657 is USD1.2657 per 

Euro. The EUR/USD exchange rate only exists from 4 January 1999: it was retropolated from 17 October 
1994 to 31 December 1998 and a synthetic EUR/USD series was created for that period using the fixed 
EUR/DEM conversion rate agreed in 1998, combined with the USD/DEM daily market rate. 



 4 

 
 

Fig. 1: EUR/USD London daily closing prices (total dataset) 

Dunis and Williams (2002, 2003) carried out a variable selection and identified the 
explanatory variables listed in table 2. 

Number Variable Mnemonics Lag 

1 US $ TO UK £ (WMR) – EXCHANGE RATE USDOLLR 12

2 JAPANESE YEN TO US $ (WMR) – EXCHANGE RATE JAPAYE$ 1

3 JAPANESE YEN TO US $ (WMR) – EXCHANGE RATE JAPAYE$ 10

4 BRENT CRUDE – Current Month, fob U$/BBL OILBREN 1

5 GOLD BULLION $/TROY OUNCE GOLDBLN 19

6 FRANCE BENCHMARK BOND 10 YR (DS) – RED. YIELD FRBRYLD 2

7 ITALY BENCHMARK BOND 10 YR (DS) – RED. YIELD ITBRYLD 6

8 JAPAN BENCHMARK BOND – RYLD.10 YR (DS) – RED. 
YIELD 

JPBRYLD 9

9 NIKKEI 225 STOCK AVERAGE – PRICE INDEX JAPDOWA 1

10 NIKKEI 225 STOCK AVERAGE – PRICE INDEX JAPDOWA 15

 
Table 2: Explanatory variables and Datastream mnemonics 

The observed EUR/USD time series is non-normal (Jarque-Bera statistics confirmed 
this at the 99% confidence interval) containing slight skewness and low kurtosis. It is 
also nonstationary and Dunis and Williams (2002, 2003) decided to transform the 
EUR/USD as well as all the explanatory series into stationary series of rates of return2. 

Given the price level P1, P2,I, Pt, the rate of return at time t is formed by: 

 
1

1
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The summary statistics of the EUR/USD returns series reveal a slight skewness and 
high kurtosis. The Jarque-Bera statistic confirms again that the EUR/USD series is 
non-normal at the 99% confidence interval. 

 

                                                 
2
 Confirmation of its stationary property is obtained at the 1% significance level by both the Augmented 

Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics. 
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Fig. 2: EUR/USD returns summary statistics (total dataset) 

A further transformation includes the creation of interest rates yield curve series, 
generated by: 

 rates interest month 3- yieldsbond benchmark  year10=yc  [2] 

Following Dunis and Williams (2002, 2003) and Lindemann et al. (2004), we divide our 
dataset as follows:  

Name of period Trading days Beginning End 

Total data set 1749 17 October 1994 03 July 2001
Training data set 1169 17 October 1994 08 April 1999

Test data set 290 09 April 1999 18 May 2000

Out-of-sample data set [Validation set] 290 19 May 2000 03 July 2001

Table 3:  The neural networks datasets 

 

4. THE NEURAL NETWORKS FORECASTING MODELS 

Neural networks exist in several forms in the literature. The most popular architecture is 
the Multi-layer Perceptron (MLP). 

A standard neural network has at least three layers. The first layer is called the input 
layer (the number of its nodes corresponds to the number of explanatory variables). 
The last layer is called the output layer (the number of its nodes corresponds to the 
number of response variables). An intermediary layer of nodes, the hidden layer, 
separates the input from the output layer. Its number of nodes defines the amount of 
complexity the model is capable of fitting. In addition, the input and hidden layer contain 
an extra node, called the bias node. This node has a fixed value of one and has the 
same function as the intercept in traditional regression models. Normally, each node of 
one layer has connections to all the other nodes of the next layer.  

The network processes information as follows: the input nodes contain the value of the 
explanatory variables. Since each node connection represents a weight factor, the 
information reaches a single hidden layer node as the weighted sum of its inputs. Each 
node of the hidden layer passes the information through a nonlinear activation function 
and passes it on to the output layer if the calculated value is above a threshold.  
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The training of the network (which is the adjustment of its weights in the way that the 
network maps the input value of the training data to the corresponding output value) 
starts with randomly chosen weights and proceeds by applying a learning algorithm 
called backpropagation of errors3 (Shapiro (2000)). The learning algorithm simply tries 
to find those weights which optimise an error function (normally the sum of all squared 
differences between target and actual values). Since networks with sufficient hidden 
nodes are able to learn the training data (as well as their outliers and their noise) by 
heart, it is crucial to stop the training procedure at the right time to prevent overfitting 
(this is called ‘early stopping’). This can be achieved by dividing the dataset into 3 
subsets respectively called the training and test sets used for simulating the data 
currently available to fit and tune the model and the validation set used for simulating 
future values. The network parameters are then estimated by fitting the training data 
using the above mentioned iterative procedure (backpropagation of errors). The 
iteration length is optimised by maximising the forecasting accuracy for the test 
dataset. Finally, the predictive value of the model is evaluated applying it to the 
validation dataset (out-of-sample dataset).  

4.1 THE MULTI-LAYER PERCEPTRON MODEL 
4.1.1 The MLP network architecture 

The network architecture of a ‘standard’ MLP looks as presented in figure 34:  
 

 

 

 

 

 

 

 

Fig. 3: A single output, fully connected MLP model 

where: 
][n

tx  ( )1,,2,1 += kn L  are the model inputs (including the input bias node) at time t 
][m

th
 ( )1,...,2,1 += jm  are the hidden nodes outputs (including the hidden bias node) 

ty~
      is the MLP model output 

jku  and jw     are the network weights 

      is the transfer sigmoid function: ( )
xe

xS −+
=
1

1
,         [3] 

 

     is a linear function:  ( ) ∑=
i

ixxF           [4] 

                                                 
3
 Backpropagation networks are the most common multi-layer networks and are the most commonly 

used type in financial time series forecasting (Kaastra and Boyd (1996)). 
4
 The bias nodes are not shown here for the sake of simplicity. 
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The error function to be minimised is: 

( ) ( )( )∑
=

−=
T

t

jjkttjjk wuyy
T

wuE
1

2
,~1

, ,   with ty  being the target value       [5] 

4.1.2 Empirical results of the MLP model 

The results for the MLP achieved by Dunis and Williams (2002, 2003) are summarized 
in table 4. The benchmark model ‘naïve strategy’ follows the rule that the forecast 
return for tomorrow is today’s value. The trading strategy applied is simple: go or stay 
long when the forecast return is above zero and go or stay short when the forecast 
return is below zero. Appendix A.1 documents the performance measures used while 
Appendix A.2 gives the results of the more traditional techniques, namely a moving 
average convergence divergence technical model (MACD), an autoregressive moving 
average model (ARMA) and a logistic regression model (LOGIT). The MLP outperforms 
all benchmarks. 

  NAIVE MLP 

Sharpe Ratio   (excluding costs) 1.83 2.57
Annualised Volatility (excluding costs) 11.6% 11.6%
Annualised Return (excluding costs) 21.3% 29.7%
Maximum Drawdown     (excluding costs) -9.1% -9.1%
Taken Positions  (annualised

5
) 109 118

Table 4: Trading performance of the benchmark models 

 
4.2 THE SOFTMAX CROSS ENTROPY MODEL 

The Softmax cross entropy network (henceforth SCE) is a neural network with a cross 
entropy cost function and a Softmax activation function at the output nodes. The main 
idea of this model is to approximate the probability density function for the target value 
through a histogram representing the probability of the target value being within a 
range of predefined size. The output value of a SCE model is therefore a vector with as 
many elements as there are output nodes, 6 in our case (each node representing one 
bar of the histogram). The vector elements sum up to unity and represent the density 
function for the target value while each vector element stands for the probability that 
the target value lies in the value range the vector element represents. 

In order to apply the cross entropy cost function, the target values of the training data 
set have to be preprocessed so that one gets a target vector (rather than a single target 
value as with the MLP), where the target vector has as many elements as the SCE 
model has output nodes. The target vector consists of zeros and a single one. The 
value ‘one’ indicates which output node of the network covers the value range where 
the original target value lies in. Since the network forecasts should be used as a 
density function, one has to take care that the output vector sums up to unity. This is 
done by superimposing the Softmax function to the actual network outputs. The 
Softmax function keeps the internal relationship between the output values but 
transforms them in a way that their values add up to unity (see equation [8] below). 

During the training phase (that is when the network weights are adjusted), the SCE 
model learns to map the input vector of the training data set to the target vector of the 
same data set. Since each target vector consists of a single ‘one’ representing a non-

                                                 
5
 The number of taken positions can differ from the number of trading days due to the possibility to hold a 

position for longer than 1 day. 
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overlapping range of possible output values (while the rest are zeros), the SCE model 
tries in fact to solve a classification task.  

The network might face a situation where the same input vector is related to two 
different output values (at different times) so that the network has no other chance than 
to map the input vector to more than one output node. In doing so, the network 
generates a density function for the target value, while the integrated Softmax function 
ensures that the probabilities add up to unity. 
 
4.2.1 The SCE network architecture 

The difference in architecture with a MLP lies in the multiple output nodes. While the 
MLP has typically only one output node delivering a level estimation, the SCE network 
uses several output nodes to represent an approximation of the density function (while 
being trained on a classification task).  
 

 

 

 

 

 

 

 

Fig. 4: A single output, fully connected SCE model 

where: 

][n

tx  ( )1,,2,1 += kn L  are the model inputs (including the input bias node) at time t 
][m

th
 ( )1,...,2,1 += jm  are the hidden nodes outputs (including the hidden bias node) 

[ ]g

ty~  ( )qg ,...,2,1=  is the SCE model output before applying the Softmax function 
[ ]g

tz~  ( )qg ,...,2,1=  is the network value at the output node g 

jku  and gjw        are the network weights 

 

      is the transfer sigmoid function: ( )
xe

xS −+
=
1

1
,       [6] 

 

     is a linear function:  ( ) ∑=
i

ixxF         [7] 

 

     is the Softmax function ( ) ( )
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==
1 1
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     with gy~  being the output of the linear function 

 

The error function to be minimised is: 
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4.2.2 Empirical results of the SCE model 

Since neural networks start with random initialisation of their weights, each network 
(even with the same architecture) is unique and produces slightly different results. In 
order to get stable and reliable results from the SCE architecture, Lindemann et al. 
(2004) split the initial investment capital equally amongst 30 identical (except the initial 
weights) models. The result is therefore the average result of a committee of 30 SCE 
networks. The trading strategy consists of using the density function of each of the 30 
SCE models to calculate the probability for an upmove. This is simply done by adding 
up the last 3 of 6 values of the output vector (since those 3 values cover the whole 
range of possible positive values for an upmove) and taking a long position if the 
probability for an upmove exceeds 50% (and a short position vice versa). A summary of 
the results achieved by the SCE committee is given table 5 below. 
 

 NAIVE MLP SCE 

Sharpe Ratio   (excluding costs) 1.83 2.57 2.26

Annualised Volatility (excluding costs) 11.6% 11.6% 11.6%

Annualised Return (excluding costs) 21.3% 29.7% 26.3%

Maximum Drawdown     (excluding costs) -9.1% -9.1% -7.8%

Positions Taken  (annualised) 109 118 143

Table 5: Trading performance results 

 

4.3 THE GAUSSIAN MIXTURE MODEL 

The GM network was first introduced by Husmeier (1999) and is applied to our 
EUR/USD time series in Lindemann et al. (2004).  

The GM model represents the probability density of the data by a linear combination of 
a fixed number of normal distributions (where the distribution width is adapted to the 
whole set of training data while the locations of the distribution centres depend on the 
actual input data xt and the dependent variable yt). This is done in a hidden layer where 
each node represents a normal distribution. The actual network output is not the 
density function itself but the prediction of a single value6 which is the likelihood of the 
actual GM model parameters generating the observed value of the dependent variable 
y conditioned on the input data x. 

To optimise the cost function (that is, to maximise the sum of likelihood values), the 
weights ujk and wij, determining the location of the normal distribution centres (µt), have 
to be adapted so that the distance between yt and µt is minimal. Doing so, the centres 
of the distribution are close to yt and therefore the likelihood and with it the value of the 
cost function are high. See figure 5 below to illustrate that working principle. 
 
4.3.1 The GM network architecture 

The GM architecture differs in three main ways from the benchmark feedforward MLP  
network. First, as shown by Husmeier (1999), in order to be a universal approximator at 
least a second hidden layer is necessary. Second, both the independent and 

                                                 
6
 Nevertheless, the whole density distribution can be constructed by varying the value of y over the 

interesting range of the searched density function. 
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dependent variable (x,y) are used as input data, since the aim is not to predict y but its 
density distribution P(yx) respectively the corresponding likelihood value. Third, the 
network uses Gaussian distributions in the second hidden layer. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 5: GM network architecture 
 
The following functions are applied within the GM model: 
 

][n

tx  ( )1,,2,1 += kn L   are the model inputs (including the input bias node) at time t 

ty       is the argument of the density function conditional on the values 

    of the inputs (note that the weights of ty  are fixed to 17) 

jku  and jiw     are the network weights 

iβ      define the inverse widths of the Gaussian distributions 

ia      are the mixing coefficients, with ∑ =
i

ia 1  

i      is the number of applied Gaussian mixture distributions 

j      is the number of applied network weights jw  

k      is the number of applied network weights jku  

                                                 
7
 If we would not fix the weight to 1 the network could decrease the cost function not only by adjusting 

the centres of the Gaussian mixture functions but also by changing the original target value ty . 

jku  

ia  

ijw

iβ1 ty  

( )tt xyP  
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Gaussian distribution:  ( ) ( )
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
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     Linear function:  ( ) ( )[ ]∑ −=
i

ii xyGaxyP
i
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The error function to be minimised is: 
 

( ) ( )( )∑
=

−=
T

t

iiijjkttiiijjk awuxyP
T

awuE
1

,,,,ln
1

,,, ββ ,    with ty  being the target value     [13] 

It is possible to update the parameters of the GM model by gradient descent, as was 
done with the MLP network. However this algorithm, due to the architectural complexity 
of the GM network, is very time consuming.  
 
4.3.2 Empirical results of the GM model 

In order to apply the GM model to the EUR/USD return time series, Lindemann et al. 
(2004) optimise its parameters as well as the stopping point8 on the EUR/USD test data 
set. The trading strategy consists of using the density functions to calculate the 
probability for a positive exchange rate change as well as for a negative change and 
taking a trading position where the probability is biggest (namely >50% since both add 
up to 100%). 

In order to minimize the variance of the network forecasts, they also split the initial 
investment capital equally amongst 30 identical (except the initial weights) GM models. 
Their result is therefore the average result of a committee of 30 GM networks in order 
to minimise the chance to pick an outlier model. This is particularly important when 
trading on the tails of the density function. Table 6 includes a summary of the GMs 
forecasting performance.  

 

 NAIVE MLP SCE GM 

Sharpe Ratio   (excluding costs) 1.83 2.57 2.26 2.09

Annualised Volatility (excluding costs) 11.6% 11.6% 11.6% 11.6%

Annualised Return (excluding costs) 21.3% 29.7% 26.3% 24.2%

Maximum Drawdown     (excluding costs) -9.1% -9.1% -7.8% -12.4%

Positions Taken  (annualised) 109 118 143 162

Table 6: Trading performance results 

As can be seen, the performance of the GM committee does not improve the result of 
the single benchmark MLP network. 

However the GM model does provide more information than is actually used with this 
simple trading strategy as we have access to the complete distribution of the predicted 

                                                 
8
 Even with regularisation, the additional implementation of early stopping improved results (see 

Lindemann et al. (2004)). The weights were fixed at the best result on the test data set during training. 
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move in the exchange rate. This should be helpful when applying more sophisticated 
strategies which are investigated in detail in section 5. 
 

4.4 THE RECURRENT NETWORK 

Our next model is the recurrent neural network. While a complete explanation of RNN 
models is beyond the scope of this paper, we present below a brief explanation of the 
significant differences between RNN and MLP architectures. For an exact specification 
of the recurrent network, see Elman (1990). 

A simple recurrent network has activation feedback, which embodies short-term 
memory. The advantages of using recurrent networks over feedforward networks, for 
modelling non-linear time series, has been well documented in the past. However as 
described in Tenti (1996) “the main disadvantage of RNNs is that they require 
substantially more connections, and more memory in simulation, than standard 
backpropagation networks”, thus resulting in a substantial increase in computational 
time. However having said this RNNs can yield better results in comparison to simple 
MLPs due to the additional memory inputs.  
 
4.4.1 The RNN architecture 

A simple illustration of the architecture of an Elman RNN is presented below. 

 

 
Fig. 6: Elman Recurrent neural network architecture with two nodes on the hidden 

layer. 
 
where:  

][n

tx  ( )1,,2,1 += kn L , 
]2[]1[

, tt uu    are the model inputs (including the input bias node)  
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ty~
                                                      is the recurrent model output 
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][ f

tU )2,1( =f                     is the output of the hidden nodes at time  t 

               is the transfer sigmoid function: ( )
xe

xS −+
=
1

1
,   [14] 

 

                        is the linear output function:    ( ) ∑=
i

ixxF   [15] 

 

The error function to be minimised is: 

        ( ) ( )( )∑
=

−=
T

t
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T

wdE
1

2
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In short, the RNN architecture can provide more accurate outputs because the inputs 

are (potentially) taken from all previous values (see inputs 
]1[

1−jU  and 
]2[

1−jU in the 

figure above). 
 
4.4.2 Empirical results of the RNN model 

The RNNs are trained with gradient descent as for the MLPs. However, the increase in 
the number of weights, as mentioned before, makes the training process extremely 
slow: to derive our results, we needed about five times the time needed with the MLPs.  

Mostly for this reason, we decided to use a single network and not the average of a 
committee, selecting in the end the network that demonstrated the best statistical 
performance criteria in the test and training period9.  Moreover, with this methodology 
our results are directly compatible with those of Dunis and Williams (2002, 2003) and 
the forecasting competition seems fairer. The characteristics of the network that we 
used are on Appendix A3. 

The trading strategy is that followed for the MLP. As shown in table 7 below, the RNN 
has an overall performance similar to that of the MLP model.  
 

 NAIVE MLP SCE GM RNN 

Sharpe Ratio   (excluding costs) 1.83 2.57 2.26 2.09 2.57 
Annualised Volatility (excluding costs) 11.6% 11.6% 11.6% 11.6% 11.6% 
Annualised Return (excluding costs) 21.3% 29.7% 26.3% 24.2% 29.8% 
Maximum Drawdown     (excluding costs) -9.1% -9.1% -7.8% -12.4% -13.8% 
Positions Taken  (annualised) 109 118 143 162 124 

Table 7: Trading performance results 

4.5 THE HIGHER ORDER NEURAL NETWORK 

Higher Order Neural Networks (HONNs) were first introduced by Giles and Maxwell 
(1987) and were called “Tensor Networks”. Although the extent of their use in finance 
has so far been limited, Knowles et al. (2005) show that, with shorter computational 
times and limited input variables, “the best HONN models show a profit increase over 
the MLP of around 8%” on the EUR/USD time series (p. 7). For Zhang et al. (2002), a 
significant advantage of HONNs is that “HONN models are able to provide some 
rationale for the simulations they produce and thus can be regarded as “open box” 

                                                 
9
 We choose the network with firstly the lowest Mean Absolute Error and secondly the lowest Root Mean 

Squared Error in the training and test period. With these criteria we got the best performance in the test 
and the training period.  
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rather then “black box”. Moreover, HONNs are able to simulate higher frequency, 
higher order non-linear data, and consequently provide superior simulations compared 
to those produced by ANNs (Artificial Neural Networks)” (p. 188). 
 
4.5.1 The HONN Architecture 

While they have already experienced some success in the field of pattern recognition 
and associative recall10, the use of HONNs in finance is not yet widespread. The 
architecture of a three input second order HONN is shown below: 

 
Fig. 7: Left, MLP with three inputs and two hidden nodes; right, second order   HONN 

with three inputs 
 
where: 

][n

tx  ( )1,,2,1 += kn L   are the model inputs (including the input bias node) at time t 

ty~
       is the HONNs model output 

jku                are the network weights 

                       are the model inputs. 

         is the transfer sigmoid function: ( )
xe

xS −+
=
1

1
,   [17] 

 

     is a linear function:  ( ) ∑=
i

ixxF     [18] 

The error function to be minimised is: 

( ) ( )( )∑
=

−=
T

t

jkttjjk uyy
T

wuE
1

2
,~1

, ,  with ty  being the target value   [19] 

                                                 
10

 Associative recall is the act of associating two seemingly unrelated entities, such as smell and colour. 
For more information see Karayiannis et al.  (1994).  
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HONNs use joint activation functions; this technique reduces the need to establish the 
relationships between inputs when training. Furthermore this reduces the number of 
free weights and means that HONNS are faster to train than even MLPs. However 
because the number of inputs can be very large for higher order architectures, orders 
of 4 and over are rarely used. 

Another advantage of the reduction of free weights means that the problems of 
overfitting and local optima affecting the results of neural networks can be largely 
avoided. For a complete description of HONNs see Knowles et al. (2005). 
 
4.5.2 Empirical results of the HONN model 

We follow the same methodology as we did with RNNs for the selection of our optimal 
HONN and again we use a single network and not the average of a committee. The 
trading strategy is that followed for the MLP. A summary of our findings is presented in 
table 8 below while the characteristics of the network that we used are on Appendix A3. 
 

 NAIVE MLP SCE GM RNN HONN 

Sharpe Ratio   (excluding costs) 1.83 2.57 2.26 2.09 2.57 2.58 
Annualised Volatility (excluding costs) 11.6% 11.6% 11.6% 11.6% 11.6% 11.6% 
Annualised Return (excluding costs) 21.3% 29.7% 26.3% 24.2% 29.8% 29.8% 
Maximum Drawdown     (excluding costs) -9.1% -9.1% -7.8% -12.4% -13.8% -9.2% 
Positions Taken  (annualised) 109 118 143 162 124 129 

       Table 8: Trading performance results 

We can see that our results slightly improve with the introduction of HONNs and that in 
general terms HONNs, the Recurrent and the MLP seems to have the same forecasting 
strength on this specific dataset. 
 

4.6 THE PSI SIGMA NETWORK 

Psi Sigma networks can be considered as a class of feedfoward fully connected 
HONNs. First introduced by Ghosh and Shin (1991), the Psi Sigma network utilizes 
product cells as the output units to indirectly incorporate the capabilities of higher-order 
networks while using a fewer number of weights and processing units. Their creation 
was motivated by the need to create a network combining the fast learning property of 
single layer networks with the powerful mapping capability of HONNs while avoiding the 
combinatorial increase in the required number of weights. While the order of the more 
traditional HONN architectures is expressed by the complexity of the inputs, in the 
context of Psi Sigma, it is represented by the number of hidden nodes. 
 
4.6.1 The Psi Sigma architecture 

In a Psi Sigma network the weights from the hidden to the output layer are fixed to 1 
and only the weights from the input to the hidden layer are adjusted, something that 
greatly reduces the training time. Moreover, the activation function of the nodes in the 
hidden layer is the summing function while the activation function of the output layer is 
a sigmoid.  The figure below shows a Psi Sigma with one output layer. 
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1x            2x                     jx                 �x  

 
Fig. 8: A Psi Sigma network with one output layer 

 
where:  

tx  ( )1,,2,1 += kn L  are the model inputs (including the input bias node)  

ty~                             is the Psi Sigma output 

jw                            is the adjustable weights 

( ) ∑=
i

ixxh               is the hidden layer  activation function    [20] 

xce
x −+
=
1

1
)(σ    is the output unit adaptive sigmoid activation function   [21] 

    with c the adjustable term 
 
The error function to be minimised is: 

( ) ( )( )∑
=

−=
T

t
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T

wcE
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2
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,   with ty  being the target value    [22] 

For example let us consider a Psi Sigma network which is fed with a N+1 dimensional 

input vector T

�xxx ),...,,1( 1= .These inputs are weighted by K weight 

factors T

�jjjj wwww ),...,,( 10= , Kj ,..2,1=  and summed by a layer of K summing units, 

where K is the desired order of the network. So the output of the j-th summing unit, jh  in 

the hidden layer, is given by: ∑
=

+==
�

k

ojkkj

T

jj wxwxwh
1

,j=1,2,I, K while the output y~   

of the network is given by ∏
Κ

=

=
1

)(~

j

jhy σ  (in our case we selected for σ the sigmoid 

function 
xce

x −+
=
1

1
)(σ [21]). Note that by using products in the output layer we directly 

incorporate the capabilities of higher order networks with a smaller number of weights 
and processing units. For example, a k-th degree HONN with d inputs needs 

∑
= +

−+k

i di

id

0 )!1!*(

)!1(
 weights if all products of up to k components are to be incorporated while 

a similar Psi Sigma network needs only (d+1)*k weights. Also note that the sigmoid 
function is neuron adaptive.  As the network is trained not only the weights but also c in 
[21] is adjusted. This strategy seems to provide better fitting properties and increases 

Output Layer (sigmoid) 
 

 

Fixed weights equal to 1 
 

 

Hidden Layer (linear) 
 

Adjustable weights 
 

 

Input Layer 
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the approximation capability of a neural network by introducing an extra variable in the 
estimation, compared to classical architectures with sigmoidal neurons (Vecci et al. 
(1998)). 
 
4.6.2 Empirical results of the Psi Sigma model 

The price for the flexibility and speed of Psi Sigma networks is that they are not 
universal approximators. We need to choose a suitable order of approximation (or else 
the number of hidden units) by considering the estimated function complexity, amount 
of data and amount of noise present. To overcome this, our code runs simulations for 
orders two to six and we then select the best network based on statistical criteria on the 
test and training sample as for the RNN and HONN models. The characteristics of the 
network that we used are presented on Appendix A3.The trading strategy is that 
followed for the MLP. A summary of our findings is presented in table 9 below. 
 

 NAIVE MLP SCE GM RNN HONN Psi Sigma 

Sharpe Ratio   (excluding costs) 1.83 2.57 2.26 2.09 2.57 2.58 2.55 
Annualised Volatility (excluding costs) 11.6% 11.6% 11.6% 11.6% 11.6% 11.6% 11.6 
Annualised Return (excluding costs) 21.3% 29.7% 26.3% 24.2% 29.8% 29.8% 29.5% 
Maximum Drawdown     (excluding costs) -9.1% -9.1% -7.8% -12.4% -13.8% -9.2% -5.9% 
Positions Taken  (annualised) 109 118 143 162 124 129 133 

    Table 9: Trading performance results 

Once again our results are similar to those obtained by Dunis and Williams (2002, 
2003) with a MLP. The theoretical advantage of Psi Sigma and HONN models to 
capture higher order correlations in the data could make us believe that our results 
would be significantly better than the ones achieved with the MLP and RNN models 
and this was not the case. However, the other major theoretical advantage of Psi 
Sigma networks, namely their speed, was clearly confirmed as we achieved about the 
same results as the HONNs and the RNNs with respectively half and one tenth of their 
training time.  

 
5. TRADING COSTS, FILTERS AND LEVERAGE 

Up to now, we have presented the trading results of all our models without considering 
transaction costs. Since some of our models trade quite often, taking transaction costs 
into account might change the whole picture. 

We therefore introduce transaction costs as well as a filtered trading strategy for each 
model. The aim is to devise a trading strategy filtering only those trades which have a 
high probability of being successful. This should help to reduce the negative effect of 
transaction costs as trades with an expected gain lower than the transaction costs 
should be omitted. 
 

5.1 TRANSACTION COSTS 

The transaction costs for a tradable amount, say USD 5-10 million, are about 3 pips 
(0.0003 EUR/USD) per trade (one way) between market makers. But, as noted by 
Dunis and Williams (2002, 2003), since the EUR/USD time series is a series of bid 
rates, we have to pay the costs only one and not two times per taken position. 

With an average exchange rate of EUR/USD of 0.8971 for the out-of-sample period, a 
cost of 3 pips is equivalent to an average cost of 0.033% per position. 
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5.2 CONFIRMATION FILTER STRATEGIES  
 
5.2.1 Confirmation Filters 

We now introduce trading strategies devised to filter out those trades with expected 
returns below the 0.033% transaction cost. Due to the architecture of our models, the 
trading strategy for the MLP, the RNN, the Psi Sigma and the HONN networks consists 
of one single parameter while the strategy applied to the SCE and GM model uses two 
parameters. This is because of the additional available information which the SCE and 
GM models offer in terms of probability distributions. 

Up to now, the trading strategies applied to the models use a zero threshold: they 
suggest to go long when the forecast is above zero and to go short when the forecast is 
below zero. In the following, we examine how the models behave if we introduce a 
threshold d around zero (see figure 9) and what happens if we vary that threshold. 

The filter rule for the MLP, RNN, HONN and Psi Sigma models is presented in figure 9 
below. 

 

 

 

 

 

 

Fig. 9: Filtered trading strategy with one single parameter 

Since the forecast of the SCE and GM models provide more information than the other  
models, we are able to introduce a second parameter for the trading strategy, which is 
the probability level.  

As a result, and following Lindemann et al. (2004), all those trading signals are filtered 
out which are (a) not indicating a price move (in either direction) bigger than the 
threshold d  (which has to be a multiple of the bin size in the SCE case) and in addition 
(b) not indicating a probability higher than x% for the forecast price move (which is the 
sum of the histogram bars for the SCE model and the space under the density function 
curve for the GM model). If both conditions are fulfilled at the same time for an up- as 
well as for a downmove, the strategy picks the trading signal with the higher probability. 

 

 

 

 

 

 

 

 

Fig. 10: Filtered trading strategy for the SCE model 

short long 

d d > (+d) < (-d) 
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short long 
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Fig. 11: Filtered trading strategy for the GM model 
 
The thresholds chosen by Lindemann et al. (2004) for the GM, the Softmax and the 
MLP networks are given in table 10 below. 

Model Threshold (d) 

MLP  = 0.00 

SCE  = 0.25       (move size > |0.3%|) 

GM  = 0.00      (probability > 0.0%) 
 

Table 10: Chosen parameters in Lindemann et al. (2004) 
 
5.2.2 Empirical Results of the RNN, HONN and Psi Sigma models 

Following the methodology of Lindemann et al. (2004), we proceed with the selection of 
the optimal thresholds. Taking the test period results, we choose the threshold that 
gives the higher return and Sharpe ratio. Our chosen parameters are presented in the 
table below while the detailed results leading to their choice are documented in 
Appendix A.4. 
 

Model Threshold (d) 

RNN  = 0.00 

HONN  = 0.00 

Psi Sigma  = 0.00       

                           Table 11: Chosen parameters for each trading strategy 

For all networks, we leave the threshold at zero (d=0.0) since the profit on the test 
dataset is largest at this value. The value of d=0.1 looks promising in the case of Psi 
Sigma from a Sharpe ratio point of view but the lower level of profit deterred us from 
choosing it as a threshold. We stick therefore to d=0.0 in all cases. 

A summary of the out-of-sample trading performance of our three models benchmarked 
against the Naïve, the MLP, the SCE and the GM networks using the selected 
thresholds as reported by Dunis and Williams (2002, 2003) and Lindemann et al. 
(2004) is presented in table 12 below. 
 
We can see that the MLP, the RNN, the HONN and the Psi Sigma networks show 
about the same performance based on the annualised return and the Sharpe ratio. 
However, it is worth mentioning that the time used to derive these results with the Psi 
Sigma network is half that needed with HONNs and one tenth that needed with RNNs. 

relevant 

probability 

short long 

d d > (+d) < (-d) 
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 NAIVE MLP SCE GM 
RNN HONN Psi 

Sigma 

Sharpe Ratio   
 (excluding costs) 

 
1.83 2.57 

 
2.67 2.09 

 
2.57 

 
2.58 

 
2.55 

Annualised Volatility
 (excluding costs) 

 
11.6% 11.6% 

 
8.5% 11.6% 

 
11.6% 

 
11.6% 

 
11.6% 

Annualised Return
 (excluding costs) 

 
21.3% 29.7% 

 
22.7% 24.2% 

 
29.8% 

 
29.8% 

 
29.5% 

Maximum Drawdown
 (excluding costs) 

 
-9.1% -9.1% 

 
-5.7% -12.4% 

 
-13.8% 

 
-9.2% 

 
-5.9% 

Positions Taken 
 (annualised) 

 
109 118 

 
120 162 

 
124 

 
129 

 
133 

Transaction costs  
3.6% 3.9% 

 
3.9% 5.3% 

 
4.0% 

 
4.3% 

 
4.4% 

Annualised Return
 (including costs) 

 
17.7% 25.8% 

 
18.8% 18.9% 

 
25.7% 

 
25.6% 

 
25.1% 

 

                             Table 12: Out-of-sample results for the chosen parameters 
 
5.3 Leverage to exploit high Sharpe ratios 

As we have seen, the application of a filtered trading strategy does not improve the 
results in this case, since all 3 models stick to a threshold of zero. The question then is 
whether we can gain higher risk-adjusted profits by using leverage. 

The leverage factors applied are calculated in such a way that each model has a 
common volatility of 10%11 on the test data set. 

Since we now have additional information (which is the leveraged trading results based 
on the test dataset), we can rethink our former choice of thresholds. The thresholds 
that we select in the end are presented in the table below while an insight about our 
selection process can been found in Appendix A.4. 
 

 

 

 
                    Table 13: Parameters for the leveraged trading strategies 
 
For the HONN and the Psi Sigma network we leave the threshold at 0 as the profit is 
maximized for this value on the test dataset. For the RNN we choose d = 0.05 which 
gives the highest profit and Sharpe ratio on the test dataset and filters out only 3 trades 
per year. 

The thresholds reported by Lindemann et al. (2004) who follow the same methodology 
are presented in table 14 below. 

 

                                     

                                

                            Table 14: Parameters for the leveraged trading strategies 
 

                                                 
11

 Since most of the models (using a threshold of zero) have a volatility of about 10%, we have chosen 
this level as our basis. The leverage factors retained are given in table 12 below. 

Model Threshold (d) 

RNN   = 0.05 

HONN   = 0.00      

Psi Sigma   = 0.00       

Model Threshold (d) 

MLP  = 0.05 

SCE  = 0.25      (move size >|0.3%|) 

GM  = 0.35      (probability = 0.25) 



 21 

The transaction costs are calculated by taking 0.033% per position into account, while 
the costs of leverage (interest payments for the additional capital) are calculated with 
4% p.a. (that is 0.016% per trading day12). Our final results are presented in table 15 
below. 

 

 
 

NAIVE 
 

MLP 
 

SCE 
 

GM 
 

RNN 
 

HONN 
Psi 

Sigma 

Sharpe Ratio            
(excluding costs)13 

 
1.83 

 
2.30 

 
2.67 

 
3.80 

 
2.57 

 
2.58 

 
2.55 

Annualised Volatility     
(excluding costs) 

 
11.9% 

 
13.4% 

 
12.5% 

 
12.2% 

 
11.9% 

 
12.3% 

 
11.9% 

Annualised Return       
(excluding costs) 

 
21.8% 

 
30.8% 

 
33.2% 

 
46.4% 

 
30.7% 

 
31.7% 

 
30.4% 

Maximum Drawdown    
(excluding costs) 

 
-9.3% 

 
-10.3% 

 
-8.5% 

 
-11.3% 

 
-14.3% 

 
-9.8% 

 
-6.1% 

Leverage Factor 
 

1.03 
 

1.62 
 
  1.46 

 
3.99 

     
     1.03 

 
1.03 

 
1.03 

Positions Taken           
(annualised) 

 
109 

 
89 

 
120 

 
68

14
 

 
     121 

 
129 

 
133 

Transaction and 
leverage costs 

 
3.7% 

 
6.1% 

 
7.1% 

 
12.5% 

 
4.0% 

 
4.3% 

 
4.6% 

Annualised Return     
(including costs) 

 
18.1% 

 
24.7% 

 
26.1% 

 
33.9% 

 
26.7% 

 
27.0% 

 
25.8% 

 
Table 15: Trading performance - final results15 

 
As can be seen from table 15, GM networks are able to take advantage of the 
combination of a confirmation filter and leverage and to deliver higher Sharpe ratios 
and returns. HONNs achieve the highest annualised return net of transaction costs 
among the other five competing models while the Psi Sigma, the RNN and the SCE 
models achieve similar performances. It seems that the ability of HONNs and Psi 
Sigma to capture higher order correlations within our dataset and the ability of the RNN 

                                                 
12

 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 trading days. In 
reality, leverage costs also apply during non-trading days so that we should calculate the interest costs 
using 360 days per year. But for the sake of simplicity, we use the approximation of 252 trading days to 
spread the leverage costs of non-trading days equally over the trading days. This approximation prevents 
us from keeping track of how many non-trading days we hold a position. 
13

 The calculation is done without transaction and leverage costs due to a better comparability to other 
published numbers (which are generally calculated in this way). 
14

 The SCE and GM committees have actually taken more trades than reported in the table above (e.g. 
the GM model has actually taken 134 positions). The reason why Lindemann et al. (2004) report a 
smaller number of trades is that SCE and GM committees are able to invest less than 100% of their total 
capital per position (this is due to the fact that the position size is determined by the average number of 
committee members generating a trading signal). Since our transaction costs of 0.033% per position are 
based on the assumption of 100% of invested total capital, we have to recalculate the 134 positions of 
partially invested total capital into the equivalent number of positions with 100% of invested capital 
(which are the above shown 68 positions). 
15

 Not taken into account are the following effects:  
a) The interest that could be earned during times where the capital is not traded [non-trading days] 

and could therefore be invested; 
b) The SCE and GM committees are not forced to use 100% of their capital when trading (leaving 

out a leverage factor <1), since the amount is determined by the average forecast of the 30 
models. If the committees invest therefore only a few per cent of the capital available but apply 
the leverage factor (>1), the additional capital has not to be borrowed (since there is still own 
money available) and therefore leverage costs would not be incurred. Those ‘savings’ are not 
taken into account here. 
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to embody short term memory does not help them to exploit the leverage and the 
confirmation filter and to achieve higher trading performance. Overall, our three models 
perform remarkably well (see table 12), however they do not manage to take 
advantage of more sophisticated trading strategies using confirmation filters and 
leverage contrary to density distribution networks (see table 15). 
 

6. CONCLUDING REMARKS 

In this paper, we apply Recurrent, Higher Order and Psi Sigma neural networks to a 
one-day-ahead forecasting and trading task of the EUR/USD time series. We develop 
these different prediction models over the period October 1994 - May 2000 and validate 
their out-of-sample trading efficiency over the following period from May 2000 through 
July 2001. Our results are benchmarked against those of the Gaussian Mixture, the 
Softmax Entropy and the Multi-layer Perceptron models presented by Dunis and 
Williams (2002, 2003) and Lindemann et al. (2004) who study the same series over the 
same time period. 

Trading strategies that should filter out potentially unsuccessful trades by using a 
confirmation threshold have not worked out and the Psi Sigma, HONN and RNN 
models fail to exploit leverage for the asset and time period under review. 

Nevertheless, the trading results of the Psi Sigma, HONN and RNN models are similar 
to the best model of Dunis and Williams (2002, 2003), the MLP, when applied without 
confirmation filter and leverage. When more sophisticated trading strategies are 
applied, our results are not improved significantly although HONNs still perform 
remarkably.  

It is also important to note that the Psi Sigma network which presents similar results to 
HONNs and RNNs needs far less training time than all other network architectures, a 
much desirable feature in a real-life quantitative investment and trading environment: in 
the circumstances, our results should go some way towards convincing a growing 
number of quantitative fund managers to experiment beyond the bounds of the 
traditional MLP model. 
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APPENDIX 

A.1 Performance measures 

The performance measures are calculated as follows16:  

 

 Performance 
Measure 

Description 
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Table 16: Trading simulation performance measures 
 

 
 
 
A.2 Results of alternative benchmark models 
 

 NAIVE MACD ARMA LOGIT MLP 

Sharpe Ratio   (excluding costs) 1.83 0.97 1.10 1.81 2.57 
Annualised Volatility (excluding costs) 11.6% 11.7% 11.7% 11.6% 11.6% 
Annualised Return (excluding costs) 21.3% 11.3% 12.9% 21.1% 29.7% 
Maximum Drawdown     (excluding costs) -9.1% -7.8% -10.1% -5.8% -9.1% 
Positions Taken  (annualised) 109 22 112 123 118 

 

Table 17: Out-of-sample trading performance results for traditional models as reported 
by Dunis and Williams (2003, table 1.20, p. 35) 

 

 

 

 

 

 

 

 

 

                                                 
16

 For more details see Dunis and Williams (2002, 2003). 
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A.3 Networks characteristics 

Below are presented the characteristics of the networks for the different architectures 
that presented the best statistical performance on the training and on the test sub-
period and that we used on this paper. 

                

                            

                                                        

                                                             Table 18: Network characteristics 

 

 

 

A.4 Empirical results 

The table below shows the results of the filtered trading strategy applied to the test 
dataset for different values of d. We choose the threshold that gives the highest return. 

 

 

Table 19: Results for alternative threshold values 

Note:  The entries represent the annualized return values while the values in parenthesis represent the 
Sharpe ratio. 

 

 

 

 

 

                                                Threshold Selection of 
the optimal 
threshold 
based on the 
test period 

0 0.05 0.1 
 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 

RNN 28.4% 
(2.93) 

27.8% 
(2.39) 

12.9% 
(2.87) 

4.36% 
(1.81) 

1.43% 
(0.98) 

-0.6% 
(-1.1) 

-0.5% 
(-0.9) 

-0.1% 
(-0.2) 

0.2% 
(1.28) 

0.3% 
(1.29) 

HONN 22.5% 
(2.31) 

17.0% 
(1.94) 

13.9% 
(1.76) 

5.99% 
(0.88) 

-4.8% 
(-0.9) 

-0.1% 
(-0.1) 

-0.2% 
(-0.1) 

0.5% 
(0.2) 

-0.9% 
(-0.4) 

0.6% 
(0.37) 

Psi Sigma 24.9% 
(2.51) 

21.8% 
(2.12) 

14.1% 
(3.74) 

4.3% 
(2.37) 

1.44% 
(1.3) 

0.52% 
(0.92) 

0.51% 
(0.92) 

0.52% 
(0.92) 

0.00% 
(0.00) 

0.00% 
(0.00) 

            Parameters Reccurent HONNs Psi Sigma 

 Learning algorithm Gradient descent Gradient descent Gradient descent 

 Learning rate 0.001 0.001 0.5 

 Momentum 0.003 0.003 0.5 

 Iteration steps 500 500 500 

 Initialisation of weights N(0,1) N(0,1) N(0,1) 

 Input nodes 10 10 10 

 Hidden nodes (1layer) 5 0 5 

 Output node 1 1 1 
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The table below shows the results of the filtered trading strategy applied to the test 
dataset for different values of d after taking leverage into account. We choose the 
threshold that gives the highest return. 

 

 

                    Table 20: Results for alternative threshold values 

Note:  The entries represent the annualized return values while the values in parenthesis represent the 
Sharpe ratio. 

                                                Threshold Selection of the 
optimal 
threshold 
based on the 
test period 

0 0.05 0.1 
 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 

RNN 29.2% 
(2.93) 

29.7% 
(4.3) 

13.2% 
(2.87) 

4.5% 
(1.81) 

1.47% 
(0.98) 

-0.6% 
(-1) 

-0.5% 
(-0.9) 

-0.1% 
(-0.2) 

0.3% 
(1.3) 

0.27% 
(1.3) 

HONN 23.2% 
(2.31) 

17.5% 
(1.94) 

14.3% 
(1.76) 

6.17% 
(0.88) 

-4.9% 
(-0.3) 

-0.1% 
(-0.2) 

-0.2% 
(-0.1) 

0.52% 
(0.2) 

-0.9% 
(-0.4) 

0.7% 
(0.4) 

Psi Sigma 25.1% 
(2.5) 

22.4% 
(2.1) 

14.3% 
(3.74) 

4.45% 
(2.5) 

1.48% 
(1.3) 

0.52% 
(0.93) 

0.52% 
(0.93) 

0.52% 
(0.93) 

0.00% 
(0.00) 

0.00% 
(0.00) 
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