
 1

Higher Order and Recurrent Neural Architectures
for Trading the EUR/USD Exchange Rate

by

Christian L. Dunis*
Jason Laws*

Georgios Sermpinis*

(*Liverpool Business School, CIBEF
Liverpool John Moores University)

February 2008

Abstract

The motivation for this paper is to investigate the use of alternative novel neural
network architectures when applied to the task of forecasting and trading the
Euro/Dollar (EUR/USD) exchange rate. This is done by benchmarking three different
neural network designs representing a Higher Order Neural Network (HONN), a Psi
Sigma Network and a Recurrent Network (RNN) with three successful architectures,
the traditional Mutilayer Perceptron (MLP), the Softmax and the Gaussian Mixture (GM)
models, as reported in Dunis and Williams (2002, 2003) and Lindemann et al. (2004).
More specifically, the trading performance of the six models is investigated in a forecast
and trading simulation competition on the EUR/USD time series over a period of 8
years. These results are also benchmarked with more traditional models such as a
moving average convergence divergence technical model (MACD), an autoregressive
moving average model (ARMA) and a logistic regression model (LOGIT).

As it turns out, the MLP, the HONN, the Psi Sigma and the RNN models do all well and
outperform the more traditional models in a simple trading simulation exercise.
However, when more sophisticated trading strategies using confirmation filters and
leverage are applied, the GM network produces remarkable results and outperforms all
the other network architectures.

Keywords

Confirmation filters, Higher Order Neural Networks, Psi Sigma Networks, Recurrent
Networks, Gaussian Mixture models, leverage, Multi-Layer Perceptron Networks,
Probability Distributions, Quantitative Trading Strategies, Softmax Cross Entropy
Networks.

Christian Dunis is Professor of Banking and Finance at Liverpool Business School and
Director of the Centre for International Banking, Economics and Finance (CIBEF) at Liverpool John
Moores University (E-mail: cdunis@tiscali.co.uk).
Jason Laws is Reader of Finance at Liverpool Business School and a member of CIBEF (E-mail:
J.Laws@ljmu.ac.uk).
Georgios Sermpinis is an Associate Researcher with CIBEF (E-mail: G.Sermpinis@2005.ljmu.ac.uk)
and currently working on his PhD thesis at Liverpool Business School.

CIBEF – Centre for International Banking, Economics and Finance, JMU, John Foster Building, 98
 Mount Pleasant, Liverpool L3 5UZ.

 2

1. INTRODUCTION

Neural networks are an emergent technology with an increasing number of real-world
applications including Finance (Lisboa et al. (2000)). However their numerous
limitations are often creating scepticism about their use among practitioners.

The motivation for this paper is to investigate the use of several new neural networks
techniques that try to overcome these limitations. This is done by benchmarking three
different neural network architectures representing a Higher Order Neural Network
(HONN), a Psi Sgima network and a Recurrent Neural Network (RNN). Their trading
performance on the Euro/Dollar (EUR/USD) time series is investigated and is
compared with the three best models reported by Dunis and Williams (2002, 2003) and
Lindemann et al. (2004), the Multi-layer Perceptron (MLP), the Softmax and the
Gaussian Mixture (GM) model. So in essence, this paper can be seen as a continuation
of the research mentioned just above or as a forecasting competition among some of
the most up-to-date forecasting techniques over a demanding series such as the
EUR/USD exchange rate.

The results of our three networks can also be compared to the more traditional
approaches also studied by Dunis and Williams (2002, 2003), namely a moving
average convergence divergence technical model (MACD), an autoregressive moving
average model (ARMA) and a logistic regression model (LOGIT).

As it turns out, the MLP, the HONN and the Psi Sigma demonstrate a similar good
perfomance and outperform the more traditional models in a simple trading simulation
exercise, while the GM model outperforms all models when more sophisticated trading
strategies using confirmation filters and leverage are applied. This might be due to the
ability of the GM model to use probability distributions to identify successfully trades
with a high Sharpe ratio.

The rest of the paper is organised as follows. In section 2, we present the literature
relevant to the Recurent Networks, the Higher Order Neural Networks and their variant
Psi Sigma. Section 3 describes the dataset used for this research, actually the same as
in Dunis and Williams (2002, 2003) and Lindemann et al. (2004). An overview of the
different neural network models is given in section 4. Section 5 gives the empirical
results of all the models considered and investigates the possibility of improving their
performance with the application of more sophisticated trading strategies. Section 6
provides some concluding remarks.

2. LITERATURE REVIEW

The motivation for this paper is to apply some of the most promising new neural
networks architectures which have been developed recently with the purpose to
overcome the numerous limitations of the more classic neural architectures and to
assess whether they can achieve a higher performance in a trading simulation.

RNNs have an activation feedback which embodies short-term memory allowing them
to learn extremely complex temporal patterns. Their superiority against feedfoward
networks when performing nonlinear time series prediction is well documented in
Connor et al. (1993) and Adam et al. (1994). In financial applications, Kamijo et al.
(1990) applied them successfully to the recognition of stock patterns of the Tokyo stock
exchange while Tenti (1996) achieved remarkable results using RNNs to forecast the
exchange rate of the Deutsche Mark. Tino et al. (2001) use them to trade successfully
the volatility of the DAX and the FTSE 100 using straddles while Dunis and Huang

 3

(2002), using continuous implied volatility data from the currency options market, obtain
remarkable results for their GBP/USD and USD/JPY exchange rate volatility trading
simulation.

HONNs were first introduced by introduced by Giles and Maxwell (1987) as a fast
learning network with increased learning capabilities. Although their function
approximation superiority over the more traditional architectures is well documented in
the literature (see among others Redding et al. (1993), Kosmatopoulos et al. (1995)
and Psaltis et al. (1998)), their use in finance so far has been limited. This has changed
when scientists started to investigate not only the benefits of Neural Networks (NNs)
against the more traditional statistical techniques but also the differences between the
different NNs model architectures. Practical applications have now verified the
theoretical advantages of HONNs by demonstrating their superior forecasting ability
and put them in the front line of research in financial forecasting. For example Dunis et
al. (2006b) use them to forecast successfully the gasoline crack spread while Fultcher
et al. (2006) apply HONNs to forecast the AUD/USD exchange rate, achieving a 90%
accuracy. However, Dunis et al. (2006a) show that, in the case of the futures spreads
and for the period under review, the MLPs performed better compared with HONNs and
recurrent neural networks.

Psi Sigma networks were first introduced as an architecture capable of capturing higher
order correlations within the data while avoiding some of the HONNs limitations such as
the combinatorial increase in weight numbers. Shin et al. (1991) and Ghosh et al.
(1992) demonstrate these benefits and present empirical evidence on their forecasting
ability. For financial applications, Ghazali et al. (2006) compare them with HONNs on
the IBM common stock closing price and the US 10-year government bond series and
prove their forecasting superiority while, in a similar paper, Hussain et al. (2006)
present satisfactory results of the Psi Sigma forecasting power on the EUR/USD, the
EUR/GBP and the EUR/JPY exchange rates.

3. THE EUR/USD EXCHANGE RATE AND RELATED FINANCIAL DATA

Our benchmark test is to trade the EUR/USD exchange rate based on daily forecasts of
its London closing prices1. All time series are daily closing data obtained from a
historical database provided by Datastream and used in Dunis and Williams (2002,
2003) and Lindemann et al. (2004).

Name of period Trading days Beginning End

Total dataset 1749 17 October 1994 03 July 2001

Training dataset 1459 17 October 1994 18 May 2000

Out-of-sample dataset [Validation set] 290 19 May 2000 03 July 2001

Table 1: The EUR/USD dataset

1
 EUR/USD is quoted as the number of USD per Euro: for example, a value of 1.2657 is USD1.2657 per

Euro. The EUR/USD exchange rate only exists from 4 January 1999: it was retropolated from 17 October
1994 to 31 December 1998 and a synthetic EUR/USD series was created for that period using the fixed
EUR/DEM conversion rate agreed in 1998, combined with the USD/DEM daily market rate.

 4

Fig. 1: EUR/USD London daily closing prices (total dataset)

Dunis and Williams (2002, 2003) carried out a variable selection and identified the
explanatory variables listed in table 2.

Number Variable Mnemonics Lag

1 US $ TO UK £ (WMR) – EXCHANGE RATE USDOLLR 12

2 JAPANESE YEN TO US $ (WMR) – EXCHANGE RATE JAPAYE$ 1

3 JAPANESE YEN TO US $ (WMR) – EXCHANGE RATE JAPAYE$ 10

4 BRENT CRUDE – Current Month, fob U$/BBL OILBREN 1

5 GOLD BULLION $/TROY OUNCE GOLDBLN 19

6 FRANCE BENCHMARK BOND 10 YR (DS) – RED. YIELD FRBRYLD 2

7 ITALY BENCHMARK BOND 10 YR (DS) – RED. YIELD ITBRYLD 6

8 JAPAN BENCHMARK BOND – RYLD.10 YR (DS) – RED.
YIELD

JPBRYLD 9

9 NIKKEI 225 STOCK AVERAGE – PRICE INDEX JAPDOWA 1

10 NIKKEI 225 STOCK AVERAGE – PRICE INDEX JAPDOWA 15

Table 2: Explanatory variables and Datastream mnemonics

The observed EUR/USD time series is non-normal (Jarque-Bera statistics confirmed
this at the 99% confidence interval) containing slight skewness and low kurtosis. It is
also nonstationary and Dunis and Williams (2002, 2003) decided to transform the
EUR/USD as well as all the explanatory series into stationary series of rates of return2.

Given the price level P1, P2,I, Pt, the rate of return at time t is formed by:

1

1

−







=

−t

t

t
P

P
R [1]

The summary statistics of the EUR/USD returns series reveal a slight skewness and
high kurtosis. The Jarque-Bera statistic confirms again that the EUR/USD series is
non-normal at the 99% confidence interval.

2
 Confirmation of its stationary property is obtained at the 1% significance level by both the Augmented

Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics.

 5

Fig. 2: EUR/USD returns summary statistics (total dataset)

A further transformation includes the creation of interest rates yield curve series,
generated by:

 rates interest month 3- yieldsbond benchmark year10=yc [2]

Following Dunis and Williams (2002, 2003) and Lindemann et al. (2004), we divide our
dataset as follows:

Name of period Trading days Beginning End

Total data set 1749 17 October 1994 03 July 2001
Training data set 1169 17 October 1994 08 April 1999

Test data set 290 09 April 1999 18 May 2000

Out-of-sample data set [Validation set] 290 19 May 2000 03 July 2001

Table 3: The neural networks datasets

4. THE NEURAL NETWORKS FORECASTING MODELS

Neural networks exist in several forms in the literature. The most popular architecture is
the Multi-layer Perceptron (MLP).

A standard neural network has at least three layers. The first layer is called the input
layer (the number of its nodes corresponds to the number of explanatory variables).
The last layer is called the output layer (the number of its nodes corresponds to the
number of response variables). An intermediary layer of nodes, the hidden layer,
separates the input from the output layer. Its number of nodes defines the amount of
complexity the model is capable of fitting. In addition, the input and hidden layer contain
an extra node, called the bias node. This node has a fixed value of one and has the
same function as the intercept in traditional regression models. Normally, each node of
one layer has connections to all the other nodes of the next layer.

The network processes information as follows: the input nodes contain the value of the
explanatory variables. Since each node connection represents a weight factor, the
information reaches a single hidden layer node as the weighted sum of its inputs. Each
node of the hidden layer passes the information through a nonlinear activation function
and passes it on to the output layer if the calculated value is above a threshold.

 6

The training of the network (which is the adjustment of its weights in the way that the
network maps the input value of the training data to the corresponding output value)
starts with randomly chosen weights and proceeds by applying a learning algorithm
called backpropagation of errors3 (Shapiro (2000)). The learning algorithm simply tries
to find those weights which optimise an error function (normally the sum of all squared
differences between target and actual values). Since networks with sufficient hidden
nodes are able to learn the training data (as well as their outliers and their noise) by
heart, it is crucial to stop the training procedure at the right time to prevent overfitting
(this is called ‘early stopping’). This can be achieved by dividing the dataset into 3
subsets respectively called the training and test sets used for simulating the data
currently available to fit and tune the model and the validation set used for simulating
future values. The network parameters are then estimated by fitting the training data
using the above mentioned iterative procedure (backpropagation of errors). The
iteration length is optimised by maximising the forecasting accuracy for the test
dataset. Finally, the predictive value of the model is evaluated applying it to the
validation dataset (out-of-sample dataset).

4.1 THE MULTI-LAYER PERCEPTRON MODEL
4.1.1 The MLP network architecture

The network architecture of a ‘standard’ MLP looks as presented in figure 34:

Fig. 3: A single output, fully connected MLP model

where:
][n

tx ()1,,2,1 += kn L are the model inputs (including the input bias node) at time t
][m

th
 ()1,...,2,1 += jm are the hidden nodes outputs (including the hidden bias node)

ty~
 is the MLP model output

jku and jw are the network weights

 is the transfer sigmoid function: ()
xe

xS −+
=
1

1
, [3]

 is a linear function: () ∑=
i

ixxF [4]

3
 Backpropagation networks are the most common multi-layer networks and are the most commonly

used type in financial time series forecasting (Kaastra and Boyd (1996)).
4
 The bias nodes are not shown here for the sake of simplicity.

MLP

][k

tx][j

th

jku

jw

ty~

 7

The error function to be minimised is:

() ()()∑
=

−=
T

t

jjkttjjk wuyy
T

wuE
1

2
,~1

, , with ty being the target value [5]

4.1.2 Empirical results of the MLP model

The results for the MLP achieved by Dunis and Williams (2002, 2003) are summarized
in table 4. The benchmark model ‘naïve strategy’ follows the rule that the forecast
return for tomorrow is today’s value. The trading strategy applied is simple: go or stay
long when the forecast return is above zero and go or stay short when the forecast
return is below zero. Appendix A.1 documents the performance measures used while
Appendix A.2 gives the results of the more traditional techniques, namely a moving
average convergence divergence technical model (MACD), an autoregressive moving
average model (ARMA) and a logistic regression model (LOGIT). The MLP outperforms
all benchmarks.

 NAIVE MLP

Sharpe Ratio (excluding costs) 1.83 2.57
Annualised Volatility (excluding costs) 11.6% 11.6%
Annualised Return (excluding costs) 21.3% 29.7%
Maximum Drawdown (excluding costs) -9.1% -9.1%
Taken Positions (annualised

5
) 109 118

Table 4: Trading performance of the benchmark models

4.2 THE SOFTMAX CROSS ENTROPY MODEL

The Softmax cross entropy network (henceforth SCE) is a neural network with a cross
entropy cost function and a Softmax activation function at the output nodes. The main
idea of this model is to approximate the probability density function for the target value
through a histogram representing the probability of the target value being within a
range of predefined size. The output value of a SCE model is therefore a vector with as
many elements as there are output nodes, 6 in our case (each node representing one
bar of the histogram). The vector elements sum up to unity and represent the density
function for the target value while each vector element stands for the probability that
the target value lies in the value range the vector element represents.

In order to apply the cross entropy cost function, the target values of the training data
set have to be preprocessed so that one gets a target vector (rather than a single target
value as with the MLP), where the target vector has as many elements as the SCE
model has output nodes. The target vector consists of zeros and a single one. The
value ‘one’ indicates which output node of the network covers the value range where
the original target value lies in. Since the network forecasts should be used as a
density function, one has to take care that the output vector sums up to unity. This is
done by superimposing the Softmax function to the actual network outputs. The
Softmax function keeps the internal relationship between the output values but
transforms them in a way that their values add up to unity (see equation [8] below).

During the training phase (that is when the network weights are adjusted), the SCE
model learns to map the input vector of the training data set to the target vector of the
same data set. Since each target vector consists of a single ‘one’ representing a non-

5
 The number of taken positions can differ from the number of trading days due to the possibility to hold a

position for longer than 1 day.

 8

overlapping range of possible output values (while the rest are zeros), the SCE model
tries in fact to solve a classification task.

The network might face a situation where the same input vector is related to two
different output values (at different times) so that the network has no other chance than
to map the input vector to more than one output node. In doing so, the network
generates a density function for the target value, while the integrated Softmax function
ensures that the probabilities add up to unity.

4.2.1 The SCE network architecture

The difference in architecture with a MLP lies in the multiple output nodes. While the
MLP has typically only one output node delivering a level estimation, the SCE network
uses several output nodes to represent an approximation of the density function (while
being trained on a classification task).

Fig. 4: A single output, fully connected SCE model

where:

][n

tx ()1,,2,1 += kn L are the model inputs (including the input bias node) at time t
][m

th
 ()1,...,2,1 += jm are the hidden nodes outputs (including the hidden bias node)

[]g

ty~ ()qg ,...,2,1= is the SCE model output before applying the Softmax function
[]g

tz~ ()qg ,...,2,1= is the network value at the output node g

jku and gjw are the network weights

 is the transfer sigmoid function: ()
xe

xS −+
=
1

1
, [6]

 is a linear function: () ∑=
i

ixxF [7]

 is the Softmax function () ()
()∑

==
1 1

~exp

~exp~

g g

g

g
y

y
zgA [8]

 with gy~ being the output of the linear function

The error function to be minimised is:

SCE

][k

tx][j

th

jku gjw

[]q

ty~
[]q

tz~

 9

() ()∑∑
= =











⋅=

T

t

q

g jjktg

tg

tggjjk
wuz

y
ywuE

1 1 ,~log, , with tgy being the target value [9]

4.2.2 Empirical results of the SCE model

Since neural networks start with random initialisation of their weights, each network
(even with the same architecture) is unique and produces slightly different results. In
order to get stable and reliable results from the SCE architecture, Lindemann et al.
(2004) split the initial investment capital equally amongst 30 identical (except the initial
weights) models. The result is therefore the average result of a committee of 30 SCE
networks. The trading strategy consists of using the density function of each of the 30
SCE models to calculate the probability for an upmove. This is simply done by adding
up the last 3 of 6 values of the output vector (since those 3 values cover the whole
range of possible positive values for an upmove) and taking a long position if the
probability for an upmove exceeds 50% (and a short position vice versa). A summary of
the results achieved by the SCE committee is given table 5 below.

 NAIVE MLP SCE

Sharpe Ratio (excluding costs) 1.83 2.57 2.26

Annualised Volatility (excluding costs) 11.6% 11.6% 11.6%

Annualised Return (excluding costs) 21.3% 29.7% 26.3%

Maximum Drawdown (excluding costs) -9.1% -9.1% -7.8%

Positions Taken (annualised) 109 118 143

Table 5: Trading performance results

4.3 THE GAUSSIAN MIXTURE MODEL

The GM network was first introduced by Husmeier (1999) and is applied to our
EUR/USD time series in Lindemann et al. (2004).

The GM model represents the probability density of the data by a linear combination of
a fixed number of normal distributions (where the distribution width is adapted to the
whole set of training data while the locations of the distribution centres depend on the
actual input data xt and the dependent variable yt). This is done in a hidden layer where
each node represents a normal distribution. The actual network output is not the
density function itself but the prediction of a single value6 which is the likelihood of the
actual GM model parameters generating the observed value of the dependent variable
y conditioned on the input data x.

To optimise the cost function (that is, to maximise the sum of likelihood values), the
weights ujk and wij, determining the location of the normal distribution centres (µt), have
to be adapted so that the distance between yt and µt is minimal. Doing so, the centres
of the distribution are close to yt and therefore the likelihood and with it the value of the
cost function are high. See figure 5 below to illustrate that working principle.

4.3.1 The GM network architecture

The GM architecture differs in three main ways from the benchmark feedforward MLP
network. First, as shown by Husmeier (1999), in order to be a universal approximator at
least a second hidden layer is necessary. Second, both the independent and

6
 Nevertheless, the whole density distribution can be constructed by varying the value of y over the

interesting range of the searched density function.

 10

dependent variable (x,y) are used as input data, since the aim is not to predict y but its
density distribution P(yx) respectively the corresponding likelihood value. Third, the
network uses Gaussian distributions in the second hidden layer.

Fig. 5: GM network architecture

The following functions are applied within the GM model:

][n

tx ()1,,2,1 += kn L are the model inputs (including the input bias node) at time t

ty is the argument of the density function conditional on the values

 of the inputs (note that the weights of ty are fixed to 17)

jku and jiw are the network weights

iβ define the inverse widths of the Gaussian distributions

ia are the mixing coefficients, with ∑ =
i

ia 1

i is the number of applied Gaussian mixture distributions

j is the number of applied network weights jw

k is the number of applied network weights jku

7
 If we would not fix the weight to 1 the network could decrease the cost function not only by adjusting

the centres of the Gaussian mixture functions but also by changing the original target value ty .

jku

ia

ijw

iβ1 ty

()tt xyP

GM model

][k

tx

y

P(ylx)

y0 µ0

 11

Gaussian distribution: () ()









 −⋅
−=−

2
exp

2

2

itii
it

y
yG

i

µβ
π
β

µβ ,[10]

 with () ∑ ∑ 







=

j k

kjkiji xuSwx :µ ,
k

k β
σ 1

= , 0>iβ , 0≥ia , ∑ =
i

ia 1

 Sigmoid function: ()
xe

xS −+
=
1

1
, [11]

 Linear function: () ()[]∑ −=
i

ii xyGaxyP
i

µβ [12]

The error function to be minimised is:

() ()()∑
=

−=
T

t

iiijjkttiiijjk awuxyP
T

awuE
1

,,,,ln
1

,,, ββ , with ty being the target value [13]

It is possible to update the parameters of the GM model by gradient descent, as was
done with the MLP network. However this algorithm, due to the architectural complexity
of the GM network, is very time consuming.

4.3.2 Empirical results of the GM model

In order to apply the GM model to the EUR/USD return time series, Lindemann et al.
(2004) optimise its parameters as well as the stopping point8 on the EUR/USD test data
set. The trading strategy consists of using the density functions to calculate the
probability for a positive exchange rate change as well as for a negative change and
taking a trading position where the probability is biggest (namely >50% since both add
up to 100%).

In order to minimize the variance of the network forecasts, they also split the initial
investment capital equally amongst 30 identical (except the initial weights) GM models.
Their result is therefore the average result of a committee of 30 GM networks in order
to minimise the chance to pick an outlier model. This is particularly important when
trading on the tails of the density function. Table 6 includes a summary of the GMs
forecasting performance.

 NAIVE MLP SCE GM

Sharpe Ratio (excluding costs) 1.83 2.57 2.26 2.09

Annualised Volatility (excluding costs) 11.6% 11.6% 11.6% 11.6%

Annualised Return (excluding costs) 21.3% 29.7% 26.3% 24.2%

Maximum Drawdown (excluding costs) -9.1% -9.1% -7.8% -12.4%

Positions Taken (annualised) 109 118 143 162

Table 6: Trading performance results

As can be seen, the performance of the GM committee does not improve the result of
the single benchmark MLP network.

However the GM model does provide more information than is actually used with this
simple trading strategy as we have access to the complete distribution of the predicted

8
 Even with regularisation, the additional implementation of early stopping improved results (see

Lindemann et al. (2004)). The weights were fixed at the best result on the test data set during training.

 12

move in the exchange rate. This should be helpful when applying more sophisticated
strategies which are investigated in detail in section 5.

4.4 THE RECURRENT NETWORK

Our next model is the recurrent neural network. While a complete explanation of RNN
models is beyond the scope of this paper, we present below a brief explanation of the
significant differences between RNN and MLP architectures. For an exact specification
of the recurrent network, see Elman (1990).

A simple recurrent network has activation feedback, which embodies short-term
memory. The advantages of using recurrent networks over feedforward networks, for
modelling non-linear time series, has been well documented in the past. However as
described in Tenti (1996) “the main disadvantage of RNNs is that they require
substantially more connections, and more memory in simulation, than standard
backpropagation networks”, thus resulting in a substantial increase in computational
time. However having said this RNNs can yield better results in comparison to simple
MLPs due to the additional memory inputs.

4.4.1 The RNN architecture

A simple illustration of the architecture of an Elman RNN is presented below.

Fig. 6: Elman Recurrent neural network architecture with two nodes on the hidden

layer.

where:

][n

tx ()1,,2,1 += kn L ,
]2[]1[

, tt uu are the model inputs (including the input bias node)

at time t

ty~
 is the recurrent model output
][f

td)2,1(=f and
][n

tw ()1,,2,1 += kn L are the network weights

ty~

]2[

jU

]1[

jU

]1[

jx

]2[

jx

]3[

jx

]1[

1−jU

]2[

1−jU

 13

][f

tU)2,1(=f is the output of the hidden nodes at time t

 is the transfer sigmoid function: ()
xe

xS −+
=
1

1
, [14]

 is the linear output function: () ∑=
i

ixxF [15]

The error function to be minimised is:

 () ()()∑
=

−=
T

t

tttttt wdyy
T

wdE
1

2
,~1

, [16]

In short, the RNN architecture can provide more accurate outputs because the inputs

are (potentially) taken from all previous values (see inputs
]1[

1−jU and
]2[

1−jU in the

figure above).

4.4.2 Empirical results of the RNN model

The RNNs are trained with gradient descent as for the MLPs. However, the increase in
the number of weights, as mentioned before, makes the training process extremely
slow: to derive our results, we needed about five times the time needed with the MLPs.

Mostly for this reason, we decided to use a single network and not the average of a
committee, selecting in the end the network that demonstrated the best statistical
performance criteria in the test and training period9. Moreover, with this methodology
our results are directly compatible with those of Dunis and Williams (2002, 2003) and
the forecasting competition seems fairer. The characteristics of the network that we
used are on Appendix A3.

The trading strategy is that followed for the MLP. As shown in table 7 below, the RNN
has an overall performance similar to that of the MLP model.

 NAIVE MLP SCE GM RNN

Sharpe Ratio (excluding costs) 1.83 2.57 2.26 2.09 2.57
Annualised Volatility (excluding costs) 11.6% 11.6% 11.6% 11.6% 11.6%
Annualised Return (excluding costs) 21.3% 29.7% 26.3% 24.2% 29.8%
Maximum Drawdown (excluding costs) -9.1% -9.1% -7.8% -12.4% -13.8%
Positions Taken (annualised) 109 118 143 162 124

Table 7: Trading performance results

4.5 THE HIGHER ORDER NEURAL NETWORK

Higher Order Neural Networks (HONNs) were first introduced by Giles and Maxwell
(1987) and were called “Tensor Networks”. Although the extent of their use in finance
has so far been limited, Knowles et al. (2005) show that, with shorter computational
times and limited input variables, “the best HONN models show a profit increase over
the MLP of around 8%” on the EUR/USD time series (p. 7). For Zhang et al. (2002), a
significant advantage of HONNs is that “HONN models are able to provide some
rationale for the simulations they produce and thus can be regarded as “open box”

9
 We choose the network with firstly the lowest Mean Absolute Error and secondly the lowest Root Mean

Squared Error in the training and test period. With these criteria we got the best performance in the test
and the training period.

 14

rather then “black box”. Moreover, HONNs are able to simulate higher frequency,
higher order non-linear data, and consequently provide superior simulations compared
to those produced by ANNs (Artificial Neural Networks)” (p. 188).

4.5.1 The HONN Architecture

While they have already experienced some success in the field of pattern recognition
and associative recall10, the use of HONNs in finance is not yet widespread. The
architecture of a three input second order HONN is shown below:

Fig. 7: Left, MLP with three inputs and two hidden nodes; right, second order HONN

with three inputs

where:

][n

tx ()1,,2,1 += kn L are the model inputs (including the input bias node) at time t

ty~
 is the HONNs model output

jku are the network weights

 are the model inputs.

 is the transfer sigmoid function: ()
xe

xS −+
=
1

1
, [17]

 is a linear function: () ∑=
i

ixxF [18]

The error function to be minimised is:

() ()()∑
=

−=
T

t

jkttjjk uyy
T

wuE
1

2
,~1

, , with ty being the target value [19]

10

 Associative recall is the act of associating two seemingly unrelated entities, such as smell and colour.
For more information see Karayiannis et al. (1994).

 15

HONNs use joint activation functions; this technique reduces the need to establish the
relationships between inputs when training. Furthermore this reduces the number of
free weights and means that HONNS are faster to train than even MLPs. However
because the number of inputs can be very large for higher order architectures, orders
of 4 and over are rarely used.

Another advantage of the reduction of free weights means that the problems of
overfitting and local optima affecting the results of neural networks can be largely
avoided. For a complete description of HONNs see Knowles et al. (2005).

4.5.2 Empirical results of the HONN model

We follow the same methodology as we did with RNNs for the selection of our optimal
HONN and again we use a single network and not the average of a committee. The
trading strategy is that followed for the MLP. A summary of our findings is presented in
table 8 below while the characteristics of the network that we used are on Appendix A3.

 NAIVE MLP SCE GM RNN HONN

Sharpe Ratio (excluding costs) 1.83 2.57 2.26 2.09 2.57 2.58
Annualised Volatility (excluding costs) 11.6% 11.6% 11.6% 11.6% 11.6% 11.6%
Annualised Return (excluding costs) 21.3% 29.7% 26.3% 24.2% 29.8% 29.8%
Maximum Drawdown (excluding costs) -9.1% -9.1% -7.8% -12.4% -13.8% -9.2%
Positions Taken (annualised) 109 118 143 162 124 129

 Table 8: Trading performance results

We can see that our results slightly improve with the introduction of HONNs and that in
general terms HONNs, the Recurrent and the MLP seems to have the same forecasting
strength on this specific dataset.

4.6 THE PSI SIGMA NETWORK

Psi Sigma networks can be considered as a class of feedfoward fully connected
HONNs. First introduced by Ghosh and Shin (1991), the Psi Sigma network utilizes
product cells as the output units to indirectly incorporate the capabilities of higher-order
networks while using a fewer number of weights and processing units. Their creation
was motivated by the need to create a network combining the fast learning property of
single layer networks with the powerful mapping capability of HONNs while avoiding the
combinatorial increase in the required number of weights. While the order of the more
traditional HONN architectures is expressed by the complexity of the inputs, in the
context of Psi Sigma, it is represented by the number of hidden nodes.

4.6.1 The Psi Sigma architecture

In a Psi Sigma network the weights from the hidden to the output layer are fixed to 1
and only the weights from the input to the hidden layer are adjusted, something that
greatly reduces the training time. Moreover, the activation function of the nodes in the
hidden layer is the summing function while the activation function of the output layer is
a sigmoid. The figure below shows a Psi Sigma with one output layer.

 16

1x 2x jx �x

Fig. 8: A Psi Sigma network with one output layer

where:

tx ()1,,2,1 += kn L are the model inputs (including the input bias node)

ty~ is the Psi Sigma output

jw is the adjustable weights

() ∑=
i

ixxh is the hidden layer activation function [20]

xce
x −+
=
1

1
)(σ is the output unit adaptive sigmoid activation function [21]

 with c the adjustable term

The error function to be minimised is:

() ()()∑
=

−=
T

t

kttj cwyy
T

wcE
1

2
,~1

, with ty being the target value [22]

For example let us consider a Psi Sigma network which is fed with a N+1 dimensional

input vector T

�xxx),...,,1(1= .These inputs are weighted by K weight

factors T

�jjjj wwww),...,,(10= , Kj ,..2,1= and summed by a layer of K summing units,

where K is the desired order of the network. So the output of the j-th summing unit, jh in

the hidden layer, is given by: ∑
=

+==
�

k

ojkkj

T

jj wxwxwh
1

,j=1,2,I, K while the output y~

of the network is given by ∏
Κ

=

=
1

)(~

j

jhy σ (in our case we selected for σ the sigmoid

function
xce

x −+
=
1

1
)(σ [21]). Note that by using products in the output layer we directly

incorporate the capabilities of higher order networks with a smaller number of weights
and processing units. For example, a k-th degree HONN with d inputs needs

∑
= +

−+k

i di

id

0)!1!*(

)!1(
 weights if all products of up to k components are to be incorporated while

a similar Psi Sigma network needs only (d+1)*k weights. Also note that the sigmoid
function is neuron adaptive. As the network is trained not only the weights but also c in
[21] is adjusted. This strategy seems to provide better fitting properties and increases

Output Layer (sigmoid)

Fixed weights equal to 1

Hidden Layer (linear)

Adjustable weights

Input Layer

 17

the approximation capability of a neural network by introducing an extra variable in the
estimation, compared to classical architectures with sigmoidal neurons (Vecci et al.
(1998)).

4.6.2 Empirical results of the Psi Sigma model

The price for the flexibility and speed of Psi Sigma networks is that they are not
universal approximators. We need to choose a suitable order of approximation (or else
the number of hidden units) by considering the estimated function complexity, amount
of data and amount of noise present. To overcome this, our code runs simulations for
orders two to six and we then select the best network based on statistical criteria on the
test and training sample as for the RNN and HONN models. The characteristics of the
network that we used are presented on Appendix A3.The trading strategy is that
followed for the MLP. A summary of our findings is presented in table 9 below.

 NAIVE MLP SCE GM RNN HONN Psi Sigma

Sharpe Ratio (excluding costs) 1.83 2.57 2.26 2.09 2.57 2.58 2.55
Annualised Volatility (excluding costs) 11.6% 11.6% 11.6% 11.6% 11.6% 11.6% 11.6
Annualised Return (excluding costs) 21.3% 29.7% 26.3% 24.2% 29.8% 29.8% 29.5%
Maximum Drawdown (excluding costs) -9.1% -9.1% -7.8% -12.4% -13.8% -9.2% -5.9%
Positions Taken (annualised) 109 118 143 162 124 129 133

 Table 9: Trading performance results

Once again our results are similar to those obtained by Dunis and Williams (2002,
2003) with a MLP. The theoretical advantage of Psi Sigma and HONN models to
capture higher order correlations in the data could make us believe that our results
would be significantly better than the ones achieved with the MLP and RNN models
and this was not the case. However, the other major theoretical advantage of Psi
Sigma networks, namely their speed, was clearly confirmed as we achieved about the
same results as the HONNs and the RNNs with respectively half and one tenth of their
training time.

5. TRADING COSTS, FILTERS AND LEVERAGE

Up to now, we have presented the trading results of all our models without considering
transaction costs. Since some of our models trade quite often, taking transaction costs
into account might change the whole picture.

We therefore introduce transaction costs as well as a filtered trading strategy for each
model. The aim is to devise a trading strategy filtering only those trades which have a
high probability of being successful. This should help to reduce the negative effect of
transaction costs as trades with an expected gain lower than the transaction costs
should be omitted.

5.1 TRANSACTION COSTS

The transaction costs for a tradable amount, say USD 5-10 million, are about 3 pips
(0.0003 EUR/USD) per trade (one way) between market makers. But, as noted by
Dunis and Williams (2002, 2003), since the EUR/USD time series is a series of bid
rates, we have to pay the costs only one and not two times per taken position.

With an average exchange rate of EUR/USD of 0.8971 for the out-of-sample period, a
cost of 3 pips is equivalent to an average cost of 0.033% per position.

 18

5.2 CONFIRMATION FILTER STRATEGIES

5.2.1 Confirmation Filters

We now introduce trading strategies devised to filter out those trades with expected
returns below the 0.033% transaction cost. Due to the architecture of our models, the
trading strategy for the MLP, the RNN, the Psi Sigma and the HONN networks consists
of one single parameter while the strategy applied to the SCE and GM model uses two
parameters. This is because of the additional available information which the SCE and
GM models offer in terms of probability distributions.

Up to now, the trading strategies applied to the models use a zero threshold: they
suggest to go long when the forecast is above zero and to go short when the forecast is
below zero. In the following, we examine how the models behave if we introduce a
threshold d around zero (see figure 9) and what happens if we vary that threshold.

The filter rule for the MLP, RNN, HONN and Psi Sigma models is presented in figure 9
below.

Fig. 9: Filtered trading strategy with one single parameter

Since the forecast of the SCE and GM models provide more information than the other
models, we are able to introduce a second parameter for the trading strategy, which is
the probability level.

As a result, and following Lindemann et al. (2004), all those trading signals are filtered
out which are (a) not indicating a price move (in either direction) bigger than the
threshold d (which has to be a multiple of the bin size in the SCE case) and in addition
(b) not indicating a probability higher than x% for the forecast price move (which is the
sum of the histogram bars for the SCE model and the space under the density function
curve for the GM model). If both conditions are fulfilled at the same time for an up- as
well as for a downmove, the strategy picks the trading signal with the higher probability.

Fig. 10: Filtered trading strategy for the SCE model

short long

d d > (+d) < (-d)

relevant

probabilities

short long

d d > (+d) < (-d)

 19

Fig. 11: Filtered trading strategy for the GM model

The thresholds chosen by Lindemann et al. (2004) for the GM, the Softmax and the
MLP networks are given in table 10 below.

Model Threshold (d)

MLP = 0.00

SCE = 0.25 (move size > |0.3%|)

GM = 0.00 (probability > 0.0%)

Table 10: Chosen parameters in Lindemann et al. (2004)

5.2.2 Empirical Results of the RNN, HONN and Psi Sigma models

Following the methodology of Lindemann et al. (2004), we proceed with the selection of
the optimal thresholds. Taking the test period results, we choose the threshold that
gives the higher return and Sharpe ratio. Our chosen parameters are presented in the
table below while the detailed results leading to their choice are documented in
Appendix A.4.

Model Threshold (d)

RNN = 0.00

HONN = 0.00

Psi Sigma = 0.00

 Table 11: Chosen parameters for each trading strategy

For all networks, we leave the threshold at zero (d=0.0) since the profit on the test
dataset is largest at this value. The value of d=0.1 looks promising in the case of Psi
Sigma from a Sharpe ratio point of view but the lower level of profit deterred us from
choosing it as a threshold. We stick therefore to d=0.0 in all cases.

A summary of the out-of-sample trading performance of our three models benchmarked
against the Naïve, the MLP, the SCE and the GM networks using the selected
thresholds as reported by Dunis and Williams (2002, 2003) and Lindemann et al.
(2004) is presented in table 12 below.

We can see that the MLP, the RNN, the HONN and the Psi Sigma networks show
about the same performance based on the annualised return and the Sharpe ratio.
However, it is worth mentioning that the time used to derive these results with the Psi
Sigma network is half that needed with HONNs and one tenth that needed with RNNs.

relevant

probability

short long

d d > (+d) < (-d)

 20

 NAIVE MLP SCE GM
RNN HONN Psi

Sigma

Sharpe Ratio
 (excluding costs)

1.83 2.57

2.67 2.09

2.57

2.58

2.55

Annualised Volatility
 (excluding costs)

11.6% 11.6%

8.5% 11.6%

11.6%

11.6%

11.6%

Annualised Return
 (excluding costs)

21.3% 29.7%

22.7% 24.2%

29.8%

29.8%

29.5%

Maximum Drawdown
 (excluding costs)

-9.1% -9.1%

-5.7% -12.4%

-13.8%

-9.2%

-5.9%

Positions Taken
 (annualised)

109 118

120 162

124

129

133

Transaction costs
3.6% 3.9%

3.9% 5.3%

4.0%

4.3%

4.4%

Annualised Return
 (including costs)

17.7% 25.8%

18.8% 18.9%

25.7%

25.6%

25.1%

 Table 12: Out-of-sample results for the chosen parameters

5.3 Leverage to exploit high Sharpe ratios

As we have seen, the application of a filtered trading strategy does not improve the
results in this case, since all 3 models stick to a threshold of zero. The question then is
whether we can gain higher risk-adjusted profits by using leverage.

The leverage factors applied are calculated in such a way that each model has a
common volatility of 10%11 on the test data set.

Since we now have additional information (which is the leveraged trading results based
on the test dataset), we can rethink our former choice of thresholds. The thresholds
that we select in the end are presented in the table below while an insight about our
selection process can been found in Appendix A.4.

 Table 13: Parameters for the leveraged trading strategies

For the HONN and the Psi Sigma network we leave the threshold at 0 as the profit is
maximized for this value on the test dataset. For the RNN we choose d = 0.05 which
gives the highest profit and Sharpe ratio on the test dataset and filters out only 3 trades
per year.

The thresholds reported by Lindemann et al. (2004) who follow the same methodology
are presented in table 14 below.

 Table 14: Parameters for the leveraged trading strategies

11

 Since most of the models (using a threshold of zero) have a volatility of about 10%, we have chosen
this level as our basis. The leverage factors retained are given in table 12 below.

Model Threshold (d)

RNN = 0.05

HONN = 0.00

Psi Sigma = 0.00

Model Threshold (d)

MLP = 0.05

SCE = 0.25 (move size >|0.3%|)

GM = 0.35 (probability = 0.25)

 21

The transaction costs are calculated by taking 0.033% per position into account, while
the costs of leverage (interest payments for the additional capital) are calculated with
4% p.a. (that is 0.016% per trading day12). Our final results are presented in table 15
below.

NAIVE

MLP

SCE

GM

RNN

HONN
Psi

Sigma

Sharpe Ratio
(excluding costs)13

1.83

2.30

2.67

3.80

2.57

2.58

2.55

Annualised Volatility
(excluding costs)

11.9%

13.4%

12.5%

12.2%

11.9%

12.3%

11.9%

Annualised Return
(excluding costs)

21.8%

30.8%

33.2%

46.4%

30.7%

31.7%

30.4%

Maximum Drawdown
(excluding costs)

-9.3%

-10.3%

-8.5%

-11.3%

-14.3%

-9.8%

-6.1%

Leverage Factor

1.03

1.62

 1.46

3.99

 1.03

1.03

1.03

Positions Taken
(annualised)

109

89

120

68

14

 121

129

133

Transaction and
leverage costs

3.7%

6.1%

7.1%

12.5%

4.0%

4.3%

4.6%

Annualised Return
(including costs)

18.1%

24.7%

26.1%

33.9%

26.7%

27.0%

25.8%

Table 15: Trading performance - final results15

As can be seen from table 15, GM networks are able to take advantage of the
combination of a confirmation filter and leverage and to deliver higher Sharpe ratios
and returns. HONNs achieve the highest annualised return net of transaction costs
among the other five competing models while the Psi Sigma, the RNN and the SCE
models achieve similar performances. It seems that the ability of HONNs and Psi
Sigma to capture higher order correlations within our dataset and the ability of the RNN

12

 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 trading days. In
reality, leverage costs also apply during non-trading days so that we should calculate the interest costs
using 360 days per year. But for the sake of simplicity, we use the approximation of 252 trading days to
spread the leverage costs of non-trading days equally over the trading days. This approximation prevents
us from keeping track of how many non-trading days we hold a position.
13

 The calculation is done without transaction and leverage costs due to a better comparability to other
published numbers (which are generally calculated in this way).
14

 The SCE and GM committees have actually taken more trades than reported in the table above (e.g.
the GM model has actually taken 134 positions). The reason why Lindemann et al. (2004) report a
smaller number of trades is that SCE and GM committees are able to invest less than 100% of their total
capital per position (this is due to the fact that the position size is determined by the average number of
committee members generating a trading signal). Since our transaction costs of 0.033% per position are
based on the assumption of 100% of invested total capital, we have to recalculate the 134 positions of
partially invested total capital into the equivalent number of positions with 100% of invested capital
(which are the above shown 68 positions).
15

 Not taken into account are the following effects:
a) The interest that could be earned during times where the capital is not traded [non-trading days]

and could therefore be invested;
b) The SCE and GM committees are not forced to use 100% of their capital when trading (leaving

out a leverage factor <1), since the amount is determined by the average forecast of the 30
models. If the committees invest therefore only a few per cent of the capital available but apply
the leverage factor (>1), the additional capital has not to be borrowed (since there is still own
money available) and therefore leverage costs would not be incurred. Those ‘savings’ are not
taken into account here.

 22

to embody short term memory does not help them to exploit the leverage and the
confirmation filter and to achieve higher trading performance. Overall, our three models
perform remarkably well (see table 12), however they do not manage to take
advantage of more sophisticated trading strategies using confirmation filters and
leverage contrary to density distribution networks (see table 15).

6. CONCLUDING REMARKS

In this paper, we apply Recurrent, Higher Order and Psi Sigma neural networks to a
one-day-ahead forecasting and trading task of the EUR/USD time series. We develop
these different prediction models over the period October 1994 - May 2000 and validate
their out-of-sample trading efficiency over the following period from May 2000 through
July 2001. Our results are benchmarked against those of the Gaussian Mixture, the
Softmax Entropy and the Multi-layer Perceptron models presented by Dunis and
Williams (2002, 2003) and Lindemann et al. (2004) who study the same series over the
same time period.

Trading strategies that should filter out potentially unsuccessful trades by using a
confirmation threshold have not worked out and the Psi Sigma, HONN and RNN
models fail to exploit leverage for the asset and time period under review.

Nevertheless, the trading results of the Psi Sigma, HONN and RNN models are similar
to the best model of Dunis and Williams (2002, 2003), the MLP, when applied without
confirmation filter and leverage. When more sophisticated trading strategies are
applied, our results are not improved significantly although HONNs still perform
remarkably.

It is also important to note that the Psi Sigma network which presents similar results to
HONNs and RNNs needs far less training time than all other network architectures, a
much desirable feature in a real-life quantitative investment and trading environment: in
the circumstances, our results should go some way towards convincing a growing
number of quantitative fund managers to experiment beyond the bounds of the
traditional MLP model.

 23

APPENDIX

A.1 Performance measures

The performance measures are calculated as follows16:

 Performance
Measure

Description

Annualised Return ∑

=

=
�

t

t

A R
�

R
1

1
*252 [14]

 with tR being the daily return

Cumulative Return ∑

=

=
�

t

t

C RR
1

 [15]

Annualised
Volatility

()∑
=

−
−

=
�

t

t

A RR
� 1

2
*
1

1
*252σ [16]

Sharpe Ratio

A

AR
SR

σ
= [17]

Maximum
Drawdown

Maximum negative value of ()∑ tR over the period









= ∑

===

t

ij

j
�tti

RMinMD
,,1;,,1 LL

[18]

Table 16: Trading simulation performance measures

A.2 Results of alternative benchmark models

 NAIVE MACD ARMA LOGIT MLP

Sharpe Ratio (excluding costs) 1.83 0.97 1.10 1.81 2.57
Annualised Volatility (excluding costs) 11.6% 11.7% 11.7% 11.6% 11.6%
Annualised Return (excluding costs) 21.3% 11.3% 12.9% 21.1% 29.7%
Maximum Drawdown (excluding costs) -9.1% -7.8% -10.1% -5.8% -9.1%
Positions Taken (annualised) 109 22 112 123 118

Table 17: Out-of-sample trading performance results for traditional models as reported
by Dunis and Williams (2003, table 1.20, p. 35)

16

 For more details see Dunis and Williams (2002, 2003).

 24

A.3 Networks characteristics

Below are presented the characteristics of the networks for the different architectures
that presented the best statistical performance on the training and on the test sub-
period and that we used on this paper.

 Table 18: Network characteristics

A.4 Empirical results

The table below shows the results of the filtered trading strategy applied to the test
dataset for different values of d. We choose the threshold that gives the highest return.

Table 19: Results for alternative threshold values

Note: The entries represent the annualized return values while the values in parenthesis represent the
Sharpe ratio.

 Threshold Selection of
the optimal
threshold
based on the
test period

0 0.05 0.1

0.15 0.2 0.25 0.3 0.35 0.4 0.45

RNN 28.4%
(2.93)

27.8%
(2.39)

12.9%
(2.87)

4.36%
(1.81)

1.43%
(0.98)

-0.6%
(-1.1)

-0.5%
(-0.9)

-0.1%
(-0.2)

0.2%
(1.28)

0.3%
(1.29)

HONN 22.5%
(2.31)

17.0%
(1.94)

13.9%
(1.76)

5.99%
(0.88)

-4.8%
(-0.9)

-0.1%
(-0.1)

-0.2%
(-0.1)

0.5%
(0.2)

-0.9%
(-0.4)

0.6%
(0.37)

Psi Sigma 24.9%
(2.51)

21.8%
(2.12)

14.1%
(3.74)

4.3%
(2.37)

1.44%
(1.3)

0.52%
(0.92)

0.51%
(0.92)

0.52%
(0.92)

0.00%
(0.00)

0.00%
(0.00)

 Parameters Reccurent HONNs Psi Sigma

 Learning algorithm Gradient descent Gradient descent Gradient descent

 Learning rate 0.001 0.001 0.5

 Momentum 0.003 0.003 0.5

 Iteration steps 500 500 500

 Initialisation of weights N(0,1) N(0,1) N(0,1)

 Input nodes 10 10 10

 Hidden nodes (1layer) 5 0 5

 Output node 1 1 1

 25

The table below shows the results of the filtered trading strategy applied to the test
dataset for different values of d after taking leverage into account. We choose the
threshold that gives the highest return.

 Table 20: Results for alternative threshold values

Note: The entries represent the annualized return values while the values in parenthesis represent the
Sharpe ratio.

 Threshold Selection of the
optimal
threshold
based on the
test period

0 0.05 0.1

0.15 0.2 0.25 0.3 0.35 0.4 0.45

RNN 29.2%
(2.93)

29.7%
(4.3)

13.2%
(2.87)

4.5%
(1.81)

1.47%
(0.98)

-0.6%
(-1)

-0.5%
(-0.9)

-0.1%
(-0.2)

0.3%
(1.3)

0.27%
(1.3)

HONN 23.2%
(2.31)

17.5%
(1.94)

14.3%
(1.76)

6.17%
(0.88)

-4.9%
(-0.3)

-0.1%
(-0.2)

-0.2%
(-0.1)

0.52%
(0.2)

-0.9%
(-0.4)

0.7%
(0.4)

Psi Sigma 25.1%
(2.5)

22.4%
(2.1)

14.3%
(3.74)

4.45%
(2.5)

1.48%
(1.3)

0.52%
(0.93)

0.52%
(0.93)

0.52%
(0.93)

0.00%
(0.00)

0.00%
(0.00)

 26

REFERENCES

Adam, O., Zarader, L. and Milgram, M. (1994), ‘Identification and Prediction of Non-
Linear Models with Recurrent Neural Networks’, Laboratoire de Robotique de Paris.

Connor, J. and Atlas, L. (1993), ‘Recurrent Neural Networks and Time Series
Prediction’, Proceedings of the International Joint Conference on Neural Networks,
301-306.

Dunis, C. and Huang, X. (2002), ‘Forecasting and Trading Currency Volatility: An
Application of Recurrent Neural Regression and Model Combination’, Journal of
Forecasting, 21, 5, 317-354.

(DOI: 10.1002/0470013265.ch4)

Dunis, C., Laws, J. and Evans B. (2006a), ‘Trading Futures Spreads: An application of
Correlation and Threshold Filters’, Applied Financial Economics, 16, 1-12.

(DOI: 10.1080/09603100500426432)
Dunis, C., Laws, J. and Evans B. (2006b), ‘Modelling and Trading the Gasoline Crack
Spread: A Non-Linear Story’, Derivatives Use, Trading and Regulation, 12, 126-145.

(DOI: 10.1057/palgrave.dutr.1840046)

Dunis, C. and Williams, M. (2002), ’Modelling and Trading the EUR/USD Exchange
Rate: Do Neural Network Models Perform Better?’, Derivatives Use, Trading and
Regulation, 8, 3, 211-239.

(DOI: 10.1002/for.935)

Dunis, C. and Williams, M. (2003), ‘Applications of Advanced Regression Analysis for
Trading and Investment’, in C. Dunis, J. Laws and P. Naïm [eds.], Applied Quantitative
Methods for Trading and Investment, John Wiley, Chichester.

(DOI: 10.1002/0470013265.ch1)

Elman, J. L. (1990), ‘Finding Structure in Time’, Cognitive Science, 14, 179-211.

(DOI :10.1016/0364-0213(90)90002-E)

Hussain, A., Ghazali, R and Al-Jumeily D. (2006), ‘Dynamic Ridge Polynomial Neural
Network for Financial Time Series Prediction’, IEEE International conference on
Innovation in Information Technology, IIT06, Dubai.

Ghazali, R., Hussain, A. and Merabti, M. (2006), ‘Higher Order Neural Networks for
Financial Time Series Prediction’, The 10th IASTED International Conference on
Artificial Intelligence and Soft Computing, Palma de Mallorca, Spain, 119-124.

Ghosh, J. and Shin, Y. (1992) ‘Efficient Higher-Order Neural Networks for Classification
and Function Approximation’, International Journal of Neural Systems, 3, 4, 323-350.

(DOI: 10.1142/S0129065792000255)

Giles, L. and Maxwell, T. (1987) ‘Learning, Invariance and Generalization in Higher
Order Neural Networks’, Applied Optics, 26, 4972-4978.

Fulcher, J., Zhang, M. and Xu, S. (2006), ‘The Application of Higher-Order Neural
Networks to Financial Time Series’, Artificial Neural Networks in Finance and
Manufacturing, Hershey, PA: Idea Group, London.

Husmeier, D. (1999), Neural Networks for Conditional Probability Estimation -
Forecasting Beyond Point Predictions (Perspectives in Neural Computing), Springer,
London.

 27

Kaastra, I. and Boyd, M. (1996), ‘Designing a Neural Network for Forecasting Financial
and Economic Time Series’, Neurocomputing, 10, 215-236.

(DOI: 10.1016/0925-2312(95)00039-9)

Kamijo, K. and Tanigawa,T. (1990), ‘Stock Price Pattern Recognition: A Recurrent
Neural Network Approach’, In Proceedings of the International Joint Conference on
Neural Networks, 1215-1221.

Karayiannis, N. and Venetsanopoulos, A. (1994), ‘On The Training and Performance of
High-Order Neural Networks’, Mathematical Biosciences, 129, 143-168.

(DOI: 10.1016/0025-5564(94)00057-7)

Knowles, A., Hussein, A., Deredy, W., Lisboa, P. and Dunis, C. L. (2005), ‘Higher-Order
Neural Networks with Bayesian Confidence Measure for Prediction of EUR/USD
Exchange Rate’, CIBEF Working Papers. Available at www.cibef.com.

Kosmatopoulos, E., Polycarpou, M., Christodoulou, M. and Ioannou, P. (1995), ‘High-
Order Neural Network Structures for Identification of Dynamical Systems’, IEEE
Transactions on Neural Networks, 6, 422-431.

Lindemann, A., Dunis, C., and Lisboa P. (2004), ‘Level Estimation, Classification and
Probability Distribution Architectures for Trading the EUR/USD Exchange Rate’. Neural
Network Computing & Applications, 14, 3, 256-271.

(DOI: 10.1007/s00521-004-0462-8)

Lisboa, P. J. G. and Vellido, A. (2000), ‘Business Applications of Neural Networks’, vii-
xxii, in P. J. G. Lisboa, B. Edisbury and A. Vellido [eds.] Business Applications of
Neural Networks: The State-of-the-Art of Real-World Applications, World Scientific,
Singapore.

(DOI: 10.1016/S0377-2217(02)00302-8)

Psaltis, D., Park, C. and Hong, J. (1988), ‘Higher Order Associative Memories and their
Optical Implementations.’, Neural Networks, 1, 149-163.

Redding, N., Kowalczyk, A. and Downs, T. (1993), ‘Constructive Higher-Order Network
Algorithm that is Polynomial Time’, Neural Networks, 6, 997-1010.

(DOI: 10.1016/S0893-6080(03)00188-6)

Shapiro, A. F. (2000), ‘A Hitchhiker’s Guide to the Techniques of Adaptive Nonlinear
Models’, Insurance, Mathematics and Economics, 26, 119-132.

(DOI: 10.1016/S0167-6687(99)00058-X)

Shin, Y. and Ghosh, J. (1991) ‘The Pi-Sigma Network: An Efficient Higher-Order Neural
Network for Pattern Classification and Function Approximation’, Proceedings IJCNN,
Seattle, July, 13-18.

Tenti, P. (1996), ‘Forecasting Foreign Exchange Rates Using Recurrent Neural
Networks’, Applied Artificial Intelligence, 10, 567-581.

(DOI: 10.1080/088395196118434)

Tino, P., Schittenkopf, C. and Doffner, G. (2001), ‘Financial Volatility Trading Using
Recurrent Networks’, IEEE Transactions in Neural Networks, 12, 4, 865-874.

Vecci, L., Piazza, F. and Uncini, A. (1998), ‘Learning and Approximation Capabilities of
Adaptive Spline Activation Neural Networks’, Neural Networks, 11, 259-270.

(DOI: 10.1016/S0893-6080(97)00118-4)

 28

Zhang, M., Xu, S., X. and Fulcher, J. (2002), ‘Neuron-Adaptive Higher Order Neural-
Network Models for Automated Financial Data Modelling’, IEEE Transactions on Neural
Networks,13,1, 188-204.

(DOI:10.1109/72.977302)

