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How medical AI devices are evaluated: 
limitations and recommendations from an 
analysis of FDA approvals
A comprehensive overview of medical AI devices approved by the US Food and Drug Administration sheds new 
light on limitations of the evaluation process that can mask vulnerabilities of devices when they are deployed on 
patients.
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Medical artificial-intelligence (AI) 
algorithms are being increasingly 
proposed for the assessment and 

care of patients. Although the academic 
community has started to develop 
reporting guidelines for AI clinical trials1–3, 
there are no established best practices 
for evaluating commercially available 
algorithms to ensure their reliability and 
safety. The path to safe and robust clinical 
AI requires that important regulatory 
questions be addressed. Are medical 
devices able to demonstrate performance 
that can be generalized to the entire 
intended population? Are commonly faced 
shortcomings of AI (overfitting to training 
data, vulnerability to data shifts, and bias 
against underrepresented patient subgroups) 
adequately quantified and addressed?

In the USA, the US Food and Drug 
Administration (FDA) is responsible for 
approving commercially marketed medical 
AI devices. The FDA releases publicly 
available information on approved devices 
in the form of a summary document that 
generally contains information about 
the device description, indications for 
use, and performance data of the device’s 
evaluation study. The FDA has recently 
called for improvement of test-data quality, 
improvement of trust and transparency 
with users, monitoring of algorithmic 
performance and bias on the intended 
population, and testing with clinicians in the 
loop4,5. To understand the extent to which 
these concerns are addressed in practice, 
we have created an annotated database 
of FDA-approved medical AI devices 
and systematically analyzed how these 
devices were evaluated before approval. 
Additionally, we have conducted a case 
study of pneumothorax-triage devices and 
found that evaluating deep-learning models 
at a single site alone, which is often done, 
can mask weaknesses in the models and lead 
to worse performance across sites.

Curating a comprehensive database of 
FDA-approved medical AI
We aggregated all of the medical AI devices 
approved by the FDA between January 
2015 and December 2020 (refs. 6–8). Because 
searching for specific terms is not possible 
on the FDA website (https://www.fda.
gov/)9, we downloaded the PDF file for 
the summary document of each approved 
device, extracted the text, and searched for 
AI keywords to create our initial corpus. We 
then merged this corpus with two existing 
databases of FDA-approved AI devices9,10 
and filtered for AI relevance to create a 
comprehensive database (https://ericwu09.
github.io/medical-ai-evaluation).

From the summary document of 
each device, we extracted the following 
information about how the algorithm was 
evaluated: the number of patients enrolled 
in the evaluation study; the number of sites 
used in the evaluation; whether the test data 

were collected and evaluated concurrently 
with device deployment (prospective) or 
the test set was collected before device 
deployment (retrospective); and whether 
stratified performance by disease subtypes 
or across demographic subgroups was 
reported. Additionally, we assigned a 
risk level from 1 to 4 to each device (1 
and 2 indicate low risk; 3 and 4 indicate 
high risk) according to guidelines from 
an FDA proposal4. In total, we compiled 
130 approved devices that met our review 
criteria. We present a compilation of all 
the devices, organized by body area, risk 
level, prospective/retrospective studies, and 
multi-site evaluation (Fig. 1).

Most evaluations perform only retro-
spective studies
Almost all of the AI devices (126 of 130) 
underwent only retrospective studies at their 
submission, based on the FDA summaries. 

Chest

Breast

Heart

Head

Multiple/
other

Multi-site reported
Prospective studies
High risk (3 and 4)
Low risk (1 and 2)

Total devices

13
15
17
25
60

37
4

54
76

130

Chest
Breast
Heart
Head
Multiple/other

Fig. 1 | Breakdown of 130 FDA-approved medical AI devices by body area. Devices are categorized by 
risk level (square, high risk; circle, low risk). Blue indicates that a multi-site evaluation was reported; 
otherwise, symbols are gray. Red outline indicates a prospective study (key, right margin). Numbers in 
key indicate the number of devices with each characteristic.
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None of the 54 high-risk devices were 
evaluated by prospective studies. For most 
devices, the test data for the retrospective 
studies were collected from clinical sites 
before evaluation, and the endpoints 
measured did not involve a side-by-side 
comparison of clinicians’ performances with 
and without AI.

More prospective studies are needed for 
full characterization of the impact of the 
AI decision tool on clinical practice, which 
is important, because human–computer 
interaction can deviate substantially from 
a model’s intended use. For example, most 
computer-aided detection diagnostic devices 
are intended to be decision-support tools 
rather than primary diagnostic tools. A 
prospective randomized study may reveal 
that clinicians are misusing this tool for 
primary diagnosis and that outcomes are 
different from what would be expected if the 
tool were used for decision support.

The number of evaluation sites and 
samples are often not reported
Among the 130 devices we analyzed, 93 
devices did not have publicly reported 
multi-site assessment included as a part of 
the evaluation study. Of the 41 devices with 
the number of evaluation sites reported, 4 
devices were evaluated in only one site, and 
8 devices were evaluated in only two sites. 
This suggests that a substantial proportion 
of approved devices might have been 
evaluated only at a small number of sites, 
which often tend to have limited geographic 
diversity11. The number of approvals for AI 
devices has increased rapidly in the past 5 
years, with over 75% of approvals coming 
in the past 2 years and over 50% coming 
in the past year. However, the proportion 
of approvals with multi-site evaluation 
and reported sample size has remained 
stagnant during the same period of time. 
Furthermore, the published reports for 59 
devices (45%) did not include the sample 
size of the studies. Of the 71 device studies 
that had this information, the median 
evaluation sample size was 300. Only 17 
device studies reported that demographic 
subgroup performance was considered in 
their evaluations.

Although the number of sites used 
in a study is available to the FDA, it is 
also important that this information 
be consistently reported in the public 
summary document in order for clinicians, 
researchers, and patients to make 
informed judgments about the reliability 
of the algorithm. Multi-site evaluations 
are important for the understanding of 
algorithmic bias and reliability, and can 
help in accounting for variations in the 
equipment used, technician standards, 

image-storage formats, demographic 
makeup, and disease prevalence.

Case study of multi-site evaluation for 
pneumothorax detection
As it is critical to understand how a model’s 
performance can be generalized to a broad 
and diverse population, we explored how 
AI models might perform when evaluated 
on patients from multiple clinical sites that 
represent different populations. To this end, 
we chose the detection of pneumothorax 
(collapsed lung) as a case study, as there 
are currently four medical devices cleared 
via section 510(k) of the Food, Drug and 
Cosmetic Act that are approved for the 
triage of X-ray images for the presence 
of pneumothorax, and there are multiple 
publicly available chest X-ray datasets that 
include pneumothorax as a condition. We 
used three datasets, each from a different 
hospital site in the USA: the National 
Institutes of Health Clinical Center in 
Bethesda, Maryland (NIH)12; Stanford 
Health Care in Palo Alto, California (SHC)13; 
and Beth Israel Deaconess Medical Center in 
Boston, Massachusetts (BIDMC)14. We used 
a DenseNet-121 deep-learning architecture15 
that has been demonstrated to be a 
top-performing model for the classification 
of chest conditions13,16.

To quantify how the AI’s performance 
varies across sites, we trained three separate 
deep-learning models on data from patients 
at each of the three sites and then evaluated 
the models on the test set from the other 
two sites. Each model takes as input a chest 
X-ray image and makes a binary prediction 
for pneumothorax. A summary of the results 
shows, for example, the performance of the 
model trained on SHC when evaluated on 
the test patients at SHC (distinct from the 
SHC training set), BIDMC, and NIH (Table 
1, top row). We found that the algorithm 
trained on the NIH data achieved good 
performance on independent NIH test 
patients (area under the receiver operating 
characteristic curve (AUC), 0.883) but 
performed much worse on the BIDMC  
test patients (AUC, 0.759) and SCH test 
patients (AUC, 0.779) (Table 1).  
Across the board, we found substantial 

drop-offs in model performance when the 
models were evaluated on a different site. 
While the within-site test AUC remained 
high (average, 0.893), the performance 
degraded markedly by an average of 0.072 
AUC and up to 0.124 AUC when evaluated 
on the other two sites (Table 1). Some of 
the performance variations could have been 
due to differences in patient demographics 
across sites. For example, when evaluating 
each of the three models on the BIDMC test 
set, we found that the performance disparity 
between white and Black patients increased 
from 0.024 AUC with the BIDMC-trained 
model to 0.043 AUC and 0.109 AUC with 
the other two models.

Recommendations
Evaluating the performance of AI devices 
in multiple clinical sites is important for 
ensuring that the algorithms perform 
well across representative populations. 
Encouraging prospective studies with 
comparison to standard of care reduces 
the risk of harmful overfitting and more 
accurately captures true clinical outcomes. 
Post-market surveillance of AI devices 
is also needed for understanding and 
measurement of unintended outcomes and 
biases that are not detected in prospective, 
multi-center trials17,18. ❐
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