
Lifted Inference for Probabilistic Programming

Wannes Meert Guy Van den Broeck Nima Taghipour Daan Fierens
Hendrik Blockeel Jesse Davis Luc De Raedt

Department of Computer Science
KU Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

Abstract

A probabilistic program often gives rise to a complicated underlying probabilistic
model. Performing inference in such a model is challenging. One solution to this
problem is lifted inference which improves tractability by exploiting symmetries
in the underlying model. Our group is pursuing a lifted approach to inference for
probabilistic logic programs.

1 Introduction

The goal of probabilistic programming is to develop languages that facilitate specifying probabilis-
tic models. As these programs often provide increased expressivity, it allows them to compactly
describe many different models. Thus, even a simple, high-level program may give rise to a very
complicated underlying model where it is challenging to perform inference. One solution to this
problem is lifted inference, which improves the tractability of inference by exploiting the fact that the
program often imposes many symmetries in the underlying model. Intuitively, lifting employs two
central techniques to speed up inference: (1) divide the problem into isomorphic and independent
subproblems, solve one instance, and aggregate the result, and (2) count the number of isomorphic
configurations for a group of interchangeable objects instead of enumerating all possible configura-
tions. Many different lifted inference algorithms have been proposed [5, 7, 9, 10, 11, 13, 16] and
they have been shown to dramatically improve the run time performance of inference.

Our group is pursuing an approach to lifted inference called weighted first-order model counting
(WFOMC) [16] which is based on the insight that probabilistic inference can be reframed as a
weighted model counting problem [1]. At a high-level, the approach works by compiling a program
into a target circuit language where certain inferences can be performed efficiently. Specifically,
we introduce and use first-order deterministic decomposable negation normal form (FO d-DNNF)
circuits. This circuit allows weighted model counting to be done in time polynomial in the number
of objects in the world. The compilation process requires a weighted first-order theory as input and
returns a FO d-DNNF. Fortunately, it is possible to transform programs written in many existing
probabilistic logic programming languages, such as ProbLog [4], ProbLog2.0 [6] and PRISM [12],
and statistical relational representations, such as parfactors [11] and Markov Logic [13], into an
equivalent weighted first-order theory. This paper details the basic framework for our inference
engine and provides an overview of the various research directions we are pursuing to improve it.

2 Lifted Inference Using Weighted Model Counting

We now describe our approach which is based on weighted model counting and knowledge compi-
lation for exact inference.
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Figure 1: First-Order d-DNNF Circuit for the Formula of Example 1

2.1 WFOMC Representation

A WFOMC problem is a theory in first-order logic and is similar to a Markov logic network (MLN).
The difference is that in a WFOMC problem weights can only be associated with predicates. For
example, for the predicate Q, only weighted formulas of the form (w,Q(x1, . . . , xn)) are allowed.
Complex formulas (containing logical connectives) have to be hard formulas with infinite weight.
Any MLN can be transformed into a WFOMC problem by adding a new atom to the theory to
represent the (truth) value of each weighted complex formula.
Example 1. Consider the following MLN:

w Smokes(x) ∧ Friends(x, y)⇒ Smokes(y).

In first-order logic, this formula is a hard constraints stating that smokers are only friends with other
smokers. Associating a weight w with this formula makes it a soft constraint and it means that
smokers are more likely to be friends with other smokers.

The WFOMC representation of the weighted complex formula is

w F(x, y)

∞ F(x, y) ≡ [Smokes(x) ∧ Friends(x, y)⇒ Smokes(y)] .

where we introduce the additional atom F(x, y) to carry the weight of the MLN formula.

2.2 First-Order Knowledge Compilation and Inference

First-order knowledge compilation compiles a first-order knowledge base into a target circuit lan-
guage. We use FO d-DNNF as the target circuit language, which represents theories in first-order
logic with domain constraints. Domain constraints define a finite domain for each logical variable.

A FO d-DNNF circuit is a directed, acyclic graph, where the leaves represent first-order literals and
the inner nodes represent formulas. A FO d-DNNF includes the following inner node types: decom-
posable conjunction, a conjunction of children that do not share any random variables, deterministic
disjunction, a disjunction whose children cannot be true at the same time, first-order generalizations
of these types of operators, and recursive conjunction.
Example 2. Figure 1 illustrates a FO d-DNNF for the formula of Example 1. The circuit introduces
a new domain Smokers, which is a subset of all People . It states that there exists such a Smokers
for which (i) all people in Smokers are smokers (ii) no other people are smokers and (iii) smokers
are not friends with non smokers.

WFOMC uses a top-down compilation algorithm for transforming a weighted logical theory into a
FO d-DNNF. The algorithm applies a sequence of operations that simplify the logical theory; see
Van den Broeck et al. [16] for an overview of the algorithm. There is no guarantee that every logical
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theory can be compiled. However, we proved that any logical theory without existential quantifiers
and where each formula contains at most two logical variables (the class of 2-WFOMC models) can
be compiled [18] . Still, many models outside this class, including many theories used in practice,
can be compiled.

The compiled circuit can answer probabilistic queries for any given set of weights and domain-
sizes. The marginal probability of a query q for a model M , weight vector w and domain size D
is P(q|M) = WMC(q ∧M,w,D)/WMC(M,w,D ), where WMC stands for the weighted model
count. The WMC(q ∧M) is simply the weight of all possible worlds where q is true. The WMC(M)
is the partition function Z for the model. Darwiche [3] gives a more detailed overview of the
weighted model counting approach to probabilistic inference (for the propositional case). The FO
d-DNNF circuit is independent of the domain of the logical variables. Furthermore, computing
weighted model counts is polynomial in the size of the domains. One advantage of using knowledge
compilation for inference is that it exploits context-specific independence and determinism in the
MLN.

3 Ongoing Research Directions

We are pursuing the following research objectives to expand the applicability of WFOMC and in-
vestigate the theoretical limitations of lifted inference.

Completeness.1 There is an ongoing effort to identify the different classes of queries and proba-
bilistic logic models which are provebly liftable. The liftability of a class is formally defined using
the concept of domain-lifted probabilistic inference [8, 18]. For all WFOMC theories that can be
compiled domain-lifted probabilistic inference is guaranteed.

Definition 1 (Domain-Lifted Probabilistic Inference). A probabilistic inference procedure is
domain-lifted for a model M , query q and evidence e iff the inference procedure runs in poly-
nomial time in |D1|, . . . , |Dk| with Di the domain of the logical variable vi ∈ vars(M, q, e).

Approximate inference.2 Although the method introduced above performs exact inference it can
also be used in an approximate inference strategy. Van den Broeck et al. [17] introduced a lifted vari-
ant of the Relax, Compensate and then Recover (RCR) approximate inference method for (ground)
probabilistic graphical models [2]. This method is based upon the idea that the structure of a first-
order model can be simplified, or relaxed, until it is amenable to exact lifted inference. By iteratively
relaxing and compensating for the simplification we obtain an approximate result.

Conditioning. Initially, FO d-DNNFs did not support conditioning. Thus answering each query
required compiling a new circuit. For FO d-DNNFs it is possible to support conditioning on certain
types of evidence [15]. Specifically, a single first-order circuit can answer any query about unary
atoms. As a result, if the evidence is on unary relations, inference is now polynomial instead of
exponential in the size of the evidence set.

Arbitrary constraints. Exact lifted inference techniques rely on expressions of constraints to de-
note groups of similar objects. The flexibility and of granularity of the grouping is determined by the
expressivity of the constraint language, which is often restricted to pairwise (in)equality constraints
The inference methods can be generalized to work with arbitrary constraints and this allows them to
capture a broader range of symmetries, leading to more opportunities for lifting [14].

4 Conclusions

We have introduced an approach using lifted inference to deal with the increasing complexity of the
underlying probabilistic models in probabilistic programming. Lifted inference’s main strength is
the ability to exploit symmetries in the model. This approach is not limited to exact inference but
can be used in an approximate strategy as well. A JVM-executable and the source code is available
at http://dtai.cs.kuleuven.be/wfomc/.

1The research on completeness is in collaboration with Manfred Jaeger.
2The research on approximate inference is in collaboration with Adnan Darwiche and Arthur Choi.
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