Machine Learning & Business Value

By Kush Patel,

Data Scientist Resident at Galvanize

Outline

- Machine Learning
- Supervised vs Unsupervised
- Linear regression
- Decision Tree Classifier
- Random Forest Classifier
- Cost Benefit matrix
- ROC Curve
- Profit Curves

Machine Learning

66

Machine learning focuses on the development of computer programs that can teach themselves to grow and change when exposed to new data.

Machine learning is a subfield of computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence

Machine Learning Technique

Supervised Machine Learning:

- Artificial neural network
- Random Forests
- Boosting
- Naive bayes classifier
- Support vector machines (SVM)
- Nearest Neighbor Algorithm

Unsupervised Machine Learning:

- Clustering (K-mean, hierarchical clustering)
- Blind Signal Separation Technique (PCA, SVD, NMF)

Simple Linear Regression

Definition

Population: The entire pool from which a **statistical** sample is drawn.

Sample: A group drawn from a larger population and used to estimate the characteristics of the whole population.

Training Set: The sample which used to train model.

Testing Set: The sample which used to evaluate model

Assumptions

- 1. Linearity
- 2. Constant Variance
- 3. Independence of errors
- 4. Normality of Errors
- 5. Lack of multicollinearity

Simple Linear Regression

 β_0 is intercept -- constant β_1 is intercept -- constant e is error term

Simple Linear Regression

For population:

$$Y = \beta_0 + \beta_1 X + e$$

For sample:

 \hat{y} = estimated(β_0) + estimated(β_1)* x where:

 \hat{y} is indicate prediction of Y when X = x \hat{y} is estimation of Y

Evaluation

OLS Regression Results

Dep. Variable	:		У	R-squar	red:		0.933
Model:			OLS	_	-squared:		0.928
Method:		Least Squ		F-stati	-		211.8
Date:	N	ion, 03 Nov		Prob (H	F-statistic		0e-27 ←
Time:			5:06		kelihood:	,	4.438
No. Observati	ons:		50	AIC:			76.88
Df Residuals:			46	BIC:		8	84.52
Df Model:			3				
Covariance Type: nonrobust							
			=====				=====
	coef	std err		t	[P> t]	[95.0% Conf.]	Int.]
					-+		
x1	0.4687	0.026	17	.751	0.000	0.416	0.522
x2	0.4836	0.104	4	.659	0.000	0.275	0.693
x 3	-0.0174	0.002	-7	.507	0.000	-0.022 -0	0.013
const	5.2058	0.171	30	.405	0.000	4.861	5.550
				======			
Omnibus:		0	.655	Durbin-	-Watson:	2	2.896
Prob(Omnibus)	:	0	.721	Jarque-	-Bera (JB):	: (0.360
Skew:		0	.207	Prob(J	B):	(0.835
Kurtosis:		3	.026	Cond. 1	No.		221.
	=======		=====	======			=====

R² -- useful?

Alternatives:

 Use train/test to evaluate model

Linear Regression

Benefit

- Easy to interpret
- Computationally cheap to predict
- Computationally cheap to train
- Linear regression implements a statistical model that, when relationships between the independent variables and the dependent variable are almost linear, shows optimal results.

Disadvantage:

- Linear regression is often inappropriately used to model non-linear relationships.
- Linear regression is limited to predicting numeric output.
 - -- logistic regression

Decision Tree

Decision Tree

Gini impurity
Information Gain

Tradeoffs of Decision Tree

Pros:

- Easily Interpretable
- Handles missing value and outliers
- Find more complex interaction
- Computationally cheap to predict
- Can handle irrelevant features
- Mix data

cons:

- Computationally expensive to train
- Greedy algorithm
- Very easy to overfit

Regularization

- Maximum Depth of tree
- Minimum sample split
- Minimum sample at leaf

Random Forest

Definitions

Bootstrap: can refer to any test or metric that relies on random sampling with replacement. (each random sample contains $\frac{2}{3}$ of population)

Ensemble method: A technique for combining many weak learners in an attempt to produce a strong learner

Example:

5 completely independent classifier with accuracy of 70% for each.

Majority vote accuracy is 83.7%

How to build Random Forest

CreateRandomForest(data, num_trees, num_features):

Repeat **num_trees** times:

Create a random sample of the test data with replacement Build a decision tree with that sample (only consider num_features features at each node)

Return the list of the decision trees created

Tradeoffs of Random Forest

Pros:

- Handles missing value and outliers
- Find more complex interaction
- Computationally cheap to predict
- Can handle irrelevant features
- Mix data
- Better accuracy
- One of best out of box algorithms
- Easy to Parallelize
- It runs efficiently on large databases

Cons:

- Can overfit
- Feature importance toward Continuous / categorical variable

Business Value

Confusion Matrix

		Condition (as determined by "Gold standard")			
	Total population	Condition positive	Condition negative		
Test outcome	Test outcome positive	True positive (TP)	False positive (Type I error) (FP)		
	Test outcome negative	False negative (Type II error) (FN)	True negative (TN)		

Sensitivity & Specificity

Sensitivity (also called the **true positive rate**, or the **recall** in some fields) measures the proportion of positives that are correctly identified as such (e.g., the percentage of sick people who are correctly identified as having the condition).

Sensitivity = TP/P = TP/(TP + FN)

Specificity (also called the **true negative rate**) measures the proportion of negatives that are correctly identified as such (e.g., the percentage of healthy people who are correctly identified as not having the condition).

Specificity = TN/N = TN/(TN + FP)

Receiver Operating Characteristic

Matrix Of Probability

Cost-Benefit Matrix

Expected Profit

$$E[Profit] = P(Y,p) \cdot b(Y,p) + P(Y,n) \cdot c(Y,n) + P(N,p) \cdot c(N,p) + P(N,n) \cdot b(N,n)$$

Profit Curve

Questions ???