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Background Motivation

● “Big Data” has pushed parallel computing to be 
more and more necessary.

● As a result, parallel programming technologies 
have been developed (e.g. MapReduce)

● Many algorithmic solutions to problems need to 
be revisited in parallel.
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Apache Spark

● Utilizes the MapReduce 
paradigm

● Accessible and
open-source

● Built in Scala, based on 
“Resilient Distributed 
Datasets”, or RDDs
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Resilient Distributed Datasets (RDDs)

● Data partitioning abstraction

● Achieves fault-tolerance through lineage

● Allows caching of data between parallel 
operations
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GraphX

● Spark's API for graphs and graph-parallel 
computation.

● Allows for data to be viewed as both a graph 
and a collection simultaneously.



  

Simple GraphX Example

● What if we wanted to find the oldest follower of 
each person in the graph?

Image Source: http://ampcamp.berkeley.edu/big-data-mini-course/graph-analytics-with-graphx.html



  

Simple GraphX Example

Source: http://ampcamp.berkeley.edu/big-data-mini-course/graph-analytics-with-graphx.html

// Find the oldest follower for each user

val oldestFollower: VertexRDD[(String, Int)] =

  userGraph.aggregateMessages[(String, Int)](

    // Map Function

    edge => edge.sentToDst((edge.srcAttr.name, edge.srcAttr.age)),

    

    // Reduce Function

    (a, b) => if (a._2 > b._2) a else b

  )



  

Maximum-Flow Problem

What is the maximum flow that can be pushed from the 
source vertex to the sink vertex?
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Push-Relabel Algorithm

● Solution that is more inherently parallelizable than 
alternatives such as Ford-Fulkerson

● Utilizes the concept of “preflow”

● Labeling mechanism monitors which vertices are 
eligible to push excess flow



  

Push-Relabel Example

Source: http://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm
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Project Goal

“Implement a solution to the maximum-flow 
problem in GraphX, targeting the Push-Relabel 

algorithm as our approach.”
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GraphX Pregel API

● GraphX provides a Pregel operator 
recommended for iterative algorithms

● Requires 3 user-define functions:
– “Send Message” function

– “Merge Message” function

– “Vertex Program” function



  

GraphX Pregel API Consideration

● Basic Approach
– Use the Send Message step to find possible 

pushes or relabels in the graph.
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GraphX Pregel API Consideration

● Basic Approach
– Use the Send Message step to find possible 

pushes or relabels in the graph.

– Use the Merge Message step to choose which 
operations will be executed based on excess.

– Use the Vertex Program step to update the 
values of the graph.



  

GraphX Pregel API Consideration

● Ran into problems with updating both the 
source and destination of a push.



  

GraphX Pregel API Consideration

● Ran into problems with updating both the 
source and destination of a push.

Possible Push
(Map)

Select Pushes
(Reduce)

Other 
Possible 
Pushes

Did my push get selected?
(Reduce)



  

New Approach Visualization

Possible push 
from A

Select pushes 
and store in 
vertex data

Other possible 
pushes from A

“Surveying” Step

“Execution” Step

Check push info 
stored in A

Subtract push 
amount from 
excess at A

Other pushes 
to B

Add push to 
excess at B



  

Handling Relabeling

● Relabel information also needs to be included 
in the messages.



  

Handling Relabeling

● Relabel information also needs to be included 
in the messages.

● While mapping, find the lowest neighboring 
height label.



  

Relabeling Visualization

Height Label of B

Height Labels of 
other neighboring 

vertices

“Surveying” Step

“Execution” Step

Reduce and store 
smallest height 
label in vertex 
data. If greater 
than or equal to 

the height label of 
A, relabel.

No actions, relabeling is already complete.



  

Simple Example



  

Simple Example: Iteration 1 - “Surveying”

From AB to B – (Map(), 5)
From BC to B – (Map(), 0)
From BD to B – (Map(), 0)

Reduce
B – (Map(), 0)



  

Simple Example: Iteration 1- “Surveying”

From AB to B – (Map(), 5)
From BC to B – (Map(), 0)
From BD to B – (Map(), 0)

Reduce
B – (Map(), 0)

Relabel B to “1”B – (Map(), 0)
Vertex Program



  

Simple Example: Iteration 1- “Execution”

No Possible Pushes, all vertices and edges 
are mapped to their original values.

Resulting Graph:
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From AB to B – (Map(), 5)
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Simple Example: Iteration 2 - “Surveying”

From AB to B – (Map(), 5)
From BC to B – (Map((3L, true) → 2), 0)
From BD to B – (Map((4L, true) → 2), 0)

B – (Map((3L, true) -> 2, (4L, true) -> 2), 0)



  

Simple Example: Iteration 2 - “Surveying” Vertex Program

B – (Map((3L, true) -> 2, (4L, true) -> 2), 0)

Push 1 Push 2

Loop over possible pushes

Push 1 (Excess at B = 5):

Push 2 (Excess at B = 3):

5 >= 2, select push and subtract excess.

3 >= 2, select push and subtract excess.

Data stored at Vertex B:      (1, 1, Map((3L, true) -> 2, (4L, true) -> 2))



  

Simple Example: Iteration 2 - “Execution”

Vertex Data at B:      (1, 1, Map((3L, true) -> 2, (4L, true) -> 2))

Update Edges BC increases its flow by 2
BD increases its flow by 2

Update Vertices C updates its excess by 2
D updates its excess by 2



  

Simple Example: Iteration 3 - “Surveying”

From AB to B – (Map(), 5)
From BC to C – (Map(), 1)
From BD to D – (Map(), 1)
From CE to C – (Map(), 0)
From DE to D – (Map(), 0)

Reduce
B – (Map(), 5)
C – (Map(), 0)
D – (Map(), 0)

All three 
vertices 
relabel



  

Simple Example: Iteration 3 - “Execution”

No Possible Pushes, all vertices and edges 
are mapped to their original values.

Resulting Graph:



  

Simple Example: Iteration 4 - “Surveying”

From AB to B – (Map((1L, false) → 5), 5)
From BC to C – (Map(), 1)
From BD to D – (Map(), 1)
From CE to C – (Map((5L, true) → 2), 0)
From DE to D – (Map((5L, true) → 2), 0)

Reduce B – (Map((1L, false) → 5), 5)
C – (Map((5L, true) → 2), 0)
D – (Map((5L, true) → 2), 0)



  

Simple Example: Iteration 4 - “Surveying” Vertex Program

B – (Map((1L, false) → 5), 5)
Excess of 1

Messages Stored Vertex Data

(0, 6, Map((1L, false) → 1))



  

Simple Example: Iteration 4 - “Surveying” Vertex Program

B – (Map((1L, false) → 5), 5)

C – (Map((5L, true) → 2), 0)

Excess of 1

Messages Stored Vertex Data

(0, 6, Map((1L, false) → 1))

(0, 1, Map((5L, true) → 2))
Excess of 2



  

Simple Example: Iteration 4 - “Surveying” Vertex Program

B – (Map((1L, false) → 5), 5)

C – (Map((5L, true) → 2), 0)

D – (Map((5L, true) → 2), 0)

Excess of 1

Messages Stored Vertex Data

(0, 6, Map((1L, false) → 1))

(0, 1, Map((5L, true) → 2))

(0, 1, Map((5L, true) → 2))

Excess of 2

Excess of 2



  

Simple Example: Iteration 4 - “Surveying” Vertex Program

B – (Map((1L, false) → 5), 5)

C – (Map((5L, true) → 2), 0)

D – (Map((5L, true) → 2), 0)

Excess of 1

Messages Stored Vertex Data

(0, 6, Map((1L, false) → 1))

(0, 1, Map((5L, true) → 2))

(0, 1, Map((5L, true) → 2))

Excess of 2

Excess of 2

Pushed flow is subtracted from the excess at vertices B, C, and D



  

Simple Example: Iteration 4 - “Execution”

B - (0, 6, Map((1L, false) → 1))
C - (0, 1, Map((5L, true) → 2))
D - (0, 1, Map((5L, true) → 2))

Edges (CE, DE, AB) and 
Vertices (A, E) Update



  

Simple Example: Iteration 5

● No excess in the graph (excluding the source and sink) leads to no messages.



  

Simple Example: Iteration 5

● No excess in the graph (excluding the source and sink) leads to no messages.

● Main execution loop terminates, and the maximum flow has been found.
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● RDD lineage grows with each iteration, 
eventually causing a stack overflow.
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Checkpointing

● RDD lineage grows with each iteration, 
eventually causing a stack overflow.

● A checkpoint saves the RDD to an HDFS file 
and truncates the lineage entirely.

● Implemented by simply calling the checkpoint 
method after a set number of iterations.



  

Caching

● RDDs are not cached in memory by default.
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Caching

● RDDs are not cached in memory by default.

● When an uncached RDD is accessed again, it 
must be recomputed. 

● Especially important with iterative algorithms.

● Simply call the cache method on the graph.
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● Only a small percentage of the vertices are 
eligible for an operation at one time.
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Restricted Active Set

● Only a small percentage of the vertices are 
eligible for an operation at one time.

● Was able to specify an RDD that specified 
which Triplets should be included.

● Ended up not improving performance.
– Number of operations remains the same

– Could provide benefit with costly methods
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a cluster (2 c3.xlarge instances).
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Experimentation

● Used Amazon Elastic MapReduce services to run on 
a cluster (2 c3.xlarge instances).

● The scale of “big data” wasn't feasible for the scope 
of this project.

– Would require distributed storage

– Cluster would need to be scaled

– More difficult to find truly large datasets

● Aimed to verify correctness and observe the effects 
of the variations mentioned.



  

Datasets (.bk files)

● Single-line → Contrived graph of 500 chained vertices

– 499 edges

● Parallel-5-5 → Contrived graph branching at factor of 5

– 3900 edges

● Parallel-12-5 → Contrived graph branching at factor of 12

– 271440 edges

● RMF-wide → Smallest of benchmarks obtained online.

– 93178 edges
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Caching vs. Non-caching Results

Speedup: 1.44x 1.35x 1.21x 1.29x

● Clearly improves performance, possibly having a 
larger impact as the problem is scaled.

● Both contrived parallel datasets complete in the 
same number of iterations.
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would always hurt performance.



  

Checkpointing Intervals Results

● Expectation was that more frequent checkpointing 
would always hurt performance.

● Results seem to be unpredictable, and the middle 
(25 iterations) option appears to be best overall.



  

Checkpointing Intervals Results

● Results show that iterations tend to grow longer in between 
checkpointing intervals.

Iteration duration over time (spikes show checkpointing)



  

Checkpointing Intervals Results

● Results show that iterations tend to grow longer in between 
checkpointing intervals.

● May indicate that there is some balance between the cost of 
checkpointing and the cost of increased lineage.

Iteration duration over time (spikes show checkpointing)
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Scaling and Amazon Inconsistencies

● All of these observations must be taken with a grain of salt...

● Amazon clusters are extremely convenient, but appear to 
vary widely in performance.

● Prevented any meaningful data collection in the area of 
scaling the cluster. 

“The performance of Amazon machine 
instances is sometimes fast, sometimes slow,

and sometimes absolutely abysmal."
- Blog article “Benchmarking Amazon EC2: The wacky world of cloud performance”
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Possible Future Work

● Scaling and verification of approach

– How does the solution perform in a truly “big data” 
context?

– What is the impact that scaling the cluster has on 
performance?

● Algorithm optimization

– Possibility of condensing MapReduce steps

– Compare data structure selections

– Explore manual uncaching



  

Open Questions



  

// Define types
type VertexPushMap = Map[(VertexId, Boolean), Int]
type EdgeData = (Int, Int)
type VertexData = (Int, Int, VertexPushMap)
type SurveyMessage = (VertexPushMap, Int)

// Initialize the graph
var activeMessages = 1
var iteration = 1

// Build graph
val vertexArray = vertexBuffer.toArray
val edgeArray = edgeBuffer.toArray
val vertexRDD: RDD[(VertexId, VertexData)] = sc.parallelize(vertexArray)
val edgeRDD: RDD[Edge[EdgeData]] = sc.parallelize(edgeArray)
var graph = Graph(vertexRDD, edgeRDD)

GraphX Code - Initialization



  

// "Surveying" MapReduce step
val eligiblePushesRDD = graph.aggregateMessages[SurveyMessage] (
  // Map: Send message if vertex has excess
  edgeContext => {

    // Make sure not to push from sink or source
    if (edgeContext.srcId != sinkId && edgeContext.srcId != sourceId) {
      // If a residual edge exists from source to destination
      if (edgeContext.attr._2 > edgeContext.attr._1) {
        // If source has an excess
        if (edgeContext.srcAttr._1 > 0) {
          // If source has height one greater than destination
          if (edgeContext.srcAttr._2 == (edgeContext.dstAttr._2 + 1)) {
            // Push is possible, send message to source containing push information
            val pushAmount = math.min(edgeContext.attr._2 - edgeContext.attr._1, edgeContext.srcAttr._1)
            edgeContext.sendToSrc((Map((edgeContext.dstId, true) -> pushAmount), edgeContext.dstAttr._2))
          } else {
            edgeContext.sendToSrc((Map(), edgeContext.dstAttr._2))
          }
        }
      }
    }

    (Repeated in other direction along the edge)

  },
  // Reduce: Concatenate into map of all possible pushes, keep track of relabel eligibility
  (a, b) => {
    (a._1 ++ b._1, math.min(a._2, b._2))
  }
)

GraphX Code - “Surveying” MapReduce



  

// "Surveying" MapReduce step
val eligiblePushesRDD = graph.aggregateMessages[SurveyMessage] (
  // Map: Send message if vertex has excess
  edgeContext => {

    // Make sure not to push from sink or source
    if (edgeContext.srcId != sinkId && edgeContext.srcId != sourceId) {
      // If a residual edge exists from source to destination
      if (edgeContext.attr._2 > edgeContext.attr._1) {
        // If source has an excess
        if (edgeContext.srcAttr._1 > 0) {
          // If source has height one greater than destination
          if (edgeContext.srcAttr._2 == (edgeContext.dstAttr._2 + 1)) {
            // Push is possible, send message to source containing push information
            val pushAmount = math.min(edgeContext.attr._2 - edgeContext.attr._1, edgeContext.srcAttr._1)
            edgeContext.sendToSrc((Map((edgeContext.dstId, true) -> pushAmount), edgeContext.dstAttr._2))
          } else {
            edgeContext.sendToSrc((Map(), edgeContext.dstAttr._2))
          }
        }
      }
    }

    (Repeated in other direction along the edge)

  },
  // Reduce: Concatenate into map of all possible pushes, keep track of relabel eligibility
  (a, b) => {
    (a._1 ++ b._1, math.min(a._2, b._2))
  }
)

GraphX Code - “Surveying” MapReduce

Map

Reduce



  

graph = graph.outerJoinVertices(eligiblePushesRDD) {
  (id: VertexId, data: VertexData, msg: Option[SurveyMessage]) => {
    // Store empty map if no messages
    if (msg.isEmpty) {
      (data._1, data._2, Map[(VertexId, Boolean), Int]())
    } else if (msg.get._2 >= data._2) {
      // Eligible for relabel
      (data._1, msg.get._2 + 1, Map[(VertexId, Boolean), Int]())
    } else {
      // Add pushes until no excess remains or pushes are exhausted
      var excess = data._1
      val selectedPushes = scala.collection.mutable.Map[(VertexId, Boolean), Int]()

      // Select pushes until flow is gone, break once no flow is remaining.
      breakable {
        msg.get._1.foreach(pushData => {
          val dstId = pushData._1._1
          val forwardPush = pushData._1._2
          val pushAmount = pushData._2
          if (excess > 0) {
            val selectedPushAmount = math.min(pushAmount, excess)
            excess -= selectedPushAmount
            selectedPushes((dstId, forwardPush)) = selectedPushAmount
          } else {
            break
          }
        })
      }

      (excess, data._2, selectedPushes.toMap)
    }
  }
}

GraphX Code - “Surveying” Vertex Program



  

graph = graph.outerJoinVertices(eligiblePushesRDD) {
  (id: VertexId, data: VertexData, msg: Option[SurveyMessage]) => {
    // Store empty map if no messages
    if (msg.isEmpty) {
      (data._1, data._2, Map[(VertexId, Boolean), Int]())
    } else if (msg.get._2 >= data._2) {
      // Eligible for relabel
      (data._1, msg.get._2 + 1, Map[(VertexId, Boolean), Int]())
    } else {
      // Add pushes until no excess remains or pushes are exhausted
      var excess = data._1
      val selectedPushes = scala.collection.mutable.Map[(VertexId, Boolean), Int]()

      // Select pushes until flow is gone, break once no flow is remaining.
      breakable {
        msg.get._1.foreach(pushData => {
          val dstId = pushData._1._1
          val forwardPush = pushData._1._2
          val pushAmount = pushData._2
          if (excess > 0) {
            val selectedPushAmount = math.min(pushAmount, excess)
            excess -= selectedPushAmount
            selectedPushes((dstId, forwardPush)) = selectedPushAmount
          } else {
            break
          }
        })
      }

      (excess, data._2, selectedPushes.toMap)
    }
  }
}

GraphX Code - “Surveying” Vertex Program

No messages

No pushes,
relabel

Possible pushes, 
select based on

excess



  

val executedPushesRDD = graph.aggregateMessages[Int] (
  // Map: Send push information to vertices that received flow
  edgeContext => {
    
    // Check if destination vertex id is in the source's push map
    if (edgeContext.srcAttr._3.contains((edgeContext.dstId, true))) {
      val pushAmount: Int = edgeContext.srcAttr._3((edgeContext.dstId, true))
      edgeContext.sendToDst(pushAmount)
    }

    // Check if source vertex id is in the destinations's push map
    if (edgeContext.dstAttr._3.contains((edgeContext.srcId, false))) {
      val pushAmount: Int = edgeContext.dstAttr._3((edgeContext.srcId, false))
      edgeContext.sendToSrc(pushAmount)
    }

  },
  // Reduce: Combine all incoming flow into a single total
  (a, b) => {
    a + b
  }
)

GraphX Code - “Execution” MapReduce



  

val executedPushesRDD = graph.aggregateMessages[Int] (
  // Map: Send push information to vertices that received flow
  edgeContext => {
    
    // Check if destination vertex id is in the source's push map
    if (edgeContext.srcAttr._3.contains((edgeContext.dstId, true))) {
      val pushAmount: Int = edgeContext.srcAttr._3((edgeContext.dstId, true))
      edgeContext.sendToDst(pushAmount)
    }

    // Check if source vertex id is in the destinations's push map
    if (edgeContext.dstAttr._3.contains((edgeContext.srcId, false))) {
      val pushAmount: Int = edgeContext.dstAttr._3((edgeContext.srcId, false))
      edgeContext.sendToSrc(pushAmount)
    }

  },
  // Reduce: Combine all incoming flow into a single total
  (a, b) => {
    a + b
  }
)

GraphX Code - “Execution” MapReduce

Reduce

Map



  

// Update excess values
graph = graph.outerJoinVertices(executedPushesRDD) {
  (id: VertexId, data: VertexData, msg: Option[Int]) => {
    // Add pushed flow to vertex
    (data._1 + msg.getOrElse(0), data._2, data._3)
  }
}

GraphX Code - “Execution” Vertex Program
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