

A Performance Study of an Implementation of
the Push-Relabel Maximum Flow Algorithm

in Apache Spark's GraphX

Ryan P. Langewisch
Advised by Dinesh P. Mehta

Background Motivation

● “Big Data” has pushed parallel computing to be
more and more necessary.

Background Motivation

● “Big Data” has pushed parallel computing to be
more and more necessary.

● As a result, parallel programming technologies
have been developed (e.g. MapReduce)

Background Motivation

● “Big Data” has pushed parallel computing to be
more and more necessary.

● As a result, parallel programming technologies
have been developed (e.g. MapReduce)

● Many algorithmic solutions to problems need to
be revisited in parallel.

Apache Spark

● Utilizes the MapReduce
paradigm

Apache Spark

● Utilizes the MapReduce
paradigm

● Accessible and
open-source

Apache Spark

● Utilizes the MapReduce
paradigm

● Accessible and
open-source

● Built in Scala, based on
“Resilient Distributed
Datasets”, or RDDs

Resilient Distributed Datasets (RDDs)

● Data partitioning abstraction

Resilient Distributed Datasets (RDDs)

● Data partitioning abstraction

● Achieves fault-tolerance through lineage

Resilient Distributed Datasets (RDDs)

● Data partitioning abstraction

● Achieves fault-tolerance through lineage

● Allows caching of data between parallel
operations

GraphX

● Spark's API for graphs and graph-parallel
computation.

GraphX

● Spark's API for graphs and graph-parallel
computation.

● Allows for data to be viewed as both a graph
and a collection simultaneously.

GraphX

● Spark's API for graphs and graph-parallel
computation.

● Allows for data to be viewed as both a graph
and a collection simultaneously.

Simple GraphX Example

● What if we wanted to find the oldest follower of
each person in the graph?

Image Source: http://ampcamp.berkeley.edu/big-data-mini-course/graph-analytics-with-graphx.html

Simple GraphX Example

Source: http://ampcamp.berkeley.edu/big-data-mini-course/graph-analytics-with-graphx.html

// Find the oldest follower for each user

val oldestFollower: VertexRDD[(String, Int)] =

 userGraph.aggregateMessages[(String, Int)](

 // Map Function

 edge => edge.sentToDst((edge.srcAttr.name, edge.srcAttr.age)),

 // Reduce Function

 (a, b) => if (a._2 > b._2) a else b

)

Maximum-Flow Problem

What is the maximum flow that can be pushed from the
source vertex to the sink vertex?

Push-Relabel Algorithm

● Solution that is more inherently parallelizable than
alternatives such as Ford-Fulkerson

Push-Relabel Algorithm

● Solution that is more inherently parallelizable than
alternatives such as Ford-Fulkerson

● Utilizes the concept of “preflow”

Push-Relabel Algorithm

● Solution that is more inherently parallelizable than
alternatives such as Ford-Fulkerson

● Utilizes the concept of “preflow”

● Labeling mechanism monitors which vertices are
eligible to push excess flow

Push-Relabel Example

Source: http://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Push-Relabel Example

Push-Relabel Example

Push-Relabel Example

Project Goal

“Implement a solution to the maximum-flow
problem in GraphX, targeting the Push-Relabel

algorithm as our approach.”

GraphX Pregel API

● GraphX provides a Pregel operator
recommended for iterative algorithms

GraphX Pregel API

● GraphX provides a Pregel operator
recommended for iterative algorithms

● Requires 3 user-define functions:

GraphX Pregel API

● GraphX provides a Pregel operator
recommended for iterative algorithms

● Requires 3 user-define functions:
– “Send Message” function

GraphX Pregel API

● GraphX provides a Pregel operator
recommended for iterative algorithms

● Requires 3 user-define functions:
– “Send Message” function

– “Merge Message” function

GraphX Pregel API

● GraphX provides a Pregel operator
recommended for iterative algorithms

● Requires 3 user-define functions:
– “Send Message” function

– “Merge Message” function

– “Vertex Program” function

GraphX Pregel API Consideration

● Basic Approach
– Use the Send Message step to find possible

pushes or relabels in the graph.

GraphX Pregel API Consideration

● Basic Approach
– Use the Send Message step to find possible

pushes or relabels in the graph.

– Use the Merge Message step to choose which
operations will be executed based on excess.

GraphX Pregel API Consideration

● Basic Approach
– Use the Send Message step to find possible

pushes or relabels in the graph.

– Use the Merge Message step to choose which
operations will be executed based on excess.

– Use the Vertex Program step to update the
values of the graph.

GraphX Pregel API Consideration

● Ran into problems with updating both the
source and destination of a push.

GraphX Pregel API Consideration

● Ran into problems with updating both the
source and destination of a push.

Possible Push
(Map)

Select Pushes
(Reduce)

Other
Possible
Pushes

Did my push get selected?
(Reduce)

New Approach Visualization

Possible push
from A

Select pushes
and store in
vertex data

Other possible
pushes from A

“Surveying” Step

“Execution” Step

Check push info
stored in A

Subtract push
amount from
excess at A

Other pushes
to B

Add push to
excess at B

Handling Relabeling

● Relabel information also needs to be included
in the messages.

Handling Relabeling

● Relabel information also needs to be included
in the messages.

● While mapping, find the lowest neighboring
height label.

Relabeling Visualization

Height Label of B

Height Labels of
other neighboring

vertices

“Surveying” Step

“Execution” Step

Reduce and store
smallest height
label in vertex
data. If greater
than or equal to

the height label of
A, relabel.

No actions, relabeling is already complete.

Simple Example

Simple Example: Iteration 1 - “Surveying”

From AB to B – (Map(), 5)
From BC to B – (Map(), 0)
From BD to B – (Map(), 0)

Reduce
B – (Map(), 0)

Simple Example: Iteration 1- “Surveying”

From AB to B – (Map(), 5)
From BC to B – (Map(), 0)
From BD to B – (Map(), 0)

Reduce
B – (Map(), 0)

Relabel B to “1”B – (Map(), 0)
Vertex Program

Simple Example: Iteration 1- “Execution”

No Possible Pushes, all vertices and edges
are mapped to their original values.

Resulting Graph:

Simple Example: Iteration 2 - “Surveying”

From AB to B – (Map(), 5)
From BC to B – (Map((3L, true) → 2), 0)
From BD to B – (Map((4L, true) → 2), 0)

Simple Example: Iteration 2 - “Surveying”

From AB to B – (Map(), 5)
From BC to B – (Map((3L, true) → 2), 0)
From BD to B – (Map((4L, true) → 2), 0)

B – (Map((3L, true) -> 2, (4L, true) -> 2), 0)

Simple Example: Iteration 2 - “Surveying” Vertex Program

B – (Map((3L, true) -> 2, (4L, true) -> 2), 0)

Push 1 Push 2

Loop over possible pushes

Push 1 (Excess at B = 5):

Push 2 (Excess at B = 3):

5 >= 2, select push and subtract excess.

3 >= 2, select push and subtract excess.

Data stored at Vertex B: (1, 1, Map((3L, true) -> 2, (4L, true) -> 2))

Simple Example: Iteration 2 - “Execution”

Vertex Data at B: (1, 1, Map((3L, true) -> 2, (4L, true) -> 2))

Update Edges BC increases its flow by 2
BD increases its flow by 2

Update Vertices C updates its excess by 2
D updates its excess by 2

Simple Example: Iteration 3 - “Surveying”

From AB to B – (Map(), 5)
From BC to C – (Map(), 1)
From BD to D – (Map(), 1)
From CE to C – (Map(), 0)
From DE to D – (Map(), 0)

Reduce
B – (Map(), 5)
C – (Map(), 0)
D – (Map(), 0)

All three
vertices
relabel

Simple Example: Iteration 3 - “Execution”

No Possible Pushes, all vertices and edges
are mapped to their original values.

Resulting Graph:

Simple Example: Iteration 4 - “Surveying”

From AB to B – (Map((1L, false) → 5), 5)
From BC to C – (Map(), 1)
From BD to D – (Map(), 1)
From CE to C – (Map((5L, true) → 2), 0)
From DE to D – (Map((5L, true) → 2), 0)

Reduce B – (Map((1L, false) → 5), 5)
C – (Map((5L, true) → 2), 0)
D – (Map((5L, true) → 2), 0)

Simple Example: Iteration 4 - “Surveying” Vertex Program

B – (Map((1L, false) → 5), 5)
Excess of 1

Messages Stored Vertex Data

(0, 6, Map((1L, false) → 1))

Simple Example: Iteration 4 - “Surveying” Vertex Program

B – (Map((1L, false) → 5), 5)

C – (Map((5L, true) → 2), 0)

Excess of 1

Messages Stored Vertex Data

(0, 6, Map((1L, false) → 1))

(0, 1, Map((5L, true) → 2))
Excess of 2

Simple Example: Iteration 4 - “Surveying” Vertex Program

B – (Map((1L, false) → 5), 5)

C – (Map((5L, true) → 2), 0)

D – (Map((5L, true) → 2), 0)

Excess of 1

Messages Stored Vertex Data

(0, 6, Map((1L, false) → 1))

(0, 1, Map((5L, true) → 2))

(0, 1, Map((5L, true) → 2))

Excess of 2

Excess of 2

Simple Example: Iteration 4 - “Surveying” Vertex Program

B – (Map((1L, false) → 5), 5)

C – (Map((5L, true) → 2), 0)

D – (Map((5L, true) → 2), 0)

Excess of 1

Messages Stored Vertex Data

(0, 6, Map((1L, false) → 1))

(0, 1, Map((5L, true) → 2))

(0, 1, Map((5L, true) → 2))

Excess of 2

Excess of 2

Pushed flow is subtracted from the excess at vertices B, C, and D

Simple Example: Iteration 4 - “Execution”

B - (0, 6, Map((1L, false) → 1))
C - (0, 1, Map((5L, true) → 2))
D - (0, 1, Map((5L, true) → 2))

Edges (CE, DE, AB) and
Vertices (A, E) Update

Simple Example: Iteration 5

● No excess in the graph (excluding the source and sink) leads to no messages.

Simple Example: Iteration 5

● No excess in the graph (excluding the source and sink) leads to no messages.

● Main execution loop terminates, and the maximum flow has been found.

Checkpointing

● RDD lineage grows with each iteration,
eventually causing a stack overflow.

Checkpointing

● RDD lineage grows with each iteration,
eventually causing a stack overflow.

● A checkpoint saves the RDD to an HDFS file
and truncates the lineage entirely.

Checkpointing

● RDD lineage grows with each iteration,
eventually causing a stack overflow.

● A checkpoint saves the RDD to an HDFS file
and truncates the lineage entirely.

● Implemented by simply calling the checkpoint
method after a set number of iterations.

Caching

● RDDs are not cached in memory by default.

Caching

● RDDs are not cached in memory by default.

● When an uncached RDD is accessed again, it
must be recomputed.

Caching

● RDDs are not cached in memory by default.

● When an uncached RDD is accessed again, it
must be recomputed.

● Especially important with iterative algorithms.

Caching

● RDDs are not cached in memory by default.

● When an uncached RDD is accessed again, it
must be recomputed.

● Especially important with iterative algorithms.

● Simply call the cache method on the graph.

Restricted Active Set

● Only a small percentage of the vertices are
eligible for an operation at one time.

Restricted Active Set

● Only a small percentage of the vertices are
eligible for an operation at one time.

● Was able to specify an RDD that specified
which Triplets should be included.

Restricted Active Set

● Only a small percentage of the vertices are
eligible for an operation at one time.

● Was able to specify an RDD that specified
which Triplets should be included.

● Ended up not improving performance.

Restricted Active Set

● Only a small percentage of the vertices are
eligible for an operation at one time.

● Was able to specify an RDD that specified
which Triplets should be included.

● Ended up not improving performance.
– Number of operations remains the same

Restricted Active Set

● Only a small percentage of the vertices are
eligible for an operation at one time.

● Was able to specify an RDD that specified
which Triplets should be included.

● Ended up not improving performance.
– Number of operations remains the same

– Could provide benefit with costly methods

Experimentation

● Used Amazon Elastic MapReduce services to run on
a cluster (2 c3.xlarge instances).

Experimentation

● Used Amazon Elastic MapReduce services to run on
a cluster (2 c3.xlarge instances).

● The scale of “big data” wasn't feasible for the scope
of this project.

Experimentation

● Used Amazon Elastic MapReduce services to run on
a cluster (2 c3.xlarge instances).

● The scale of “big data” wasn't feasible for the scope
of this project.

– Would require distributed storage

Experimentation

● Used Amazon Elastic MapReduce services to run on
a cluster (2 c3.xlarge instances).

● The scale of “big data” wasn't feasible for the scope
of this project.

– Would require distributed storage

– Cluster would need to be scaled

Experimentation

● Used Amazon Elastic MapReduce services to run on
a cluster (2 c3.xlarge instances).

● The scale of “big data” wasn't feasible for the scope
of this project.

– Would require distributed storage

– Cluster would need to be scaled

– More difficult to find truly large datasets

Experimentation

● Used Amazon Elastic MapReduce services to run on
a cluster (2 c3.xlarge instances).

● The scale of “big data” wasn't feasible for the scope
of this project.

– Would require distributed storage

– Cluster would need to be scaled

– More difficult to find truly large datasets

● Aimed to verify correctness and observe the effects
of the variations mentioned.

Datasets (.bk files)

● Single-line → Contrived graph of 500 chained vertices

– 499 edges

● Parallel-5-5 → Contrived graph branching at factor of 5

– 3900 edges

● Parallel-12-5 → Contrived graph branching at factor of 12

– 271440 edges

● RMF-wide → Smallest of benchmarks obtained online.

– 93178 edges

Caching vs. Non-caching Results

Speedup: 1.44x 1.35x 1.21x 1.29x

Caching vs. Non-caching Results

Speedup: 1.44x 1.35x 1.21x 1.29x

● Clearly improves performance, possibly having a
larger impact as the problem is scaled.

Caching vs. Non-caching Results

Speedup: 1.44x 1.35x 1.21x 1.29x

● Clearly improves performance, possibly having a
larger impact as the problem is scaled.

● Both contrived parallel datasets complete in the
same number of iterations.

Checkpointing Intervals Results

● Expectation was that more frequent checkpointing
would always hurt performance.

Checkpointing Intervals Results

● Expectation was that more frequent checkpointing
would always hurt performance.

● Results seem to be unpredictable, and the middle
(25 iterations) option appears to be best overall.

Checkpointing Intervals Results

● Results show that iterations tend to grow longer in between
checkpointing intervals.

Iteration duration over time (spikes show checkpointing)

Checkpointing Intervals Results

● Results show that iterations tend to grow longer in between
checkpointing intervals.

● May indicate that there is some balance between the cost of
checkpointing and the cost of increased lineage.

Iteration duration over time (spikes show checkpointing)

Scaling and Amazon Inconsistencies

● All of these observations must be taken with a grain of salt...

Scaling and Amazon Inconsistencies

● All of these observations must be taken with a grain of salt...

● Amazon clusters are extremely convenient, but appear to
vary widely in performance.

Scaling and Amazon Inconsistencies

● All of these observations must be taken with a grain of salt...

● Amazon clusters are extremely convenient, but appear to
vary widely in performance.

● Prevented any meaningful data collection in the area of
scaling the cluster.

Scaling and Amazon Inconsistencies

● All of these observations must be taken with a grain of salt...

● Amazon clusters are extremely convenient, but appear to
vary widely in performance.

● Prevented any meaningful data collection in the area of
scaling the cluster.

“The performance of Amazon machine
instances is sometimes fast, sometimes slow,

and sometimes absolutely abysmal."
- Blog article “Benchmarking Amazon EC2: The wacky world of cloud performance”

Possible Future Work

● Scaling and verification of approach

Possible Future Work

● Scaling and verification of approach

– How does the solution perform in a truly “big data”
context?

Possible Future Work

● Scaling and verification of approach

– How does the solution perform in a truly “big data”
context?

– What is the impact that scaling the cluster has on
performance?

Possible Future Work

● Scaling and verification of approach

– How does the solution perform in a truly “big data”
context?

– What is the impact that scaling the cluster has on
performance?

● Algorithm optimization

Possible Future Work

● Scaling and verification of approach

– How does the solution perform in a truly “big data”
context?

– What is the impact that scaling the cluster has on
performance?

● Algorithm optimization

– Possibility of condensing MapReduce steps

Possible Future Work

● Scaling and verification of approach

– How does the solution perform in a truly “big data”
context?

– What is the impact that scaling the cluster has on
performance?

● Algorithm optimization

– Possibility of condensing MapReduce steps

– Compare data structure selections

Possible Future Work

● Scaling and verification of approach

– How does the solution perform in a truly “big data”
context?

– What is the impact that scaling the cluster has on
performance?

● Algorithm optimization

– Possibility of condensing MapReduce steps

– Compare data structure selections

– Explore manual uncaching

Open Questions

// Define types
type VertexPushMap = Map[(VertexId, Boolean), Int]
type EdgeData = (Int, Int)
type VertexData = (Int, Int, VertexPushMap)
type SurveyMessage = (VertexPushMap, Int)

// Initialize the graph
var activeMessages = 1
var iteration = 1

// Build graph
val vertexArray = vertexBuffer.toArray
val edgeArray = edgeBuffer.toArray
val vertexRDD: RDD[(VertexId, VertexData)] = sc.parallelize(vertexArray)
val edgeRDD: RDD[Edge[EdgeData]] = sc.parallelize(edgeArray)
var graph = Graph(vertexRDD, edgeRDD)

GraphX Code - Initialization

// "Surveying" MapReduce step
val eligiblePushesRDD = graph.aggregateMessages[SurveyMessage] (
 // Map: Send message if vertex has excess
 edgeContext => {

 // Make sure not to push from sink or source
 if (edgeContext.srcId != sinkId && edgeContext.srcId != sourceId) {
 // If a residual edge exists from source to destination
 if (edgeContext.attr._2 > edgeContext.attr._1) {
 // If source has an excess
 if (edgeContext.srcAttr._1 > 0) {
 // If source has height one greater than destination
 if (edgeContext.srcAttr._2 == (edgeContext.dstAttr._2 + 1)) {
 // Push is possible, send message to source containing push information
 val pushAmount = math.min(edgeContext.attr._2 - edgeContext.attr._1, edgeContext.srcAttr._1)
 edgeContext.sendToSrc((Map((edgeContext.dstId, true) -> pushAmount), edgeContext.dstAttr._2))
 } else {
 edgeContext.sendToSrc((Map(), edgeContext.dstAttr._2))
 }
 }
 }
 }

 (Repeated in other direction along the edge)

 },
 // Reduce: Concatenate into map of all possible pushes, keep track of relabel eligibility
 (a, b) => {
 (a._1 ++ b._1, math.min(a._2, b._2))
 }
)

GraphX Code - “Surveying” MapReduce

// "Surveying" MapReduce step
val eligiblePushesRDD = graph.aggregateMessages[SurveyMessage] (
 // Map: Send message if vertex has excess
 edgeContext => {

 // Make sure not to push from sink or source
 if (edgeContext.srcId != sinkId && edgeContext.srcId != sourceId) {
 // If a residual edge exists from source to destination
 if (edgeContext.attr._2 > edgeContext.attr._1) {
 // If source has an excess
 if (edgeContext.srcAttr._1 > 0) {
 // If source has height one greater than destination
 if (edgeContext.srcAttr._2 == (edgeContext.dstAttr._2 + 1)) {
 // Push is possible, send message to source containing push information
 val pushAmount = math.min(edgeContext.attr._2 - edgeContext.attr._1, edgeContext.srcAttr._1)
 edgeContext.sendToSrc((Map((edgeContext.dstId, true) -> pushAmount), edgeContext.dstAttr._2))
 } else {
 edgeContext.sendToSrc((Map(), edgeContext.dstAttr._2))
 }
 }
 }
 }

 (Repeated in other direction along the edge)

 },
 // Reduce: Concatenate into map of all possible pushes, keep track of relabel eligibility
 (a, b) => {
 (a._1 ++ b._1, math.min(a._2, b._2))
 }
)

GraphX Code - “Surveying” MapReduce

Map

Reduce

graph = graph.outerJoinVertices(eligiblePushesRDD) {
 (id: VertexId, data: VertexData, msg: Option[SurveyMessage]) => {
 // Store empty map if no messages
 if (msg.isEmpty) {
 (data._1, data._2, Map[(VertexId, Boolean), Int]())
 } else if (msg.get._2 >= data._2) {
 // Eligible for relabel
 (data._1, msg.get._2 + 1, Map[(VertexId, Boolean), Int]())
 } else {
 // Add pushes until no excess remains or pushes are exhausted
 var excess = data._1
 val selectedPushes = scala.collection.mutable.Map[(VertexId, Boolean), Int]()

 // Select pushes until flow is gone, break once no flow is remaining.
 breakable {
 msg.get._1.foreach(pushData => {
 val dstId = pushData._1._1
 val forwardPush = pushData._1._2
 val pushAmount = pushData._2
 if (excess > 0) {
 val selectedPushAmount = math.min(pushAmount, excess)
 excess -= selectedPushAmount
 selectedPushes((dstId, forwardPush)) = selectedPushAmount
 } else {
 break
 }
 })
 }

 (excess, data._2, selectedPushes.toMap)
 }
 }
}

GraphX Code - “Surveying” Vertex Program

graph = graph.outerJoinVertices(eligiblePushesRDD) {
 (id: VertexId, data: VertexData, msg: Option[SurveyMessage]) => {
 // Store empty map if no messages
 if (msg.isEmpty) {
 (data._1, data._2, Map[(VertexId, Boolean), Int]())
 } else if (msg.get._2 >= data._2) {
 // Eligible for relabel
 (data._1, msg.get._2 + 1, Map[(VertexId, Boolean), Int]())
 } else {
 // Add pushes until no excess remains or pushes are exhausted
 var excess = data._1
 val selectedPushes = scala.collection.mutable.Map[(VertexId, Boolean), Int]()

 // Select pushes until flow is gone, break once no flow is remaining.
 breakable {
 msg.get._1.foreach(pushData => {
 val dstId = pushData._1._1
 val forwardPush = pushData._1._2
 val pushAmount = pushData._2
 if (excess > 0) {
 val selectedPushAmount = math.min(pushAmount, excess)
 excess -= selectedPushAmount
 selectedPushes((dstId, forwardPush)) = selectedPushAmount
 } else {
 break
 }
 })
 }

 (excess, data._2, selectedPushes.toMap)
 }
 }
}

GraphX Code - “Surveying” Vertex Program

No messages

No pushes,
relabel

Possible pushes,
select based on

excess

val executedPushesRDD = graph.aggregateMessages[Int] (
 // Map: Send push information to vertices that received flow
 edgeContext => {

 // Check if destination vertex id is in the source's push map
 if (edgeContext.srcAttr._3.contains((edgeContext.dstId, true))) {
 val pushAmount: Int = edgeContext.srcAttr._3((edgeContext.dstId, true))
 edgeContext.sendToDst(pushAmount)
 }

 // Check if source vertex id is in the destinations's push map
 if (edgeContext.dstAttr._3.contains((edgeContext.srcId, false))) {
 val pushAmount: Int = edgeContext.dstAttr._3((edgeContext.srcId, false))
 edgeContext.sendToSrc(pushAmount)
 }

 },
 // Reduce: Combine all incoming flow into a single total
 (a, b) => {
 a + b
 }
)

GraphX Code - “Execution” MapReduce

val executedPushesRDD = graph.aggregateMessages[Int] (
 // Map: Send push information to vertices that received flow
 edgeContext => {

 // Check if destination vertex id is in the source's push map
 if (edgeContext.srcAttr._3.contains((edgeContext.dstId, true))) {
 val pushAmount: Int = edgeContext.srcAttr._3((edgeContext.dstId, true))
 edgeContext.sendToDst(pushAmount)
 }

 // Check if source vertex id is in the destinations's push map
 if (edgeContext.dstAttr._3.contains((edgeContext.srcId, false))) {
 val pushAmount: Int = edgeContext.dstAttr._3((edgeContext.srcId, false))
 edgeContext.sendToSrc(pushAmount)
 }

 },
 // Reduce: Combine all incoming flow into a single total
 (a, b) => {
 a + b
 }
)

GraphX Code - “Execution” MapReduce

Reduce

Map

// Update excess values
graph = graph.outerJoinVertices(executedPushesRDD) {
 (id: VertexId, data: VertexData, msg: Option[Int]) => {
 // Add pushed flow to vertex
 (data._1 + msg.getOrElse(0), data._2, data._3)
 }
}

GraphX Code - “Execution” Vertex Program

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

