
Optimization for Classical Machine Learning Problems on the GPU

Sören Laue1, 2, Mark Blacher1, Joachim Giesen1

1 Friedrich-Schiller-University Jena, Germany
2 Data Assessment Solutions GmbH

{soeren.laue, mark.blacher, joachim.giesen}@uni-jena.de

Abstract
Constrained optimization problems arise frequently in clas-
sical machine learning. There exist frameworks addressing
constrained optimization, for instance, CVXPY and GENO.
However, in contrast to deep learning frameworks, GPU sup-
port is limited. Here, we extend the GENO framework to
also solve constrained optimization problems on the GPU.
The framework allows the user to specify constrained opti-
mization problems in an easy-to-read modeling language. A
solver is then automatically generated from this specification.
When run on the GPU, the solver outperforms state-of-the-art
approaches like CVXPY combined with a GPU-accelerated
solver such as cuOSQP or SCS by a few orders of magnitude.

1 Introduction
Training classical machine learning models typically means
solving an optimization problem. Hence, the design and im-
plementation of solvers for training these models has been
and still is an active research topic. While the use of GPUs
is standard in training deep learning models, most solvers
for classical machine learning problems still target CPUs.
Easy-to-use deep learning frameworks like TensorFlow or
PyTorch can be used to solve unconstrained problems on the
GPU. However, many classical problems entail constrained
optimization problems. So far, deep learning frameworks do
not support constrained problems, not even problems with
simple box constraints, that is, bounds on the variables. Op-
timization frameworks for classical machine learning like
CVXPY (Agrawal et al. 2018; Diamond and Boyd 2016) can
handle constraints but typically address CPUs. Here, we ex-
tend the GENO framework (Laue, Mitterreiter, and Giesen
2019) for constrained optimization to also target GPUs.

Adding GPU support to an optimization framework for
classical machine learning problems is not straightfor-
ward. An efficient algorithmic framework could use the
limited-memory quasi-Newton method L-BFGS-B (Byrd
et al. 1995) that allows to solve large-scale optimization
problems with box constraints. More general constraints
can then be addressed by the augmented Lagrangian ap-
proach (Hestenes 1969; Powell 1969). However, porting the
L-BFGS-B method to the GPU does not provide any effi-
ciency gain for the following reason: In each iteration the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

method involves an inherently sequential Cauchy point com-
putation that determines the variables that will be modified
in the current iteration. The Cauchy point is computed by
minimizing a quadratic approximation over the gradient pro-
jection path, resulting in a large number of sequential scalar
computations, which means that all but one core on a mul-
ticore processor will be idle. This problem is aggrevated on
modern GPUs that feature a few orders of magnitude more
cores than a standard CPU, e.g., 2304 instead of 18.

Let us substantiate this issue by the following exam-
ple (see the appendix for details). On a non-negative least
squares problem, the L-BFGS-B algorithm needs 4.9 sec-
onds in total until convergence, where 0.6 seconds are spent
in the Cauchy point subroutine. When run on a modern
GPU, the same code needs 5.2 seconds in total while 4.6 sec-
onds are spent in the Cauchy point subroutine. It can be seen
that while all other parts of the L-BFGS-B algorithm can
be parallelized nicely on a GPU, the inherently sequential
Cauchy point computation does not and instead, dominates
the computation time on the GPU; as a result, the L-BFGS-B
method is not faster on a GPU than on a CPU, rendering the
benefits of the GPU moot.

Here, we present a modified L-BFGS-B method that runs
efficiently on the GPU, because it avoids the sequential
Cauchy point computation. For instance, on the same prob-
lem as above, it needs 0.8 seconds in total on the GPU. We
integrate an implementation of this method into the GENO
framework for constrained optimization. Experiments on
several classical machine learning problems show that our
implementation outperforms state-of-the-art approaches like
the combination of CVXPY with GPU-accelerated solvers
such as cuOSQP or SCS by several orders of magnitude.

Contributions. The contributions of this paper can be
summarized as follows:
1. We design a provably convergent L-BFGS-B algorithm
that can handle box constraints on the variables and runs ef-
ficiently on the GPU.
2. We combine our algorithm with an Augmented La-
grangian approach for solving constrained optimization
problems.
3. We integrate our approach into the GENO framework for
constrained optimization. It outperforms comparable state-
of-the-art approaches by several orders of magnitude.

1

ar
X

iv
:2

20
3.

16
34

0v
1

 [
cs

.L
G

]
 3

0
M

ar
 2

02
2

2 State of the Art
Optimization for classical machine learning is either ad-
dressed by problem specific solvers, often wrapped in a li-
brary or toolbox, or by frameworks that combine a modeling
language with a generic solver. The popular toolbox scikit-
learn (Pedregosa et al. 2011) does not provide GPU support
yet. Spark (Zaharia et al. 2016) has recently added GPU
support and hence, enabling GPU acceleration for some al-
gorithms from its machine learning toolbox MLlib (Meng
et al. 2016). The modeling language CVXPY (Agrawal et al.
2018; Diamond and Boyd 2016) can be paired with solvers
like cuOSQP (Schubiger, Banjac, and Lygeros 2020) or
SCS (O’Donoghue et al. 2016, 2019) that provide GPU sup-
port.

In contrast to deep learning, classical machine learning
can involve constraints, which poses extra algorithmic chal-
lenges. There are several algorithmic approaches for deal-
ing with constraints that could be adapted for the GPU. As
mentioned before, we have decided to adapt the L-BFGS-B
method (Byrd et al. 1995). Its original Fortran-code (Zhu
et al. 1997) is still the predominant solver in many tool-
boxes like scikit-learn or scipy for solving box-constrained
optimization problems. In the following, we briefly describe
algorithmic alternatives to the L-BFGS-B method and argue
why we decided against using them for our purposes.

Proximal methods, including alternating direction method
of multipliers (ADMM) have been used for solving
constrained and box-constrained optimization problems.
The literature on proximal methods is vast, see for in-
stance, (Boyd et al. 2011; Parikh and Boyd 2014) for an
overview. Prominent examples that relate to our work are
OSQP (Stellato et al. 2020) and SCS (O’Donoghue et al.
2016, 2019). Unfortunately, both methods require a large
number of iterations. One approach to mitigate this problem
is to keep the penalty parameter ρ, which ties the constraints
to the objective function fixed for each iteration. Then, the
Cholesky-decomposition of the KKT system needs to be
computed only once and can be reused in subsequent it-
erations, leading to a slow first iteration but very fast con-
secutive iterations. The OSQP solver has been shown to be
the fastest general purpose solver for quadratic optimization
problems (Stellato et al. 2020), beating commercial solvers
like Gurobi as well as Mosek. Gurobi as well as Mosek
do not provide GPU support and so far, there is no inten-
tion to do so in the near future (Glockner 2021). OSQP
does not support GPU acceleration either. However, it has
been ported to the GPU as cuOSQP (Schubiger, Banjac, and
Lygeros 2020), where it was shown to outperform its CPU
version by an order of magnitude.

The simplest way to solve box-constrained optimiza-
tion problems is probably the projected gradient descent
method (Nesterov 2004). However, it is as slow as gradi-
ent descent and not applicable to practical problems. Hence,
there have been a number of methods proposed that try to
combine the projection approach with better search direc-
tions. For instance, (van den Berg 2020) applies L-BFGS
updates only to the currently active face. If faces switch be-
tween iterations, which happens in almost all iterations, it
falls back to standard spectral gradient descent. A similar

approach is the non-monotone spectral projected gradient
descent approach as described in (Schmidt, Kim, and Sra
2011). It also performs backtracking along the projection
arc and cannot be parallelized efficiently. Another variant
solves a sub-problem in each iteration that is very expen-
sive and hence, only useful when the cost of computing the
function value and gradient of the original problem is very
expensive (Schmidt et al. 2009), which is typically not the
case for standard machine learning problems. Another ap-
proach for solving box-constrained optimization problems
has been described in (Kim, Sra, and Dhillon 2010). How-
ever, it is restricted to strongly convex problems. For small
convex problems, a projected Newton method has been de-
scribed in (Bertsekas 1982).

Nesterov acceleration (Nesterov 1983) has also been ap-
plied to proximal methods (Beck and Teboulle 2009; Li
and Lin 2015). However, similar to Nesterov’s optimal gra-
dient descent algorithm (Nesterov 1983), one needs sev-
eral Lipschitz constants of the objective function, which are
usually not known. Quasi-Newton methods do not need to
know such parameters and have been shown to perform
equally well or even better. Convergence rates have been ob-
tained for quasi-Newton methods on special instances, e.g.,
quadratic functions with unbounded domain. Recently, im-
proved convergence rates have been proved in (Rodomanov
and Nesterov 2021) for the unbounded case.

3 Algorithm
Here, we present our extension of the L-BFGS algorithm
for minimizing a differentiable function f : Rn → R, which
can additionally handle box constraints on the variables, i.e.,
l ≤ x ≤ u, l, u ∈ Rn ∪ {±∞}, and which runs efficiently
on the GPU.

Notation. A sequence of scalars or vectors is denoted by
upper indices, e.g., x1, . . . , xk. The projection of a vector
x ∈ Rn to the coordinate set S ⊆ {1, . . . n} =: [n] is de-
noted as x[S]. If S is a singelton {i}, then x[S] is just the
i-th coordinate xi of x. Similarly, the projection of a square
matrix B onto the rows and columns in an index set S is
denoted by B[S, S]. Finally, the Euclidean norm of x is de-
noted by ‖x‖, and the corresponding scalar product between
vectors u and v is denoted as 〈u, v〉.

Like the original L-BFGS-B algorithm, our extension
runs in iterations until a convergence criterion is met. Like-
wise, it distinguishes between fixed and free variables in
each iteration, i.e., variables that are fixed at their boundaries
and variables that are optimized in the current iteration. In
contrast to the original L-BFGS-B algorithm, we can avoid
the inherently sequential Cauchy point computation by de-
termining the fixed and free variables directly. Given ε > 0,
we compute in iteration k the index set (working set)

Sk = [n] \
({
i | (xk)i ≤ li + ε and ∇f(xk)i ≥ 0

}
∪
{
i | (xk)i ≥ ui − ε and∇f(xk)i ≤ 0

}) (1)

of free variables. Here, {i | (xk)i ≤ li + ε and ∇f(xk)i ≥
0} holds the indices of optimization variables that, at iter-
ation k, are within an ε-interval of the lower bound. Anal-
ogously, {i | (xk)i ≥ ui − ε and∇f(xk)i ≤ 0} holds all

2

Algorithm 1: GPU-efficient L-BFGS-B Method

Input: initial iterate x0 with l ≤ x0 ≤ u
1: Initialization: set k ← 0
2: repeat
3: compute ∇f(xk) and set Sk of free variables (Eq. 1)
4: solve −∇f(xk)[Sk] = Bk[Sk, Sk]dk[Sk] using

L-BFGS modified two-loop algorithm, see appendix
5: set dk[S̄k] = 0
6: pk = projectDirection(xk,∇f(xk), dk)
7: xk+1 = xk+αkpk using line search with appropriate

upper bound on αk
8: yk = ∇f(xk+1)−∇f(xk) and sk = xk+1 − xk
9: store new curvature pair (yk, sk)

10: set k ← k + 1
11: until converged

Algorithm 2: projectDirection(xk,∇f(xk), dk)

1: compute zk = xk + dk and project zk onto feasible
region

2: compute pk = zk − xk
3: if 〈pk,∇f(xk)〉 ≤ −ε‖pk‖2 and ‖pk‖2 ≥ ε then
4: return pk
5: else
6: set pk = dk

7: set (pk)i = 0 ∀i with (dk)i < 0 and (xk)i ≤ li + ε
8: set (pk)i = 0 ∀i with (dk)i > 0 and (xk)i ≥ ui − ε
9: return pk

10: end if

indices, where the optimization variable is close to the upper
bound. The complement of Sk, i.e., the index set of all non-
free (fixed) variables is denoted by S̄k. Algorithm 1 com-
putes the quasi-Newton search direction dk[Sk] only on the
free variables (Line 4). It then projects this direction onto
the feasible set using Algorithm 2. If it is a feasible descent
direction, it takes a step into this direction. Otherwise, it
takes a step into the original quasi-Newton direction until
it hits the boundary of the feasible region. While the origi-
nal L-BFGS-B algorithm uses a line search with quadratic
and cubic interpolation to satisfy the strong Wolfe condi-
tions, we observed that this does not provide any benefit
for optimization problems from machine learning. Hence,
our implementation uses a simple backtracking line search
to satisfy the Armijo condition (Nocedal and Wright 1999).
Even when the function is convex and satisfies the curvature
condition for all variables, it does not necessarily satisfy the
curvature condition for the set of free variables with indices
in Sk. Hence, satisfying the strong Wolfe conditions is not
necessary and instead the curvature condition is checked for
the current set of free variables in the modified two-loop Al-
gorithm 3 (see the appendix). The following theorem asserts
that our algorithm converges to a stationary point.

Theorem 1. Let f be a differentiable function with an L-
Lipschitz continuous gradient. If f is bounded from below,
then Algorithm 1 converges to a feasible stationary point.

Proof. We have for any differentiable function with L-
Lipschitz continuous gradient that

f(x+ αp) ≤ f(x) + 〈∇f(x), αp〉+
L

2
‖αp‖2

see, e.g., (Nesterov 2004). For computing the search direc-
tion pk, we distinguish two cases in Algorithm 2. In the first
case, we have

〈pk,∇f(xk)〉 ≤ −ε‖pk‖2 and ‖pk‖2 ≥ ε

(Algorithm 2, Line 3). Hence, we have

f(xk+1) = f(xk + αkpk)

≤ f(xk) + αk〈∇f(xk), pk〉+
L

2
‖αkpk‖2

≤ f(xk)− αkε‖pk‖2 + (αk)2
L

2
‖pk‖2

If we set αk = ε
L , we get

f(xk+1) ≤ f(xk)− ε2

2L
‖pk‖2 ≤ f(xk)− ε3

2L
.

Hence, the objective function reduces at least by a positive
constant that is bounded away from 0 in each iteration.

In the second case, we have the following. For a function
f with L-Lipschitz continuous gradient and curvature pairs
that satisfy the curvature condition 〈yk, sk〉 ≥ ε‖yk‖2, the
smallest and largest eigenvalue of the Hessian approxima-
tion Bk can, in general, be lower and upper bounded by two
constants c and C, see e.g., (Mokhtari and Ribeiro 2015).
Since we require this curvature condition to hold only for
the index set Sk that is active in iteration k (see Algorithm 3
in the appendix), we can lower and upper bound the eigen-
values of the submatrix Bk[Sk, Sk] of the Hessian approxi-
mation by 0 < c and C < ∞. The quasi-Newton direction
dk is computed by solving the equation

−∇f(xk)[Sk] = Bk[Sk, Sk]dk[Sk].

Multiplying both sides of this equation by
(
dk[Sk]

)>
gives

−〈∇f(xk)[Sk], dk[Sk]〉 =
(
dk[Sk]

)>
Bk[Sk, Sk]dk[Sk]

≥ c‖dk[Sk]‖2.

Since dk[S̄k] = 0, this inequality can further be simplified
to

〈∇f(xk), dk〉 ≤ −c‖dk‖2. (2)

Since we are in the second case (Algorithm 2, Lines 6–8)
we know that for all i ∈ Sk, if dki < 0 and xi ≤ li + ε
it must hold that ∇f(xk)i < 0, otherwise i /∈ Sk. In this
case we have dki · ∇f(xk)i > 0 and at the same time we set
pki = 0. Hence, we have dki · ∇f(xk)i > pki · ∇f(xk)i.
The case with dki > 0 and xi ≥ ui + ε follows analo-
gously. Hence, summing over all indices i, we can conclude
〈∇f(xk), dk〉 ≥ 〈∇f(xk), pk〉. Combining this inequality
with Equation (2), we get−c‖dk‖2 ≥ 〈∇f(xk), pk〉. Hence,

3

we finally get

f(xk+1) = f(xk + αkpk)

≤ f(xk) + αk〈∇f(xk), pk〉+
L

2
‖αkpk‖2

≤ f(xk)− αkc‖dk‖2 + (αk)2
L

2
‖dk‖2,

because ‖pk‖ ≤ ‖dk‖. Since all xki with dki 6= 0 are at
least ε away from the boundary, we can pick αk at least
mini

ε
|dki |

= ε
‖dk‖∞ . If c

L ≤
ε

‖dk‖∞ , we can set αk = c
L

and obtain the same result as in the first case. Otherwise, we
set αk = ε

‖dk‖∞ and obtain

f(xk+1) = f(xk + αkpk)

≤ f(xk)− ε

‖dk‖∞
c‖dk‖2 +

(
ε

‖dk‖∞

)2
L

2
‖dk‖2

≤ f(xk)− ε

‖dk‖∞
c‖dk‖2 +

ε

‖dk‖∞
c

L

L

2
‖dk‖2

= f(xk)− ε

‖dk‖∞
c

2
‖dk‖2

≤ f(xk)− εc

2
‖dk‖,

where the last line follows from ‖dk‖∞ ≤ ‖dk‖. It re-
mains to lower bound the Euclidean norm of dk. We have
−∇f(xk)[Sk] = Bk[Sk, Sk]dk[Sk]. Taking the squared
norm on both sides, we have∥∥∇f(xk)[Sk]

∥∥2 = ‖Bk[Sk, Sk]dk[Sk]‖2

=
(
dk[Sk]

)> (
Bk[Sk, Sk]

)>
Bk[Sk, Sk]dk[Sk]

≤ C2‖dk[Sk]‖2 = C2‖dk‖2

since the eigenvalue of the submatrix Bk[Sk, Sk] can be up-
per bounded by the constant C. As long as Algorithm 1 has
not converged, we know for the norm of the projected gradi-
ent that ‖∇f(xk)[Sk]‖ ≥ ε. Thus, we finally have

f(xk+1) ≤ f(xk)− εc

2
‖dk‖ ≤ f(xk)− ε2c

2C
.

Hence, also in the second case, the function value decreases
by a positive constant in each iteration.

Thus, we make progress in each iteration by at least a
small positive constant. Since f is bounded from below, the
algorithm will converge to a stationary point. Finally, note
that x0 is feasible. By construction and induction over k it
follows that xk is feasible for all k.

Corollary 2. If f satisfies the assumptions of Theorem 1 and
is convex, then Algorithm 1 converges to a global optimal
point.

Algorithm 1 uses the projectDirection subroutine
(Algorithm 2). It becomes apparent from the proof that one
can skip the projection branch (Line 3) and instead always
follow the modified quasi-Newton direction and still obtain
convergence guarantees. However, here, we use a projection
as it was similarly suggested in (Morales and Nocedal 2011)
which often reduces the number of iterations in the original
L-BFGS-B algorithm (Byrd et al. 1995).

4 Complete Framework
In the previous section we have described our approach
for solving optimization problems with box constraints that
can be efficiently run on a GPU. We extend this approach
to also handle arbitrary constraints by using an augmented
Lagrangian approach. This extension allows to solve con-
strained optimization problems of the form

min
x
f(x) s. t. h(x) = 0, g(x) ≤ 0, and l ≤ x ≤ u, (3)

where x ∈ Rn, f : Rn → R, h : Rn → Rm, g : Rn → Rp
are differentiable functions, and the equality and inequality
constraints are understood component-wise.

The augmented Lagrangian of Problem (5) is the follow-
ing function

L(x, λ, µ, ρ) = f(x) +
ρ

2
‖h(x) + λ/ρ‖2

+
ρ

2

∥∥(g(x) + µ/ρ)+
∥∥2 , (4)

where λ ∈ Rm and µ ∈ Rp≥0 are Lagrange multipliers,
ρ > 0 is a constant, and (v)+ denotes max{v, 0}. The La-
grange multipliers are also referred to as dual variables.

The augmented Lagrangian Algorithm (see Algorithm 4
in the appendix) runs in iterations. In each iteration it min-
imizes the augmented Lagrangian function, Eq. (6), subject
to the box constraints using Algorithm 1 and updates the
Lagrange multipliers λ and µ. If Problem (5) is convex, the
augmented Lagrangian algorithm returns a global optimal
solution. Otherwise, it returns a local optimum (Bertsekas
1999).
We integrated our solver
with the modeling framework
GENO presented in (Laue,
Mitterreiter, and Giesen
2019) that allows to specify
the optimization problem
in a natural, easy-to-read
modeling language, see for
instance the example to the
right. Based on the matrix and
tensor calculus methods pre-
sented in (Laue, Mitterreiter,
and Giesen 2018, 2020), the

parameters
Matrix A
Vector b

variables
Vector x

min
norm2(A*x-b)

st
sum(x) == 1
x >= 0

framework then generates Python code that computes func-
tion values and gradients of the objective function and the
constraints. The code maps all linear expressions to NumPy
statements. Since any NumPy-compatible library can be
used within the generated code this allows us to replace
NumPy by CuPy to run the solvers on the GPU. We ex-
tended the modeling language and the Python code gen-
erator to our needs here. An interface can be found at
https://www.geno-project.org.

Our framework and solvers are solely written in
Python, which makes them easily portable as long
as NumPy-compatible interfaces are available. Here,
we use the CuPy library (Okuta et al. 2017) in or-
der to run the generated solvers on the GPU. The
code for the solver is available the github repository
https://www.github.com/slaue/genosolver.

4

https://www.geno-project.org
https://www.github.com/slaue/genosolver

10000 27500 45000
n

10−1

100

101

t i
n

se
c

logistic constraint, adult

Fairlearn
this paper GPU

10000 27500 45000
n

10−1

100

101

102

103

t i
n

se
c

linear constraint, adult

SCS GPU
this paper GPU

50000 150000 250000
n

100

101

102

t i
n

se
c

logistic constraint, census

Fairlearn
this paper GPU

50000 150000 250000
n

100

101

102

103

t i
n

se
c

linear constraint, census

SCS GPU
this paper GPU

Figure 1: Running times for the logistic regression problem with fairness constraints. The two plots on the left show the running
times for the adult data set and the two plots on the right for the census data set. For each data set, one plot shows the running
times when the logistic loss is used in the fairness constraint and one plot when the linear loss is used.

5 Experiments

The purpose of the following experiments is to show the effi-
ciency of our approach on a set of different classical, that is,
non-deep, machine learning problems. For that purpose, we
selected a number of well-known classical problems that are
given as constrained optimization problems, where the op-
timization variables are either vectors or matrices. All these
problems can also be solved on CPUs. In the supplemental
material, we provide results that show that this GPU version
of the GENO framework significantly outperforms the pre-
vious, efficient multi-core CPU version of the GENO frame-
work (Laue, Mitterreiter, and Giesen 2019). Here, we com-
pare our framework on the GPU to CVXPY paired with the
cuOSQP and SCS solvers. CVXPY has a similar easy-to-use
interface and also allows to solve general constrained opti-
mization problems. Note however, that CVXPY is restricted
to convex problems and cuOSQP to convex quadratic prob-
lems. It was shown that cuOSQP outperforms its CPU ver-
sion OSQP by about a factor of ten (Schubiger, Banjac, and
Lygeros 2020). Our experiments confirm this observation.

To the best of our knowledge, pairing CVXPY with
cuOSQP or SCS are the only two approaches comparable
to ours. Another framework that has been released recently
that can solve convex, constrained optimization problems
on the GPU is cvxpylayers (Agrawal et al. 2019). How-
ever, its focus is on making the solution of the optimiza-
tion problem differentiable with respect to the input param-
eters for which it needs to solve a slightly larger problem.
Internally, it uses CVXPY combined with the SCS solver in
GPU-mode. Hence, this framework is slower than the origi-
nal combination of CVXPY and SCS.

In all our experiments we made sure that the solvers that
were generated by our framework always computed a so-
lution that was better than the solution computed by the
competitors in terms of objective function value and con-
straint satisfaction. All experiments were run on a machine
equipped with an Intel i9-10980XE 18-core processor run-
ning Ubuntu 20.04.1 LTS with 128 GB of RAM, and a
Quadro RTX 4000 GPU that has 8 GB of GDDR6 SDRAM
and 2304 CUDA cores. Our framework took always less
than 10 milliseconds for generating a solver from its mathe-
matical description.

5.1 Fairness in Machine Learning
In classical machine learning approaches, one usually min-
imizes a regularized empirical risk in order to make correct
predictions on unseen data. However, due to various causes,
e.g., bias in the data, it can happen that some group of the
input data is favored over another group. Such favors can be
mitigated by the introduction of constraints that explicitly
prevent them. This is the goal of fairness in machine learn-
ing which has gained considerable attention over the last few
years. Here, we consider fairness for binary classification.

There are a number of different fairness definitions (Agar-
wal et al. 2018; Barocas, Hardt, and Narayanan 2019;
Donini et al. 2018), see the Fairlearn project (Bird et al.
2020, 2021) for an introduction and overview. Here, we fol-
low the exposition and formulation in (Donini et al. 2018).
Let D = {(x1, y1), . . . , (xm, ym)} be a labeled data set and
A and B be two groups, i.e., subsets of the data set. Then,
one seeks to find a classifier that is statistically indepen-
dent of the group membership A and B. Depending on the
type of groups A and B, respectively, different types of fair-
ness constraints are obtained. Since statistical independence
is defined with respect to the true data distribution, which
is typically unknown, one replaces the expectation over the
true distribution by the empirical risk. Hence, one solves the
following constrained optimization problem

min
f

L̂D(f) + λ · r(f) s. t. L̂A(f) = L̂B(f),

where f : X → R is a function or model, l : R × Y → R
is a loss function, L̂D(f) = 1

|D|
∑

(xi,yi)∈D l(f(xi), yi) is
the empirical risk of f over the data set D, and r(·) is the
regularizer.

Ideally, one would like to use the same loss function for
the risk minimization L̂D(f) as in the fairness constraint
L̂A(f) = L̂B(f). The logistic loss is often used for classi-
fication. However, when the logistic loss is used in the fair-
ness constraint, the problem becomes non-convex, even for
a linear classifier. Using our framework, we can still solve
this problem. However, we cannot compare its performance
to cuOSQP or SCS since they only allow to solve convex
problems. Thus, we compare it to the exponentiated gradi-
ent approach (Agarwal et al. 2018) paired with the Liblinear
solver (Fan et al. 2008). Note, that this approach does not

5

5000 10000 15000 20000
n

10−2

10−1

100

101

102

103
t i

n
se

c
dual SVM (a1a – a8a)

cuOSQP
SCS GPU
this paper GPU

0 4000 8000 12000
n

10−1

100

101

102

t i
n

se
c

NNLS (data set 1)

cuOSQP
SCS GPU
this paper GPU

0 10000 20000 30000 40000
n

10−2

10−1

100

101

102

103

t i
n

se
c

NNLS (data set 2)

cuOSQP
SCS GPU
this paper GPU

Figure 2: The plot on the left shows the running times for the SVM problem on the adult data set. The plot in the middle and
the plot on the right show the running times for the non-negative least squares problem when run on the first and second data
set, respectively.

Solver Data sets

cod-rna covtype ijcnn1 mushrooms phishing a9a w8a

this paper GPU 0.6 0.1 1.8 0.1 1.6 0.3 1.4
cuOSQP 55.7 failed 206.5 22.0 163.5 32.8 36.1
SCS GPU 2342.0 31.3 N/A 7994.9 N/A 1094.0 1227.1

Table 1: Running times in seconds for the dual SVM problem. All data sets were subsampled to 10, 000 data points due time
and memory requirements of the cuOSQP and SCS solver. N/A indicates that the solver did not finish within 10, 000 seconds.

run on the GPU. However, to provide a better global picture,
we still include it here. Only when the loss function in the
fairness constraint is linear as in (Donini et al. 2018; Zemel
et al. 2013), the problem becomes convex. We also consider
this case and compare it to SCS. Note, the problem cannot
be solved by cuOSQP since it contains exponential cones.

We used the same setup, the same data sets, and the same
preprocessing as described in the Fairlearn package (Bird
et al. 2020). We used the adult data set (48, 842 data points
with 120 features) and the census-income data set (299, 285
data points with 400 features) each with ‘female’ and ‘male’
as the two subgroups. For each experiment, we sampled m
data points from the full data set. Figure 4 shows the run-
ning times. Our framework provides similar results in terms
of quality as the exponentiated gradient approach, when the
logistic loss is used in the fairness constraint, and it is orders
of magnitude faster than SCS on the GPU, when the linear
loss is used in the fairness constraint.

5.2 Dual SVM
Support vector machines (SVMs) are a classical yet still rel-
evant classification method. When combined with a kernel,
they are usually solved in the dual problem formulation,
which reads as

min
a

1

2
(a� y)>K(a� y)−‖a‖1 s. t. y>a = 0, 0 ≤ a ≤ c,

where K ∈ Rn×n is a positive semidefinite kernel matrix,
y ∈ {−1,+1}n are the corresponding binary labels, a ∈ Rn
are the dual variables, � is the element-wise multiplication,
and c ∈ R+ is the regularization parameter.

We used all data sets from the LibSVM data sets web-
site (Lin and Fan 2021) that had more than 8000 data points
with fewer than 1000 features such that a kernel approach
is reasonable. We applied a standard Gaussian kernel with
bandwidth parameter γ = 1 and regularization parameter
c = 1. Table ?? shows the running times for the data sets
when subsampled to 10, 000 data points. Figure 2 shows
the running times for an increasing number of data points
based on the original subsampled adult data set (Lin and
Fan 2021). It can be seen that our approach outperforms
cuOSQP as well as SCS by several orders of magnitude. The
cuOSQP solver ran out of memory for problems with more
than 10, 000 data points. While there is a specialized solver
for solving these SVM problems on the GPU (Wen et al.
2018), the focus here is on general purpose frameworks.

5.3 Non-negative Least Squares
Non-negative least squares is an extension of the least
squares regression problem that requires the output to be
non-negative. See (Slawski 2013) for an overview on the
non-negative least squares problem. It is given as the fol-
lowing optimization problem

min
x
‖Ax− b‖22 s. t. x ≥ 0,

where A ∈ Rm×n is the design matrix and b ∈ Rm the re-
sponse vector. We ran two sets of experiments, similarly to
the comparisons in (Slawski 2013), where it was shown that
different algorithms behave quite differently on these prob-
lems. For experiment (i), we generated a random data matrix

6

500 1000 1500 2000
n

10−1

100

101

102

103

t i
n

se
c

joint prob. (entropy reg., data set 1)

SCS GPU
this paper GPU

0 500 1000 1500 2000 2500 3000
n

10−1

100

101

102

103

t i
n

se
c

joint prob. (gaussian reg., data set 1)

cuOSQP
SCS GPU
this paper GPU

Figure 3: Running times for computing the joint probability distribution from two marginal distributions. The left plot shows
the running times when the entropy prior is used and the plot in the middle when a Gaussian prior is used. The right figure
visualizes the probabilities.

A ∈ R2000×6000, where the entries of A were sampled uni-
formly at random from the unit interval and a sparse vector
x ∈ R6000 with non-zero entries sampled from the standard
Gaussian distribution and a sparsity of 0.01. The response
variables were then generated as y =

√
0.003·Ax+0.003·z,

where z ∼ N (0, 1). For experiment (ii), A ∈ R6000×3000

was drawn from a Gaussian distribution and x had a spar-
sity of 0.1. The response variable was generated as y =√

1/6000 · Ax + 0.003 · z, where z ∼ N (0, 1). The dif-
ferences between the two experiments are: (1) The Gram
matrix A>A is singular in experiment (i) and regular in ex-
periment (ii), (2) the design matrix A has isotropic rows in
experiment (ii) but not in experiment (i), and (3) x is sig-
nificantly sparser in (i) than in (ii). To evaluate the runtime
behavior for increasing problem size, we scaled the prob-
lem sizes to A ∈ R2000t×6000t in the first experiment and
to A ∈ R6000t×3000t in the second experiment for a pa-
rameter t ∈ [0, 6]. For each problem instance we performed
ten runs and report the average running time along with the
standard deviation in Figure 2. We stopped including SCS
and cuOSQP into the experiments once their running time
exceeded 1000 seconds. It can be seen that SCS is faster
than cuOSQP on the first set of experiments and slower than
cuOSQP on the second set. However, our approach outper-
forms SCS and cuOSQP by several orders of magnitude in
both sets of experiments.

5.4 Joint Probability Distribution

Given two discrete probability distributions u ∈ Rm and
v ∈ Rn, we are interested in their joint probability distribu-
tion P ∈ Rm×n. This problem has been studied intensively
before, see, e.g., (Cuturi 2013; Frogner and Poggio 2019;
Muzellec et al. 2017). With additional knowledge, it can be
reduced to a regularized optimal transport problem. Many
different regularizers have been used, for instance, an en-
tropy, a Gaussian, or more generally, a Tsallis regularizer.
The corresponding optimization problem is the following

constrained optimization problem over positive matrices

min
P
〈M,P 〉+λ·r(P) s. t. P ·1 = u, P>·1 = v, 0 ≤ P,

where M ∈ Rm×n is the cost matrix, r(.) is the regular-
izer, 1 is the all-ones vector, and λ ∈ R+ is the regulariza-
tion parameter. In our experiments we used the entropy and
the Gaussian regularizer that are both special cases of the
Tsallis regularizer. In the special case that the regularizer
is the entropy, m = n, and the cost matrix M is a metric,
(Cuturi 2013) showed that the problem can be solved using
Sinkhorn’s algorithm (Knopp and Sinkhorn 1967). Similar
results are known for other special cases (Janati et al. 2020).
However, in general Sinkhorn’s algorithm cannot be used as
it is the case in the present experiments, since the cost matrix
is not a metric.

Here, we used synthetic data sets since the real-world data
sets that are usually used for this task are very small, typi-
cally m,n ≤ 20. We created two sets of synthetic data sets.
For the first set of data sets, we let a Gaussian and a mixture
of two Gaussians be the marginals, see Figure 7. Then, we
discretized both distributions to obtain the marginal vectors
u and v. In this case, we setm = n. Hence, when n = 1000,
the corresponding optimization problem has 106 optimiza-
tion variables with lower bound constraints and 2000 equal-
ity constraints. The cost matrix M was fixed to be the dis-
cretized version uu> of a two-dimensional Gaussian, and
the regularization parameter was set as λ = 1

2 . We ran two
sets of experiments on this data set, one where r(.) is the
entropy regularizer and another one with the Gaussian reg-
ularizer. Figure 7 shows the running times for both experi-
ments for varying problem sizes. It can be seen that our ap-
proach outperforms cuOSQP and SCS by several orders of
magnitude. The cuOSQP solver ran out of memory already
on very small problems. The second data set was created as
in (Frogner and Poggio 2019). On this data set, the speedup
over cuOSQP and SCS is even more pronounced. Detailed
results can be found in the appendix.

7

6 Conclusion
We presented an approach for solving constrained optimiza-
tion problems on the GPU efficiently and included this ap-
proach into the GENO framework. The framework allows
to specify a constrained optimization problem in an easy-
to-read modeling language and then generates solvers in
portable Python code that outperform competing state-of-
the-art approaches on the GPU by several orders of magni-
tude. Using GPUs also for classical, that is, non-deep, ma-
chine learning becomes increasingly important as hardware
vendors started to combine CPUs and GPUs on a single chip
like Apple’s M1 chip.

Acknowledgments
This work was supported by the German Science Founda-
tion (DFG) grant (GI-711/5-1) within the priority program
(SPP 1736) Algorithms for Big Data and by the Carl Zeiss
Foundation within the project A Virtual Werkstatt for Digiti-
zation in the Sciences.

References
Agarwal, A.; Beygelzimer, A.; Dudı́k, M.; Langford, J.; and
Wallach, H. M. 2018. A Reductions Approach to Fair Classi-
fication. In International Conference on Machine Learning,
(ICML), 60–69.
Agrawal, A.; Amos, B.; Barratt, S. T.; Boyd, S. P.; Diamond,
S.; and Kolter, J. Z. 2019. Differentiable Convex Optimiza-
tion Layers. In Advances in Neural Information Processing
Systems (NeurIPS), 9558–9570.
Agrawal, A.; Verschueren, R.; Diamond, S.; and Boyd, S.
2018. A rewriting system for convex optimization problems.
Journal of Control and Decision, 5(1): 42–60.
Barocas, S.; Hardt, M.; and Narayanan, A. 2019. Fairness
and Machine Learning. http://www.fairmlbook.org. Ac-
cessed: 2022-02-22.
Beck, A.; and Teboulle, M. 2009. A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems. SIAM
J. Imaging Sci., 2(1): 183–202.
Bertsekas, D. P. 1982. Projected Newton Methods for Opti-
mization Problems with Simple Constraints. SIAM Journal
on Control and Optimization, 20(2): 221–246.
Bertsekas, D. P. 1999. Nonlinear Programming. Belmont,
MA: Athena Scientific.
Bird, S.; Dudı́k, M.; Edgar, R.; Horn, B.; Lutz, R.; Milan, V.;
Sameki, M.; Wallach, H.; and Walker, K. 2020. Fairlearn: A
toolkit for assessing and improving fairness in AI. Technical
Report MSR-TR-2020-32, Microsoft.
Bird, S.; Dudı́k, M.; Edgar, R.; Horn, B.; Lutz, R.; Milan, V.;
Sameki, M.; Wallach, H.; and Walker, K. 2021. Fairlearn –
Improve fairness of AI systems. https://www.fairlearn.org.
Accessed: 2022-02-22.
Birgin, E. G.; and Martı́nez, J. M. 2014. Practical aug-
mented Lagrangian methods for constrained optimization,
volume 10 of Fundamentals of Algorithms. SIAM.

Boyd, S. P.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein,
J. 2011. Distributed Optimization and Statistical Learning
via the Alternating Direction Method of Multipliers. Foun-
dations and Trends in Machine Learning, 3(1): 1–122.
Byrd, R. H.; Lu, P.; Nocedal, J.; and Zhu, C. 1995. A Lim-
ited Memory Algorithm for Bound Constrained Optimiza-
tion. SIAM J. Scientific Computing, 16(5): 1190–1208.
Cuturi, M. 2013. Sinkhorn Distances: Lightspeed Computa-
tion of Optimal Transport. In Advances in Neural Informa-
tion Processing Systems (NIPS), 2292–2300.
Diamond, S.; and Boyd, S. 2016. CVXPY: A Python-
embedded modeling language for convex optimization.
Journal of Machine Learning Research, 17(83): 1–5.
Donini, M.; Oneto, L.; Ben-David, S.; Shawe-Taylor, J.; and
Pontil, M. 2018. Empirical Risk Minimization Under Fair-
ness Constraints. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2796–2806.
Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and
Lin, C.-J. 2008. LIBLINEAR: A Library for Large Linear
Classification. Journal of Machine Learning Research, 9:
1871–1874.
Frogner, C.; and Poggio, T. A. 2019. Fast and Flexible Infer-
ence of Joint Distributions from their Marginals. In Interna-
tional Conference on Machine Learning, ICML, 2002–2011.
Funke, S.; Laue, S.; and Storandt, S. 2016. Deducing in-
dividual driving preferences for user-aware navigation. In
International Conference on Advances in Geographic Infor-
mation Systems, 14:1–14:9.
Funke, S.; Laue, S.; and Storandt, S. 2017. Personal Routes
with High-Dimensional Costs and Dynamic Approximation
Guarantees. In International Symposium on Experimental
Algorithms, (SEA), 18:1–18:13.
Giesen, J.; and Laue, S. 2016. Distributed Convex Optimiza-
tion with Many Convex Constraints. arXiv:1610.02967.
Glockner, G. 2021. Does Gurobi support GPUs? https:
//support.gurobi.com/hc/en-us/articles/360012237852-
Does-Gurobi-support-GPUs. Accessed: 2021-04-26.
Hestenes, M. R. 1969. Multiplier and gradient methods.
Journal of Optimization Theory and Applications, 4(5):
303–320.
Janati, H.; Muzellec, B.; Peyré, G.; and Cuturi, M. 2020.
Entropic Optimal Transport between Unbalanced Gaussian
Measures has a Closed Form. In Advances in Neural Infor-
mation Processing Systems (NeurIPS).
Kim, D.; Sra, S.; and Dhillon, I. S. 2010. Tackling
Box-Constrained Optimization via a New Projected Quasi-
Newton Approach. SIAM J. Sci. Comput., 32(6): 3548–
3563.
Knopp, P.; and Sinkhorn, R. 1967. Concerning nonnegative
matrices and doubly stochastic matrices. Pacific Journal of
Mathematics, 21(2): 343 – 348.
Laue, S.; Mitterreiter, M.; and Giesen, J. 2018. Comput-
ing Higher Order Derivatives of Matrix and Tensor Expres-
sions. In Advances in Neural Information Processing Sys-
tems (NeurIPS).

8

http://www.fairmlbook.org
https://www.fairlearn.org
https://support.gurobi.com/hc/en-us/articles/360012237852-Does-Gurobi-support-GPUs
https://support.gurobi.com/hc/en-us/articles/360012237852-Does-Gurobi-support-GPUs
https://support.gurobi.com/hc/en-us/articles/360012237852-Does-Gurobi-support-GPUs

Laue, S.; Mitterreiter, M.; and Giesen, J. 2019. GENO
– GENeric Optimization for Classical Machine Learning.
In Advances in Neural Information Processing Systems
(NeurIPS).
Laue, S.; Mitterreiter, M.; and Giesen, J. 2020. A Simple
and Efficient Tensor Calculus. In Conference on Artificial
Intelligence (AAAI), 4527–4534.
Li, H.; and Lin, Z. 2015. Accelerated Proximal Gradient
Methods for Nonconvex Programming. In Advances in Neu-
ral Information Processing Systems (NIPS), 379–387.
Lin, C.-J.; and Fan, R.-E. 2021. LIBSVM data sets. https:
//www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets. Ac-
cessed: 2022-02-22.
Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman,
S.; Liu, D.; Freeman, J.; Tsai, D.; Amde, M.; Owen, S.; Xin,
D.; Xin, R.; Franklin, M. J.; Zadeh, R.; Zaharia, M.; and
Talwalkar, A. 2016. MLlib: Machine Learning in Apache
Spark. Journal of Machine Learning Research, 17(1).
Mokhtari, A.; and Ribeiro, A. 2015. Global convergence of
online limited memory BFGS. J. Mach. Learn. Res., 16:
3151–3181.
Morales, J. L.; and Nocedal, J. 2011. Remark on ”Algorithm
778: L-BFGS-B: Fortran subroutines for large-scale bound
constrained optimization”. ACM Trans. Math. Softw., 38(1):
7:1–7:4.
Muzellec, B.; Nock, R.; Patrini, G.; and Nielsen, F. 2017.
Tsallis Regularized Optimal Transport and Ecological Infer-
ence. In AAAI Conference on Artificial Intelligence (AAAI),
2387–2393.
Nesterov, Y. 1983. A method for unconstrained convex min-
imization problem with the rate of convergence O(1/k2).
Doklady AN USSR (translated as Soviet Math. Docl.), 269.
Nesterov, Y. E. 2004. Introductory Lectures on Convex Opti-
mization - A Basic Course, volume 87 of Applied Optimiza-
tion. Springer.
Nocedal, J.; and Wright, S. J. 1999. Numerical Optimiza-
tion. Springer.
O’Donoghue, B.; Chu, E.; Parikh, N.; and Boyd, S. 2016.
Conic Optimization via Operator Splitting and Homoge-
neous Self-Dual Embedding. Journal of Optimization The-
ory and Applications, 169(3): 1042–1068.
O’Donoghue, B.; Chu, E.; Parikh, N.; and Boyd, S. 2019.
SCS: Splitting Conic Solver, version 2.1.3. https://github.
com/cvxgrp/scs. Accessed: 2022-02-22.
Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; and Loomis, C.
2017. CuPy: A NumPy-Compatible Library for NVIDIA
GPU Calculations. In Proceedings of Workshop on Ma-
chine Learning Systems (LearningSys) in The Thirty-first
Annual Conference on Neural Information Processing Sys-
tems (NIPS).
Parikh, N.; and Boyd, S. P. 2014. Proximal Algorithms.
Found. Trends Optim., 1(3): 127–239.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;

Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
Powell, M. J. D. 1969. Algorithms for nonlinear constraints
that use Lagrangian functions. Mathematical Programming,
14(1): 224–248.
Rodomanov, A.; and Nesterov, Y. E. 2021. New Results on
Superlinear Convergence of Classical Quasi-Newton Meth-
ods. J. Optim. Theory Appl., 188(3): 744–769.
Schmidt, M.; Kim, D.; and Sra, S. 2011. Projected Newton-
type Methods in Machine Learning. In Sra, S.; Nowozin, S.;
and Wright, S. J., eds., Optimization for Machine Learning,
chapter 11, 305–329. MIT Press.
Schmidt, M.; van den Berg, E.; Friedlander, M. P.; and Mur-
phy, K. P. 2009. Optimizing Costly Functions with Simple
Constraints: A Limited-Memory Projected Quasi-Newton
Algorithm. In International Conference on Artificial Intelli-
gence and Statistics, (AISTATS), 456–463.
Schubiger, M.; Banjac, G.; and Lygeros, J. 2020. GPU accel-
eration of ADMM for large-scale quadratic programming. J.
Parallel Distributed Comput., 144: 55–67.
Slawski, M. 2013. Problem-specific analysis of non-
negative least squares solvers with a focus on in-
stances with sparse solutions. https://sites.google.com/site/
slawskimartin/code. Accessed: 2022-02-22.
Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; and
Boyd, S. P. 2020. OSQP: an operator splitting solver for
quadratic programs. Math. Program. Comput., 12(4): 637–
672.
van den Berg, E. 2020. A hybrid quasi-Newton projected-
gradient method with application to Lasso and basis-pursuit
denoising. Math. Program. Comput., 12(1): 1–38.
Wen, Z.; Shi, J.; Li, Q.; He, B.; and Chen, J. 2018. Thunder-
SVM: A Fast SVM Library on GPUs and CPUs. Journal of
Machine Learning Research, 19(21): 1–5.
Zaharia, M.; Xin, R. S.; Wendell, P.; Das, T.; Armbrust, M.;
Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin,
M. J.; Ghodsi, A.; Gonzalez, J.; Shenker, S.; and Stoica, I.
2016. Apache Spark: a unified engine for big data process-
ing. Commun. ACM, 59(11): 56–65.
Zemel, R. S.; Wu, Y.; Swersky, K.; Pitassi, T.; and Dwork,
C. 2013. Learning Fair Representations. In International
Conference on Machine Learning (ICML), 325–333.
Zhu, C.; Byrd, R. H.; Lu, P.; and Nocedal, J. 1997. Al-
gorithm 778: L-BFGS-B: Fortran Subroutines for Large-
Scale Bound-Constrained Optimization. ACM Trans. Math.
Softw., 23(4): 550–560.

9

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://github.com/cvxgrp/scs
https://github.com/cvxgrp/scs
https://sites.google.com/site/slawskimartin/code
https://sites.google.com/site/slawskimartin/code

A Appendix
In this supplementary material, we provide more details on the original L-BFGS-B algorithm, missing
algorithmic details of our approach, and more experiments. The focus of the main paper is to provide an
efficient algorithmic framework for solving constrained optimization problems on the GPU. However,
to provide a better overall picture, we also provide comparisons for a CPU version of our approach. We
compare the CPU version of our approach to its GPU version and also to the original GENO frame-
work (Laue, Mitterreiter, and Giesen 2019), which specifically targets CPUs. Comparing running times
across CPUs and GPUs is not always fair, since computations on different hardware cannot be directly
compared. In order to ensure approximately fair comparisons, we used a CPU and a GPU that cost about
the same. Namely, we used an Intel i9-10980XE 18-core CPU and a Quadro RTX 4000 GPU with 2304
CUDA cores.

B Comparison to Original L-BFGS-B on the GPU
In this section, we further discuss the algorithmic shortcomings of the original L-BFGS-B when ported
to the GPU and provide further technical details, as already mentioned in the introduction of the main
paper.

The original L-BFGS-B algorithm, like any other quasi-Newton method, approximates the function to
be minimized by a quadratic model. In each iteration, the algorithm first computes the set of fixed vari-
ables, i.e., the optimization variables that are on their bounds. This is achieved as follows: The quadratic
model is minimized along the path which starts at the current iterate and points into the direction of the
gradient. There are two possibilities: Either the minimum is attained at the current path segment or the
path first hits the boundary of the feasible region. In the first case, the minimum along the projected
gradient path is found. This point is called the Cauchy point. In the second case, the path is projected
back onto the feasible region and the minimization along the projected path continues. Pseudo-code and
explicit formulas can be found in (Byrd et al. 1995). The main observation is that computing the mini-
mum of the quadratic approximation along a ray only needs a few scalar operations. Whenever the path
hits the boundary, the ray changes direction and the minimum along this new ray needs to be computed.
This loop is repeated until the minimum is found. The total number of iterations of this loop is usually
roughly of the order of the number of variables. This is an inherent sequential part that cannot benefit
from parallelization. While this loop is executed on the CPU as well as on the GPU only on one core, its
running time increases drastically on the GPU since its cores are much weaker. This problem is reflected
in experiments and it was the main reason for designing our new algorithm.

Consider for instance the non-negative least squares problem, as described in the experiments section
of the main paper. The absolute error of 10−10 was similar for both solvers and the number of iterations
(between 30-40) was identical for both solvers on each data set. As can be seen from the results in
Table 2 the original L-BFGS-B algorithm even slows down on the GPU. The reason is the bottleneck of
the Cauchy point computation. Our approach does not suffer from the problem and parallelizes nicely
on the GPU.

problem size 6000 8000 10,000 12,000
total time CP time total time CP time total time CP time total time CP time

L-BFGS-B CPU 1.5 0.3 2.6 0.4 3.6 0.5 4.9 0.6
L-BFGS-B GPU 2.8 2.5 3.5 3.1 4.1 3.6 5.2 4.6
this paper GPU 0.3 0.4 0.5 0.8

Table 2: Detailed running time comparison: depicted is the total running time in seconds as well as the
time in seconds spent for the Cauchy point computation (CP) for the non-negative least squares problem
for varying problem sizes. Larger problem sizes do not fit into the GPU RAM anymore.

10

C Missing Algorithmic Details
Here, we provide details for the two-loop algorithm and the augmented Lagrangian algorithm.

C.1 Modified Two-loop Recursion
In general, the purpose of the two-loop recursion algorithm (Nocedal and Wright 1999) is to solve the
quasi-Newton equation for computing the new search direction dk, i.e.,

−∇f(xk) = Bkdk,

where Bk is the Hessian approximation in iteration k. Since some of the variables are fixed in iteration
k, the equation needs to be solved only for the subset Sk of free variables, i.e.,

−∇f(xk)[Sk] = Bk[Sk, Sk]dk[Sk].

The new search direction that is computed by the L-BFGS update rule needs to be a descent direction.
In order to satisfy this constraint, the Hessian approximation Bk needs to be positive definite. In general,
if each correction pair (yi, si) satisfies the curvature condition 〈yi, si〉 ≥ ε‖yi‖2, then Bk has a smallest
eigenvalue that can be bounded by a positive constant c, see (Mokhtari and Ribeiro 2015). Even when
the objective function is convex and the curvature condition is satisfied for all i ≤ k, it can happen that
the curvature condition is violated on the subspace of the free variables with indices in Sk, i.e., it can
even happen that 〈yi[Sk], si[Sk]〉 < 0. Using this correction pair for computing the next search direction,
does not provide a descent direction. Hence, in order for the method to work, the corresponding curvature
condition needs to be checked for all stored curvature pairs and the current index set Sk. Algorithm 3
incorporates this strategy.

As mentioned in the main paper, the strong Wolfe conditions in the line search assure that the cur-
vature condition is satisfied for the whole correction pair (yi, si). However, since this does not imply
the curvature condition for the reduced correction pair (yi[Sk], si[Sk]), it is not necessary to satisfy the
strong Wolfe conditions. Instead, the weaker Armijo conditions are sufficient in the line search. The
Armijo conditions are often satisfied after fewer steps in the line search.

Algorithm 3: Modified Two-loop Recursion

Input: gradient∇f(xk), index set Sk

1: q = ∇f(xk)[Sk]
2: for i = k − 1, . . . , k −m do
3: ρi = 〈si[Sk], yi[Sk]〉
4: if ρi > ε‖yi‖2 then
5: αi = 1

ρi · 〈s
i[Sk], q〉

6: q = q − αi · yi[Sk]
7: end if
8: end for
9: if ρk−1 > ε‖yk−1‖2 then

10: q = ρk−1

‖yk−1‖2 · q
11: end if
12: for i = k −m, . . . , k − 1 do
13: if ρi > ε‖yi‖2 then
14: β = 1

ρi · 〈y
i[Sk], q〉

15: q = q + (αi − β) · si[Sk]
16: end if
17: end for
18: return q

11

C.2 Augmented Lagrangian Algorithm
The presented algorithm can solve optimization problems with box constraints, i.e., upper and lower
bounds on the variables. In order to solve general constrained optimization problems, i.e.,

min
x

f(x)

s. t. h(x) = 0
g(x) ≤ 0
l ≤ x ≤ u,

(5)

we use the augmented Lagrangian algorithm. It reduces the constrained optimization problem to a se-
quence of box-constrained optimization problems by incorporating the constraints into the augmented
Lagrangian of the problem, i.e.,

L(x, λ, µ, ρ) = f(x) +
ρ

2
‖h(x) + λ/ρ‖2 +

ρ

2

∥∥(g(x) + µ/ρ)+
∥∥2 , (6)

where λ ∈ Rm and µ ∈ Rp≥0 are Lagrange multipliers, ρ > 0 is a constant, and (v)+ denotes max{v, 0}.
The augmented Lagrangian algorithm is shown in Algorithm 4. It runs in iterations and minimizes

the augmented Lagrangian function (6) in each iteration using Algorithm 1. Then, it updates the La-
grangian multipliers λ and µ. If the infinity norm of the constraint violation is not halved in an iteration,
then ρ is multiplied by a factor of 2. Convergence of the augmented Lagrangian algorithm was shown
in (Bertsekas 1999; Birgin and Martı́nez 2014).

Algorithm 4: Augmented Lagrangian Algorithm

1: input: constrained optimization Problem (5)
2: output: approximate solution x ∈ Rn, λ ∈ Rp, µ ∈ Rm≥0
3: initialize x0 = 0, λ0 = 0, µ0 = 0, and ρ = 1
4: repeat
5: xk+1 := argminl≤x≤u L(x, λk, µk, ρ)

6: λk+1 := λk + ρh(xk+1)
7: µk+1 :=

(
µk + ρg(xk+1)

)
+

8: update ρ
9: until convergence

10: return xk, λk, µk

12

D Experiments
Here, we present the comparisons of our framework including its CPU version and the GENO frame-
work (Laue, Mitterreiter, and Giesen 2019) for CPUs. We also include the running times for the joint
probability experiment on the second data set that was excluded from the main paper due to space con-
straints. It can be seen that our framework on the GPU outperforms the highly efficient GENO framework
by a large margin. Since the solvers generated by our framework are written entirely in Python, they can
also run on the CPU by mapping all linear algebra expressions to NumPy instead of CuPy. This allows
to run our framework also on the CPU. The corresponding entry in the tables is ‘this paper CPU’. In all
experiments, it can be seen that the GPU version of our framework outperforms all other frameworks
once the size of the data set is reasonably large. For small data sets, the full capabilities of the GPU
cannot be exploited, and hence, it does not pay off to run them on the GPU. Note again, the generated
solvers of our approach were run until they obtained a smaller objective function value and constraint
violation than the competing approaches. The absolute errors were usually between 10−3 and 10−5.

D.1 Fairness in Machine Learning

0 10000 20000 30000 40000
n

10−1

100

101

t i
n

se
c

fairlearn (logistic constraint, adult)

Fairlearn
GENO CPU
this paper CPU
this paper GPU

0 10000 20000 30000 40000
n

10−2

10−1

100

101

102

103

t i
n

se
c

fairlearn (linear constraint, adult)

SCS GPU
GENO CPU
this paper CPU
this paper GPU

0 75000 150000 225000
n

100

101

102

t i
n

se
c

fairlearn (logistic constraint, census)

Fairlearn
GENO CPU
this paper CPU
this paper GPU

0 75000 150000 225000
n

10−1

100

101

102

103

t i
n

se
c

fairlearn (linear constraint, census)

SCS GPU
GENO CPU
this paper CPU
this paper GPU

Figure 4: Running times for the logistic regression problem with fairness constraints. The two plots on
the left show the running times for the adult data set and the two plots on the right for the census data set.
For each data set, one plot shows the running times for using the logistic loss in the fairness constraint
and one plot for using the linear loss.

Solver fairlearn (logistic constraint, adult)

500 2500 12500 22500 32500 42500

this paper GPU 0.3± 0.0 0.4± 0.0 0.6± 0.0 0.7± 0.0 0.7± 0.0 0.8± 0.0
this paper CPU 0.0± 0.0 0.1± 0.0 0.3± 0.0 0.6± 0.0 1.0± 0.1 1.4± 0.1
GENO CPU 0.0± 0.0 0.1± 0.0 0.2± 0.0 0.5± 0.0 0.8± 0.0 1.3± 0.1
Fairlearn 1.1± 0.1 2.9± 0.0 10.4± 0.7 16.7± 1.0 23.8± 1.4 30.0± 0.2

Table 3: Running times in seconds for fairlearn (logistic constraint, adult).

Solver fairlearn (linear constraint, adult)

500 2500 12500 22500 32500 42500

this paper GPU 0.3± 0.0 0.5± 0.0 0.7± 0.0 0.8± 0.1 0.9± 0.1 0.9± 0.1
this paper CPU 0.0± 0.0 0.1± 0.0 0.2± 0.0 0.4± 0.0 0.8± 0.1 1.1± 0.1
GENO CPU 0.0± 0.0 0.0± 0.0 0.2± 0.0 0.3± 0.0 0.6± 0.0 0.9± 0.0
SCS GPU 6.1± 0.8 95.5± 17.9 2056.8± 971.6 N/A N/A N/A

Table 4: Running times in seconds for fairlearn (linear constraint, adult).

13

Solver fairlearn (logistic constraint, census)

10000 50000 110000 170000 230000 290000

this paper GPU 0.9± 0.1 2.3± 0.1 4.3± 0.1 6.1± 0.4 8.0± 0.3 10.1± 0.3
this paper CPU 0.9± 0.1 8.5± 0.5 22.0± 0.9 35.3± 1.3 48.7± 1.6 61.7± 3.3
GENO CPU 0.8± 0.0 7.6± 0.4 18.7± 0.9 31.6± 2.0 43.3± 2.0 52.9± 2.8
Fairlearn 9.4± 1.0 45.5± 2.8 120.0± 7.5 199.7± 17.6 281.9± 11.9 366.6± 16.0

Table 5: Running times in seconds for fairlearn (logistic constraint, census).

Solver fairlearn (linear constraint, census)

2500 10000 50000 170000 230000 290000

this paper GPU 0.6± 0.0 0.9± 0.1 2.2± 0.2 7.6± 0.7 10.6± 0.3 13.4± 1.4
this paper CPU 0.1± 0.0 0.7± 0.0 5.8± 0.6 32.0± 2.9 47.8± 4.5 64.2± 5.7
GENO CPU 0.1± 0.0 0.6± 0.0 5.4± 0.7 27.4± 3.0 39.9± 3.1 54.8± 7.3
SCS GPU 129.3± 18.6 1331.3± 146.7 N/A N/A N/A N/A

Table 6: Running times in seconds for fairlearn (linear constraint, census).

D.2 Support Vector Machines

5000 10000 15000 20000
n

10−3

10−2

10−1

100

101

102

103

t i
n

se
c

dual SVM (a1a – a8a)

cuOSQP
SCS GPU
GENO CPU
this paper CPU
this paper GPU

5000 10000 15000 20000 25000
n

10−1

100

101

102

103

t i
n

se
c

dual SVM (w1a – w7a)

cuOSQP
SCS GPU
GENO CPU
this paper CPU
this paper GPU

Figure 5: The plot on the left shows the running times for the SVM problem on the adult data set for an
increasing number of data points. The plot on the right shows the web data set for an increasing number
of data points.

Solver Data sets

cod-rna covtype ijcnn1 mushrooms phishing a9a w8a

this paper GPU 0.7 0.1 1.8 0.1 1.7 0.3 1.5
this paper CPU 2.0 0.4 5.4 0.3 5.4 1.1 4.3
GENO CPU 1.9 0.4 19.4 0.4 6.4 1.0 3.2
cuOSQP 55.7 failed 206.6 22.1 163.6 32.9 36.1
SCS GPU 2342.1 31.4 N/A 7995.0 N/A 1094.1 1227.1

Table 7: Running times in seconds for the dual SVM problem. All data sets were subsampled to 10, 000
data points. N/A indicates that the solver did not finish within 10, 000 seconds.

14

Solver dual SVM (a1a – a8a)

1605 2265 3185 4781 6414 11220 16100 22696

this paper GPU 0.1 0.1 0.1 0.2 0.2 0.4 0.7 1.3
this paper CPU 0.0 0.0 0.1 0.3 0.5 1.5 3.2 6.6
GENO CPU 0.0 0.0 0.1 0.2 0.4 1.4 3.0 5.8
cuOSQP 1.0 1.5 3.0 7.1 13.5 42.9 N/A N/A
SCS GPU 2.6 7.7 40.0 127.3 312.9 1565.9 N/A N/A

Table 8: Running times in seconds for dual SVM (adult data set, a1a – a8a).

Solver dual SVM (w1a – w7a)

2477 3470 4912 7366 9888 17188 24692

this paper GPU 0.4 0.6 0.7 1.1 1.5 3.5 7.0
this paper CPU 0.2 0.3 0.8 2.0 4.1 13.6 37.0
GENO CPU 0.1 0.2 0.5 1.5 2.6 8.5 22.4
cuOSQP 1.8 3.5 7.4 19.8 35.3 N/A N/A
SCS GPU 14.9 49.7 147.9 493.1 1159.0 N/A N/A

Table 9: Running times in seconds for dual SVM (web data set, w1a – w7a).

D.3 Non-negative Least Squares

0 4000 8000 12000
n

10−2

10−1

100

101

102

t i
n

se
c

NNLS (data set 1)

cuOSQP
SCS GPU
GENO CPU
this paper CPU
this paper GPU

0 10000 20000 30000 40000
n

10−3

10−2

10−1

100

101

102

103

t i
n

se
c

NNLS (data set 2)

cuOSQP
SCS GPU
GENO CPU
this paper CPU
this paper GPU

Figure 6: The plots show the running times for the non-negative least squares problem when run on the
first and second data set.

Solver NNLS (data set 1)

3600 5200 6800 8400 10000 11600

this paper GPU 0.2± 0.0 0.3± 0.0 0.4± 0.0 0.6± 0.0 0.8± 0.1 1.0± 0.1
this paper CPU 0.5± 0.1 1.0± 0.1 1.7± 0.2 2.6± 0.2 3.7± 0.4 5.0± 0.5
GENO CPU 0.5± 0.0 0.9± 0.0 1.5± 0.0 2.3± 0.0 3.3± 0.1 4.5± 0.1
cuOSQP 82.0± 1.0 171.4± 5.5 N/A N/A N/A N/A
SCS GPU 40.7± 0.4 89.5± 1.0 157.7± 2.0 243.4± 3.3 N/A N/A

Table 10: Running times in seconds for NNLS (data set 1).

15

Solver NNLS (data set 2)

6000 10800 15600 25200 34800 44400

this paper GPU 0.1± 0.0 0.2± 0.0 0.3± 0.0 0.5± 0.1 0.9± 0.0 1.6± 0.2
this paper CPU 0.1± 0.0 0.5± 0.0 1.0± 0.1 2.7± 0.4 4.5± 0.1 8.6± 1.3
GENO CPU 0.1± 0.0 0.4± 0.0 0.8± 0.0 2.1± 0.0 3.8± 0.0 6.4± 0.1
cuOSQP 106.3± 10.5 362.3± 27.7 755.4± 41.1 N/A N/A N/A
SCS GPU 500.2± 4.2 1637.4± 14.3 N/A N/A N/A N/A

Table 11: Running times in seconds for NNLS (data set 2).

D.4 Joint Probability
Here, we show the running times for computing the joint probability distribution of two probability
distributions, i.e., a distribution that has the two given distributions as marginals, see also the main paper.
The second data set was created in the same way as in (Frogner and Poggio 2019), i.e., we sampled
u and v uniformly at random from the unit interval and scaled them such that each vector sums up to
one. All entries of the cost matrices M were also sampled uniformly at random from the unit interval.
We fixed the regularization parameter λ = 1

2 . We set the size of the problems to be m = 2n. Hence,
when n = 1000, the corresponding optimization problem involves 2 · 106 optimization variables and has
3000 constraints. Figure 7 shows the running times for both data sets and both regularizers for varying
problem sizes, including the running times for the CPU versions.

500 1000 1500 2000
n

10−1

100

101

102

103

t i
n

se
c

joint prob. (entropy reg., data set 1)

SCS GPU
GENO CPU
this paper CPU
this paper GPU

0 500 1000 1500 2000 2500 3000
n

10−1

100

101

102

103

t i
n

se
c

joint prob. (gaussian reg., data set 1)

cuOSQP
SCS GPU
GENO CPU
this paper CPU
this paper GPU

500 1000 1500 2000
n

10−2

10−1

100

101

102

103

104

t i
n

se
c

joint prob. (entropy reg., data set 2)

SCS GPU
GENO CPU
this paper CPU
this paper GPU

0 500 1000 1500 2000 2500 3000
n

10−1

100

101

102

103

t i
n

se
c

joint prob. (gaussian reg., data set 2)

cuOSQP
SCS GPU
GENO CPU
this paper CPU
this paper GPU

Figure 7: Running times for computing a joint probability distribution from two marginal distributions.
The two plots on the left show the running times for the first data set and the two plots on the right the
running times for the second data set. For each data set, we show the running times when the entropy
prior is used and when the Gaussian prior is used. Note, that the cuOSQP solver cannot solve the problem
when the entropy prior is used. Since the second data set is drawn from a random distribution, we ran all
solvers ten times and report the mean running time and corresponding error bars.

Solver joint prob. (entropy reg., data set 1)

100 500 1000 2000

this paper GPU 0.2 0.5 1.1 6.4
this paper CPU 0.1 0.9 4.6 41.2
GENO CPU 0.1 0.9 4.8 38.5
SCS GPU 151.8 933.5 N/A N/A

Table 12: Running times in seconds for joint prob. (entropy reg., data set 1).

16

Solver joint prob. (gaussian reg., data set 1)

100 300 500 700 1000 2000 3000

this paper GPU 0.1 0.2 0.3 0.4 0.8 4.8 13.0
this paper CPU 0.0 0.2 0.8 1.2 3.6 25.1 86.2
GENO CPU 0.1 0.4 1.1 1.8 4.1 27.7 90.9
cuOSQP 3.1 318.8 N/A N/A N/A N/A N/A
SCS GPU 0.4 3.5 12.5 36.0 114.1 861.4 N/A

Table 13: Running times in seconds for joint prob. (gaussian reg., data set 1).

Solver joint prob. (entropy reg., data set 2)

100 300 500 1000 2000

this paper GPU 0.2± 0.1 0.3± 0.1 0.5± 0.2 0.7± 0.0 1.3± 0.2
this paper CPU 0.1± 0.0 0.7± 0.1 1.4± 0.6 4.5± 0.0 10.1± 1.5
GENO CPU 0.1± 0.0 0.4± 0.2 1.8± 0.0 6.3± 0.9 10.8± 0.0
SCS GPU 417.9± 257.7 4267.7± 1408.3 N/A N/A N/A

Table 14: Running times in seconds for joint prob. (entropy reg., data set 2).

Solver joint prob. (gaussian reg., data set 2)

300 700 1000 2000 3000

this paper GPU 0.6± 0.1 1.7± 0.3 3.6± 0.6 30.2± 1.5 92.3± 1.9
this paper CPU 1.1± 0.2 5.7± 1.0 13.9± 2.3 182.9± 9.1 746.1± 21.9
GENO CPU 9.9± 0.6 92.2± 13.2 240.1± 35.3 1068.0± 153.7 2622.4± 236.7
cuOSQP 314.0± 7.8 N/A N/A N/A N/A
SCS GPU 60.4± 39.4 1009.3± 355.1 N/A N/A N/A

Table 15: Running times in seconds for joint prob. (gaussian reg., data set 2).

17

	1 Introduction
	2 State of the Art
	3 Algorithm
	4 Complete Framework
	5 Experiments
	5.1 Fairness in Machine Learning
	5.2 Dual SVM
	5.3 Non-negative Least Squares
	5.4 Joint Probability Distribution

	6 Conclusion
	A Appendix
	B Comparison to Original L-BFGS-B on the GPU
	C Missing Algorithmic Details
	C.1 Modified Two-loop Recursion
	C.2 Augmented Lagrangian Algorithm

	D Experiments
	D.1 Fairness in Machine Learning
	D.2 Support Vector Machines
	D.3 Non-negative Least Squares
	D.4 Joint Probability

