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Introduction: Rigor in "The Real World" is a
Different Kind of Rigor

Figure 1: The small World Large World Problem. In statistical domains assume Small World= coin tosses and Large World =
Real World. Note that measure theory is not the small world, but large world, thanks to the degrees of freedom it confers.

The problem of formal probability theory is that it necessarily covers narrower situations (small world ⌦S) than
the real world (⌦L), which produces Procrustean bed effects. ⌦S ⇢ ⌦L. The "academic" in the bad sense approach
has been to assume that ⌦L is smaller rather than study the gap. The problems linked to incompleteness of

5
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models are largely in the form of preasymptotics and inverse problems.

Method: We cannot probe the Real World but we can get an idea (via perturbations) of relevant directions of the
effects and difficulties coming from incompleteness, and make statements s.a. "incompleteness slows convergence to
LLN by at least a factor of n↵”, or "increases the number of observations to make a certain statement by at least 2x".

So adding a layer of uncertainty to the representation in the form of model error, or metaprobability has a
one-sided effect: expansion of ⌦S with following results:

i) Fat tailsFat tailsFat tails:
i-a)- Randomness at the level of the scale of the distribution generates fat tails. (Multi-level stochastic
volatility).
i-b)- Model error in all its forms generates fat tails.
i-c) - Convexity of probability measures to uncertainty causes fat tails.
ii) Law of Large Numbers(weak): operates much more slowly, if ever at all. "P-values" are biased lower.
iii) Risk is larger than the conventional measures derived in ⌦S , particularly for payoffs in the tail.
iv) Allocations from optimal control and other theories (portfolio theory) have a higher variance than shown,
hence increase risk.
v) The problem of induction is more acute.(epistemic opacity).
vi)The problem is more acute for convex payoffs, and simpler for concave ones.

Now i) ) ii) through vi).

The Difference Between Real World World and Models

Convex Heuristic
We give the reader a hint of the methodology and pro-
posed approach with a semi-informal technical defi-
nition for now.

Definition 1. Rule. A rule is a decision-making heuris-
tic that operates under a broad set of circumtances. Un-
like a theorem, which depends on a specific (and closed)
set of assumptions, it holds across a broad range of en-
vironments �which is precisely the point. In that sense
it is stronger than a theorem for decision-making.

Chapter x discusses robustness under perturbation
or metamodels (or metaprobability). Here is the pre-
view of the idea of convex heuristic, which in plain
English, is at least robust to model uncertainty.

Definition 2. Convex Heuristic. In short it is required
to not produce concave responses under parameter per-
turbation.

Result of Chapter x Let {fi} be the family
of possible functions, or "exposures" to x a ran-
dom variable with probability measure ���

(x),
where �� is a parameter determining the scale
(say, mean absolute deviation) on the left side of
the distribution (below the mean). A rule is said
"nonconcave" for payoff below K with respect
to �� up to perturbation � if, taking the partial
expected payoff

EK
��(fi) =

Z K

�1
fi(x) d���

(x),

fi is deemed member of the family of convex
heuristic (x,K,��, etc.):

⇢

fi :
1

2

✓

EK
����(fi) + EK

��
+�

(fi)

◆

� EK
��(fi)

�
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Note that we call these decision rules "convex" not
necessarily because they have a convex payoff, but
because their payoff is comparatively "more convex"
(less concave) than otherwise. In that sense, finding
protection is a convex act. The idea that makes life
easy is that we can capture model uncertainty with
simple tricks, namely the scale of the distribution.

A Class With an Absurd Name
This author currently teaching a class with the ab-
surd title "risk management and decision - making in
the real world", a title he has selected himself; this is
a total absurdity since risk management and decision
making should never have to justify being about the
real world, and what’ s worse, one should never be
apologetic about it. In "real" disciplines, titles like
"Safety in the Real World", "Biology and Medicine
in the Real World" would be lunacies. But in social
science all is possible as there is no exit from the gene
pool for blunders, nothing to check the system, so
skin in the game for researchers. You cannot blame
the pilot of the plane or the brain surgeon for being
"too practical", not philosophical enough; those who
have done so have exited the gene pool. The same
applies to decision making under uncertainty and in-
complete information. The other absurdity in is the
common separation of risk and decision making, as
the latter cannot be treated in any way except under
the constraint : in the real world.

And the real world is about incompleteness : incom-
pleteness of understanding, representation, informa-
tion, etc., what one does when one does not know
what’ s going on, or when there is a non - zero chance
of not knowing what’ s going on. It is based on focus
on the unknown, not the production of mathemat-
ical certainties based on weak assumptions; rather
measure the robustness of the exposure to the un-
known, which can be done mathematically through
metamodel (a model that examines the effectiveness
and reliability of the model), what I call metaprob-
ability, even if the meta - approach to the model is
not strictly probabilistic.

This first volume presents a mathematical approach
for dealing with errors in conventional risk models,
taking the bulls ***t out of some, adding robustness,

rigor and realism to others. For instance, if a "rigor-
ously" derived model (say Markowitz mean variance,
or Extreme Value Theory) gives a precise risk mea-
sure, but ignores the central fact that the parameters
of the model don’ t fall from the sky, but have some
error rate in their estimation, then the model is not
rigorous for risk management, decision making in the
real world, or, for that matter, for anything (other
than academic tenure). We need to add another
layer of uncertainty, which invalidates some models
(but not others). The mathematical rigor is therefore
shifted from focus on asymptotic (but rather irrele-
vant) properties to making do with a certain set of
incompleteness. Indeed there is a mathematical way
to deal with incompletness. Adding disorder has a
one-sided effect and we can deductively estimate its
lower bound. For instance we know from Jensen’s in-
equality that tail probabilities and risk measures are
understimated in some class of models.

Fat Tails

The focus is squarely on "fat tails", since risks and
harm lie principally in the high - impact events,
The Black Swan and some statistical methods fail
us there. The section ends with an identification of
classes of exposures to these risks, the Fourth Quad-
rant idea, the class of decisions that do not lend them-
selves to modelization and need to be avoided. Mod-
ify your decisions. The reason decision making and
risk management are insparable is that there are some
exposure people should never take if the risk assess-
ment is not reliable, something people understand in
real life but not when modeling. About every ratio-
nal person facing an plane ride with an unreliable
risk model or a high degree of uncertainty about the
safety of the aircraft would take a train instead; but
the same person, in the absence of skin in the game,
when working as "risk expert" would say : "well, I
am using the best model we have" and use something
not reliable, rather than be consistent with real-life
decisions and subscribe to the straightforward prin-
ciple : "let’s only take those risks for which we have
a reliable model".

Combination of Small World and Lack of Skin
in the Game. The disease of formalism in the ap-
plication of probability to real life by people who are
not harmed by their mistakes can be illustrated as
follows, with a very sad case study. One of the most
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"cited" document in risk and quantitative methods is
about "coherent measures of risk", which set strong
principles on how to compute tail risk measures, such
as the "value at risk" and other methods. Initially
circulating in 1997, the measures of tail risk �while
coherent� have proven to be underestimating risk
at least 500 million times (sic). We have had a few
blowups since, including Long Term Capital Manage-
ment fiasco �and we had a few blowups before, but
departments of mathematical probability were not in-
formed of them. As I am writing these lines, it was
announced that J.-P. Morgan made a loss that should
have happened every ten billion years. The firms em-
ploying these "risk minds" behind the "seminal" pa-
per blew up and ended up bailed out by the taxpay-
ers. But we now now about a "coherent measure of
risk". This would be the equivalent of risk managing
an airplane flight by spending resources making sure
the pilot uses proper grammar when communicating
with the flight attendants, in order to "prevent inco-
herence". Clearly the problem, just as similar fancy
b***t under the cover of the discipline of Extreme
Value Theory is that tail events are very opaque com-
putationally, and that such misplaced precision leads
to confusion.
The "seminal" paper: Artzner, P., Delbaen, F., Eber,
J. M., & Heath, D. (1999). Coherent measures of risk.
Mathematical finance, 9(3), 203-228.

Orthodoxy

Finally, someone recently asked me to give a talk at
unorthodox statistics session of the American Sta-
tistical Association. I refused : the approach pre-
sented here is about as orthodox as possible, much of
the bone of this author come precisely from enforcing
rigorous standards of statistical inference on process.
Risk (and decisions) require more rigor than other
applications of statistical inference.

Measure Theory is not restrictive

In his wonderful textbook, Leo Breiman referred to
probability as having two sides, the left side rep-
resented by his teacher, Michel Loève, which con-
cerned itself with formalism and measure theory, and
the right one which is typically associated with coin
tosses and similar applications. Many have the il-
lusion that the "real world" would be closer to the
coin tosses. It is not: coin tosses are fake practice for
probability theory, artificial setups in which people
know the probability (what is called the ludic fallacyludic fallacyludic fallacy
in The Black Swan. Measure theory, while formal,
is liberating because it sets us free from these narrow
structures. Its abstraction allows the expansion out
of the small box, all the while remaining rigorous, in
fact, at the highest possible level of rigor.

General Problems

The Black Swan Problem

Incomputability of Small Probalility: It is is not
merely that events in the tails of the distributions
matter, happen, play a large role, etc. The point
is that these events play the major role and their
probabilities are not computable, not reliable for any
effective use. And the smaller the probability, the
larger the error, affecting events of high impact. The
idea is to work with measures that are less sensitive
to the issue (a statistical approch), or conceive expo-
sures less affected by it (a decision theoric approach).
Mathematically, the problem arises from the use of
degenerate metaprobability.
In fact the central point is the 4

th quadrant where
prevails both high-impact and non-measurability,
where the max of the random variable determines
most of the properties (which to repeat, has not com-
putable probabilities).
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ProblemProblemProblem DescriptionDescriptionDescription Chapters/Sections

P 1 Preasymptotics,
Incomplete Conver-
gence

The real world is before the asymptote. This affects
the applications (under fat tails) of the Law of Large
Numbers and the Central Limit Theorem.

?

P2 Inverse Problems a) The direction Model ) Reality produces larger
biases than Reality ) Model
b) Some models can be "arbitraged" in one direction,
not the other .

1,?,?

P3 Conflation a) The statistical properties of an exposure, f(x) are
different from those of a r.v. x, with very significant
effects under nonlinearities (when f(x) convex).

1, 9

b)Exposures and decisions can be modified, not
probabilities.

P4 Degenerate
Metaprobability

Uncertainty about the probability distributions can
be expressed as additional layer of uncertainty, or,
simpler, errors, hence nested series of errors on er-
rors. The Black Swan problem can be summarized
as degenerate metaprobability.1

?,?

Definition 3. Arbitrage of Probability Measure. A
probability measure µA can be arbitraged if one can pro-
duce data fitting another probability measure µB and
systematically fool the observer that it is µA based on
his metrics in assessing the validity of the measure.

We will rank probability measures along this arbi-
trage criterion.

Associated Specific "Black Swan Blindness" Errors
(Applying Thin-Tailed Metrics to Fat Tailed Do-
mains)

These are shockingly common, arising from mecha-
nistic reliance on software or textbook items (or a
culture of bad statistical insight). I skip the elemen-
tary "Pinker" error of mistaking journalistic fact -
checking for scientific statistical "evidence" and focus
on less obvious but equally dangerous ones.

1. OverinferenceOverinferenceOverinference: Making an inference from fat-
tailed data assuming sample size allows claims
(very common in social science). Chapter 3.

2. UnderinferenceUnderinferenceUnderinference: Assuming N=1 is insufficient
under large deviations. Chapters 1 and 3.
(In other words both these errors lead to re-
fusing true inference and accepting anecdote as
"evidence")

3. Asymmetry: Fat-tailed probability distribu-
tions can masquerade as thin tailed ("great
moderation", "long peace"), not the opposite.

4. The econometric ( very severe) violation in us-
ing standard deviations and variances as a mea-
sure of dispersion without ascertaining the sta-
bility of the fourth moment (??.??) . This error
alone allows us to discard everything in eco-
nomics/econometrics using � as irresponsible
nonsense (with a narrow set of exceptions).

5. Making claims about "robust" statistics in the
tails. Chapter 1.

6. Assuming that the errors in the estimation of
x apply to f(x) ( very severe).

7. Mistaking the properties of "Bets" and "dig-
ital predictions" for those of Vanilla expo-
sures, with such things as "prediction markets".
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Chapter 9.
8. Fitting tail exponents power laws in interpola-

tive manner. Chapters 2, 6
9. Misuse of Kolmogorov-Smirnov and other

methods for fitness of probability distribution.
Chapter 1.

10. Calibration of small probabilities relying on

sample size and not augmenting the total sam-
ple by a function of 1/p , where p is the prob-
ability to estimate.

11. Considering ArrowDebreu State Space as ex-
haustive rather than sum of known probabili-
ties  1

PrinciplesPrinciplesPrinciples DescriptionDescriptionDescription
P1 Dutch Book Probabilities need to add up to 1*
P2 Asymmetry Some errors are largely one sided.
P3 Nonlinear Response Fragility is more measurable than probability**
P4 Conditional Pre-

cautionary Princi-
ple

Domain specific precautionary, based on fat tailed-
ness of errors and asymmetry of payoff.

P5 Decisions Exposures can be modified, not probabilities.

* This and the corrollary that there is a non-zero probability of visible and known states spanned by the proba-
bility distribution adding up to <1 confers to probability theory, when used properly, a certain analytical robust-
ness.
**The errors in measuring nonlinearity of responses are more robust and smaller than those in measuring responses.
(Transfer theorems)

Definition 4. Metaprobability: the two statements 1)
"the probability of Rand Paul winning the election is
15.2%" and 2) the probability of getting n odds num-
bers in N throws of a fair die is x%" are different in the
sense that the first statement has higher undertainty
about its probability, and you know (with some proba-
bility) that it may change under an alternative analysis
or over time.

Figure 2: Metaprobability: we add another dimension to the
probability distributions, as we consider the effect of a layer
of uncertainty over the probabilities. It results in large ef-
fects in the tails, but, visually, these are identified through
changes in the "peak" at the center of the distribution.

Figure 3: Fragility: Can be seen in the slope of the sensitivity
of payoff across metadistributions
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1 An Introduction to Fat Tails and Turkey Problems

This is an introductory chapter outlining the turkey problem, showing its presence in data, explaining why an
assessment of fragility is more potent than data-based methods of risk detection, introducing fat tails, and showing
how fat tails cause turkey problems.

Figure 1.1: The risk of breaking of the coffee cup is not
necessarily in the past time series of the variable; in fact
surviving objects have to have had a "rosy" past.

1.1 Introduction: Fragility, not
Statistics

Fragility (Volume 2) can be defined as an accelerating
sensitivity to a harmful stressor: this response plots
as a concave curve and mathematically culminates
in more harm than benefit from the disorder cluster:
(i) uncertainty, (ii) variability, (iii) imperfect, incom-
plete knowledge, (iv) chance, (v) chaos, (vi) volatil-
ity, (vii) disorder, (viii) entropy, (ix) time, (x) the
unknown, (xi) randomness, (xii) turmoil, (xiii) stres-
sor, (xiv) error, (xv) dispersion of outcomes, (xvi)
unknowledge.
Antifragility is the opposite, producing a convex re-

sponse that leads to more benefit than harm. We do
not need to know the history and statistics of an item
to measure its fragility or antifragility, or to be able
to predict rare and random (’black swan’) events. All
we need is to be able to assess whether the item is
accelerating towards harm or benefit.
The relation of fragility, convexity and sensitivity to
disorder is thus mathematical and not derived from
empirical data.
The problem with risk management is that "past"
time series can be (and actually are) unreliable. Some
finance journalist was commenting on my statement
in Antifragile about our chronic inability to get the
risk of a variable from the past with economic time
series. "Where is he going to get the risk from since
we cannot get it from the past? from the future?", he
wrote. Not really, think about it: from the present,
the present state of the system. This explains in a
way why the detection of fragility is vastly more po-
tent than that of risk -and much easier to do.

Asymmetry and Insufficiency of Past Data.

Our focus on fragility does not mean you can ignore
the past history of an object for risk management, it
is just accepting that the past is highly insufficient.
The past is also highly asymmetric. There are in-
stances (large deviations) for which the past reveals
extremely valuable information about the risk of a
process. Something that broke once before is break-
able, but we cannot ascertain that what did not
break is unbreakable. This asymmetry is extremely
valuable with fat tails, as we can reject some theories,
and get to the truth by means of via negativa.

13
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This confusion about the nature of empiricism, or the
difference between empiricism (rejection) and naive
empiricism (anecdotal acceptance) is not just a prob-
lem with journalism. Naive inference from time series
is incompatible with rigorous statistical inference; yet
many workers with time series believe that it is sta-
tistical inference. One has to think of history as
a sample path, just as one looks at a sample from
a large population, and continuously keep in mind
how representative the sample is of the large popu-
lation. While analytically equivalent, it is psycho-
logically hard to take the "outside view", given that
we are all part of history, part of the sample so to
speak.

General Principle To Avoid Imitative, Cosmetic
(Job Market) Science:

From Antifragile (2012):
There is such a thing as nonnerdy applied mathe-

matics: find a problem first, and p out the math that
works for it (just as one acquires language), rather
than study in a vacuum through theorems and artifi-
cial examples, then change reality to make it look like
these examples.
The problem can be seen in the opposition between
problems and inverse problems. To cite (Donald Ge-
man), there are hundreds of theorems one can elabo-
rate and prove, all of which may seem to find some
application from the real world. But applying the
idea of non-reversibility of the mechanism: there are
very, very few theorems that can correspond to an
exact selected problem. In the end this leaves us
with a restrictive definition of what "rigor" means in
mathematical treatments of the real world.

1.2 The Problem of (Enumera-
tive) Induction

Turkey and Inverse Turkey (from the Glos-
sary for Antifragile): The turkey is fed by
the butcher for a thousand days, and every day
the turkey pronounces with increased statisti-
cal confidence that the butcher "will never hurt
it"�until Thanksgiving, which brings a Black
Swan revision of belief for the turkey. Indeed
not a good day to be a turkey. The inverse
turkey error is the mirror confusion, not seeing
opportunities� pronouncing that one has evi-
dence that someone digging for gold or search-
ing for cures will "never find" anything because
he didn’t find anything in the past. What we
have just formulated is the philosophical prob-
lem of induction (more precisely of enumerative
induction.) To this version of Bertrand Rus-
sel’s chicken we add: mathematical difficulties,
fat tails, and sucker problems.

1.3 Simple Risk Estimator
Let us define a risk estimator that we will work with
throughout the book.
Definition 5. Let X be, as of time T, a standard
sequence of n+1 observations, X = (xt

0

+i�t

)

0in
(with xt 2 R, i 2 N), as the discretely monitored his-
tory of a stochastic process Xt over the closed inter-
val [t

0

, T ] (with realizations at fixed interval �t thus
T = t

0

+ n�t). The empirical estimator MX
T (A, f) is

defined as

MX
T (A, f) ⌘

Pn
i=0

1Af (xt
0

+i�t

)

Pn
i=0

1D0
(1.1)

where 1A D ! {0, 1} is an indicator function taking
values 1 if xt 2 A and 0 otherwise, ( D

0 subdomain
of domain D: A ✓ D

0
⇢ D ) , and f is a function of

x. For instance f(x) = 1, f(x) = x, and f(x) = xN

correspond to the probability , the first moment,
and N th moment, respectively. A is the subset of
the support of the distribution that is of concern for
the estimation. Typically,

Pn
i=0

1D = n.

Let us stay in dimension 1 for the next few chapters
not to muddle things. Standard Estimators tend to
be variations about MX

t (A, f) where f(x) =x and A is
defined as the domain of the distribution of X, stan-
dard measures from x, such as moments of order z,
etc., are calculated "as of period" T. Such measures
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might be useful for the knowledge of some proper-
ties, but remain insufficient for decision making as
the decision-maker may be concerned for risk man-
agement purposes with the left tail (for distributions
that are not entirely skewed, such as purely loss func-
tions such as damage from earthquakes, terrorism,
etc. ), or any arbitrarily defined part of the distribu-
tion.

Standard Risk Estimators

Definition 6. The empirical risk estimator S for the
unconditional shortfall S below K is defined as, with
A = (�1,K), f(x) = x

S ⌘

Pn
i=0

1A
Pn

i=0

1D0
(1.2)

An alternative method is to compute the conditional
shortfall:

S0 ⌘ E[M |X < K] =

Pn
i=0

1D0
Pn

i=0

1A

S0 =

Pn
i=0

1A
Pn

i=0

1A

One of the uses of the indicator function 1A, for ob-
servations falling into a subsection A of the distribu-
tion, is that we can actually derive the past actuarial
value of an option with X as an underlying struck
as K as MX

T (A, x), with A = (�1,K] for a put and
A = [K,1) for a call, with f(x) = x
Criterion 1. The measure M is considered to be an es-
timator over interval [ t- N �t, T] if and only if it holds
in expectation over a specific period XT+i�t

for a given
i>0, that is across counterfactuals of the process, with
a threshold ⇠ (a tolerated relative absolute divergence
that can be a bias) so

E
�

�MX
T (Az, 1)�MX

>T (Az, 1)
�

�

�

�MX
T (Az, 1)

�

�

< ⇠ (1.3)

when MX
T (Az, 1) is computed; but while working

with the opposite problem, that is, trying to guess
the spread in the realizations of a stochastic process,
when the process is known, but not the realizations,
we will use MX

>T (Az, 1) as a divisor.
In other words, the estimator as of some future time,
should have some stability around the "true" value of
the variable and stay below an upper bound on the
tolerated bias.

We skip the notion of "variance" for an estimator
and rely on absolute mean deviation so ⇠ can be the
absolute value for the tolerated bias. And note that
we use mean deviation as the equivalent of a "loss
function"; except that with matters related to risk,
the loss function is embedded in the subt A of the
estimator.
This criterion is compatible with standard sampling
theory. Actually, it is at the core of statistics. Let us
rephrase:
Standard statistical theory doesn’t allow claims on
estimators made in a given set unless these are made
on the basis that they can "generalize", that is, re-
produce out of sample, into the part of the series that
has not taken place (or not seen), i.e., for time series,
for ⌧ >t.
This should also apply in full force to the risk esti-
mator. In fact we need more, much more vigilance
with risks.

For convenience, we are taking some liberties with
the notations, pending on context: MX

T (A, f) is held
to be the estimator, or a conditional summation on
data but for convenience, given that such estimator is
sometimes called "empirical expectation", we will be
also using the same symbol, namely with MX

>T (A, f)
for the textit estimated variable for period > T (to
the right of T, as we will see, adapted to the filtration
T). This will be done in cases M is the M -derived
expectation operator E or EP under real world prob-
ability measure P (taken here as a counting measure),
that is, given a probability space (⌦, F , P), and a con-
tinuously increasing filtration Ft, Fs ⇢ Ft if s < t.
the expectation operator (and other Lebesque mea-
sures) are adapted to the filtration FT in the sense
that the future is progressive and one takes a deci-
sion at a certain period T +�t from information at
period T , with an incompressible lag that we write
as �t �in the "real world", we will see in Chapter
x there are more than one laging periods �t, as one
may need a lag to make a decision, and another for
execution, so we necessarily need > �t. The central
idea of a cadlag process is that in the presence of
discontinuities in an otherwise continuous stochastic
process (or treated as continuous), we consider the
right side, that is the first observation, and not the
last.
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1.4 Fat Tails, the Finite Mo-
ment Case

Fat tails are not about the incidence of low proba-
bility events, but the contributions of events away
from the "center" of the distribution to the total
properties.
As a useful heuristic, consider the ratio h

h =

p

E (X2

)

E(|X|)

where E is the expectation operator (under the prob-
ability measure of concern and x is a centered vari-
able such E(x) = 0); the ratio increases with the fat
tailedness of the distribution; (The general case cor-

responds to (

MX

T

(A,xn

)

)

1

n

MX

T

(A,|x|) , n > 1, under the condition
that the distribution has finite moments up to n, and
the special case here n=2).
Simply, xnis a weighting operator that assigns a
weight, xn�1 large for large values of x, and small
for smaller values.
The effect is due to the convexity differential between
both functions, |x| is piecewise linear and loses the
convexity effect except for a zone around the ori-
gin.

x
2

!x"

x

f(x)

Figure 1.2: The difference between the two weighting func-
tions increases for large values of x.
Proof : By Jensen’s inequality under the counting
measure.

Some formalism: Lp space

It is not just more rigorous, but more convenient
to look at payoff in functional space, work with the
space of functions having a certain integrability. Let
Y be a measurable space with Lebesgue measure
µ. The space Lpof f measurable functions on Y is
defined as:

Lp
(µ) =

⇢

f : Y ! C [1 :

✓

Z

Y

|fp
| dµ

◆

1/p < 1

�

The application of concern for our analysis is where
the measure µ is a counting measure (on a countable
set) and the function f(y) ⌘ yp, p � 1.
As a convention here, we write Lp for space, Lp for
the norm in that space.
Let X ⌘ (xi)

n
i=1

, The L

p Norm is defined (for our
purpose) as, with p 2 N , p � 1):

kXkp⌘

✓

Pn
i=1

|xi|
p

n

◆

1/p

The idea of dividing by n is to transform the norms
into expectations,i.e., moments. For the Euclidian
norm, p = 2.
The norm rises with higher values of p, as, with a > 0

1,

 

1

n

n
X

i=1

|xi|
p+a

!

1/(p+a)

>
 

1

n

n
X

i=1

|xi|
p

!

1/p

What is critical for our exercise and the study of
the effects of fat tails is that, for a given norm,
dispersion of results increases values. For example,
take a flat distribution, X= {1, 1}. kXk

1

=kXk

2

=...
=kXkn= 1. Perturbating while preserving kXk

1

,
X =

�

1

2

, 3

2

 

produces rising higher norms

{kXkn }
5

n=1

=
⇢

1,
p
5

2

,
3

p

7

2

2/3

,
4

p

41

2

,
5

p

61

2

4/5

�

. (1.4)

Trying again, with a wider spread, we get even higher
values of the norms, X =

�

1

4

, 7

4

 

,
1An application of Hölder’s inequality,
⇣P

n

i=1 |xi

|p+a

⌘ 1

a+p �
⇣
n

1

a+p

� 1

p

P
n

i=1 |xi

|p
⌘1/p
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{||X||n}
5

n=1

=

8

<

:

1,
5

4

,

3

q

43

2

2

,
4

p

1201

4

,
5

p

2101

2⇥ 2

3/5

9

=

;

.

(1.5)

So we can see it becomes rapidly explosive.

One property quite useful with power laws with infi-
nite moment:

kXk1 = sup

✓

1

n
|xi|

◆n

i=1

(1.6)

Gaussian Case

For a Gaussian, where x ⇠ N(0,�), as we assume the
mean is 0 without loss of generality,

MX
T

�

A,XN
�

1/N

MX
T (A, |X|)

=

⇡
N�1

2N

⇣

2

N

2

�1 �
(�1)

N
+ 1

�

�

�

N+1

2

�

⌘

1

N

p

2

or, alternatively

MX
T

�

A,XN
�

=

2

1

2

(N�3) �
1 + (�1)

N
�

✓

1

�2

◆

1

2

�N

2

�

✓

N + 1

2

◆

(1.7)

where �(z) is the Euler gamma function; �(z) =

R1
0

tz�1e�tdt. For odd moments, the ratio is 0. For
even moments:

MX
T

�

A,X2

�

MX
T (A, |X|)

=

r

⇡

2

�

hence

q

MX
T (A,X2

)

MX
T (A, |X|)

=

Standard Deviation
Mean Absolute Deviation

=

r

⇡

2

For a Gaussian the ratio ⇠ 1.25, and it rises from
there with fat tails.

Example: Take an extremely fat tailed distribution
with n=10

6, observations are all -1 except for a single
one of 106,

X =

�

�1,�1, ...,�1, 106
 

The mean absolute deviation, MAD (X) = 2. The
standard deviation STD (X)=1000. The ratio stan-
dard deviation over mean deviation is 500.
As to the fourth moment, it equals 3

p

⇡
2

�3 .
For a power law distribution with tail exponent ↵=3,
say a Student T

q

MX
T (A,X2

)

MX
T (A, |X|)

=

Standard Deviation
Mean Absolute Deviation

=

⇡

2

Time

1.1

1.2

1.3

1.4

1.5

1.6

1.7

STD!MAD

Figure 1.3: The Ratio Standard Deviation/Mean Deviation
for the daily returns of the SP500 over the past 47 years,
with a monthly window.
We will return to other metrics and definitions of fat
tails with power law distributions when the moments
are said to be "infinite", that is, do not exist. Our
heuristic of using the ratio of moments to mean de-
viation works only in sample, not outside.

"Infinite" moments

Infinite moments, say infinite variance, always man-
ifest themselves as computable numbers in observed
sample, yielding an estimator M, simply because the
sample is finite. A distribution, say, Cauchy, with
infinite means will always deliver a measurable mean
in finite samples; but different samples will deliver
completely different means. The next two figures il-
lustrate the "drifting" effect of M a with increasing
information.
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2000 4000 6000 8000 10 000
T
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Figure 1.4: The mean of a series with Infinite mean
(Cauchy).
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T
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2"

Figure 1.5: The standard deviation of a series with infinite
variance (St(2)).

1.5 A Simple Heuristic to Cre-
ate Mildly Fat Tails

Since higher moments increase under fat tails, as
compared to lower ones, it should be possible so sim-
ply increase fat tails without increasing lower mo-
ments.
Note that the literature sometimes separates "Fat
tails" from "Heavy tails", the first term being re-
served for power laws, the second to subexponential
distribution (on which, later). Fughtetaboutdit. We
simply call "Fat Tails" something with a higher kur-

tosis than the Gaussian, even when kurtosis is not
defined. The definition is functional as used by prac-
tioners of fat tails, that is, option traders and lends
itself to the operation of "fattening the tails", as we
will see in this section.
A Variance-preserving heuristic. Keep E

�

X2

�

constant and increase E
�

X4

�

, by "stochasticizing"
the variance of the distribution, since <X4> is
itself analog to the variance of <X2> measured
across samples ( E

�

X4

�

is the noncentral equiva-
lent of E

⇣

�

X2

� E
�

X2

��

2

⌘

). Chapter x will do the
"stochasticizing" in a more involved way.
An effective heuristic to get some intuition about the
effect of the fattening of tails consists in simulating
a random variable set to be at mean 0, but with the
following variance-preserving tail fattening trick: the
random variable follows a distribution N

�

0,�
p

1� a
�

with probability p = 1

2

and N
�

0,�
p

1 + a
�

with the
remaining probability 1

2

, with 0 6 a < 1 .
The characteristic function is

�(t, a) =
1

2

e�
1

2

(1+a)t2�2

⇣

1 + eat
2�2

⌘

Odd moments are nil. The second moment is pre-
served since

M(2) = (�i)2@t,2�(t)|
0

= �2

and the fourth moment

M(4) = (�i)4@t,4�|
0

= 3

�

a2 + 1

�

�4

which puts the traditional kurtosis at 3

�

a2 + 1

�

.
This means we can get an "implied a from kurtosis.
The value of a is roughly the mean deviation of the
stochastic volatility parameter "volatility of volatil-
ity" or Vvol in a more fully parametrized form.
This heuristic, while useful for intuition building, is
of limited powers as it can only raise kurtosis to twice
that of a Gaussian, so it should be limited to getting
some intuition about its effects. Section ??.?? will
present a more involved technique.
As Figure ??.?? shows: fat tails are about higher
peaks, a concentration of observations around the
center of the distribution.
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Figure 1.6: Fatter and Fatter Tails through perturbation of �. The mixed distribution with values a=0,.25,.5, .75 . We can see
crossovers a1 through a4. One can safely claim that the tails start at a4on the right and a1on the left.

The Crossovers and the Tunnel Ef-
fect

Notice in the figure x a series of crossover zones, in-
variant to a. Distributions called "bell shape" have
a convex-concave-convex shape.
Let X be a random variable, the distribution of which
p(x) is from a general class of all monomodal one-
parameter continous pdfs p� with support D ✓ R
and scale parameter �.
1- If the variable is "two-tailed", that is, D= (-1,1),
where p�(x) ⌘ p(x+�)+p(x��)

2

There exist a "high peak" inner tunnel, AT= (a
2

, a
3

)

for which the �-perturbed � of the probability distri-
bution p�(x)�p(x) if x 2 (a

2

, a
3

)

There exists outer tunnels, the "tails", for which
p�(x)�p(x) if x 2 (�1, a

1

) or x 2 (a
4

,1)
There exist intermediate tunnels, the "shoulders",

where p�(x) p(x) if x 2 (a
1

, a
2

) or x 2

(a
3

, a
4

)
A={ai} is the set of solutions

n

x :

@2p(x)
@� 2

|a= 0

o

.
For the Gaussian (µ, �), the solutions are obtained
by setting the second derivative to 0, so

e�
(x�µ)

2

2�

2

�

2�4

� 5�2

(x� µ)2 + (x� µ)4
�

p

2⇡�7

= 0,

which produces the following crossovers:

{a
1

, a
2

, a
3

, a
4

} =

(
µ�

r
1

2

⇣
5 +

p
17

⌘
�, µ�

r
1

2

⇣
5�

p
17

⌘
�, µ

+

r
1

2

⇣
5�

p
17

⌘
�, µ+

r
1

2

⇣
5 +

p
17

⌘
�

)
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In figure ??, the crossovers for the intervals are numer-
ically {�2.13�,�.66�, .66�, 2.13�}
As to a "cubic" symmetric power law(as we will see fur-
ther down), the Student T Distribution with scale s and
tail exponent 3

p(x) ⌘
6

p

3

⇡s
�

x2

s2 + 3

�

2

{a
1

, a
2

, a
3

, a
4

} =

⇢

�

q

4�

p

13s,�

q

4 +

p

13s,

q

4�

p

13s,

q

4 +

p

13s

�

2- For some one-tailed distribution that have a "bell
shape" of convex-concave-convex shape, under some
conditions, the same 4 crossover points hold. The Log-
normal is a special case.
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1.6 Fattening of Tails Through
the Approximation of a
Skewed Distribution for the
Variance

We can improve on the fat-tail heuristic in x, (which
limited the kurtosis to twice the Gaussian) as follows.
We Switch between Gaussians with variance:

(

�2

(1 + a), with probability p

�2

(1 + b), with probability 1� p

with p 2 [0,1), both a, b 2 (-1,1) and b= �a p
1�p , giving

a characteristic function:

�(t, a) = p e�
1

2

(a+1)�2t2
� (p� 1) e�

�

2

t

2

(ap+p�1)

2(p�1)

with Kurtosis 3

((

1�a2

)

p�1
)

p�1 thus allowing polarized
states and high kurtosis, all variance preserving, con-
ditioned on, when a > (<) 0, a < (>) 1�pp .

Thus with p = 1/1000, and the maximum possible
a = 999, kurtosis can reach as high a level as 3000
.
This heuristic approximates quite effectively the effect
on probabilities of a lognormal weighting for the char-
acteristic function

�(t, V ) =

Z 1

0

e�
t

2

v

2

�

✓
log(v)�v0+

V v

2

2

◆
2

2V v

2

p

2⇡vV v
dv

where v is the variance and Vv is the second order vari-
ance, often called volatility of volatility. Thanks to inte-
gration by parts we can use the Fourier Transform to ob-
tain all varieties of payoffs (see Gatheral, 2006).

The Black Swan Problem: As we saw, it is not
merely that events in the tails of the distributions
matter, happen, play a large role, etc. The point
is that these events play the major role and their
probabilities are not computable, not reliable for
any effective use. The implication is that Black
Swans do not necessarily come from fat tails, it
can correspond to incomplete assessment of tail
events.

Chapter x will show how tail events have large er-
rors.

Why do we use Student T to simulate symmet-
ric power laws? It is not that we believe that the
generating process is Student T. Simply, the center of
the distribution does not matter much for the proper-
ties involved in certain classes of decision making. The
lower the exponent, the less the center plays a role. The
higher the exponent, the more the student T resembles
the Gaussian, and the more justified its use will be ac-
cordingly. More advanced methods involving the use
of Levy laws may help in the event of asymmetry, but
the use of two different Pareto distributions with two
different exponents, one for the left tail and the other
for the right one would do the job (without unnecessary
complications).

Why power laws? There are a lot of theories on why
things should be power laws, as sort of exceptions to the
way things work probabilistically. But it seems that the
opposite idea is never presented: power should can be
the norm, and the Gaussian a special case as we will see
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in Chapt x, of concave-convex responses (sort of damp-
ening of fragility and antifragility, bringing robustness,
hence thinning tails).

1.7 Scalable and Nonscalable,
A Deeper View of Fat
Tails

So far for the discussion on fat tails we stayed in the
finite moments case. For a certain class of distributions,

those with finite moments, P
X>nK

P
X>K

depends on n and K.
For a scale-free distribution, with K "in the tails", that
is, large enough, P

X>nK

P
X>K

depends on n not K. These
latter distributions lack in characteristic scale and will
end up having a Paretan tail, i.e., for x large enough,
PX>x = Cx�↵ where ↵ is the tail and C is a scaling
constant.

k P(X > k)�1 P(X>k)
P(X>2 k) P(X > k)�1 P(X>k)

P(X>2 k) P(X > k)�1 P(X>k)
P(X>2 k)

(Gaussian) (Gaussian) Student(3) Student (3) Pareto(2) Pareto (2)

2 44 720 14.4 4.97443 8 4

4 31600. 5.1⇥ 10

10 71.4 6.87058 64 4

6 1.01⇥ 10

9

5.5⇥ 10

23 216 7.44787 216 4

8 1.61⇥ 10

15

9⇥ 10

41 491 7.67819 512 4

10 1.31⇥ 10

23

9⇥ 10

65 940 7.79053 1000 4

12 5.63⇥ 10

32 fughetaboudit 1610 7.85318 1730 4

14 1.28⇥ 10

44 fughetaboudit 2530 7.89152 2740 4

16 1.57⇥ 10

57 fughetaboudit 3770 7.91664 4100 4

18 1.03⇥ 10

72 fughetaboudit 5350 7.93397 5830 4

20 3.63⇥ 10

88 fughetaboudit 7320 7.94642 8000 4

Table 1.1: Scalability, comparing slowly varying functions to other distributions

Note: We can see from the scaling difference be-
tween the Student and the Pareto the conventional
definition of a power law tailed distribution is ex-
pressed more formally as P(X > x) = L(x)x�↵

where L(x) is a "slow varying function", which satis-

fies limx!1
L(tx)
Lx =1 for all constants t > 0.

For X large enough, logP

>x

logx

converges to a constant,
the tail exponent -↵. A scalable should produce the
slope ↵ in the tails on a log-log plot, as x ! 1
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Gaussian

LogNormal-2

Student (3)

2 5 10 20
log x

10!13

10!10

10!7

10!4

0.1

log P"x

Figure 1.7: Three Distributions. As we hit the tails, the Student remains scalable while the Standard Lognormal shows an
intermediate position.

So far this gives us the intuition of the difference be-
tween classes of distributions. Only scalable have
"true" fat tails, as others turn into a Gaussian un-
der summation. And the tail exponent is asymp-
totic; we may never get there and what we may see
is an intermediate version of it. The figure above
drew from Platonic off-the-shelf distributions; in re-
ality processes are vastly more messy, with switches
between exponents.

Estimation issues

Note that there are many methods to estimate the
tail exponent ↵ from data, what is called a "cali-
bration. However, we will see, the tail exponent is
rather hard to guess, and its calibration marred with
errors, owing to the insufficiency of data in the tails.
In general, the data will show thinner tail than it
should.
We will return to the issue in Chapter x.

1.8 Subexponentials as a class
of fat tailed (in at least one
tail ) distributions

We introduced the category "true fat tails" as scal-
able power laws to differenciate it from the weaker
one of fat tails as having higher kurtosis than a Gaus-
sian.
Some use as a cut point infinite variance, but Chap-
ter 2 will show it to be not useful, even misleading.
Many finance researchers (Officer, 1972) and many
private communications with finance artists reveal
some kind of mental block in seeing the world polar-
ized into finite/infinite variance.
Another useful distinction: Let X = (xi)

2in be
i.i.d. random variables in R+, with cumulative distri-
bution function F , by the Teugels (1975) and Pitman
(1980) definition:
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lim

x!1

1� F 2

(x)

1� F (x)
= 2

where F 2 is the convolution ofx with itself.
Note that X does not have to be limited to R+; we
can split the variables in positive and negative do-
main for the analysis.

Example 1

Let f2

(x) be the density of a once-convolved one-
tailed Pareto distribution scaled at 1 with tail expo-
nent ↵, where the density of the non-convolved dis-
tribution

f(x) = ↵ x�↵�1,

x � 1, x 2 [2,1),
which yields a closed-form density:
f2

(x) =

2↵2x�2↵�1
⇣

B x�1

x

(�↵, 1� ↵)�B 1

x

(�↵, 1� ↵)
⌘

where Bz(a, b) is the Incomplete Beta function,
Bz(a, b) ⌘

R z

0

ta�1 (1� t)b�1 dt

(

R1
K

f2

(x,↵) dx
R1
K

f(x,↵) dx

)

↵ =1,2 =

8
<

:
2(K + log(K � 1))

K

,

2

⇣
K(K(K+3)�6)

K�1 + 6 log(K � 1)

⌘

K

2

9
=

;

and, for ↵ = 5,
1

2(K � 1)

4
K

5

K(K(K(K(K(K(K(K(4K+9)+24)+84)+504)�5250)+10920)

� 8820) + 2520) + 2520(K � 1)

4
log(K � 1)

We know that the limit is 2 for all three cases, but it is
important to observe the preasymptotics
As we can see in fig x, finite or nonfinite variance is of
small importance for the effect in the tails.

Example 2

Case of the Gaussian. Since the Gaussian belongs to the
family of the stable distribution (Chapter x), the con-
volution will produce a Gaussian of twice the variance.
So taking a Gaussian, G (0, 1) for short (0 mean and

unitary standard deviation), the densities of the convo-
lution will be Gaussian

�

0,
p

2

�

, so the ratio
R1
K

f2

(x) dx
R1
K

f(x) dx
=

erfc
�

K
2

�

erfc
⇣

Kp
2

⌘

will rapidly explode.
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Figure 1.8: The ratio of the exceedance probabilities of a
sum of two variables over a single one: power law
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Figure 1.9: The ratio of the exceedance probabilities of a
sum of two variables over a single one: Gaussian

200 400 600 800 1000
K

2.0

2.5

3.0

1!F
2

1!F



24 CHAPTER 1. AN INTRODUCTION TO FAT TAILS AND TURKEY PROBLEMS

Figure 1.10: The ratio of the exceedance probabilities of a
sum of two variables over a single one: Case of the Lognor-
mal which in that respect behaves like a power law

Application: Two Real World Situations

We are randomly selecting two people, and the sum of
their heights is 4.1 meters. What is the most likely com-
bination? We are randomly selecting two people, and
the sum of their assets, the total wealth is $30 million.
What is the most likely breakdown?
Assume two variables X

1

and X
2

following an identical
distribution, where f is the density function,

P [X
1

+X
2

= s] = f2

(s)

=

Z

f(y) f(s� y) dy.

The probability densities of joint events, with 0  � <
s
2

:
\

⇣

P
⇣

X
1

=

s

2

+ �
⌘

, P
⇣

X
2

=

s

2

� �
⌘⌘

= P
⇣

X
1

=

s

n
+ �

⌘

⇥ P
⇣

X
2

=

s

n
� �

⌘

Let us work with the joint distribution for a given
sum:

For a Gaussian, the product becomes

f
⇣ s

n
+ �

⌘

f
⇣ s

n
� �

⌘

=

e��
2� s

2

n

2

2⇡

For a Power law, say a Pareto distribution with ↵ tail
exponent, f(x)= ↵ x�↵�1x↵

min

where x
min

is minimum
value , s

2

� x
min

, and � �

s
2

�x
min

f
⇣

� +

s

n

⌘

f
⇣

� �

s

n

⌘

= ↵2x2↵
min

⇣⇣

� �

s

2

⌘⇣

�

+

s

2

⌘⌘�↵�1

The product of two densities decreases with � for the
Gaussian2, and increases with the power law. For the
Gaussian the maximal probability is obtained � = 0.
For the power law, the larger the value of �, the better.

So the most likely combination is exactly 2.05 meters
in the first example, and x

min

and $30 million �x
min

in
the second.

More General

More generally, distributions are called subexponential
when the exceedance probability declines more slowly in
the tails than the exponential.

a) limx!1
P

X>⌃x

P
X>x

= n, (Christyakov, 1964), which is
equivalent to

b) limx!1
P

X>⌃x

P (X>max(x)) = 1, (Embrecht and Goldie,
1980).

The sum is of the same order as the maximum (posi-
tive) value, another way of saying that the tails play a
large role.

Clearly F has to have no exponential moment:

Z 1

0

e✏x dF (x) = 1

for all ✏ > 0.
We can visualize the convergence of the integral at
higher values of m: Figures ?? and ?? show the effect
of emx f(x), that is, the product of the exponential mo-
ment m and the density of a continuous distributions
f(x) for large values of x.

Now the standard Lognormal belongs to the subex-
ponential category, but just barely so (we used in the
graph above Log Normal-2 as a designator for a dis-
tribution with the tail exceedance ⇠ Ke��(log(x)�µ)

�

where �=2)

2Technical comment: we illustrate some of the problems with continuous probability as follows. The sets 4.1 and 30 10

6 have Lebesgue
measures 0, so we work with densities and comparing densities implies Borel subsets of the space, that is, intervals (open or closed) ± a
point. When we say "net worth is approximately 30 million", the lack of precision in the statement is offset by an equivalent one for the
combinations of summands.
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Figure 1.13: A time series of an extremely fat-tailed distribu-
tion. Given a long enough series, the contribution from the
largest observation should represent the entire sum, dwarfing
the rest.

1.9 Different Approaches For
Statistically Derived Esti-
mators

There are broadly two separate ways to go about esti-
mators: nonparametric and parametric.

The nonparametric approach

it is based on observed raw frequencies derived from
sample-size n. Roughly, it sets a subset of events A
and MX

T (A, 1) (i.e., f(x) =1), so we are dealing with
the frequencies '(A) =

1

n

Pn
i=0

1A. Thus these esti-
mates don’t allow discussions on frequencies ' < 1

n ,
at least not directly. Further the volatility of the esti-
mator increases with lower frequencies. The error is a
function of the frequency itself (or rather, the smaller
of the frequency ' and 1-'). So if

Pn
i=0

1A=30
and n = 1000, only 3 out of 100 observations are ex-
pected to fall into the subset A, restricting the claims
to too narrow a set of observations for us to be able
to make a claim, even if the total sample n = 1000 is
deemed satisfactory for other purposes. Some people in-
troduce smoothing kernels between the various buckets
corresponding to the various frequencies, but in essence
the technique remains frequency-based. So if we nest
subsets,A

1

✓ A
2

✓ A, the expected "volatility" (as we
will see later in the chapter, we mean MAD, mean ab-
solute deviation, not STD) of MX

T (Az, f) will produce
the following inequality:

E
⇥

�

�MX
T (Az, f)�MX

>T (Az, f)
�

�

⇤

�

�MX
T (Az, f)

�

�



E
⇥

�

�MX
T (A<z, f) �

�

�MX
>T (A<z, f)

�

�

⇤

�

�MX
T (A<z, f)

�

�

for all functions f. (Proof via twinking of law of large
numbers for sum of random variables).

The parametric approach

it allows extrapolation but emprisons the representa-
tion into a specific off-the-shelf probability distribution

(which can itself be composed of more sub-probability
distributions); so MX

T is an estimated parameter for use
input into a distribution or model and the freedom left
resides in differents values of the parameters.
Both methods make is difficult to deal with small fre-
quencies. The nonparametric for obvious reasons of
sample insufficiency in the tails, the parametric because
small probabilities are very sensitive to parameter er-
rors.

The Sampling Error for Convex Pay-
offs
This is the central problem of model error seen in con-
sequences not in probability. The literature is used to
discussing errors on probability which should not matter
much for small probabilities. But it matters for payoffs,
as f can depend on x. Let us see how the problem be-
comes very bad when we consider f and in the presence
of fat tails. Simply, you are multiplying the error in prob-
ability by a large number, since fat tails imply that the
probabilities p(x) do not decline fast enough for large
values of x. Now the literature seem to have examined
errors in probability, not errors in payoff.
Let MX

T (Az, f) be the estimator of a function of x in
the subset Az= (�

1

, �
2

) of the support of the vari-
able. Let ⇠(MX

T (Az, f)) be the mean absolute error
in the estimation of the probability in the small subset
Az= (�

1

, �
2

), i.e.,

⇠
�

MX
T (Az, f)

�

⌘

E
�

�MX
T (Az, 1)�MX

>T (Az, 1)
�

�

MX
T (Az, 1)

Assume f(x) is either linear or convex (but not con-
cave) in the form C+ ⇤ x� , with both ⇤ > 0 and �
� 1. Assume E[X], that is, E

⇥

MX
>T (AD, f)

⇤

< 1, for
Az⌘AD, a requirement that is not necessary for finite
intervals.
Then the estimation error of MX

T (Az, f) compounds
the error in probability, thus giving us the lower bound
in relation to ⇠

E
⇥

�

�MX
T (Az, f)�MX

>T (Az, f)
�

�

⇤

MX
T (Az, f)

�

�

|�
1

� �
2

|min (|�
2

| , |�
1

|)

��1

+min (|�
2

| , |�
1

|)

�
� E
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�MX
T (Az, 1)�MX

>T (Az, 1)
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�
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MX
T (Az, 1)

Since E
[

MX

>T

(A
z

,f)
]

E
[

MX

>T

(A
z

,1)
]

=

R
�

2

�

1

f(x)p(x) dx
R

�

2

�

1

p(x) dx
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and expanding f(x), for a given n on both sides.
We can now generalize to the central inequality from
convexity of payoff , which we shorten as Convex Pay-
off Sampling Error Inequalities, CPSEI:

Rule 1. Under our conditions above,
if for all � 2(0,1) and f{i,j}(x±�)
2 Az, (1��)fi

(x��)+�fi

(x+�)

fi

(x) �

(1��)fj

(x��)+�fj

(x+�)

fj

(x) , (f iis never less con-
vex than f j in interval Az ), then

⇠
�

MX
T (Az, f

i
)

�

� ⇠
�

MX
T (Az, f

j
)

�

Rule 2. Let ni be the number of observa-
tions required for MX

>T

�

Az
i

, f i
�

the estima-
tor under f i to get an equivalent expected
mean absolute deviation as MX

>T

�

Az
j

, f j
�

un-
der f j with observation size nj , that is, for
⇠(MX

T,n
i

�

Az
i

, f i ))=⇠(MX
T,n

j

�

Az
j

, f j )), then

ni � nj

This inequality turns into equality in the case of nonfi-
nite first moment for the underlying distribution.
The proofs are obvious for distributions with finite sec-
ond moment, using the speed of convergence of the sum
of random variables expressed in mean deviations. We
will not get to them until Chapter x on convergence
and limit theorems but an example will follow in a few
lines.
We will discuss the point further in Chapter x, in the
presentation of the conflation problem.
For a sketch of the proof, just consider that the con-
vex transformation of a probability distribution p(x)
produces a new distribution f(x) ⌘ ⇤x� with density

pf (x) =
⇤

�1/�x
1��

� p
⇣
(

x

⇤

)

1/�

⌘

� over its own adjusted do-
main, for which we find an increase in volatility, which
requires a larger n to compensate, in order to maintain
the same quality for the estimator.

Example

For a Gaussian distribution, the variance of the trans-
formation becomes:

V

⇣
⇤x

�

⌘
=

2

��2
⇤

2
�

2�

⇡

 
2

p
⇡
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(�1)

2�
+ 1

⌘
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✓
� +

1

2

◆

�
⇣
(�1)

�
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⌘2
�

✓
� + 1

2

◆2
!

and to adjust the scale to be homogeneous degree 1,
the variance of

V
�

x�
�

=

2

��2�2�

⇡

 

2
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⇡
�

(�1)

2�
+ 1

�

�
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1

2

◆

�

�

(�1)

�
+ 1

�
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�
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� + 1

2
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2
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For ⇤=1, we get an idea of the increase in variance from
convex transformations:

� Variance V (�) Kurtosis

1 �2

3

2 2 �4

15

3 15 �6

231

5

4 96 �8

207

5 945 �10

46189

63

6 10170 �12

38787711

12769

Since the standard deviation drops at the rate
p

n
for non power laws, the number of n(�), that is, the
number of observations needed to incur the same er-
ror on the sample in standard deviation space will be
p

V (�)p
n
1

=

p

V (1)p
n

, hence n
1

= 2 n �2. But to equal-
ize the errors in mean deviation space, since Kurtosis
is higher than that of a Gaussian, we need to trans-
late back into L1 space, which is elementary in most
cases.
For a Pareto Distribution with domain
v[x�

min

,1),

V
�

⇤ x�
�

=

↵⇤2x2

min

(↵� 2)(↵� 1)

2

.

Using Log characteristic functions allows us to deal with
the difference in sums and get the speed of conver-
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gence.3

Example illustrating the Convex Payoff Inequal-
ity

Let us compare the "true" theoretical value to ran-
dom samples drawn from the Student T with 3 de-
grees of freedom, for MX

T

�

A, x�
�

, A = (�1,�3],
n=200, across m simulations

�

> 10

5

�

by estimat-
ing E
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It produces the following table showing an explosive
relative error ⇠. We compare the effect to a Gausian
with matching standard deviation, namely

p

3. The
relative error becomes infinite as � approaches the
tail exponent. We can see the difference between
the Gaussian and the power law of finite second
moment: both "sort of" resemble each others in many
applications � but... not really.

� ⇠St(3) ⇠G
(

0,
p
3

)

1 0.17 0.05

3

2

0.32 0.08

2 0.62 0.11

5

2

1.62 0.13

3 fuhgetaboudit 0.18

Warning. Severe mistake (common in the eco-
nomics literature)

One should never make a decision involving
MX

T (A>z, f) and basing it on calculations for
MX

T (Az, 1), especially when f is convex, as it
violates CPSEI. Yet many papers make such a
mistake. And as we saw under fat tails the problem
is vastly more severe.

Utility Theory

Note that under a concave utility of negative states,
decisions require a larger sample. By CPSEI the magni-
fication of errors require larger number of observation.
This is typically missed in the decision-science literature.
But there is worse, as we see next.

Tail payoffs

: The author is disputing, in Taleb (2013), the results
of a paper, Ilmanen (2013), on why tail probabilities are
overvalued by the market: naively Ilmanen (2013) took
the observed probabilities of large deviations,f(x) = 1

then made an inference for f(x) an option payoff based
on x, which can be extremely explosive (a error that
can cause losses of several orders of magnitude the ini-
tial gain). Chapter x revisits the problem in the context
of nonlinear transformations of random variables. The
error on the estimator can be in the form of param-
eter mistake that inputs into the assumed probability
distribution, say � the standard deviation (Chapter x
and discussion of metaprobability), or in the frequency
estimation. Note now that if �

1

!-1, we may have
an infinite error on MX

T (Az, f), the left-tail shortfall
while, by definition, the error on probability is necessar-
ily bounded.
If you assume in addition that the distribution p(x)
is expected to have fat tails (of any of the kinds seen
in ??.?? and ??.??) , then the problem becomes more
acute.

3The characteristic function of the transformation y= f(x) is

1
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Now the mistake of estimating the properties of x, then
making a decisions for a nonlinear function of it, f(x),
not realizing that the errors for f(x) are different from
those of x is extremely common. Naively, one needs
a lot larger sample for f(x) when f(x) is convex than
when f(x) = x. We will re-examine it along with the
"conflation problem" in Chapter x.4

1.10 Economics Time Series
Econometrics and Statis-
tics Tend to imagine func-
tions in L

2 Space

There is something Wrong With Econometrics, as
Almost All Papers Don’ t Replicate. Two reliabil-
ity tests in Chapter x, one about parametric methods
the other about robust statistics, show that there is
something rotten in econometric methods, fundamen-
tally wrong, and that the methods are not dependable
enough to be of use in anything remotely related to risky
decisions. Like charlatans they keep spinning inconsis-
tent ad hoc statements to explain failures.
We will show how, with economic variables one sin-
gle observation in 10,000, that is, one single day in 40
years, can explain the bulk of the "kurtosis", a measure
of "fat tails", that is, both a measure how much the dis-
tribution under consideration departs from the standard
Gaussian, or the role of remote events in determining the
total properties. For the U.S. stock market, a single day,
the crash of 1987, determined 80% of the kurtosis for
the period between 1952 and 2008. The same problem
is found with interest and exchange rates, commodities,
and other variables. Redoing the study at different pe-
riods with different variables shows a total instability to
the kurtosis. The problem is not just that the data had
"fat tails", something people knew but sort of wanted
to forget; it was that we would never be able to deter-
mine "how fat" the tails were within standard methods.
Never.
The implication is that those tools used in economics
that are based on squaring variables(more technically,
the L2 norm), such as standard deviation, variance, cor-
relation, regression, the kind of stuff you find in text-
books, are not valid scientifically(except in some rare
cases where the variable is bounded). The so-called "p
values" you find in studies have no meaning with eco-

nomic and financial variables. Even the more sophisti-
cated techniques of stochastic calculus used in math-
ematical finance do not work in economics except in
selected pockets.

200 400 600 800 1000

!50

!40

!30

!20

!10

10

Figure 1.14: The Turkey Problem, where nothing in the past
properties seems to indicate the possibility of the jump.

Figure 1.15: History moves by jumps: A fat tailed histor-
ical process, in which events are distributed according to a
power law that corresponds to the "80/20", with ↵ ' 1.2,
the equivalent of a 3-D Brownian motion.

4I thank Albert Wenger for corrections of mathematical typos in this section.
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Figure 1.16: What the "fragilistas" have in mind: history as
a thin-tailed process.

1.11 Typical Manifestations of
The Turkey Surprise

Two critical (and lethal) mistakes, entailing mistaking
inclusion in a class Di for D<i because of induced slow-
ness in the convergence under the law of large numbers.
We will see that in the hierarchy, scale (or variance) is
swamped by tail deviations.
Great Moderation (Bernanke, 2006) consists in mis-
taking a two-tailed process with fat tails for a process
with thin tails and low volatility.
Long Peace (Pinker, 2011) consists in mistaking a one-

tailed process with fat tails for a process with thin tails
and low volatility and low mean.
Some background on Bernanke’s severe mistake. When
I finished writing The Black Swan, in 2006, I was
confronted with ideas of "great moderation" stemming
from the drop in volatility in financial markets. People
involved in promulgating such theories did not realize
that the process was getting fatter and fatter tails (from
operational and financial, leverage, complexity, interde-
pendence, etc.), meaning fewer but deeper departures
from the mean. The fact that nuclear bombs explode
less often that regular shells does not make them safer.
Needless to say that with the arrival of the events of
2008, I did not have to explain myself too much. Nev-
ertheless people in economics are still using the meth-
ods that led to the "great moderation" narrative, and
Bernanke, the protagonist of the theory, had his man-
date renewed.
When I contacted social scientists I discovered that the
familiarity with fat tails was pitifully small, highly in-
consistent, and confused.
The Long Peace Mistake. Later, to my horror, I saw
an amateurish book with an identical theory of great
moderation produced by Steven Pinker with the same
naive statistically derived discussions (>700 pages of
them!). Except that it applied to security. The prob-
lem is that, unlike Bernanke, Pinker realized the process
had fat tails, but did not realize the resulting errors in
inference.
Chapter x will get into the details and what we can learn
from it.

1.12 Metrics for Functions Out-
side L

2 Space

We can see from the data in Chapter 3 that the pre-
dictability of the Gaussian-style cumulants is low, the
mean deviation of mean deviation is ⇠70% of the mean
deviation of the standard deviation (in sample, but the
effect is much worse in practice); working with squares
is not a good estimator. Many have the illusion that we
need variance: we don’t, even in finance and economics
(especially in finance and economics).
We propose different cumulants, that should exist when-
ever the mean exists. So we are not in the dark when
we refuse standard deviation. It is just that these cu-
mulants require more computer involvement and do not
lend themselves easily to existing Platonic distributions.
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And, unlike in the conventional Brownian Motion uni-
verse, they don’t scale neatly.
Note finally that these measures are central since, to as-
sess the quality of the estimation MX

T , we are concerned
with the expected mean error of the empirical expec-
tation, here E

�

�

�MX
T (Az, f)�MX

>T (Az, f)
�

�

�

, where
z corresponds to the support of the distribution.

C
0

⌘

PT
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T
(This is the simple case of 1A = 1D; an alternative
would be:
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1
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D
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depending on whether the function of concern for the
fragility metric requires conditioning or not).
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produces the Mean Deviation (but centered by the
mean, the first moment).
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Note the practical importance of C
1

: under some
conditions usually met, it measures the quality of
the estimation E

⇥

�

�MX
T (Az, f)�MX

>T (Az, f)
�

�

⇤

, since
MX

>T (Az, f) = C
0

. When discussing fragility, we will
use a "tail cumulant", that is absolute deviations for 1A
covering a spccific tail.
The next table shows the theoretical first two cumu-
lants for two symmetric distributions: a Gaussian, N
(0,�) and a symmetric Student T St(0, s,↵) with mean
0, a scale parameter s, the PDF for x is

p(x) =

✓
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As to the PDF of the Pareto distribution, p(x) =

↵s↵x�↵�1 for x � s (and the mean will be necessarily
positive).

Distr Mean C1 C2

Gaussian 0

q

2

⇡� 2e�1/⇡
q

2

⇡

⇣

1� e
1

⇡ erfc
⇣

1p
⇡

⌘⌘

�

Pareto ↵ ↵s
↵�1 2(↵� 1)

↵�2↵1�↵s

ST ↵=3/2 0

2

p

6

⇡

s�
(

5

4

)

�

(

3

4

)

8

p
3�

(

5

4

)

2

⇡3/2

ST Square ↵=2 0

p

2s s� sp
2

ST Cubic ↵=3 0

2

p
3s

⇡

8

p
3s tan�1

(

2

⇡

)

⇡2

where erfc is the complimentary error function erfc(z) = 1�
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dt.

These cumulants will be useful in areas for which we
do not have a good grasp of convergence of the sum
of observations.
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A Appendix: Special Cases of Fat Tails

A.1 Multimodality and Fat
Tails, or the War and Peace
Model

We noted in 1.x that stochasticizing, ever so mildly,
variances, the distribution gains in fat tailedness (as
expressed by kurtosis). But we maintained the same
mean.
But should we stochasticize the mean as well, and
separate the potential outcomes wide enough, so that
we get many modes, the kurtosis would drop. And if
we associate different vairances with different means,
we get a variety of "regimes", each with its set of
probabilities.
Either the very meaning of "fat tails" loses its sig-
nificance under multimodality, or takes on a new one
where the "middle", around the expectation ceases
to matter.
Now, there are plenty of situations in real life in which
we are confronted to many possible regimes, or states.
Assuming finite moments for all states, s

1

a calm
regime, with expected mean m

1

and standard devi-
ation �

1

, s
2

a violent regime, with expected mean
m

2

and standard deviation �
2

, and more. Each state
has its probability pi.
Assume, to simplify a one-period model, as if one
was standing in front of a discrete slice of history,
looking forward at outcomes. (Adding complica-
tions (transition matrices between different regimes)
doesn’t change the main result.)
The Characteristic Function �(t) for the mixed dis-
tribution:
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N
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For N = 2, the moments simplify to the following:
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Let us consider the different varieties, all character-
ized by the condition p

1

< (1�p
1

), m
1

< m
2

, prefer-
ably m

1

< 0 and m
2

> 0, and, at the core, the central
property: �

1

> �
2

.

Variety 1: War and Peace.

Calm period with positive mean and very low volatil-
ity, turmoil with negative mean and extremely low
volatility.

S1

S2

Pr

Figure A.1: The War and peace model. Kurtosis K=1.7,
much lower than the Gaussian.

33
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Variety 2: Conditional deterministic state

Take a bond B, paying interest r at the end of a single
period. At termination, there is a high probability of
getting B(1 + r), a possibility of defaut. Getting ex-
actly Bis very unlikely. Think that there are no inter-
mediary steps between war and peace: these are sepa-
rable and discrete states. Bonds don’t just default "a
little bit". Note the divergence, the probability of the
realization being at or close to the mean is about nil.
Typically, p(E(x)) the probabilitity densities of the
expectation are smaller than at the different means
of regimes, so p(E(x)) < p (m

1

) and < p (m
2

), but in
the extreme case (bonds), p(E(x)) becomes increas-
ingly small. The tail event is the realization around
the mean.

S2

S1

Pr

Figure A.2: The Bond payoff model. Absence of volatility,
deterministic payoff in regime 2, mayhem in regime 1. Here
the kurtosis K=2.5. Note that the coffee cup is a special
case of both regimes 1 and 2 being degenerate.
In option payoffs, this bimodality has the effect of
raising the value of at-the-money options and lower-
ing that of the out-of-the-money ones, causing the ex-
act opposite of the so-called "volatility smile".
Note the coffee cup has no state between broken and
healthy. And the state of being broken can be consid-
ered to be an absorbing state (using Markov chains
for transition probabilities), since broken cups do not
end up fixing themselves.
Nor are coffee cups likely to be "slightly broken", as
we will see in the next figure.

time

Low Probability

       Region

!100

!80

!60

!40

!20

0

condition

Figure A.3: The coffee cup cannot incur "small" harm; it is
exposed to everything or nothing.

A.1.1 A brief list of other situa-
tions where bimodality is encoun-
tered:

1. Mergers
2. Professional choices and outcomes
3. Conflicts: interpersonal, general, martial, any

situation in which there is no intermediary be-
tween harmonious relations and hostility.

4. Conditional cascades

A.2 Transition probabilites, or
what can break will eventu-
ally break

So far we looked at a single period model, which is
the realistic way since new information may change
the bimodality going into the future: we have clarity
over one-step but not more. But let us go through an
exercise that will give us an idea about fragility. As-
suming the structure of the model stays the same, we
can look at the longer term behavior under transition
of states. Let P be the matrix of transition probabil-
itites, where pi,j is the transition from state i to state
j over �t, (that is, where S(t) is the regime prevailing
over period t, P (S(t+�t) = sj |S(t) = sj))

P =

✓

p
1,1 p

2,1

p
1,2 p

2,2

◆

After n periods, that is, n steps,
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The extreme case to consider is the one with the
absorbing state, where p

1,1 = 1, hence (replacing
pi, 6=i|i=1,2 = 1� pi,i).
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1� pN
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and the "ergodic" probabilities:

limn!1 Pn
=
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1 0

1 0

◆

The implication is that the absorbing state regime
1 S(1) will end up dominating with probability 1:
what can break and is irreversible will eventually
break.
With the "ergodic" matrix,

lim

n!1
Pn

= ⇡.1T

where 1T is the transpose of unitary vector {1,1}, ⇡
the matrix of eigenvectors.

The eigenvalues become � =
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2 A Heuristic Hierarchy of Distributions For
Inferential Asymmetries

This chapter explains in technical terms the "mas-
querade problem"discussed in The Black Swan,
namely that one can be fooled by fat tails, not thin
tails, as a fat tailed distribution can masquerade as
a low-risk one, but not the reverse. Remarkably this
point was missed, or never linked to the asymme-
try between evidence of absence and absence of evi-
dence.
Accordingly, one can make statements of the type
"This is not Gaussian", or "this is not Poisson"(many
people don’t realize that Poisson are generally thin
tails); but one cannot rule out Cauchy or other power
laws. So this chapter puts some mathematical struc-
ture around the idea of which statements are permis-
sible and which ones are not. (One can violate these
statements but not from data analysis, only basing
oneself on a priori statement of belonging to some
probability distributions.)
Let us get deeper into the masquerade problem, as
it concerns the problem of induction and Extremis-
tan, and get to the next step. Simply, if a mechanism
is fat tailed it can deliver large values; therefore the
incidence of large deviations is possible, but how
possible, how often these occur should occur, will be
hard to know with any precision beforehand. This
is similar to the water puddle problem: plenty of ice
cubes could have generated it. As someone who goes
from reality to possible explanatory models, I face
a completely different spate of problems from those
who do the opposite.
We said that fat tailed series can, in short episodes,
masquerade as thin-tailed. At the worst, we don’t
know how long it would take to know. But we
can have a pretty clear idea whether organically,
because of the nature of the payoff, the "Black
Swan"can hit on the left (losses) or on the right

(profits). This point can be used in climatic anal-
ysis. Things that have worked for a long time are
preferable�they are more likely to have reached their
ergodic states.
We aim here at building a rigorous methodology for
attaining statistical (and more general) knowledge by
rejection, and cataloguing rejections, not addition.
We can reject some class of statements concerning
the fat-tailedness of the payoff, not others.

2.1 Masquerade Example

We construct the cases as switching between Gaus-
sians with variances
⇢

�2

(a+ 1)

�2

(b+ 1)

with probability p
with probability (1� p)

with p 2 [0,1); a, b 2 (-1,1) and (to conserve the
variance) b= �a p

1�p , which produces a Kurtosis =
3

((

1�a2

)

p�1
)

p�1 thus allowing polarized states and high
kurtosis, with a condition that for a > (<) 0, a <
(>) 1�pp .
Let us compare the two cases:
A) A switching process producing Kurtosis= 10

7

(using p= 1/2000, a sligtly below the upper
bound a= 1�p

p �1) to
B) The regular situation p = 0, a=1, the case of

kurtosis = 3.
The two graphs in figures ??.?? and ??.?? show
the realization of the processes A (to repeat, pro-
duced with the switching process) to a process
B entirely Gaussian, both of the same variance.
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Figure 2.1: N=1000. Sample simulation. Both series have
the exact same means and variances at the level of the gen-
erating process. Naive use of common metrics leads to the
acceptance that the process A has thin tails.

Figure 2.2: N=1000. Rejection: Another simulation. there
is 1/2 chance of seeing the real properties of A. We can now
reject the hypothesis that the smoother process has thin
tails.

2.2 The Probabilistic Version of
Absense of Evidence vs Evi-
dence of Absence

Our concern is exposing some errors in probabilistic
statements and statistical inference, in making infer-
ences symmetric, when they are more likely to be
false on one side than the other, or more harmful one
side than another. Believe it or it, this pervades the
entire literature.
Some people have the illusion that "because
Kolmogorov-Smirnoff is nonparametric”, it is there-
fore immune to the nature specific distribution under
the test (perhaps from an accurate sentence in Feller
(1971), vol 2 as we will see further down). The belief
in Kolmogorov-Smirnoff is also built in the illusion
that our concern is probability rather than expected
payoff, or the associated problem of "confusing a bi-
nary for a vanilla”, where by attribute substitution,
one tests a certain variable in place of another, sim-

pler one.
In other words, it is a severe mistake to treat
epistemological inequalities as equalities. No matter
what we do, we end up going back to the problem
of induction, except that the world still exists and
people unburdened with too many theories are
still around. By making one-sided statements, or
decisions, we have been immune to the muddle in
statistical inference.

Remark on via negativa and the problem of induc-
tion

Test statistics are effective (and robust) at reject-
ing, but not at accepting, as a single large deviation
allowed the rejection with extremely satisfactory mar-
gins (a near-infinitesimal P-Value). This illustrates
the central epistemological difference between absence
of evidence and evidence of absence.

2.3 Via Negativa and One-
Sided Arbitrage of Statisti-
cal Methods

Via negativa

: In theology and philosophy, corresponds to the fo-
cus on what something is not, an indirect definition.
In action, it is a recipe for what to avoid, what not
to do� subtraction, not addition, say, in medicine.
In epistemology: what to not accept, or accept as
false. So a certain body of knowledge actually grows
by rejection. ( Antifragile, Glossary).
The proof and the derivations are based on climb-
ing to a higher level of abstraction by focusing the
discussion on a hierarchy of distributions based on
fat-tailedness.
Remark: Test statistics can be arbitraged, or

"fooled"in one direction, not the other.
Let us build a hierarchy of distributions based on

tail events. But, first, a discussion of the link to the
problem of induction.
From The Black Swan (Chapter 16 ): This author
has learned a few tricks from experience dealing
with power laws: whichever exponent one try to
measure will be likely to be overestimated (recall
that a lower exponent implies a smaller role for
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large deviations)�what you see is likely to be less
Black Swannish than what you do not see. Let’s say
I generate a process that has an exponent of 1.7.
You do not see what is inside the engine, only the
data coming out. If I ask you what the exponent
is, odds are that you will compute something like
2.4. You would do so even if you had a million
data points. The reason is that it takes a long
time for some fat tailed processes to reveal their
properties, and you underestimate the severity of the
shock. Sometimes a fat tailed distribution can make
you believe that it is Gaussian, particularly when
the process has mixtures. (Page 267, slightly edited).

2.4 A Heuristic Hierarchy of
Distributions in Term of
Fat-Tailedness

Let Dibe a class of probability measures, Di ⇢ D>i

means in our terminology that a random event "in"Di

would necessarily "be in"Dj , with j > i, and we can
express it as follows. Let AK be a one-tailed interval
in R, unbounded on one side K, s.a. A�K = (�1,K

⇤

or A+

K = [K,1
�

, and µ(A) the probability measure
on the interval, which corresponds to µi(A�K) the cu-
mulative distribution function for K on the left, and
µi(A+

K) = 1 � the CDF (that is, the exceedance prob-
ability) on the right.
For continuous distributions, we can treat of the
Radon-Nikodym derivatives for two measures @µ

i

@µ
j

over as the ratio of two probability with respect to a
variable in AK .
Definition 7. We can define i) "acceptance"as being
subject to a strictly positive probability of mistaking Di

for D<i and ii) rejection as a claim that D>i. Likewise
for what is called "confirmation"and "disconfirmation”.
Hence Di ⇢ Dj if either of these two conditions are
satisfied:

i) There exists a K
0

( called "in the negative tail”)
such that µj(A�K

0

)>µi(A�K
0

) and µj(A�K)>µi(A�K) for
all K < K

0

,
or

ii) There exists a K
0

("in the positive tail”) such that
µj(A+

K
0

)>µi(A+

K
0

) and µj(A+

K)>µi(A+

K) for all K >
K

0

The derivations are as follows. Simply, the effect of
the scale of the distribution (say, the variance in the
finite second moment case) wanes in the tails. For the
classes of distributions up to the Gaussian, the point
is a no brainer because of compact support with 0
measure beyond a certain K. As as far as the Gaus-
sian, there are two brands, one reached as a limit of,
say, a sum of n Bernouilli variables, so the distribu-
tion will have compact support up to a multiple of n
at infinity, that is, in finite processes (what we call
the "real world"where things are finite). The second
Gaussian category results from an approximation; it
does not have compact support but because of the ex-
ponential decline in the tails, it will be dominated by
power laws. To cite Adrien Douady, it has compact
support for all practical purposes.

Case of Two Powerlaws
For powerlaws, let us consider the competing effects
of scale, say � (even in case of nonfinite variance),
and ↵ tail exponent, with ↵ > 1 . Let the density
be

P↵,�(x) = L(x)x�↵�1

where L(x) is a slowly varying function,

r�,k(x) ⌘
P�↵,k �(x)

P↵,�(x)

By only perturbating the scale, we increase the tail
by a certain factor, since limx!1 r

1,k(x) = k↵,
which can be significant. But by perturbating both
and looking at the limit we get limx!1 r�,k(x) =
� k↵�

�

L
x

�↵(�1+�), where L is now a constant, thus
making the changes to ↵ the tail exponent leading for
large values of x.
Obviously, by symmetry, the same effect obtains in
the left tail.

Rule 3. When comparing two power laws, regard-
less of parametrization of the scale parameters for
either distributions, the one with the lowest tail ex-
ponent will have higher density in the tails.

Comparing Gaussian to Lognormal
Let us compare the Gaussian(µ,�) to a
Lognormal(m, s), in the right tail, and look at



40 CHAPTER 2. A HEURISTIC HIERARCHY OF DISTRIBUTIONS FOR INFERENTIAL ASYMMETRIES

how one dominates in the remote tails. There is no
values of parameters � and s such that the PDF of
the Normal exceeds that of the Lognormal in the
tails. Assume means of 0 for the Gaussian and the
equivalent e

k

2

s

2

2 for the Lognormal with no loss of
generality.
Simply, let us consider the the sign of the difference

between the two densities,
e

� log

2

(x)

2k

2

s

2

ksx

� e

� x

2

2�

2

�p
2⇡

by com-

paring the unscaled tail values of e
� log

2

(x)

2k

2

s

2

ksx and e
� x

2

2�

2

� .
Taking logarithms of the ratio, �(x) = x2

2�2

�

log

2

(x)
2k2s2 �

log(ksx) + log(�), which is dominated by the first
term x2 as it is convex when the other terms are
concave, so it will be > 0 for large values of x inde-
pendently of parameters.

Rule 4. Regardless of parametrization of the scale
parameter (standard deviation) for either distribu-
tion, a lognormal will produce asymptotically higher
tail densities in the positive domain than the Gaus-
sian.

Case of Mixture of Gaussians
Let us return to the example of the mixture distri-
bution N(0,�) with probability 1� p and N(0, k �)
with the remaining probability p. The density of the

second regime weighted by p becomes p e
� x

2

2k

2

�

2

k
p
2⇡�

. For

large deviations of x, p
ke
� x

2

2k

2 is entirely dominated
by k, so regardless of the probability p > 0, k > 1

sets the terms of the density.
In other words:
Rule 5. Regardless of the mixture probabilities, when
combining two Gaussians, the one with the higher stan-
dard deviations determines the density in the tails.
Which brings us to the following epistemological clas-
sification:

Class Description

D

1

True Thin Tails Compact support (e.g. : Bernouilli, Binomial)
D

2

Thin tails Gaussian reached organically through summation of
true thin tails, by Central Limit; compact support
except at the limit n ! 1

D

3a Conventional Thin tails Gaussian approximation of a natural phenomenon

D

3b Starter Fat Tails Higher kurtosis than the Gaussian but rapid conver-
gence to Gaussian under summation

D

5

Subexponential (e.g. lognormal)

D

6

Supercubic ↵ Cramer conditions do not hold for t >
3,
R

e�tx d(Fx) = 1

D

7

Infinite Variance Levy Stable ↵ < 2 ,
R

e�txdF (x) = 1

D

8

Infinite First Moment Fuhgetaboutdit

Mixtures distributions entailing Di and Dj are classi-
fied with the highest level of fat tails D

max(i,j) regard-
less of the mixing. A mixture of Gaussians remains

Gaussian for large deviations, even if the local prop-
erties can be confusing in small samples, except for
the situation of infinite nesting of stochastic volatili-
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Degenerate

Bernoulli

Thin!Tailed from Convergence to Gaussian

COMPACT 

SUPPORT

Subexponential 

Supercubic Α # 3

Lévy-Stable Α<2 

Α� 1

CRAMER

CONDITION

!
1

LAW OF LARGE NUMBERS (WEAK) CONVERGENCE ISSUES

Gaussian from Lattice Approximation

Fuhgetaboudit

CENTRAL LIMIT — BERRY-ESSEEN

Figure 2.3: The tableau of Fat tails, along the various classifications for convergence purposes (i.e., convergence to the law of
large numbers, etc.)

ties discussed in Chapter 6.
Now a few rapidly stated rules.
Rule 6. (General Decision Making Heuristic). Re-
jection or acceptance of fitness to pre-specified prob-
ability distributions, based on suprema of distance
between supposed probability distributions (say Kol-
mogorov Smirnoff and similar style) should only be able
to "accept" the fatter tail one and "reject"the lower
tail, i.e., based on the criterion i > j based on the
classification above.
The point is discussed in ??.?? as we will start with
an example "busting"a distribution concealing its
properties.

Warning 1 : Always remember that one does not
observe probability distributions, only realizations.
(This even applies to the Extreme Value Laboratory
of the Zurich ETH). Every probabilistic statement
needs to be discounted by the probability of the pa-
rameter being away from the true one.

Warning 2 : Always remember that we do not live
in probability space, but payoff space.

Rule 7. (Decision Mistakes). Fatter tailed distri-
butions are more likely to produce a lower in-sample
variance (using empirical estimators) than a distri-
bution of thinner tail of the same variance (in the
finite variance case).

For the derivation, recall that in ??.?? there in in-
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crease in observations in the "tunnel"(a
2

, a
3

) in re-
sponse to increase in fat-tailedness.

How To Arbitrage Kolmogorov-
Smirnov

Counterintuitively, when one raises the kurtosis, as
in Figure ??.?? the time series looks "quieter”. Sim-
ply, the storms are rare but deep. This leads to mis-
taken illusion of low volatility when in fact it is just
high kurtosis, something that fooled people big-time
with the story of the "great moderation"as risks were
accumulating and nobody was realizing that fragility
was increasing, like dynamite accumulating under the
structure.

Kolmogorov - Smirnov, Shkmolgorov-
Smirnoff

Remarkably, the fat tailed series passes general test
of normality with better marks than the thin-tailed
one, since it displays a lower variance. The prob-
lem discussed with with Avital Pilpel (Taleb and
Pilpel, 2001, 2004, 2007) is that Kolmogorov-Smirnov
and similar tests of normality are inherently self-
referential.
These probability distributions are not directly ob-

servable, which makes any risk calculation suspicious
since it hinges on knowledge about these distribu-
tions. Do we have enough data? If the distribution
is, say, the traditional bell-shaped Gaussian, then yes,
we may say that we have sufficient data. But if the
distribution is not from such well-bred family, then we
do not have enough data. But how do we know which
distribution we have on our hands? Well, from the
data itself .
If one needs a probability distribution to gauge knowl-
edge about the future behavior of the distribution from
its past results, and if, at the same time, one needs
the past to derive a probability distribution in the first
place, then we are facing a severe regress loop��a
problem of self reference akin to that of Epimenides
the Cretan saying whether the Cretans are liars or
not liars. And this self-reference problem is only the
beginning.
(Taleb and Pilpel, 2001, 2004)
Also,

From the Glossary in The Black Swan .

Statistical regress argument (or the problem of the
circularity of statistics): We need data to discover a
probability distribution. How do we know if we have
enough? From the probability distribution. If it is a
Gaussian, then a few points of data will suffice. How
do we know it is a Gaussian? From the data. So
we need the data to tell us what probability distribu-
tion to assume, and we need a probability distribu-
tion to tell us how much data we need. This causes a
severe regress argument, which is somewhat shame-
lessly circumvented by resorting to the Gaussian and
its kin.

A comment on the Kolmogorov Statistic

It is key that the Kolmogorov-Smirnov test doesn’t
affect payoffs and higher moments, as it only focuses
on probabilities. It is a severe problem because the
approximation will not take large deviations into ac-
count, and doesn’t make it useable for our purpose.
But that’s not the only problem. It is, as we men-
tioned, conditioned on sample size while claiming to
be nonparametric.
Let us see how it works. Take the historical series
and find the maximum point of divergence with F(.)
the cumulative of the proposed distribution to test
against:

D = sup

✓

⇣

�

�

�

1

j

PJ
i=1

Xt
0

+i�t

� F (Xt
0

+j�t

)

�

�

�

⌘n

j=1

◆

where n =

T�t
0

�t

D

1 2 3 4

x

0.2

0.4

0.6

0.8

1.0

CDF

Figure 0.4 The Kolmorov-Smirnov Gap. D is the
measure of the largest absolute divergence between
the candidate and the target distribution.
We will get more technical in the discussion of
convergence, take for now that the Kolmogorov
statistic, that is, the distribution of D, is expres-
sive of convergence, and should collapse with n.
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The idea is that, by a Brownian Bridge argument
(that is a process pinned on both sides, with in-
termediate steps subjected to double conditioning),
Dj =

�

�

�

⇣P
J

i=1

X
�ti+t

0

j � F (X
�tj+t

0

)

⌘

�

�

�

which is Uni-
formly distributed.
The probability of exceeding D,P>D = H (

p

nD),
where H is the cumulative distribution function of
the Kolmogorov-Smirnov distribution,

H(t) = 1� 2

1
X

i=1

(�1)

i�1e�2i
2t2

We can see that the main idea reposes on a decay of
p

nD with large values of n. So we can easily fool
the testing by proposing distributions with a small
probability of very large jump, where the probability
of switch . 1

n .

The mistake in misinterpreting Feller: the distribu-
tion of Dwill be uniform independently of the distri-
bution under scrutiny, or the two distributions to be
compared. But it does not mean that the test is im-
mune to sample sizen, that is, the possibility of jump
with a probability an inverse function of n.
Table of the "fake"Gaussian when not
busted
Let us run a more involved battery of statistical tests
(but consider that it is a single run, one historical
simulation).
Comparing the Fake and genuine Gaussians (Figure
??.??) and subjecting them to a battery of tests.
Note that some tests, such as the Jarque-Bera test,
are more relevant to fat tailes as they include the
payoffs:

Fake

Statistic P-Value
Anderson-Darling 0.406988 0.354835
Cramér-von Mises 0.0624829 0.357839
Jarque-Bera ALM 1.46412 0.472029
Kolmogorov-Smirnov 0.0242912 0.167368
Kuiper 0.0424013 0.110324
Mardia Combined 1.46412 0.472029
Mardia Kurtosis �0.876786 0.380603
Mardia Skewness 0.7466 0.387555
Pearson �2

43.4276 0.041549
Shapiro-Wilk 0.998193 0.372054
Watson U2

0.0607437 0.326458

Genuine

Statistic P-Value
Anderson-Darling 0.656362 0.0854403
Cramér-von Mises 0.0931212 0.138087
Jarque-Bera ALM 3.90387 0.136656
Kolmogorov-Smirnov 0.023499 0.204809
Kuiper 0.0410144 0.144466
Mardia Combined 3.90387 0.136656
Mardia Kurtosis �1.83609 0.066344
Mardia Skewness 0.620678 0.430795
Pearson �2

33.7093 0.250061
Shapiro-Wilk 0.997386 0.107481
Watson U2

0.0914161 0.116241
Table of the "fake" Gaussian when busted
And of course the fake Gaussian when caught. But recall that we have a small chance of observing the true
distribution.

Busted Fake (

Statistic P-Value
Anderson-Darling 376.05 0.
Cramér-von Mises 80.734 0.
Jarque-Bera ALM 4.21⇥ 10

7

0.
Kolmogorov-Smirnov 0.494547 0.
Kuiper 0.967 0.
Mardia Combined 4.21⇥ 10

7

0.
Mardia Kurtosis 6430. 1.5⇥ 10

�8979680

Mardia Skewness 166432. 1.07⇥ 10

�36143

Pearson �2

30585.7 3.28⇥ 10

�6596

Shapiro-Wilk 0.014 1.91⇥ 10

�57

Watson U2

80.58 0.

Use of the supremum of divergence

Note another manifestation of the error of ignoring
the effect of the largest deviation. As we saw with
Kolmogorov-Smirnoff and other rigorous methods in

judging a probability distribution, one focuses on the
maximum divergence, the supremum, as information.
Another unused today but very potent technique, ini-
tially by Paul Levy (1924), called the concentration
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function, also reposes on the use of a maximal dis-
tance:
From Petrov (1995):

Q�(X) ⌘ sup
x
P (x  X  x+ �)

for every � � 0.
We will make use of it in discussion of the behavior
of the sum of random variables and the law of large
numbers.

Concluding Remarks: Mistaking
Evidence for Anecdotes & The
Reverse

Now some sad, very sad comments.

I emitted the following argument in a comment look-
ing for maximal divergence: "Had a book proclaim-
ing The Long Peace (on how violence has dropped)
been published in 1913 3

4

it would carry similar ar-

guments to those in Pinker’s book", meaning that
inability of an estimator period T to explain period
> t, using the idea of maximum divergence. The au-
thor of the book complained that I was using "hind-
sight"to find the largest deviation, implying lack of
rigor. This is a standard error in social science: data
mining everywhere and not understanding the differ-
ence between meaningful disconfirmatory observation
and anecdote.
We will revisit the problem upon discussing the "N =

1" fallacy (that is, the fallacy of thinking that N = 1

is systematically insufficient sample). Some social
"scientists"(Herb Gintis, a representative mean imbe-
cile) wrote about my approach to this problem, stat-
ing among other equally ignorant comments, some-
thing to the effect that "the plural of anecdotes is
not data"(I have to deal with many mean social scien-
tists). This elementary violation of the logic of infer-
ence from data is very common with social scientists
as we will see in Chapter 3, as their life is based on
mechanistic and primitive approaches to probability
that miss the asymmetry. Yet, and here is the very,
very sad part: social science is the main consumer
of statistical methods.



3 An Introduction to Higher Orders of Uncertainty

3.1 Metaprobability

The Spectrum Between Uncertainty and
Risk
There has been a bit of discussions about the distinction
between "uncertainty" and "risk". We put the con-
cepts on a spectrum, with one end of the spectrum
"Knightian risk" not available for us mortals in the real
world.

When one assumes knowledge of a probability dis-
tribution, but has uncertainty attending the pa-
rameters, or when one has no knowledge of which
probability distribution to consider, the situation is
called "risk" in the Knightian sense (Knight, 1923).
Such an animal does not exist in the real world. We
find it preferable to talk about degrees of risk and
degrees of uncertainty.

The Effect of Estimation Error, General
Case
The idea of model error from missed uncertainty attend-
ing the parameters (another layer of randomness) is as
follows.
Most estimations in economics (and elsewhere) take, as
input, an average or expected parameter,

�
↵ =

Z

↵ �(↵) d↵, (3.1)

where ↵ is � distributed (deemed to be so a priori or
from past samples), and regardles of the dispersion of
↵, build a probability distribution for x that relies on
the mean estimated parameter, p(X = x)= p

⇣

x
�

�

�

�
↵
⌘

,
rather than the more appropriate metaprobability ad-

justed probability for the density:

p(x) =

Z

�(↵) d↵ (3.2)

In other words, if one is not certain about a param-
eter ↵, there is an inescapable layer of stochasticity;
such stochasticity raises the expected (metaprobability-
adjusted) probability if it is < 1

2

and lowers it otherwise.
The uncertainty is fundamentally epistemic, includes in-
certitude, in the sense of lack of certainty about the
parameter.
The model bias becomes an equivalent of the Jensen
gap (the difference between the two sides of Jensen’s
inequality), typically positive since probability is convex
away from the center of the distribution. We get the
bias !A from the differences in the steps in integra-
tion

!A =

Z

�(↵)p(x|↵) d↵� p(x|

Z

↵�(↵) d↵)

With f(x) a function , f(x) = x for the mean, etc., we
get the higher order bias !A0

(3.3)
!A0

=

Z

✓

Z

�(↵) f(x) p(x|↵) d↵

◆

dx

�

Z

f(x) p

✓

x|

Z

↵ �(↵) d↵

◆

dx

Now assume the distribution of ↵ as discrete n states,
with ↵ = {↵i}

n
i=1

each with associated probability
� = {�i}

n
i=1

Pn
i=1

�i = 1. Then 3.2 becomes

px = �i

 

n
X

i=1

p (x |↵i )

!

(3.4)

So far this holds for ↵ any parameter of any distribu-
tion.

45
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3.2 The Effect of Metaproba-
bility on the Calibration of
Power Laws

In the presence of a layer of metaprobabilities (from
uncertainty about the parameters), the asymptotic tail
exponent for a powerlaw corresponds to the lowest pos-
sible tail exponent regardless of its probability. The
problem explains "Black Swan" effects, i.e., why mea-
surements tend to chronically underestimate tail contri-
butions, rather than merely deliver imprecise but unbi-
ased estimates.
When the perturbation affects the standard deviation of
a Gaussian or similar nonpowerlaw tailed distribution,
the end product is the weighted average of the prob-
abilities. However, a powerlaw distribution with errors
about the possible tail exponent will bear the asymp-
totic properties of the lowest exponent, not the average

exponent.
Now assume p(X=x) a standard Pareto Distribution
with ↵ the tail exponent being estimated, p(x|↵) =

↵x�↵�1x↵
min

, where x
min

is the lower bound for
x,

p(x) =
n
X

i=1

↵ix
�↵

i

�1x↵
i

min

�i

Taking it to the limit

limit
x!1

x↵⇤
+1

n
X

i=1

↵ix
�↵

i

�1x↵
i

min

�i = K

where K is a strictly positive constant and ↵⇤ = min↵i
1in

.

In other words
Pn

i=1

↵ix�↵i

�1x↵
i

min

�i is asymptotically
equivalent to a constant times x↵⇤

+1. The lowest pa-
rameter in the space of all possibilities becomes the
dominant parameter for the tail exponent.
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Figure 3.1: Log-log plot illustration of the asymptotic tail exponent with two states. The graphs shows the different situations, a)
p

⇣
x

����↵
⌘

b)
P

n

i=1 p (x |↵
i

)�

i

and c) p (x |↵⇤
). We can see how b) and c) converge

The asymptotic Jensen Gap !A becomes
p (x |↵⇤ )� p(x|

�
↵
⌘

Implications

Whenever we estimate the tail exponent from sam-
ples, we are likely to underestimate the thickness of
the tails, an observation made about Monte Carlo
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generated ↵-stable variates and the estimated results
(the “Weron effect”).
The higher the estimation variance, the lower the true
exponent.
The asymptotic exponent is the lowest possible one.
It does not even require estimation.
Metaprobabilistically, if one isn’t sure about the
probability distribution, and there is a probability

that the variable is unbounded and “could be” power-
law distributed, then it is powerlaw distributed, and
of the lowest exponent.
The obvious conclusion is to in the presence of pow-
erlaw tails, focus on changing payoffs to clip tail ex-
posures to limit !A0 and “robustify” tail exposures,
making the computation problem go away.

 Bias ΩA

1.3 1.4 1.5 1.6 1.7 1.8
STD

0.0001

0.0002

0.0003

0.0004

P"x

Figure 3.2: Illustration of the convexity bias for a Gaussian raising small probabilities: The plot shows the STD effect on P>x,
and compares P>6 with a STD of 1.5 compared to P> 6 assuming a linear combination of 1.2 and 1.8 (here a(1)=1/5).

3.3 The Effect of Metaprobabil-
ity on Fat Tails

Recall that the tail fattening methods ??.?? and
??.?? were based on randomizing the variance. Small
probabilities rise precisely because they are convex
to perturbations of the parameters (the scale) of the
probability distribution.

3.4 Fukushima, Or How Errors
Compound

“Risk management failed on several levels at
Fukushima Daiichi. Both TEPCO and its captured

regulator bear responsibility. First, highly tailored
geophysical models predicted an infinitesimal chance
of the region suffering an earthquake as powerful as
the T014dhoku quake. This model uses historical
seismic data to estimate the local frequency of earth-
quakes of various magnitudes; none of the quakes in
the data was bigger than magnitude 8.0. Second,
the plant’s risk analysis did not consider the type
of cascading, systemic failures that precipitated the
meltdown. TEPCO never conceived of a situation
in which the reactors shut down in response to an
earthquake, and a tsunami topped the seawall, and
the cooling pools inside the reactor buildings were
overstuffed with spent fuel rods, and the main control
room became too radioactive for workers to survive,
and damage to local infrastructure delayed reinforce-
ment, and hydrogen explosions breached the reac-
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tors’ outer containment structures. Instead, TEPCO
and its regulators addressed each of these risks in-
dependently and judged the plant safe to operate as

is.”Nick Werle, n+1, published by the n+1 Founda-
tion, Brooklyn NY



4 Payoff Skewness and Lack of Skin-in-the-Game

This section will analyze the probabilistic mismatch or tail risks and returns in the presence of a principal-agent prob-
lem.

time

Changes in Value

Figure 4.1: The most effective way to maximize the expected payoff to the agent at the expense of the principal.

4.1 Transfer of Harm

Rule 8. If an agent has the upside of the payoff of
the random variable, with no downside, and is judged
solely on the basis of past performance, then the incen-
tive is to hide risks in the left tail using a negatively
skewed (or more generally, asymmetric) distribution for
the performance. This can be generalized to any payoff
for which one does not bear the full risks and negative
consequences of one’s actions.

Let P (K,M) be the payoff for the operator over M
incentive periods

P (K,M)

⌘ �
M
X

i=1

qt+(i�1)�t

⇣

xj
i+t�t �K

⌘

+1
�t(i�1)+t<⌧

(4.1)

with Xj= (xj
t+i�t)Mi=1

2 R, i.i.d. random variables rep-
resenting the distribution of profits over a certain period
[t, t+ i�t], i 2 N, �t 2 R+ and K is a “hurdle”, ⌧=
inf
n

s :
⇣

P

zs xz

⌘

< x
min

o

is an indicator of stopping
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time when past performance conditions are not satisfied
(namely, the condition of having a certain performance
in a certain number of the previous years, otherwise the
stream of payoffs terminates, the game ends and the
number of positive incentives stops). The constant �
2(0,1) is an “agent payoff”, or compensation rate from
the performance, which does not have to be monetary
(as long as it can be quantified as “benefit”). The quan-
tity qt+(i�1)�t 2 [1,1) indicates the size of the expo-
sure at times t+(i-1 ) �t (because of an Ito lag, as
the performance at period s is determined by q at a a
strictly earlier period < s)
Let {fj} be the family of probability measures fj of
Xj , j 2 N. Each measure corresponds to cer-
tain mean/skewness characteristics, and we can split
their properties in half on both sides of a “central-
ity” parameter K, as the “upper” and “lower” distri-
butions. With some inconsequential abuse of nota-
tion we write dFj(x) as fj(x)dx, so F+

j =
R1
K

fj(x) dx

and F�j =
RK

�1 fj(x) dx , the “upper” and “lower”
distributions, each corresponding to certain condi-
tional expectation E+

j ⌘

R 1
K

xf
j

(x)dxR 1
K

f
j

(x) dx
and E�j ⌘

R
K

�1 x f
j

(x)dx
R

K

�1 f
j

(x) dx
.

Now define ⌫ 2 R+as a K-centered nonparametric mea-
sure of asymmetry, ⌫j ⌘

F�
j

F+

j

, with values >1 for pos-

itive asymmetry, and <1 for negative ones. Intuitively,
skewness has probabilities and expectations moving in
opposite directions: the larger the negative payoff, the
smaller the probability to compensate.
We do not assume a “fair game”, that is, with un-
bounded returns m 2 (-1,1), F+

j E+

j +F�j E�j = m,
which we can write as
m++m�= m

4.1.1 Simple assumptions of constant
q and simple-condition stopping
time

Assume q constant, q =1 and simplify the stopping
time condition as having no loss in the previous periods,
⌧ =inf{(t+(i� 1)�t)): x

�t(i�1)+t < K}, which leads
to

E(P (K,M)) = � E+

j ⇥ E
 

M
X

i=1

1
�t(i�1)+t<⌧

!

(4.2)

Since assuming independent and identically distributed
agent’s payoffs, the expectation at stopping time
corresponds to the expectation of stopping time
multiplied by the expected compensation to the
agent � Ej

+. And E
⇣

PM
i=1

1
�t(i�1)+t<⌧

⌘

=

⇣

E
⇣

PM
i=1

1
�t(i�1)+t<⌧

⌘

^M
⌘

.
The expectation of stopping time can be written as the
probability of success under the condition of no previous
loss:

E
 

M
X

i=1

1
�t(i�1)+t<⌧

!

=

M
X

i=1

F+

j 1x
�t(i�1)+t

>K

We can express the stopping time condition in
terms of uninterrupted success runs. Let

P

be
the ordered set of consecutive success runs

P

⌘

{{F}, {SF}, {SSF}, ..., {(M � 1) consecutive S, F}},
where S is success and F is failure over period �t,
with associated corresponding probabilities {(1� F+

j ),
F+

j

�

1� F+

j

�

, F+

j
2

�

1� F+

j

�

, ...., F+

j
M�1 �

1� F+

j

�

}

,

M
X

i=1

F+

j
(i�1) �

1� F+

j

�

= 1� F+

j
M

' 1 (4.3)

For M large, since F+

j 2 (0,1) we can treat the previous
as almost an equality, hence:

M
X

i=1

1t+(i�1)�t<⌧ =

M
X

i=1

(i�1) F+

j
(i�1) �

1� F+

j

�

=

F+

j

1� F+

j

Finally, the expected payoff for the agent:

E (P (K,M)) = � E+

j

F+

j

1� F+

j

which increases by i) increasing E+

j , ii) minimizing the
probability of the loss F�j , but, and that’s the core
point, even if i) and ii) take place at the expense of m
the total expectation from the package.
Alarmingly, since E+

j =

m�m�

F+

j

, the agent doesn’t care

about a degradation of the total expected return m
if it comes from the left side of the distribution, m�.
Seen in skewness space, the expected agent payoff max-
imizes under the distribution j with the lowest value of
⌫j (maximal negative asymmetry). The total expecta-
tion of the positive-incentive without-skin-in-the-game
depends on negative skewness, not on m.
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Figure 4.2: Indy Mac, a failed firm during the subprime crisis
(from Taleb 2009). It is a representative of risks that keep
increasing in the absence of losses, until explosive blowup.

Multiplicative q and the explosivity of
blowups

Now, if there is a positive correlation between q and past
performance, or survival length, then the effect become
multiplicative. The negative payoff becomes explosive
if the allocation q increases with visible profitability, as
seen in Figure 2 with the story of IndyMac, whose risk
kept growing until the blowup1. Consider that "suc-
cessful" people get more attention, more funds, more
promotion. Having "beaten the odds" imparts a cer-
tain credibility. In finance we often see fund managers
experience a geometric explosion of funds under man-
agement after perceived "steady" returns. Forecasters
with steady strings of successes become gods. And com-
panies that have hidden risks tend to outperform others
in small samples, their executives see higher compensa-
tion. so in place of a constant exposure q, consider a
variable one:

q
�t(i�1)+t = q !(i)

where !(i) is a multiplier that increases with time, and
of course naturally collapses upon blowup.

Equation 4.1 becomes:

P (K,M) ⌘ �
M
X

i=1

q !(i)
⇣

xj
t+i�t �K

⌘

+1t+(i�1)�t<⌧

(4.4)
and the expectation, assuming the numbers of periods,
M is large enough

E(P (K,M)) = � E+

j q E
 

M
X

i=1

!(i) 1
�t(i�1)+t<⌧

!

(4.5)
Assuming the rate of conditional growth is a constant
r 2 [0,1) , and making the replacement !(i)⌘ eri, we
can call the last term in equation 4.5 the multiplier of
the expected return to the agent:

(4.6)E
⇣

PM
i=1

eir1
�t(i�1)+t<⌧

⌘

=

PM
i=1

(i� 1) Fj
+eir1x

�t(i�1)+t

>K

=

(

F+�1
)

⇣
(

F+

)

M

(

Me(M+1)r�F+

(M�1)e(M+2)r

)

�F+e2r
⌘

(F+er�1)2

(4.7)

We can get the table of sensitivities for the "multiplier"
of the payoff:

F=.6 0.7 0.8 0.9
r=0 1.5 2.32 3.72 5.47
0.1 2.57 4.8 10.07 19.59
0.2 4.93 12.05 34.55 86.53
0.3 11.09 38.15 147.57 445.59
Table 1 Multiplicative effect of skewness

4.1.2 Explaining why Skewed Distribu-
tions Conceal the Mean

Note that skewed distributions conceal their mean quite
well, with P (X < E(x)) < 1

2

in the presence of negative
skewness. And such effect increases with fat-tailedness.
Consider a negatively skewed power law distribution, say
the mirror image of a standard Pareto distribution, with
maximum value x

min

, and domain (�1, x
min

], with
1The following sad anecdote illustrate the problem with banks. It was announces that "JPMorgan Joins BofA With Perfect Trading Record

in Quarter" ( Dawn Kopecki and Hugh Son - Bloomberg News, May 9, 2013). Yet banks while "steady earners" go through long profitable
periods followed by blowups; they end up losing back all cumulative profits in short episodes, just in 2008 they lost around 4.7 trillion U.S.
dollars before government bailouts. The same took place in 1982-1983 and in the Savings and Loans crisis of 1991, see Taleb (2009).

2This discussion of a warped probabilistic incentive corresponds to what John Kay has called the "Taleb distribution", John Kay "A strategy
for hedge funds and dangerous drivers", Financial Times, 16 January 2003.
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exceedance probability P (X > x) = � x�↵x↵
min

, and
mean �

↵x
min

↵�1 , with ↵ > 1, have a proportion of 1� ↵�1
↵

of its realizations rosier than the true mean. Note that
fat-tailedness increses at lower values of ↵. The popular
"eighty-twenty", with tail exponent ↵ = 1.15, has > 90
percent of observations above the true mean2.

Forecasters

We can see how forecasters who do not have skin in the
game have the incentive of betting on the low-impact
high probability event, and ignoring the lower proba-
bility ones, even if these are high impact. There is a
confusion between “digital payoffs”

R

fj(x) dx and full
distribution, called “vanilla payoffs”,

R

xfj(x)dx, see
Taleb and Tetlock (2013)3.

3Money managers do not have enough skin in the game unless they are so heavily invested in their funds that they can end up in a net
negative form the event. The problem is that they are judged on frequency, not payoff, and tend to cluster together in packs to mitigate
losses by making them look like "industry event". Many fund managers beat the odds by selling tails, say covered writes, by which one can
increase the probability of gains but possibly lower the expectation. They also have the optionality of multi-time series; they can manage to
hide losing funds in the event of failure. Many fund companies bury hundreds of losing funds away, in the "cemetery of history" (Taleb, 2007)
.



5 Large Numbers and Convergence in the Real World

The Law of Large Numbers and The Central Limit Theorem are the foundation of modern statistics: The behavior of
the sum of random variables allows us to get to the asymptote and use handy asymptotic properties, that is, Platonic
distributions. But the problem is that in the real world we never get to the asymptote, we just get “close”. Some
distributions get close quickly, others very slowly (even if they have finite variance). Recall from Chapter 1 that the
quality of an estimator is tied to its replicability outside the set in which it was derived: this is the basis of the law of
large numbers.

5.1 The Law of Large Numbers
Under Fat Tails

How do you reach the limit?

The common interpretation of the weak law of large
numbers is as follows.
By the weak law of large numbers, consider a sum of
random variables X

1

, X
2

,..., XN independent and iden-
tically distributed with finite mean m, that is E[Xi] <
1, then 1

N

P

1iN Xi converges to m in probability,
as N ! 1. But the problem of convergence in proba-
bility, as we will see later, is that it does not take place in
the tails of the distribution (different parts of the distri-
bution have different speeds). This point is quite central
and will be examined later with a deeper mathematical
discussions on limits in Chapter x. We limit it here to
intuitive presentations of turkey surprises.
(Hint: we will need to look at the limit without the
common route of Chebychev’s inequality which requires
E[X2

i ] < 1 . Chebychev’s inequality and similar ones
eliminate the probabilities of some tail events).
So long as there is a mean, observations should at some
point reveal it.

Figure 5.1: How thin tails (Gaussian) and fat tails (1<
↵ 2) converge to the mean.
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The law of iterated logarithms

For the “thin-tailed” conditions, we can see in Fig-
ure x how by the law of iterated logarithm, for xi

i.i.d. distributed with mean 0 and unitary variance,
lim sup
n!1

P
n

i=1

x
ip

2nn log log

= 1 a.s. (and by symmetry lim inf
n!1P

n

i=1

x
ip

2nn log log

= -1), thus giving us an acceptably narrow
cone limiting the fluctuation of the sum.

Speed of convergence:

Let us examine the speed of convergence of the av-
erage 1

N

P

1iN Xi. For a Gaussian distribution
(m,�), the characteristic function for the convolution

is '(t/N)

N=
⇣

e
imt

N

� s

2

t

2

2N

2

⌘N

, which, derived twice at 0

yields (�i)2 @2c
@t2 �i@c@t/. t ! 0 which produces the stan-

dard deviation �(n) = �(1)p
N

so one can say that sum
“converges” at a speed

p

N .
Another approach is by expanding ' and letting N go
to infinity

lim

N!1

⇣

e
imt

N

� s

2

t

2

2N

2

⌘N

= eimt

Now eimt is the characteristic function of the degener-
ate distribution at m, with density p(x) = �(m � x)
where � is the Dirac delta with values zero except at
the point m-x . (Note that the strong law of large
numbers imply as convergence takes place almost ev-
erywhere except for a set of probability 0; for that the
same result should be obtained for all t).
But things are far more complicated with power laws.
Let us repeat the exercise for a Pareto distribution with
density L↵x�1�↵↵ , x> L,

'(t/N)

N
= ↵NE↵+1

✓

�

iLt

N

◆

N

where E is the exponential integral E; En(z) =

R1
1

e�zt/tndt.
At the limit:

lim

N!1
'

✓

t

N

◆N

= e
↵

↵�1

iLt

which is degenerate Dirac at ↵
↵�1L, and as we can see

the limit only exists for ↵ >1.
Setting L = 1 to scale, the standard deviation �↵(N)

for the N-average becomes, for ↵ >2

�↵(N) =

1

N

�

↵NE↵+1

(0)

N�2 �E↵�1(0)E↵+1

(0)

+ E↵(0)
2

�

�N↵NE↵+1

(0)

N
+N � 1

���

Sucker Trap

After some tinkering, we get �↵(N) = �
↵

(1)p
N

as with
the Gaussian, which is a sucker’s trap. For we should
be careful in interpreting �↵(N), which will be very
volatile since �↵(1) is already very volatile and does
not reveal itself easily in realizations of the process.
In fact, let p(.) be the PDF of a Pareto distri-
bution with mean m, standard deviation �, minimum
value L and exponent ↵, �↵ the expected mean de-
viation of the variance for a given ↵ will be �↵=
1

�2

R1
L

�

�

�

(x�m)

2

� �2

�

�

�

p(x)dx
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Figure 5.2: The distribution (histogram) of the standard de-
viation of the sum of N=100 ↵=13/6. The second graph
shows the entire span of realizations.

Absence of Useful Theory:

As to situations, central situations, where 1< ↵ <2, we
are left hanging analytically (but we can do something
about it in the next section). We will return to the
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problem in our treatment of the preasymptotics of the
central limit theorem.
But we saw in ??.?? that the volatility of the mean
is ↵

↵�1 s and the mean deviation of the mean devia-
tion, that is, the volatility of the volatility of mean is
2(↵�1)

↵�2↵1�↵s , where s is the scale of the distribu-
tion. As we get close to ↵ = 1 the mean becomes more
and more volatile in realizations for a given scale. This
is not trivial since we are not interested in the speed of
convergence per se given a variance, rather the ability
of a sample to deliver a meaningful estimate of some
total properties.
Intuitively, the law of large numbers needs an infinite
observations to converge at ↵=1. So, if it ever works,
it would operate at a >20 times slower rate for an “ob-
served” ↵ of 1.15 than for an exponent of 3. To make up
for measurement errors on the ↵, as a rough heuristic,
just assume that one needs > 400 times the observa-
tions. Indeed, 400 times! (The point of what we mean
by “rate” will be revisited with the discussion of the
Large Deviation Principle and the Cramer rate function
in X.x; we need a bit more refinement of the idea of tail
exposure for the sum of random variables).

Comparing N = 1 to N = 2 for a sym-
metric power law with 1< ↵ 2 .
Let �(t) be the characteristic function of the symmetric
Student T with ↵ degrees of freedom. After two-fold
convolution of the average we get:

�(t/2)2 =

4

1�↵↵↵/2
|t|↵ K↵

2

⇣p
↵|t|
2

⌘

2

�

�

↵
2

�

2

,

We can get an explicit density by inverse Fourier trans-
formation of �,

p
2,↵(x) =

1

2⇡

Z 1

�1
�(t/2)2�itxdt,

which yields the following

p
2,↵(x) =

⇡ 2

�4↵ ↵5/2
�(2↵)

2

F
1

⇣

↵+

1

2

, ↵+1

2

;

↵+2

2

;�

x2

↵

⌘

�

�

↵
2

+ 1

�

4

where
2

F
1

is the hypergeomet-
ric function,

2

F
1

(a, b; c; z) =

P1
k=0

(a)k(b)k/(c)k zk
�

k!.

We can compare the twice-summed density to the initial
one (with notation: pn(x)= P(

PN
i=1

xi=x))

p
1,↵(x) =

⇣

↵
↵+x2

⌘

↵+1

2

p

↵B
�

↵
2

, 1

2

�

From there, we see that in the Cauchy case (↵=1) the
sum conserves the density, so

p
1,1(x) = p

2,1(x) =
1

⇡ (1 + x2

)

Let us use the ratio of mean deviations; since the mean
is 0,

µ(↵) ⌘

R

|x|p
2,↵(x)dx

R

|x|p
1,↵(x)dx

µ(↵) =

p

⇡ 2

1�↵
�

�

↵�

1
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�

�

�

↵
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2

and

lim

↵!1
µ(↵) =

1
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Figure 5.3: Preasymptotics of the ratio of mean deviations.
But one should note that mean deviations themselves are
extremely high in the neighborhood of #1. So we have a
“sort of” double convergence to

p
n : convergence at higher

n and convergence at higher ↵.
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The double effect of summing fat tailed ran-
dom variables: The summation of random vari-
ables performs two simultaneous actions, one, the
“thinning” of the tails by the CLT for a finite vari-
ance distribution (or convergence to some basin
of attraction for infinite variance classes); and the
other, the lowering of the dispersion by the LLN.
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Both effects are fast under thinner tails, and slow
under fat tails. But there is a third effect: the
dispersion of observations for n=1 is itself much
higher under fat tails. Fatter tails for power laws
come with higher expected mean deviation.

5.2 Preasymptotics and Central
Limit in the Real World

The common mistake is to think that if we satisfy the
criteria of convergence, that is, independence and fi-
nite variance, that central limit is a given.Take the
conventional formulation of the Central Limit Theorem
1:
Let X

1

, X
2

,... be a sequence of independent identi-
cally distributed random variables with mean m &

variance �2 satisfying m< 1 and 0 < �2< 1,
then

PN
i=1

Xi �Nm

�
p

n
D
! N(0, 1)as n ! 1

Where D
! is converges “in distribution” and N(0,1) is

the Gaussian with mean 0 and unit standard devia-
tion.
Granted convergence “in distribution” is about the
weakest form of convergence. Effectively we are dealing
with a double problem.
The first, as uncovered by Jaynes, corresponds to the
abuses of measure theory: Some properties that hold at
infinity might not hold in all limiting processes .
There is a large difference between convergence a.s. (al-
most surely) and the weaker forms.
Jaynes 2003 (p.44):“The danger is that the present mea-
sure theory notation presupposes the infinite limit al-
ready accomplished, but contains no symbol indicating
which limiting process was used (...) Any attempt to
go directly to the limit can result in nonsense”.
We accord with him on this point –along with his defini-
tion of probability as information incompleteness, about
which later.
The second problem is that we do not have a “clean”
limiting process –the process is itself idealized.
Now how should we look at the Central Limit Theorem?
Let us see how we arrive to it assuming “independence”.

The Kolmogorov-Lyapunov Approach and Conver-
gence in the Body

The CLT works does not fill-in uniformily, but in a Gaus-
sian way ���indeed, disturbingly so. Simply, whatever
your distribution (assuming one mode), your sample is
going to be skewed to deliver more central observations,
and fewer tail events. The consequence is that, under
aggregation, the sum of these variables will converge
“much” faster in the⇡ body of the distribution than in
the tails. As N, the number of observations increases,
the Gaussian zone should cover more grounds... but not
in the “tails”.
This quick note shows the intuition of the conver-
gence and presents the difference between distribu-
tions.
Take the sum of of random independent variables Xi

with finite variance under distribution '(X). Assume 0
mean for simplicity (and symmetry, absence of skew-
ness to simplify). A more useful formulation is the Kol-
mogorov or what we can call "Russian" approach of
working with bounds:

P

✓

�u  Z =

Pn
i=0

Xi
p

n�
 u

◆

=

R u

�u e
�Z

2

2 dZ
p

2⇡

So the distribution is going to be:
✓

1�

Z u

�u
e�

Z

2

2 dZ

◆

, for � u  z  u

inside the “tunnel” [-u,u] –the odds of falling inside the
tunnel itself,
and

Z u

�1
Z'0(N)dz +

Z 1

u

Z'0(N)dz

outside the tunnel, in [�u, u],where '0(N) is the
n-summed distribution of '.
How '0(N) behaves is a bit interesting here –it is
distribution dependent.

1Feller 1971, Vol. II
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Before continuing, let us check the speed of conver-
gence per distribution. It is quite interesting that we
the ratio of observations in a given sub-segment of the
distribution is in proportion to the expected frequency
Nu

�u

N1
�1

where Nu
�u, is the numbers of observations falling

between -u and u. So the speed of convergence to the
Gaussian will depend on Nu

�u

N1
�1

as can be seen in the next
two simulations.

Figure 5.4: Q-Q Plot of N Sums of variables distributed ac-
cording to the Student T with 3 degrees of freedom, N=50,
compared to the Gaussian, rescaled into standard devia-
tions. We see on both sides a higher incidence of tail events.
10

6simulations

Figure 5.5: The Widening Center. Q-Q Plot of variables
distributed according to the Student T with 3 degrees of
freedom compared to the Gaussian, rescaled into standard
deviation, N=500. We see on both sides a higher incidence
of tail events. 10

7simulations.

To have an idea of the speed of the widening of the
tunnel (�u, u) under summation, consider the symmet-
ric (0-centered) Student T with tail exponent ↵= 3,
with density 2a3

⇡(a2

+x2

)

2

, and variance a2. For large “tail

values” of x, P (x) !

2a3

⇡x4

. Under summation of N

variables, the tail P (⌃x) will be 2Na3

⇡x4

. Now the center,
by the Kolmogorov version of the central limit theo-
rem, will have a variance of Na2 in the center as well,
hence

P (⌃ x) =
e�

x

2

2a

2

N

p

2⇡a
p

N

Setting the point u where the crossover takes
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where W is the Lambert W function or product log
which climbs very slowly2, particularly if instead of con-
sidering the sum u we rescaled by 1/a

p

N .
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N

u

Figure 5.6: The behavior of the "tunnell" under summation

Note about the crossover

See the competing Nagaev brothers, s.a. S.V. Na-
gaev(1965,1970,1971,1973), and A.V. Nagaev(1969)
etc. There are two sets of inequalities, one lower one

2Interestingly, among the authors on the paper on the Lambert W function figures Donald Knuth: Corless, R. M., Gonnet, G. H., Hare,
D. E., Jeffrey, D. J., Knuth, D. E. (1996). On the LambertW function. Advances in Computational mathematics, 5(1), 329-359.
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below which the sum is in regime 1 (thin-tailed behav-
ior), an upper one for the fat tailed behavior, where the
cumulative function for the sum behaves likes the max-
imum . By Nagaev (1965) For a regularly varying tail,
where E (|X|

m
) < 1 the minimum of the crossover

should be to the left of
q

�

m
2

� 1

�

N log(N) (normal-
izing for unit variance) for the right tail (and with the
proper sign adjustment for the left tail).
So

P>NPX
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Generalizing for all exponents > 2

More generally, using the reasoning for a broader set
and getting the crossover for powelaws of all expo-
nents:
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5.3 Using Log Cumulants
to Observe Preasymp-
totics

The normalized cumulant of order n,
n

is the derivative of
the log of the characteristic function � which we convo-
lute N times divided by the second cumulant (i,e., second
moment).
This exercise show us how fast an aggregate of N-summed
variables become Gaussian, looking at how quickly the 4th
cumulant approaches 0. For instance the Poisson get there
at a speed that depends inversely on ⇤, that is, 1/(N2

⇤

3
),

while by contrast an exponential distribution reaches it at
a slower rate at higher values of ⇤ since the cumulant is
(3!⇤

2
)/N

2.
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Table 5.1: Table of Normalized Cumulants -Speed of Convergence (Dividing by ⌃

n where n is the order of the cumulant).
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Distribution Mixed Gaussians (Stoch Vol) StudentT(3) StudentT(4)

PDF p e
� x

2

2�

1

2

p
2⇡�

1

+ (1� p) e
� x

2

2�

2

2

p
2⇡�

2

6

p
3

⇡(x2

+3)

2

12

⇣

1

x2

+4

⌘

5/2

N-convoluted Log
Characteristic

N log

✓

pe�
z

2

�

1

2

2

+ (1� p)e�
z

2

�

2

2

2

◆

N
�

log

�

p

3 |z|+ 1

�

�

p

3 |z|
�

N log

⇣

2 |z|2 K
2

(2 |z|)
⌘

2nd Cum 1 1 1

3 rd 0 Fuhgetaboudit TK

4 th
⇣
3(1�p)p

(

�2

1

��2

2

)

2

⌘

⇣
N2

(

p�2

1

�(�1+p)�2

2

)

3

⌘ Fuhgetaboudit Fuhgetaboudit

6 th (

15(�1+p)p(�1+2p)
(

�2

1

��2

2

)

3

)

(

N4

(

p�2

1

�(�1+p)�2

2

)

5

)

Fuhgetaboudit Fuhgetaboudit

Speed of Convergence of the Summed distribution
using Edgeworth Expansions

A twinking of Feller (1971), Vol II by replacing the
derivatives with our cumulants. Let fN (z) be the nor-
malized sum of the i.i.d. distributed random variables
⌅= {⇠i}

1<iN with variance �2 , z ⌘

⌃⇠
i

�E(⌅)

� and
�
0,�(z) the standard Gaussian with mean 0, then the

convoluted sum approaches the Gaussian as follows as-
suming E (⌅
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Notes on Levy Stability and the General-
ized Cental Limit Theorem
Take for now that the distribution that concerves under
summation (that is, stays the same) is said to be "sta-
ble". You add Gaussians and get Gaussians. But if you
add binomials, you end up with a Gaussian, or, more
accurately, "converge to the Gaussian basin of attrac-
tion". These distributions are not called "unstable" but
they are.
There is a more general class of convergence. Just con-
sider that the Cauchy variables converges to Cauchy, so
the “stability’ has to apply to an entire class of distri-
butions.
Although these lectures are not about mathematical
techniques, but about the real world, it is worth de-
veloping some results converning stable distribution in
order to prove some results relative to the effect of
skewness and tails on the stability.
Let n be a positive integer, n �2 and X

1

, X
2

, ..., Xn

satisfy some measure of independence and are drawn
from the same distribution,
i) there exist c n 2 R+ and d n 2 R+ such that

n
X

i=1

Xi
D
= cnX + dn

where D
= means “equality” in distribution.

ii) or, equivalently, there exist sequence of i.i.d random
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variables {Yi}, a real positive sequence {di} and a real
sequence {ai} such that

1

dn

n
X

i=1

Yi + an
D
! X

whereD
! means convergence in distribution.

iii) or, equivalently,
The distribution of X has for characteristic function

�(t) =

(
exp(iµt� � |t| (1 + 2i�/⇡sgn(t) log(|t|))) ↵ = 1
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2
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↵ 6= 1

.

↵ 2(0,2] � 2 R+, � 2[-1,1], µ 2 R

Then if either of i), ii), iii) holds, X has the “alpha stable”
distribution S(↵,�, µ,�), with � designating the symmetry,
µ the centrality, and � the scale.
Warning: perturbating the skewness of the Levy stable dis-
tribution by changing � without affecting the tail exponent
is mean preserving, which we will see is unnatural: the trans-
formation of random variables leads to effects on more than
one characteristic of the distribution.
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Figure 5.7: Disturbing the scale of the alpha stable and that
of a more natural distribution, the gamma distribution. The
alpha stable does not increase in risks! (risks for us in Chap-
ter x is defined in thickening of the tails of the distribution).
We will see later with “convexification” how it is rare to have
an isolated perturbation of distribution without an increase
in risks.
S(↵,�, µ,�)represents the stable distribution Stype with in-
dex of stability ↵, skewness parameter �, location parameter
µ, and scale parameter �.
The Generalized Central Limit Theorem gives sequences a

n

and b

n

such that the distribution of the shifted and rescaled
sum Z

n

=

�P
n

i

X

i

� a

n

�
/b

n

of n i.i.d. random variates X
i

whose distribution function F

X

(x) has asymptotes 1�cx

�µ

as x->+1 and d(�x)

�µ as x->�1 weakly converges to
the stable distribution S1(↵, (c� d)/(c+ d), 0, 1):

Note: Chebyshev’s Inequality and upper bound
on deviations under finite variance.

[To ADD MARKOV BOUNDS �! CHEBYCHEV �!
CHERNOV BOUNDS.]
Even when the variance is finite, the bound is rather far.
Consider Chebyshev’s inequality:
P (X > ↵)  �

2

↵

2

P (X > n�)  1
n

2

Which effectively accommodate power laws but puts a
bound on the probability distribution of large deviations –
but still significant.

The Effect of Finiteness of Variance

This table shows the inverse of the probability of exceeding
a certain � for the Gaussian and the lower on probability
limit for any distribution with finite variance.
Deviation
3 Gaussian
7.⇥ 10

2 ChebyshevUpperBound
9

4 3.⇥ 10

4
16

5 3.⇥ 10

6
25

6 1.⇥ 10

9
36

7 8.⇥ 10

11
49

8 2.⇥ 10

15
64

9 9.⇥ 10

18
81

10 1.⇥ 10

23
100
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5.4 Illustration: Convergence of
the Maximum of a Finite
Variance Power Law

The behavior of the maximum value as a percentage of a
sum is much slower than we think, and doesn’t make much
difference on whether it is a finite variance, that is ↵ >2 or
not. (See comments in Mandelbrot & Taleb, 2011)
⌧(N) ⌘ E ()

Α=1.8

Α=2.4

2000 4000 6000 8000 10 000
N

0.01

0.02

0.03

0.04

0.05

Max!Sum

Figure 5.8: Pareto Distributions with different tail exponents
↵=1.8 and 2.5. The difference between the two ( finite and
infinite variance) is quantitative, not qualitative. impressive.
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B Where Standard Diversification Fails

U
Overerestimation
of diversification

Underestimation
of risk

Markowitz

RealWorld
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Number of Assets
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Figure B.1: The "diversification effect": difference between promised and delivered. Markowitz Mean Variance based portfolio
construction will stand probably as the most empirically invalid theory ever used in modern times. If irresponsible charlatanism
cannot describe this, what can?
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C Fat Tails and Random Matrices
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6 Some Misuses of Statistics in Social Science

6.1 Attribute Substitution

It occurs when an individual has to make a judgment
(of a target attribute) that is complicated complex,
and instead substitutes a more easily calculated one.
There have been many papers (Kahneman and Tver-
sky 1974, Hoggarth and Soyer, 2012) showing how
statistical researchers overinterpret their own findings,
as simplication leads to the fooled by randomness effect.

Goldstein and this author (Goldstein and Taleb 2007)
showed how professional researchers and practitioners
substitute kxk

1

for kxk
2

). The common result is un-
derestimating the randomness of the estimator M , in
other words read too much into it. Standard deviation
is ususally explained and interpreted as mean deviation.
Simply, people find it easier to imagine that a variation
of, say, (-5,+10,-4,-3, 5, 8) in temperature over suc-
cessive day needs to be mentally estimated by squaring
the numbers, averaging them, then taking square roots.
Instead they just average the absolutes. But, what is
key, they tend to do so while convincing themselves
that they are using standard deviations.

There is worse. Mindless application of statistical tech-
niques, without knowledge of the conditional nature of
the claims are widespread. But mistakes are often ele-
mentary, like lectures by parrots repeating " N of 1" or
" p", or "do you have evidence of?", etc. Many social
scientists need to have a clear idea of the difference
between science and journalism, or the one between
rigorous empiricism and anecdotal statements. Science
is not about making claims about a sample, but using
a sample to make general claims and discuss properties
that apply outside the sample.

Take M’ (short for MX
T (A, f)) the estimator we saw

above from the realizations (a sample path) for some
process, and M* the "true" mean that would emanate
from knowledge of the generating process for such vari-
able. When someone announces: "The crime rate in
NYC dropped between 2000 and 2010", the claim is
limited M’ the observed mean, not M* the true mean,
hence the claim can be deemed merely journalistic, not
scientific, and journalists are there to report "facts" not
theories. No scientific and causal statement should be
made from M’ on "why violence has dropped" unless
one establishes a link to M* the true mean. M can-
not be deemed "evidence" by itself. Working with M’
alone cannot be called "empiricism".

What we just saw is at the foundation of statistics (and,
it looks like, science). Bayesians disagree on how M’
converges to M*, etc., never on this point. From his
statements in a dispute with this author concerning his
claims about the stability of modern times based on
the mean casualy in the past (Pinker, 2011), Pinker
seems to be aware that M’ may have dropped over
time (which is a straight equality) and sort of perhaps
we might not be able to make claims on M* which
might not have really been dropping.

In some areas not involving time series, the differnce
between M’ and M* is negligible. So I rapidly jot
down a few rules before showing proofs and derivations
(limiting M’ to the arithmetic mean, that is, M’=
MX

T ((�1,1), x)).

Note again that E is the expectation operator under
"real-world" probability measure P.

67
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6.2 The Tails Sampling Prop-
erty

E[| M’- M* |] increases in with fat-tailedness (the
mean deviation of M* seen from the realizations in
different samples of the same process). In other
words, fat tails tend to mask the distributional
properties. This is the immediate result of the
problem of convergence by the law of large num-
bers.

6.2.1 On the difference between the ini-
tial (generator) and the "recov-
ered" distribution

{Explanation of the method of generating data from a
known distribution and comparing realized outcomes to
expected ones}

0 100 200 300 400 500 600 700

100

200

300

400

500

600

Figure 6.1: Q-Q plot" Fitting extreme value theory to data
generated by its own process , the rest of course owing to
sample insuficiency for extremely large values, a bias that
typically causes the underestimation of tails, as the reader
can see the points tending to fall to the right.

6.2.2 Case Study: Pinker (2011) Claims
On The Stability of the Future
Based on Past Data

When the generating process is power law with low ex-
ponent, plenty of confusion can take place.
For instance, Pinker(2011) claims that the generat-
ing process has a tail exponent ⇠1.16 but made the
mistake of drawing quantitative conclusions from it
about the mean from M’ and built theories about
drop in the risk of violence that is contradicted by the

data he was showing, since fat tails plus negative
skewness/asymmetry= hidden and underestimated
risks of blowup. His study is also missing the Casanova
problem (next point) but let us focus on the error of be-
ing fooled by the mean of fat-tailed data.
The next two figures show the realizations of two sub-
samples, one before, and the other after the turkey prob-
lem, illustrating the inability of a set to naively deliver
true probabilities through calm periods.

Time!Years"

1000

2000

3000

4000

Casualties !000"

Figure 6.2: First 100 years (Sample Path):
A Monte Carlo generated realization of a process for
casualties from violent conflict of the "80/20 or 80/02
style", that is tail exponent ↵= 1.15

Time!Years"

200 000

400 000

600 000

800 000

1.0! 10
6

1.2! 10
6

1.4! 10
6

Casualties!000"

Figure 6.3: The Turkey Surprise: Now 200 years, the second
100 years dwarf the first; these are realizations of the exact
same process, seen with a longer window and at a different
scale.
The next simulations shows M1, the mean of casualties
over the first 100 years across 104sample paths, and M2
the mean of casualties over the next 100 years.
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Figure 6.4: Does the past mean predict the future mean?
Not so. M1 for 100 years,M2 for the next century. Seen at
a narrow scale.
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Figure 6.5: Does the past mean predict the future mean?
Not so. M1 for 100 years,M2 for the next century. Seen at
a wider scale.
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Figure 6.6: The same seen with a thin-tailed distribution.
So clearly it is a lunacy to try to read much into the
mean of a power law with 1.15 exponent (and this is
the mild case, where we know the exponent is 1.15.
Typically we have an error rate, and the metaprobabil-
ity discussion in Chapter x will show the exponent to
be likely to be lower because of the possibility of er-
ror).

6.2.3 Claims Made From Power
Laws

The Cederman graph � figure ?? shows exactly how
not to make claims upon observing power laws.

6.3 A discussion of the Paretan
80/20 Rule

Next we will see how when one hears about the Paretan
80/20 "rule" (or, worse, "principle"), it is likely to un-
derestimate the fat tails effect outside some narrow do-
mains. It can be more like 95/20 or even 99.9999/.0001,
or eventually 100/✏. Almost all economic reports ap-
plying power laws for "GINI" (Chapter x) or inequality
miss the point. Even Pareto himself miscalibrated the
rule.
As a heuristic, it is always best to assume underesti-
mation of tail measurement. Recall that we are in a
one-tailed situation, hence a likely underestimation of

the mean.

Where does this 80/20 business come from?

Assume ↵ the power law tail exponent, and an ex-
ceedant probability PX>x = x

min

x�↵, x 2(x
min

, 1).
Simply, the top p of the population gets S = p

↵�1

↵ of
the share of the total pie.

↵ =

log(p)

log(p)� log(S)

which means that the exponent will be 1.161 for the
80/20 distribution.

Note that as ↵ gets close to 1 the contribution explodes
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Figure 6.7: Cederman 2003, used by Pinker. I wonder if I am dreaming or if the exponent ↵ is really = .41. Chapters x and x
show why such inference is centrally flawed, since low exponents do not allow claims on mean of the variableexcept to say that it
is very, very high and not observable in finite samples. Also, in addition to wrong conclusions from the data, take for now that the
regression fits the small deviations, not the large ones, and that the author overestimates our ability to figure out the asymptotic
slope.

as it becomes close to infinite mean.

Derivation:

Start with the standard density f(x) = x↵
min

↵ x�↵�1,
x � x

min

.
1) The Share attributed above K, K � x

min

, be-
comes

R1
K

xf(x) dx
R1
x
min

xf(x) dx
= K1�↵

2) The probability of exceeding K,

Z 1

K

f(x)dx = K�↵

3) Hence K�↵ of the population contributes
K1�↵=p

↵�1

↵ of the result
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6.3.1 Why the 80/20 Will Be Gener-
ally an Error: The Problem of In-
Sample Calibration

Vilfredo Pareto figured out that 20% of the land in Italy
was owned by 80% of the people, and the reverse. He
later observed that 20 percent of the peapods in his
garden yielded 80 percent of the peas that were har-
vested. He might have been right about the peas; but
most certainly wrong about the land.
For fitting in-sample frequencies for a power law does
not yield the proper "true" ratio since the sample is
likely to be insufficient. One should fit a powerlaw
using extrapolative, not interpolative techniques, such
as methods based on Log-Log plotting or regressions.

These latter methods are more informational, though
with a few caveats as they can also suffer from sample
insufficiency.
Data with infinite mean, ↵ 1, will masquerade as finite
variance in sample and show about 80% contribution
to the top 20% quantile. In fact you are expected to
witness in finite samples a lower contribution of the top
20%/
Let us see. Generate m samples of ↵ =1 data
Xj={xi,j}

n
i=1

, ordered xi,j� xi�1,j , and examine the
distribution of the top ⌫ contribution Z⌫

j =
P

i⌫n

x
jP

in

x
j

,
with ⌫ 2 (0,1).
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Figure 6.8: The difference betwen the generated (ex ante) and recovered (ex post) processes; ⌫=20/100, N= 10

7. Even when it
should be .0001/100, we tend to watch an average of 75/20

6.4 Survivorship Bias (Casanova)
Property

mathbfE(M 0�M⇤) increases under the presence of an
absorbing barrier for the process. This is the Casanova
effect, or fallacy of silent evidence see The Black Swan,

Chapter 8. ( Fallacy of silent evidence: Looking at
history, we do not see the full story, only the rosier parts
of the process, in the Glossary)
History is a single sample path we can model as a Brow-
nian motion, or something similar with fat tails (say
Levy flights). What we observe is one path among many
"counterfactuals", or alternative histories. Let us call
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each one a "sample path", a succession of discretely
observed states of the system between the initial state
S
0

and ST the present state.
Arithmetic process: We can model it as S(t) =

S(t � �t) + Z
�t where Z

�t is noise drawn from any
distribution.
Geometric process: We can model it as S(t) =

S(t��t)eWt typically S(t��t)eµ�t+s
p
�tZ

t but Wt

can be noise drawn from any distribution. Typically,
log

⇣

S(t)
S(t�i�t)

⌘

is treated as Gaussian, but we can use
fatter tails. The convenience of the Gaussian is stochas-
tic calculus and the ability to skip steps in the process,
as S(t)=S(t-�t)eµ�t+s

p
�tW

t , with Wt ⇠N(0,1), works
for all �t, even allowing for a single period to summarize
the total.
The Black Swan made the statement that history is
more rosy than the "true" history, that is, the mean of
the ensemble of all sample path.
Take an absorbing barrier H as a level that, when
reached, leads to extinction, defined as becom-
ing unobservable or unobserved at period T.

Barrier H

200 400 600 800 1000
Time

50

100

150

200

250

Sample Paths

Table 6.1: Counterfactual historical paths subjected to an
absorbing barrier.
When you observe history of a family of processes sub-
jected to an absorbing barrier, i.e., you see the winners
not the losers, there are biases. If the survival of the
entity depends upon not hitting the barrier, then one
cannot compute the probabilities along a certain sam-
ple path, without adjusting.
Begin
The "true" distribution is the one for all sample paths,
the "observed" distribution is the one of the succession
of points {Si�t}

T
i=1

.

Bias in the measurement of the mean

In the presence of an absorbing barrier H "below",
that is, lower than S

0

, the "observed mean" > "true
mean"

Bias in the measurement of the volatility

The "observed" variance (or mean deviation) 6 "true"
variance
The first two results are well known (see Brown, Goet-
zman and Ross (1995)). What I will set to prove here
is that fat-tailedness increases the bias.
First, let us pull out the "true" distribution using the
reflection principle.

Table 6.2: The reflection principle (graph from Taleb,
1997). The number of paths that go from point a to point
b without hitting the barrier H is equivalent to the number
of path from the point - a (equidistant to the barrier) to b.
Thus if the barrier is H and we start at S

0

then we
have two distributions, one f(S), the other f(S-2( S

0

-
H))
By the reflection principle, the "observed" distribution
p(S) becomes:

p(S) =

⇢

f(S)� f (S � 2 (S
0

�H)) if S > H
0 if S < H

Simply, the nonobserved paths (the casualties "swal-
lowed into the bowels of history") represent a mass
of 1-

R1
H

f(S) � f (S � 2 (S
0

�H)) dS and, clearly,
it is in this mass that all the hidden effects re-
side. We can prove that the missing mean is
RH

1 S (f(S)� f (S � 2 (S
0

�H))) dS and perturbate
f(S) using the previously seen method to "fatten" the
tail.
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Observed Distribution

H

 Absorbed Paths

Table 6.3: If you don’t take into account the sample paths
that hit the barrier, the observed distribution seems more
positive, and more stable, than the "true" one.

The interest aspect of the absorbing barrier (from
below) is that it has the same effect as insuffi-
cient sampling of a left-skewed distribution under
fat tails. The mean will look better than it really
is.

6.5 Left (Right) Tail Sample In-
sufficiency Under Negative
(Positive) Skewness

E[ M’- M* ] increases (decreases) with negative (posi-
tive) skeweness of the true underying variable.
Some classes of payoff (those affected by Turkey prob-
lems) show better performance than "true" mean. Oth-
ers (entrepreneurship) are plagued with in-sample un-
derestimation of the mean. A naive measure of a sam-
ple mean, even without absorbing barrier, yields a higher
oberved mean than "true" mean when the distribution
is skewed to the left, and lower when the skewness is to
the right.

!140 !120 !100 !80 !60 !40 !20
Outcomes

Probability

Unseen rare events

Figure 6.9: The left tail has fewer samples. The probability
of an event falling below K in n samples is F(K), where F is
the cumulative distribution.
This can be shown analytically, but a simulation works
well.
To see how a distribution masks its mean because of
sample insufficiency, take a skewed distribution with fat
tails, say the standard Pareto Distribution we saw ear-
lier.
The "true" mean is known to be m= ↵

↵�1 . Gen-
erate {X

1,j , X
2,j , ...,XN,j} random samples indexed

by j as a designator of a certain history j. Measure
µj =

P
N

i=1

X
i,j

N . We end up with the sequence of vari-
ous sample means {µj}

T
j=1

, which naturally should con-
verge to M with both N and T. Next we calculate µ̃
the median value of

PT
j=1

µ
j

M⇤T , such that P>µ̃ = 1

2

where, to repeat, M* is the theoretical mean we expect
from the generating distribution.
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Figure 6.10: Median of
P

T

j=1
µ

j

MT

in simulations (106 Monte
Carlo runs). We can observe the underestimation of the
mean of a skewed power law distribution as ↵ exponent gets
lower. Note that lower ↵ imply fatter tails.
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Entrepreneurship is penalized by right tail insufficiency
making performance look worse than it is. Figures 0.1
and 0.2 can be seen in a symmetrical way, producing
the exact opposite effect of negative skewness.

6.6 Why N=1 Can Be Very,
Very Significant Statisti-
cally

The Power of Extreme Deviations: Under fat tails,
large deviations from the mean are vastly more infor-
mational than small ones. They are not "anecdotal".
(The last two properties corresponds to the black swan
problem, inherently asymmetric).
We saw the point earlier (with the masquerade prob-
lem) in ??.??. The gist is as follows, worth repeating
and applying to this context.
A thin-tailed distribution is less likely to deliver a single
large deviation than a fat tailed distribution a series of
long calm periods. Now add negative skewness to the
issue, which makes large deviations negative and small
deviations positive, and a large negative deviation, un-
der skewness, becomes extremely informational.
Mixing the arguments of ??.?? and ??.?? we
get:

Asymmetry in Inference: Under both negative
skewness and fat tails, negative deviations from the
mean are more informational than positive devia-
tions.

6.7 The Instability of Squared
Variations in Regression
Analysis

Probing the limits of a standardized method by ar-
bitrage. We can easily arbitrage a mechanistic method
of analysis by generating data, the properties of which
are known by us, which we call "true" properties, and
comparing these "true" properties to the properties re-
vealed by analyses, as well as the confidence of the anal-
ysis about its own results in the form of "p-values" or
other masquerades.
This is no different from generating random noise and
asking the "specialist" for an analysis of the charts, in

order to test his knowledge, and, even more importantly,
asking him to give us a probability of his analysis be-
ing wrong. Likewise, this is equivalent to providing a
literary commentator with randomly generated giberish
and asking him to provide comments. In this section we
apply the technique to regression analyses, a great sub-
ject of abuse by the social scientists, particularly when
ignoring the effects of fat tails.
In short, we saw the effect of fat tails on higher mo-
ments. We will start with 1) an extreme case of in-
finite mean (in which we know that the conventional
regression analyses break down), then generalize to 2)
situations with finite mean (but finite variance), then 3)
finite variance but infinite higher moments. Note that
except for case 3, these results are "sort of" standard in
the econometrics literature, except that they are ignored
away through tweaking of the assumptions.

Fooled by ↵=1

Assume the simplest possible regression model, as fol-
lows. Let yi= �

0

+ �
1

xi + s zi, with Y={yi}1<in
the set of n dependent variables and X= {xi}1<in,
the independent one; Y, X ✏ R, i ✏ N. The errors zi are
independent but drawn from a standard Cauchy (sym-
metric, with tail exponent ↵ =1), multiplied by the am-
plitude or scale s; we will vary s across the thought
experiment (recall that in the absence and variance and
mean deviation we rely on s as a measure of disper-
sion). Since all moments are infinite, E[zni ] = 1 for all
n�1, we know ex ante that the noise is such that the
"errors" or ’residuals" have infinite means and variances
–but the problem is that in finite samples the property
doesn’t show. The sum of squares will be finite.
The next figure shows the effect of a very expected
large deviation, as can be expected from a Cauchy
jump.

The big deviation

20 40 60 80 100
x

!4000

!3000

!2000

!1000

y!x"
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Figure 6.11: A sample regression path dominated by a large
deviation. Most samples don’t exhibit such deviation this,
which is a problem. We know that with certainty (an appli-
cation of the zero-one laws) that these deviations are certain
as n ! 1 , so if one pick an arbitrarily large deviation, such
number will be exceeded, with a result that can be illustrated
as the sum of all variations will come from a single large
deviation.
Next we generate T simulations (indexed by j) of n
pairs {yi, xi}1<in for increasing values of x, thanks to
Cauchy distributed variables variable z↵i,j and multiplied
z↵i,j by the scaling constant s, leaving us with a set
n

�

�
0

+ �
1

xi + sz↵i,j
 n

i=1

oT

j=1

. Using standard regres-

sion techniques of estimation we "regress" and obtain
the standard equation Y est

= �est
0

+X�est
1

, where Y est

is the estimated Y, and E a vector of unexplained resid-

uals E⌘{✏i,j} ⌘

n

�

yest
i,j � �est

0

� �est
1

xij

 n

i=1

oT

j=1

. We

thus obtain T simulated values of ⇢ ⌘ {⇢j}
T
j=1

, where

⇢j⌘1-
P

n

i=1

✏
i,j

2

P
n

i=1

(y
i,j

�y
j

)

2

, the R-square for a sample run
j, where yj= 1

n

Pn
i=1

yi,j , in other words 1- ( squared
residuals) / (squared variations). We examine the dis-
tribution of the different realizations of ⇢.
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Figure 6.12: The histograms showing the distribution of R
Squares; T = 10

6 simulations.The "true" R-Square should
be 0. High scale of noise.
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Figure 6.13: The histograms showing the distribution of R
Squares; T = 10

6 simulations.The "true" R-Square should
be 0. Low scale of noise.
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Figure 6.14: We can fit different regressions to the same
story (which is no story). A regression that tries to accom-
modate the large deviation.
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Figure 6.15: Missing the largest deviation (not necessarily
voluntarily: the sample doesn’t include the critical observa-
tion.
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Arbitraging metrics

For a sample run which, typically, will not have a large
deviation,
R-squared: 0.994813 (When the "true" R-squared
would be 0)
The P-values are monstrously misleading.

Estimate Standard Error t-Statistic P-Value
1 4.99 0.417 11.976 7.8⇥ 10

�
33

x 0.10 0.00007224 1384.68 9.3⇥ 10

�
11426

6.7.1 Application to Economic Vari-
ables

We saw in ??.?? that kurtosis can be attributable to 1 in
10,000 observations (>50 years of data), meaning it is
unrigorous to assume anything other than that the data
has "infinite" kurtosis. The implication is that even if
the squares exist, i.e., E[z2i ] < 1, the distribution of z2i
has infinite variance, and is massively unstable. The "P-
values" remain grossly miscomputed. The next graph
shows the distribution of ⇢ across samples.
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Figure 6.16: Finite variance but infinite kurtosis.

6.8 Statistical Testing of Dif-
ferences Between Vari-
ables

A pervasive attribute substitution: Where X and Y
are two random variables, the properties of X-Y, say
the variance, probabilities, and higher order attributes
are markedly different from the difference in proper-
ties. So E(X) � E(Y ) = E(X) � E(Y ) but of course,

V ar(X � Y ) 6= V ar(X) � V ar(Y ), etc. for higher
norms. It means that P-values are different, and of
course the coefficient of variation ("Sharpe"). Where
� is the Standard deviation of the variable (or sam-
ple):

E(X � Y )

�(X � Y )

6=

EX)

�(X)

�

E(Y ))

�(Y )

In Fooled by Randomness (2001):
A far more acute problem relates to the out-
performance, or the comparison, between two
or more persons or entities. While we are cer-
tainly fooled by randomness when it comes to
a single times series, the foolishness is com-
pounded when it comes to the comparison be-
tween, say, two people, or a person and a
benchmark. Why? Because both are ran-
dom. Let us do the following simple thought
experiment. Take two individuals, say, a per-
son and his brother-in-law, launched through
life. Assume equal odds for each of good and
bad luck. Outcomes: lucky-lucky (no differ-
ence between them), unlucky-unlucky (again,
no difference), lucky- unlucky (a large differ-
ence between them), unlucky-lucky (again, a
large difference).

Ten years later (2011) it was found that 50% of neuro-
science papers (peer-reviewed in "prestigious journals")
that compared variables got it wrong.

In theory, a comparison of two experimental
effects requires a statistical test on their dif-
ference. In practice, this comparison is often
based on an incorrect procedure involving two
separate tests in which researchers conclude
that effects differ when one effect is signifi-
cant (P < 0.05) but the other is not (P >
0.05). We reviewed 513 behavioral, systems
and cognitive neuroscience articles in five top-
ranking journals (Science, Nature, Nature Neu-
roscience, Neuron and The Journal of Neuro-
science) and found that 78 used the correct
procedure and 79 used the incorrect procedure.
An additional analysis suggests that incorrect
analyses of interactions are even more common
in cellular and molecular neuroscience.

In Nieuwenhuis, S., Forstmann, B. U., & Wagenmak-
ers, E. J. (2011). Erroneous analyses of interactions in
neuroscience: a problem of significance. Nature neuro-
science, 14(9), 1105-1107.
Fooled by Randomness was read by many profession-
als (to put it mildly); the mistake is still being made.
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Ten years from now, they will still be making the mis-
take.

6.9 Studying the Statistical
Properties of Binaries and
Extending to Vanillas

See discussion in Chapter x.

6.10 The Mother of All Turkey
Problems: How Economics
Time Series Econometrics
and Statistics Don’t Repli-
cate

(Debunking a Nasty Type of PseudoScience)
Something Wrong With Econometrics, as Almost
All Papers Don’t Replicate. The next two reliability
tests, one about parametric methods the other about
robust statistics, show that there is something wrong in
econometric methods, fundamentally wrong, and that
the methods are not dependable enough to be of use in
anything remotely related to risky decisions.

6.10.1 Performance of Standard Para-
metric Risk Estimators, f(x) =
x

n (Norm L2 )
With economic variables one single observation in
10,000, that is, one single day in 40 years, can explain
the bulk of the "kurtosis", a measure of "fat tails",
that is, both a measure how much the distribution un-
der consideration departs from the standard Gaussian,
or the role of remote events in determining the total
properties. For the U.S. stock market, a single day, the
crash of 1987, determined 80% of the kurtosis. The
same problem is found with interest and exchange rates,
commodities, and other variables. The problem is not
just that the data had "fat tails", something people
knew but sort of wanted to forget; it was that we would
never be able to determine "how fat" the tails were
within standard methods. Never.
The implication is that those tools used in economics
that are based on squaring variables (more techni-
cally, the Euclidian, or L2 norm), such as standard devi-

ation, variance, correlation, regression, the kind of stuff
you find in textbooks, are not valid scientifically(except
in some rare cases where the variable is bounded). The
so-called "p values" you find in studies have no meaning
with economic and financial variables. Even the more
sophisticated techniques of stochastic calculus used in
mathematical finance do not work in economics except
in selected pockets.
The results of most papers in economics based on these
standard statistical methods are thus not expected to
replicate, and they effectively don’t. Further, these
tools invite foolish risk taking. Neither do alternative
techniques yield reliable measures of rare events, except
that we can tell if a remote event is underpriced, without
assigning an exact value.
From Taleb (2009), using Log returns,

Xt ⌘ log

✓

P (t)

P (t� i�t)

◆

Take the measure MX
t

�

(�1,1), X4

�

of the fourth
noncentral moment

MX
t

�

(�1,1), X4

�

⌘

1

n

n
X

i=0

X4

t�i�t

and the n-sample maximum quartic observation
Max(Xt�i�t

4

)

n
i=0

. Q(n) is the contribution of the max-
imum quartic variations over n samples.

Q(n) ⌘
Max

�

X4

t��ti)
n
i=0

Pn
i=0

X4

t��ti

For a Gaussian (i.e., the distribution of the square of a
Chi-square distributed variable) show Q

�

10

4

�

the maxi-
mum contribution should be around .008 ± .0028. Vis-
ibly we can see that the distribution 4

th moment has
the property

P
�

X > max(x4

i )i2n
�

⇡ P

 

X >
n
X

i=1

x4

i

!

Recall that, naively, the fourth moment expresses the
stability of the second moment. And the second mo-
ment expresses the stability of the measure across sam-
ples.
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Security Max Q Years.
Silver 0.94 46.
SP500 0.79 56.
CrudeOil 0.79 26.
Short Sterling 0.75 17.
Heating Oil 0.74 31.
Nikkei 0.72 23.
FTSE 0.54 25.
JGB 0.48 24.
Eurodollar Depo 1M 0.31 19.
Sugar #11 0.3 48.
Yen 0.27 38.
Bovespa 0.27 16.
Eurodollar Depo 3M 0.25 28.
CT 0.25 48.
DAX 0.2 18.

Note that taking the snapshot at a different period
would show extremes coming from other variables while
these variables showing high maximma for the kurto-
sis, would drop, a mere result of the instability of the
measure across series and time. Description of the
dataset:
All tradable macro markets data available as of August
2008, with "tradable" meaning actual closing prices cor-
responding to transactions (stemming from markets not
bureaucratic evaluations, includes interest rates, curren-
cies, equity indices).
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Figure 6.17: Montly delivered volatility in the SP500 (as
measured by standard deviations). The only structure it
seems to have comes from the fact that it is bounded at 0.
This is standard.

Figure 6.18: Montly volatility of volatility from the same
dataset, predictably unstable.



6.10. THE MOTHER OF ALL TURKEY PROBLEMS: HOW ECONOMICS TIME SERIES ECONOMETRICS AND STATISTICS DON’T REPLICATE79

6.10.2 Performance of Standard Non-
Parametric Risk Estimators,
f(x)= x or |x| (Norm L1), A
=(-1, K]

Does the past resemble the future in the tails? The
following tests are nonparametric, that is entirely based
on empirical probability distributions.

Figure 6.19: Comparing M[t-1, t] and M[t,t+1], where ⌧=
1year, 252 days, for macroeconomic data using extreme de-
viations, A= (-1 ,-2 standard deviations (equivalent)], f(x)
= x (replication of data from The Fourth Quadrant, Taleb,
2009)

Figure 6.20: The "regular" is predictive of the regular, that
is mean deviation. Comparing M[t] and M[t+1 year] for
macroeconomic data using regular deviations, A= (-1 ,1)
, f(x)= |x|
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Figure 6.21: This are a lot worse for large deviations A=
(-1 ,-4 standard deviations (equivalent)], f(x) = x
So far we stayed in dimension 1. When we look at
higher dimensional properties, such as covariance ma-
trices, things get worse. We will return to the point
with the treatment of model error in mean-variance op-
timization.
When xt are now in RN , the problems of sensitivity
to changes in the covariance matrix makes the estima-
tor M extremely unstable. Tail events for a vector are
vastly more difficult to calibrate, and increase in dimen-
sions.

The Responses so far by members of the eco-
nomics/econometrics establishment: "his books are
too popular to merit attention", "nothing new" (sic),
"egomaniac" (but I was told at the National Science
Foundation that "egomaniac" does not apper to have
a clear econometric significance). No answer as to why
they still use STD, regressions, GARCH, value-at-risk
and similar methods.
Peso problem: Note that many researchers invoke
"outliers" or "peso problem" as acknowledging fat tails,
yet ignore them analytically (outside of Poisson models
that we will see are not possible to calibrate except after
the fact). Our approach here is exactly the opposite: do
not push outliers under the rug, rather build everything
around them. In other words, just like the FAA and the
FDA who deal with safety by focusing on catastrophe
avoidance, we will throw away the ordinary under the
rug and retain extremes as the sole sound approach to
risk management. And this extends beyond safety since
much of the analytics and policies that can be destroyed
by tail events are unusable.
Peso problem attitude towards the Black Swan

problem:
"(...) "black swans" (Taleb, 2007). These
cultural icons refer to disasters that occur
so infrequently that they are virtually im-
possible to analyze using standard statisti-
cal inference. However, we find this per-
spective less than helpful because it sug-
gests a state of hopeless ignorance in which
we resign ourselves to being buffeted and
battered by the unknowable."
(Andrew Lo who obviously did not bother
to read the book he was citing. The com-
ment also shows the lack of common sense
to look for robustness to these events).

Lack of Skin in the Game. Indeed one wonders why
econometric methods can be used while being wrong, so
shockingly wrong, how "University" researchers (adults)
can partake of such a scam. Basically they capture the
ordinary and mask higher order effects. Since blowups
are not frequent, these events do not show in data and
the researcher looks smart most of the time while be-
ing fundamentally wrong. At the source, researchers,
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Figure 6.22: Correlations are also problematic, which flows from the instability of single variances and the effect of multiplication
of the values of random variables.

"quant" risk manager, and academic economist do not
have skin in the game so they are not hurt by wrong
risk measures: other people are hurt by them. And the
scam should continue perpetually so long as people are
allowed to harm others with impunity. (More in Taleb
and Sandis, 2013)

6.11 A General Summary of The
Problem of Reliance on
Past Time Series

The four aspects of what we will call the nonreplicabil-
ity issue, particularly for mesures that are in the tails.
These are briefly presented here and developed more
technically throughout the book:
a- Definition of statistical rigor (or Pinker Prob-
lem). The idea that an estimator is not about fitness to
past data, but related to how it can capture future re-
alizations of a process seems absent from the discourse.

Much of econometrics/risk management methods do
not meet this simple point and the rigor required by
orthodox, basic statistical theory.
b- Statistical argument on the limit of knowledge
of tail events. Problems of replicability are acute for
tail events. Tail events are impossible to price owing
to the limitations from the size of the sample. Naively
rare events have little data hence what estimator we
may have is noisier.
c- Mathematical argument about statistical de-
cidability. No probability without metaprobability.
Metadistributions matter more with tail events, and
with fat-tailed distributions.

1. The soft problem: we accept the probability dis-
tribution, but the imprecision in the calibration
(or parameter errors) percolates in the tails.

2. The hard problem (Taleb and Pilpel, 2001, Taleb
and Douady, 2009): We need to specify an a pri-
ori probability distribution from which we depend,
or alternatively, propose a metadistribution with
compact support.
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3. Both problems are bridged in that a nested
stochastization of standard deviation (or the scale
of the parameters) for a Gaussian turn a thin-
tailed distribution into a power law (and stochas-
tization that includes the mean turns it into a
jump-diffusion or mixed-Poisson).
d- Economic arguments: The Friedman-Phelps
and Lucas critiques, Goodhart’s law. Acting
on statistical information (a metric, a response)
changes the statistical properties of some pro-

cesses.

6.12 Conclusion

This chapter introduced the problem of "surprises" from
the past of time series, and the invalidity of a certain
class of estimators that seem to only work in-sample.
Before examining more deeply the mathematical prop-
erties of fat-tails, let us look at some practical as-
pects.
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D On the Instability of Econometric Data

Table D.1: Fourth noncentral moment at daily, 10-day, and 66-day windows for the random variables

K

(1) K (10) K

(66)
Max
Quartic Years

Australian Dol-
lar/USD 6.3 3.8 2.9 0.12 22.

Australia
TB 10y 7.5 6.2 3.5 0.08 25.

Australia TB 3y 7.5 5.4 4.2 0.06 21.
BeanOil 5.5 7.0 4.9 0.11 47.
Bonds 30Y 5.6 4.7 3.9 0.02 32.
Bovespa 24.9 5.0 2.3 0.27 16.
British
Pound/USD 6.9 7.4 5.3 0.05 38.

CAC40 6.5 4.7 3.6 0.05 20.
Canadian Dol-
lar 7.4 4.1 3.9 0.06 38.

Cocoa NY 4.9 4.0 5.2 0.04 47.
Coffee NY 10.7 5.2 5.3 0.13 37.
Copper 6.4 5.5 4.5 0.05 48.
Corn 9.4 8.0 5.0 0.18 49.
Crude Oil 29.0 4.7 5.1 0.79 26.
CT 7.8 4.8 3.7 0.25 48.
DAX 8.0 6.5 3.7 0.20 18.
Euro Bund 4.9 3.2 3.3 0.06 18.
Euro Cur-
rency/DEM
previously

5.5 3.8 2.8 0.06 38.

Eurodollar
Depo 1M 41.5 28.0 6.0 0.31 19.

Eurodollar
Depo 3M 21.1 8.1 7.0 0.25 28.

FTSE 15.2 27.4 6.5 0.54 25.
Gold 11.9 14.5 16.6 0.04 35.
Heating Oil 20.0 4.1 4.4 0.74 31.
Hogs 4.5 4.6 4.8 0.05 43.
Jakarta Stock
Index 40.5 6.2 4.2 0.19 16.
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Japanese Gov
Bonds 17.2 16.9 4.3 0.48 24.

Live Cattle 4.2 4.9 5.6 0.04 44.
Nasdaq Index 11.4 9.3 5.0 0.13 21.
Natural Gas 6.0 3.9 3.8 0.06 19.
Nikkei 52.6 4.0 2.9 0.72 23.
Notes 5Y 5.1 3.2 2.5 0.06 21.
Russia RTSI 13.3 6.0 7.3 0.13 17.
Short Sterling 851.8 93.0 3.0 0.75 17.
Silver 160.3 22.6 10.2 0.94 46.
Smallcap 6.1 5.7 6.8 0.06 17.
SoyBeans 7.1 8.8 6.7 0.17 47.
SoyMeal 8.9 9.8 8.5 0.09 48.
Sp500 38.2 7.7 5.1 0.79 56.
Sugar #11 9.4 6.4 3.8 0.30 48.
SwissFranc 5.1 3.8 2.6 0.05 38.
TY10Y Notes 5.9 5.5 4.9 0.10 27.
Wheat 5.6 6.0 6.9 0.02 49.
Yen/USD 9.7 6.1 2.5 0.27 38.



7 On the Difference between Binary Prediction and
True Exposure

(With Implications For Forecasting Tournaments and Decision Making
Research)

There are serious statistical differences between predictions, bets, and exposures that have a yes/no type of payoff, the
“binaries”, and those that have varying payoffs, which we call the “vanilla”. Real world exposures tend to belong to
the vanilla category, and are poorly captured by binaries. Yet much of the economics and decision making literature
confuses the two. Vanilla exposures are sensitive to Black Swan effects, model errors, and prediction problems, while
the binaries are largely immune to them. The binaries are mathematically tractable, while the vanilla are much less
so. Hedging vanilla exposures with binary bets can be disastrous–and because of the human tendency to engage in
attribute substitution when confronted by difficult questions,decision-makers and researchers often confuse the vanilla
for the binary.

7.1 Binary vs Vanilla Predic-
tions and Exposures

BinaryBinaryBinary: Binary predictions and exposures are about well
defined discrete events, with yes/no types of answers,
such as whether a person will win the election, a single
individual will die, or a team will win a contest. We call
them binary because the outcome is either 0 (the event
does not take place) or 1 (the event took place), that
is the set {0,1} or the set {aL, aH}, with aL < aH any
two discrete and exhaustive values for the outcomes.
For instance, we cannot have five hundred people win-
ning a presidential election. Or a single candidate run-
ning for an election has two exhaustive outcomes: win
or lose.

VanillaVanillaVanilla: “Vanilla” predictions and exposures, also
known as natural random variables, correspond to sit-
uations in which the payoff is continuous and can take
several values. The designation “vanilla” originates from
definitions of financial contracts1 ; it is fitting outside
option trading because the exposures they designate are

naturally occurring continuous variables, as opposed to
the binary that which tend to involve abrupt institution-
mandated discontinuities. The vanilla add a layer of
complication: profits for companies or deaths due to
terrorism or war can take many, many potential values.
You can predict the company will be “profitable”, but
the profit could be $1or10billion.

There is a variety of exposures closer to the vanilla,
namely bounded exposures that we can subsume math-
ematically into the binary category.

The main errors are as follows.
• Binaries always belong to the class of thin-tailed

distributions, because of boundedness, while the
vanillas don’t. This means the law of large num-
bers operates very rapidly there. Extreme events
wane rapidly in importance: for instance, as we
will see further down in the discussion of the Cher-
noff bound, the probability of a series of 1000 bets
to diverge more than 50% from the expected av-
erage is less than 1 in 10

18, while the vanilla can
experience wilder fluctuations with a high proba-
bility, particularly in fat-tailed domains. Compar-

1The “vanilla” designation comes from option exposures that are open-ended as opposed to the binary ones that are called “exotic”.
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Figure 7.1: Comparing digital payoff (above) to the vanilla (below). The vertical payoff shows x

i

(x1, x2, ...) and the horizontal
shows the index i= (1,2,...), as i can be time, or any other form of classification. We assume in the first case payoffs of {-1,1},
and open-ended (or with a very remote and unknown bounds) in the second.

ing one to another can be a lunacy.
• The research literature documents a certain class

of biases, such as "dread risk" or "long shot bias",
which is the overestimation of some classes of rare
events, but derived from binary variables, then
falls for the severe mathematical mitake of ex-
tending the result to vanilla exposures. If eco-
logical exposures in the real world tends to have
vanilla, not binary properties, then much of these
results are invalid.

Let us return to the point that the variations of vanilla
are not bounded, or have a remote boundary. Hence,

the prediction of the vanilla is marred by Black Swan
effects and need to be considered from such a view-
point. For instance, a few prescient observers saw the
potential for war among the Great Power of Europe in
the early 20th century but virtually everyone missed the
second dimension: that the war would wind up killing an
unprecedented twenty million persons, setting the stage
for both Soviet communism and German fascism and a
war that would claim an additional 60 million, followed
by a nuclear arms race from 1945 to the present, which
might some day claim 600 million lives.
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The Black Swan is Not About Probability
But Payoff
In short, the vanilla has another dimension, the payoff,
in addition to the probability, while the binary is limited
to the probability. Ignoring this additional dimension
is equivalent to living in a 3-D world but discussing it
as if it were 2-D, promoting the illusion to all who will
listen that such an analysis captures all worth captur-
ing.
Now the Black Swan problem has been misunderstood.
We are saying neither that there must be more volatil-
ity in our complexified world nor that there must be
more outliers. Indeed, we may well have fewer such
events but it has been shown that, under the mecha-
nisms of “fat tails”, their “impact” gets larger and larger
and more and more unpredictable. The main cause is
globalization and the spread of winner-take-all effects
across variables (just think of the Google effect), as
well as effect of the increased physical and electronic
connectivity in the world, causing the weakening of “is-
land effect” a well established fact in ecology by which
isolated areas tend to have more varieties of species per
square meter than larger ones. In addition, while phys-
ical events such as earthquakes and tsunamis may not
have changed much in incidence and severity over the
last 65 million years (when the dominant species on our
planet, the dinosaurs, had a very bad day), their effect
is compounded by interconnectivity.
So there are two points here.

Binary predictions are more tractable than expo-
sures

First, binary predictions tend to work; we can learn to be
pretty good at making them (at least on short timescales
and with rapid accuracy feedback that teaches us how
to distinguish signals from noise —all possible in fore-
casting tournaments as well as in electoral forecasting
— see Silver, 2012). Further, these are mathematically
tractable: your worst mistake is bounded, since proba-
bility is defined on the interval between 0 and 1. But
the applications of these binaries tend to be restricted
to manmade things, such as the world of games (the
“ludic” domain).
It is important to note that, ironically, not only do Black
Swan effects not impact the binaries, but they even
make them more mathematically tractable, as will see

further down.

Binary predictions are often taken as a substitute
for vanilla ones

Second, most non-decision makers tend to confuse the
binary and the vanilla. And well-intentioned efforts to
improve performance in binary prediction tasks can have
the unintended consequence of rendering us oblivious to
catastrophic vanilla exposure.
The confusion can be traced to attribute substitu-
tion and the widespread tendency to replace difficult-
to-answer questions with much-easier-to-answer ones.
For instance, the extremely-difficult-to-answer question
might be whether China and the USA are on an his-
torical trajectory toward a rising-power/hegemon con-
frontation with the potential to claim far more lives than
the most violent war thus far waged (say 10X more
the 60M who died in World War II). The much-easier-
binary-replacement questions —the sorts of questions
likely to pop up in forecasting tournaments or predic-
tion markets — might be whether the Chinese military
kills more than 10 Vietnamese in the South China Sea
or 10 Japanese in the East China Sea in the next 12
months or whether China publicly announces that it is
restricting North Korean banking access to foreign cur-
rency in the next 6 months.
The nub of the conceptual confusion is that although
predictions and payoffs are completely separate math-
ematically, both the general public and researchers are
under constant attribute-substitution temptation of us-
ing answers to binary questions as substitutes for expo-
sure to vanilla risks.
We often observe such attribute substitution in finan-
cial hedging strategies. For instance, Morgan Stanley
correctly predicted the onset of a subprime crisis, but
they had a binary hedge and ended up losing billions
as the crisis ended up much deeper than predicted (
Bloomberg Magazine, March 27, 2008).
Or, consider the performance of the best forecasters
in geopolitical forecasting tournaments over the last 25
years (Tetlock, 2005; Tetlock & Mellers, 2011; Mellers
et al, 2013). These forecasters may will be right when
they say that the risk of a lethal confrontation claiming
10 or more lives in the East China Sea by the end of
2013 is only 0.04. They may be very “well calibrated”
in the narrow technical sense that when they attach a
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4% likelihood to events, those events occur only about
4% of the time. But framing a vanilla question as a
binary question is dangerous because it masks exponen-
tially escalating tail risks: the risks of a confrontation
claiming not just 10 lives of 1000 or 1 million. No one
has yet figured out how to design a forecasting tour-
nament to assess the accuracy of probability judgments
that range between .00000001% and 1% —and if some-
one ever did, it is unlikely that anyone would have the
patience —or lifespan —to run the forecasting tourna-
ment for the necessary stretches of time (requiring us
to think not just in terms of decades, centuries and mil-
lennia).
The deep ambiguity of objective probabilities at the
extremes—and the inevitable instability in subjective
probability estimates—can also create patterns of sys-
tematic mispricing of options. An option or option like
payoff is not to be confused with a lottery, and the “lot-
tery effect” or “long shot bias” often discussed in the
economics literature that documents that agents over-
pay for these bets should not apply to the properties of
actual options.
In Fooled by Randomness, the narrator is asked “do
you predict that the market is going up or down?”
“Up”, he said, with confidence. Then the questioner got
angry when he discovered that the narrator was short
the market, i.e., would benefit from the market going
down. The trader had a difficulty conveying the idea
that someone could hold the belief that the market had
a higher probability of going up, but that, should it go
down, it would go down a lot. So the rational response
was to be short.
This divorce between the binary (up is more likely) and
the vanilla is very prevalent in real-world variables. In-

deed we often see reports on how a certain financial
institution “did not have a losing day in the entire quar-
ter”, only to see it going near-bust from a monstrously
large trading loss. Likewise some predictors have an ex-
cellent record, except that following their advice would
result in large losses, as they are rarely wrong, but when
they miss their forecast, the results are devastating.

RemarkRemarkRemark:More technically, for a heavy tailed distribution
(defined as part of the subexponential family, see Taleb
2013), with at least one unbounded side to the random
variable, the vanilla prediction record over a long series
will be of the same order as the best or worst prediction,
whichever in largest in absolute value, while no single
outcome can change the record of the binary.

Another way to put the point: to achieve the reputation
of “Savior of Western civilization,”a politician such as
Winston Churchill needed to be right on only one super-
big question (such as the geopolitical intentions of the
Nazis)– and it matters not how many smaller errors that
politician made (e.g. Gallipoli, gold standard, autonomy
for India). Churchill could have a terrible Brier score (bi-
nary accuracy) and a wonderful reputation (albeit one
that still pivots on historical counterfactuals).
Finally, one of the authors wrote an entire book (Taleb,
1997) on the hedging and mathematical differences be-
tween binary and vanilla. When he was an option
trader, he realized that binary options have nothing to
do with vanilla options, economically and mathemati-
cally. Seventeen years later people are still making the
mistake.

7.2 A Semi-Technical Commen-
tary on The Mathematical
Differences

Chernoff Bound

The binary is subjected to very tight bounds. Let
(Xi)

1<in bea sequence independent Bernouilli trials
taking values in the set {0, 1}, with P(X = 1]) = p and
P(X = 0) = 1 � p, Take the sum Sn =

P

1<in Xi.
with expectation E(Sn)= np = µ. Taking � as a “dis-

tance from the mean”, the Chernoff bounds gives:
For any � > 0

P(S � (1 + �)µ) 

✓

e�

(1 + �)1+�

◆µ

and for 0 < �  1

P(S � (1 + �)µ)  2e�
µ�

2

3

Let us compute the probability of coin flips n of having
50% higher than the true mean, with p= 1

2

and µ =
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which for n = 1000 happens every 1 in 1.24⇥ 10

18.

Fatter tails lower the probability of re-
mote events (the binary) and raise the
value of the vanilla.
The following intuitive exercise will illustrate what hap-
pens when one conserves the variance of a distribution,
but “fattens the tails” by increasing the kurtosis. The
probability of a certain type of intermediate and large
deviation drops, but their impact increases. Counter-
intuitively, the possibility of staying within a band in-
creases.
Let x be a standard Gaussian random variable with
mean 0 (with no loss of generality) and standard devi-
ation �. Let P>1� be the probability of exceeding one
standard deviation. P>1�= 1 �

1

2

erfc
⇣

�

1p
2

⌘

, where
erfc is the complementary error function, so P>1� =
P<1� '15.86% and the probability of staying within the
“stability tunnel” between ± 1 � is 1� P>1�� P<1� '

68.3%.
Let us fatten the tail in a variance-preserving manner,
using the “barbell” standard method of linear combi-
nation of two Gaussians with two standard deviations
separated by �

p

1 + a and �
p

1� a , a 2(0,1), where
a is the “vvol” (which is variance preserving, technically
of no big effect here, as a standard deviation-preserving

spreading gives the same qualitative result). Such a
method leads to the immediate raising of the standard
Kurtosis by

�

1 + a2
�

since E
(

x4

)

E(x2

)

2

= 3

�

a2 + 1

�

, where
E is the expectation operator.

(7.1)

P >1� = P<1�

= 1�

1

2

erfc
✓
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1
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2

p

1� a

◆

�

1

2

erfc
✓

�

1

p

2

p

a+ 1

◆

So then, for different values of a in Eq. 1 as we can
see in Figure 2, the probability of staying inside 1 sigma
rises, “rare” events become less frequent.
Note that this example was simplified for ease of argu-
ment. In fact the “tunnel” inside of which fat tailedness
increases probabilities is between�

q

1

2

�

5�

p

17

�

� and
q

1

2

�

5�

p

17

�

� (even narrower than 1 � in the exam-
ple, as it numerically corresponds to the area between
-.66 and .66), and the outer one is ±

q

1

2

�

5 +

p

17

�

�

, that is the area beyond ±2.13 �.

The law of large numbers works better
with the binary than the vanilla
Getting a bit more technical, the law of large numbers
works much faster for the binary than the vanilla (for
which it may never work, see Taleb, 2013). The more
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convex the payoff, the more observations one needs to
make a reliable inference. The idea is as follows, as can
be illustrated by an extreme example of very tractable
binary and intractable vanilla.
Let xt be the realization of the random variable X
2 (-1, 1) at period t, which follows a Cauchy dis-
tribution with p.d.f. f (xt)⌘

1

⇡((x
0

�1)2+1)

. Let us set
x
0

= 0 to simplify and make the exposure symmetric
around 0. The Vanilla exposure maps to the variable
xt and has an expectation E (xt) =

R1
�1 xtf(x)dx,

which is undefined (i.e., will never converge to a fixed
value). A bet at x

0

has a payoff mapped by as a Heav-
iside Theta Function ✓>x

0

(xt) paying 1 if xt > x
0

and
0 otherwise. The expectation of the payoff is simply
E(✓(x)) =

R1
�1 ✓>x

0

(x)f(x)dx=
R1
x
0

f(x)dx, which is
simply P (x > 0). So long as a distribution exists, the
binary exists and is Bernouilli distributed with proba-
bility of success and failure p and 1—p respectively
.
The irony is that the payoff of a bet on a Cauchy, ad-
mittedly the worst possible distribution to work with
since it lacks both mean and variance, can be mapped
by a Bernouilli distribution, about the most tractable of
the distributions. In this case the Vanilla is the hardest
thing to estimate, and the binary is the easiest thing to
estimate.
Set Sn =

1

n

Pn
i=1

xt
i

the average payoff of a
variety of vanilla bets xt

i

across periods ti, and
S✓

n =

1

n

Pn
i=1

✓>x
0

(xt
i

). No matter how large n,
limn!1 S✓

n has the same properties — the exact same
probability distribution —as S

1

. On the other hand
limn!1 S✓

n=

p; further the presaymptotics of S✓
n are

tractable since it converges to 1

2

rather quickly, and
the standard deviations declines at speed

p

n , since
p

V (S✓
n) =

q

V (S✓

1

)

n =
q

(1�p)p
n (given that the

moment generating function for the average is M(z)
=
�

pez/n � p+ 1

�n).
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Figure 7.3: The different classes of payoff f(x) seen in rela-
tion to an event x. (When considering options, the vanilla
can start at a given bet level, so the payoff would be con-
tinuous on one side, not the other).

The binary has necessarily a thin-tailed
distribution, regardless of domain
More, generally, for the class of heavy tailed distribu-
tions, in a long time series, the sum is of the same
order as the maximum, which cannot be the case for
the binary:

lim

X!1

P (X >
Pn

i=1

xt
i

)

P
⇣

X > max (xt
i

)i2n

⌘

= 1 (7.2)

Compare this to the binary for which

lim

X!1
P
⇣

X > max (✓(xt
i

))i2n

⌘

= 0 (7.3)

The binary is necessarily a thin-tailed distribution, re-
gardless of domain.
We can assert the following:

• The sum of binaries converges at a speed faster
or equal to that of the vanilla.

• The sum of binaries is never dominated by a single
event, while that of the vanilla can be.

How is the binary more robust to model
error?
In the more general case, the expected payoff of the
vanilla is expressed as

R

A
xdF (x) (the unconditional

shortfall) while that of the binary=
R

À dF (x), where
A is the part of the support of interest for the exposure,
typically A⌘[K,1), or (�1,K]. Consider model error
as perturbations in the parameters that determine the
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calculations of the probabilities. In the case of the
vanilla, the perturbation’s effect on the probability is
multiplied by a larger value of x.
As an example, define a slighly more complicated vanilla
than before, with option-like characteristics, V (↵,K)

⌘

R1
K

x p↵(x)dx and B(↵,K) ⌘

R1
K

p↵(x) dx, where
V is the expected payoff of vanilla, B is that of the bi-
nary, K is the “strike” equivalent for the bet level, and
with x2[1, 1) let p↵(x) be the density of the Pareto
distribution with minimum value 1 and tail exponent ↵,
so p↵(x) ⌘ ↵x�↵�1.
Set the binary at .02, that is, a 2% probability of exceed-
ing a certain number K, corresponds to an ↵=1.2275
and a K=24.2, so the binary is expressed as B(1.2,
24.2). Let us perturbate ↵, the tail exponent, to
double the probability from .02 to .04. The result is
B(1.01,24.2)
B(1.2,24.2) = 2. The corresponding effect on the vanilla

is V (1.01,24.2)
V (1.2,24.2) = 37.4. In this case the vanilla was ⇠18

times more sensitive than the binary.

7.3 The Applicability of Some
Psychological Biases

Without going through which papers identifying biases,
Table 1 shows the effect of the error across domains.
We are not saying that the bias does not exist; rather
that, if the error is derived in a binary environment, or
one with a capped payoff, it does not port outside the
domain in which it was derived.

Table 7.1: True and False Biases

Bias Erroneous appli-
cation

Justified applica-
tions

Dread Risk Comparing Terror-
ism to fall from
ladders

Comparing risks of
driving vs flying

General over-
estimation of
small proba-
bilities

Bounded bets in
laboratory setting

Open-ended pay-
offs in fat-tailed
domains

Long shot
bias

Lotteries Financial payoffs

Precautionary
principle

Volcano eruptions Climatic issues
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8 How Fat Tails Emerge From Recursive Epistemic
Uncertainty

The Opposite of Central Limit

With the Central Limit Theorem: we start with a distri-
bution and end with a Gaussian. The opposite is more
likely to be true. Recall how we fattened the tail of
the Gaussian by stochasticizing the variance? Now let
us use the same metaprobability method, put add addi-
tional layers of uncertainty.

The Regress Argument (Error about Error)

The main problem behind The Black Swan is the limited
understanding of model (or representation) error, and,
for those who get it, a lack of understanding of second
order errors (about the methods used to compute the
errors) and by a regress argument, an inability to contin-
uously reapplying the thinking all the way to its limit (
particularly when they provide no reason to stop).
Again, there is no problem with stopping the recursion,
provided it is accepted as a declared a priori that es-
capes quantitative and statistical methods.
Epistemic not statistical re-derivation of power
laws: Note that previous derivations of power laws
have been statistical (cumulative advantage, preferen-
tial attachment, winner-take-all effects, criticality), and
the properties derived by Yule, Mandelbrot, Zipf, Si-
mon, Bak, and others result from structural conditions
or breaking the independence assumptions in the sums
of random variables allowing for the application of the
central limit theorem. This work is entirely epistemic,
based on standard philosophical doubts and regress ar-
guments.

8.1 Methods and Deriva-
tions

8.1.1 Layering Uncertainties
Take a standard probability distribution, say the Gaus-
sian. The measure of dispersion, here �, is estimated,
and we need to attach some measure of dispersion
around it. The uncertainty about the rate of uncer-
tainty, so to speak, or higher order parameter, similar
to what called the “volatility of volatility” in the lingo
of option operators (see Taleb, 1997, Derman, 1994,
Dupire, 1994, Hull and White, 1997) –here it would
be “uncertainty rate about the uncertainty rate”. And
there is no reason to stop there: we can keep nesting
these uncertainties into higher orders, with the uncer-
tainty rate of the uncertainty rate of the uncertainty
rate, and so forth. There is no reason to have certainty
anywhere in the process.

8.1.2 Higher order integrals in the Stan-
dard Gaussian Case

We start with the case of a Gaussian and focus the un-
certainty on the assumed standard deviation. Define
�(µ,�,x) as the Gaussian PDF for value x with mean
µ and standard deviation �.
A 2

ndorder stochastic standard deviation is the inte-
gral of � across values of � 2 R+, under the measure
f (�̄,�

1

,�) , with �
1

its scale parameter (our approach
to trach the error of the error), not necessarily its stan-
dard deviation; the expected value of �

1

is �
1

.

f(x)
1

=

Z 1

0

�(µ,�, x)f (�̄,�
1

,�) d�
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Generalizing to the N th order, the density function f(x)
becomes

f(x)N =

Z 1

0

...
Z 1

0

�(µ,�, x)f (�̄,�
1

,�)

f (�
1

,�
2

,�
1

) ...f (�N�1,�N ,�N�1)

d� d�
1

d�
2

...d�N (8.1)

The problem is that this approach is parameter-heavy
and requires the specifications of the subordinated dis-
tributions (in finance, the lognormal has been tradition-
ally used for �2 (or Gaussian for the ratio Log[�

2

t

�2

] since
the direct use of a Gaussian allows for negative values).
We would need to specify a measure f for each layer
of error rate. Instead this can be approximated by using
the mean deviation for �, as we will see next.
Discretization using nested series of two-states for �- a
simple multiplicative process
We saw in the last chapter a quite effective
simplification to capture the convexity, the ra-
tio of (or difference between) �(µ,�,x) and
R1
0

�(µ,�, x)f (�̄,�
1

,�) mathrmd� (the first order
standard deviation) by using a weighted average of val-
ues of �, say, for a simple case of one-order stochastic
volatility:

�(1± a(1))

with 0  a(1) < 1, where a(1) is the proportional mean
absolute deviation for �, in other word the measure of
the absolute error rate for �. We use 1

2

as the proba-
bility of each state. Unlike the earlier situation we are
not preserving the variance, rather the STD.
Thus the distribution using the first order stochastic
standard deviation can be expressed as:

f(x)
1

=

1

2

✓

�(µ,� (1 + a(1)), x)

+ �(µ,�(1� a(1)), x)

◆

(8.2)

Now assume uncertainty about the error rate a(1), ex-
pressed by a(2), in the same manner as before. Thus in
place of a(1) we have 1

2

a(1)( 1± a(2)).

Σ

!1"a!1""Σ

!a!1"#1"Σ

!a!1"#1" !1"a!2""Σ

!a!1"#1" !a!2"#1"Σ

!1"a!1"" !1"a!2""Σ

!1"a!1"" !a!2"#1"Σ

!1"a!1"" !1"a!2"" !1"a!3""Σ

!1"a!1"" !a!2"#1" !1"a!3""Σ

!a!1"#1" !1"a!2"" !1"a!3""Σ

!a!1"#1" !a!2"#1" !1"a!3""Σ

!1"a!1"" !1"a!2"" !a!3"#1"Σ

!1"a!1"" !a!2"#1" !a!3"#1"Σ

!a!1"#1" !1"a!2"" !a!3"#1"Σ

!a!1"#1" !a!2"#1" !a!3"#1"Σ

Table 8.1: Three levels of error rates for � following a mul-
tiplicative process
The second order stochastic standard deviation:

f(x)
2

=

1

4

 

�

✓

µ,�(1 + a(1)(1 + a(2))), x

◆

+

�

✓

µ,�(1�a(1)(1+a(2))), x)+�(µ,�(1+a(1)(1�a(2)), x

◆

+ �
⇣

µ,�(1� a(1)(1� a(2))), x
⌘

!

(8.3)

and the N th order:

f(x)N =

1

2

N
2

N

P

i=1

�
�

µ,�MN
i , x

�

where MN
i is the ith scalar (line) of the matrix

MN
�

2

N
⇥ 1

�

MN
=

8

<

:

N
Y

j=1

(a(j)Ti,j + 1)

9

=

;

2

N

i=1
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and Ti,j the element of ithline and jthcolumn of the
matrix of the exhaustive combination of n-Tuples of the
set {�1, 1},that is the sequences of n length (1, 1, 1, ...)
representing all combinations of 1 and �1.
for N=3,

T =

0

B

B

B

B

B

B

B

B

B

B

@

1 1 1

1 1 �1

1 �1 1

1 �1 �1

�1 1 1

�1 1 �1

�1 �1 1

�1 �1 �1

1

C

C

C

C

C

C

C

C

C

C

A

and

M3

=

0

B

B

B

B

B

B

B

B

B

B

@

(1� a(1))(1� a(2))(1� a(3))
(1� a(1))(1� a(2))(a(3) + 1)

(1� a(1))(a(2) + 1)(1� a(3))
(1� a(1))(a(2) + 1)(a(3) + 1)

(a(1) + 1)(1� a(2))(1� a(3))
(a(1) + 1)(1� a(2))(a(3) + 1)

(a(1) + 1)(a(2) + 1)(1� a(3))
(a(1) + 1)(a(2) + 1)(a(3) + 1)

1

C

C

C

C

C

C

C

C

C

C

A

So M3

1

= {(1� a(1))(1� a(2))(1� a(3))}, etc.

!6 !4 !2 2 4 6

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8.1: Thicker tails (higher peaks) for higher values of
N ; here N = 0, 5, 10, 25, 50, all values of a= 1

10

Note that the various error rates a( i) are not similar
to sampling errors, but rather projection of error rates
into the future. They are, to repeat, epistemic.

The Final Mixture Distribution

The mixture weighted average distribution (recall that
� is the ordinary Gaussian PDF with mean µ, std � for

the random variable x).

f(x|µ,�,M,N) = 2

�N
2

N

X

i=1

�
�

µ,�MN
i , x

�

It could be approximated by a lognormal distribution for
� and the corresponding V as its own variance. But it
is precisely the V that interest us, and V depends on
how higher order errors behave.
Next let us consider the different regimes for higher or-
der errors.

Regime 1 (Explosive): Case of a
Constant parameter a

Special case of constant a: Assume that
a(1)=a(2)=...a(N)=a, i.e. the case of flat proportional
error rate a. The Matrix M collapses into a con-
ventional binomial tree for the dispersion at the level
N.

f(x|µ,�,M,N) =

2

�N
N
X

j=0

✓

N
j

◆

�
�

µ,�(a+ 1)

j
(1� a)N�j , x

�

(8.4)

Because of the linearity of the sums, when a is constant,
we can use the binomial distribution as weights for the
moments (note again the artificial effect of constraining
the first moment µ in the analysis to a set, certain, and
known a priori).

0

B

B

B

B

B

@

Moment
1 µ

2 �2

�

a2 + 1

�N
+ µ2

3 3µ�2

�

a2 + 1

�N
+ µ3

4 6µ2�2

�

a2 + 1

�N
+ µ4

+ 3

�

a4 + 6a2 + 1

�N
�4

1

C

C

C

C

C

A

For clarity, we simplify the table of moments, with µ=0
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

Moment
1 0

2

�

a2 + 1

�N
�2

3 0

4 3

�

a4 + 6a2 + 1

�N
�4

5 0

6 15

�

a6 + 15a4 + 15a2 + 1

�N
�6

7 0

8 105

�

a8 + 28a6 + 70a4 + 28a2 + 1

�N
�8

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Note again the oddity that in spite of the explosive na-
ture of higher moments, the expectation of the absolute
value of x is both independent of a and N, since the
perturbations of � do not affect the first absolute mo-
ment =

q

2

⇡� (that is, the initial assumed �). The
situation would be different under addition of x.
Every recursion multiplies the variance of the process
by (1 + a2 ). The process is similar to a stochastic
volatility model, with the standard deviation (not the
variance) following a lognormal distribution, the volatil-
ity of which grows with M, hence will reach infinite vari-
ance at the limit.
Consequences
For a constant a > 0, and in the more general case
with variable a where a(n) � a(n-1), the moments ex-
plode.
A- Even the smallest value of a >0, since

�

1 + a2
�N is

unbounded, leads to the second moment going to infin-
ity (though not the first) when N! 1. So something
as small as a .001% error rate will still lead to explosion
of moments and invalidation of the use of the class of
L

2 distributions.
B- In these conditions, we need to use power laws for
epistemic reasons, or, at least, distributions outside the
L

2 norm, regardless of observations of past data.
Note that we need an a priori reason (in the philosoph-
ical sense) to cutoff the N somewhere, hence bound the
expansion of the second moment.
Convergence to Properties Similar to Power
Laws
We can see on the example next Log-Log plot (Fig-
ure 1) how, at higher orders of stochastic volatility,
with equally proportional stochastic coefficient, (where
a(1)=a(2)=...=a(N)= 1

10

) how the density approaches
that of a power law (just like the Lognormal distribution
at higher variance), as shown in flatter density on the
LogLog plot. The probabilities keep rising in the tails
as we add layers of uncertainty until they seem to reach

the boundary of the power law, while ironically the first
moment remains invariant.

10.05.02.0 20.03.0 30.01.5 15.07.0
Log x

10!13

10!10

10!7

10!4

0.1

Log Pr!x"

a"
1

10
, N"0,5,10,25,50

Figure 8.2: LogLog Plot of the probability of exceeding x
showing power law-style flattening as N rises. Here all val-
ues of a= 1/10
The same effect takes place as a increases towards 1,
as at the limit the tail exponent P>x approaches 1 but
remains >1.

8.1.3 Effect on Small Probabilities

Next we measure the effect on the thickness of the
tails. The obvious effect is the rise of small probabili-
ties.
Take the exceedant probability,that is, the probability of
exceeding K, given N, for parameter a constant:

P > K|N =

N
X

j=0

2

�N�1
✓

N
j

◆

erfc
✓

K
p

2�(a+ 1)

j
(1� a)N�j

◆

(8.5)

where erfc(.) is the complementary of the error func-
tion, 1-erf(.), erf(z) = 2p

⇡

R z

0

e�t
2

dt

Convexity effect

The next Table shows the ratio of exceedant probability
under different values of N divided by the probability in
the case of a standard Gaussian.

Table 8.2: Case of a =

1
10
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N P>3,N
P>3,N=0

P>5,N
P>5,N=0

P>10,N
P>10,N=0

5 1.01724 1.155 7
10 1.0345 1.326 45
15 1.05178 1.514 221
20 1.06908 1.720 922
25 1.0864 1.943 3347

Table 8.3: Case of a =

1
100

N P>3,N
P>3,N=0

P>5,N
P>5,N=0

P>10,N
P>10,N=0

5 2.74 146 1.09⇥ 10

12

10 4.43 805 8.99⇥ 10

15

15 5.98 1980 2.21⇥ 10

17

20 7.38 3529 1.20⇥ 10

18

25 8.64 5321 3.62⇥ 10

18

8.2 Regime 2: Cases of decay-
ing parameters a( n)

As we said, we may have (actually we need to have) a
priori reasons to decrease the parameter a or stop N
somewhere. When the higher order of a(i) decline, then
the moments tend to be capped (the inherited tails will
come from the lognormality of �).

8.2.1 Regime 2-a;“bleed” of higher or-
der error

Take a “bleed” of higher order errors at the rate �, 0
� < 1 , such as a(N) = � a(N-1), hence a(N) =�N

a(1), with a(1) the conventional intensity of stochastic
standard deviation. Assume µ=0.
With N=2 , the second moment becomes:

M
2

(2) =

�

a(1)2 + 1

�

�2

�

a(1)2�2

+ 1

�

With N=3,

M
2

(3) = �2

�

1 + a(1)2
� �

1 + �2a(1)2
� �

1 + �4a(1)2
�

finally, for the general N:

M
3

(N) =

�

a(1)2 + 1

�

�2

N�1
Y

i=1

�

a(1)2�2i
+ 1

�

(8.6)

We can reexpress 8.6 using the Q-Pochhammer symbol
(a; q)N =

QN�1
i=1

�

1� aqi
�

M
2

(N) = �2

�

�a(1)2;�2

�

N

Which allows us to get to the limit

lim

N!1
M

2

(N) = �2

�

�2

;�2

�

2

�

a(1)2;�2

�

1

(�2

� 1)

2

(�2

+ 1)

As to the fourth moment:
By recursion:

M
4

(N) = 3�4

N�1
Y

i=0

�

6a(1)2�2i
+ a(1)4�4i

+ 1

�

M
4

(N) = 3�4

⇣⇣

2

p

2� 3

⌘

a(1)2;�2

⌘

N
⇣

�

⇣

3 + 2

p

2

⌘

a(1)2;�2

⌘

N (8.7)

lim

N!1
M

4

(N) = 3�4

⇣⇣

2

p

2� 3

⌘

a(1)2;�2

⌘

1
⇣

�

⇣

3 + 2

p

2

⌘

a(1)2;�2

⌘

1 (8.8)

So the limiting second moment for �=.9 and a(1)=.2
is just 1.28 �2, a significant but relatively benign con-
vexity bias. The limiting fourth moment is just 9.88�4,
more than 3 times the Gaussian’s (3 �4), but still finite
fourth moment. For small values of a and values of �
close to 1, the fourth moment collapses to that of a
Gaussian.

8.2.2 Regime 2-b; Second Method,
a Non Multiplicative Error
Rate

For N recursions,

�(1± (a(1)(1± (a(2)(1± a(3)( ...)))

P (x, µ,�, N) =

1

L

L
X

i=1

f
�

x, µ,�
�

1 +

�

TN .AN
�

i

�

�

MN .T+ 1

�

i¨ is the ith component of the (N) dot
product of T^N the matrix of Tuples in (xx) , L the
length of the matrix, and A is the set of parame-
ters

AN
=

�

aj
 

j=1,...N

So for instance, for N=3,T= {1, a, a2,a3}
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A3 T3
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B
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B

B

B

B

B

B

B
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a3 + a2 + a
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The moments are as follows:

M
1

(N) = µ

M
2

(N) = µ2

+ 2�

M
4

(N) = µ4

+ 12µ2� + 12�2

N
X

i=0

a2i

At the limit:

lim

N!1
M

4

(N) =

12�2

1� a2
+ µ4

+ 12µ2�

which is very mild.

8.3 Conclusion

Something Boring & something about epistemic opac-
ity.

This part

will be

expanded



9 On the Difficulty of Risk Parametrization With Fat
Tails

This chapter presents case studies around the point
that, simply, some models depend quite a bit on small
variations in parameters. The effect on the Gaussian
is easy to gauge, and expected. But many believe in
power laws as panacea. Even if I believed the r.v. was
power law distributed, I still would not be able to make
a statement on tail risks. Sorry, but that’s life.
This chapter is illustrative; it will initially focus
on nonmathematical limits to producing estimates of
MX

T (A, f) when A is limited to the tail. We will see
how things get worse when one is sampling and fore-
casting the maximum of a random variable.

9.1 Some Bad News Concerning
power laws

We saw the shortcomings of parametric and nonpara-
metric methods so far. What are left are power laws;
they are a nice way to look at the world, but we can
never really get to know the exponent ↵, for a spate of
reasons we will see later (the concavity of the exponent
to parameter uncertainty). Suffice for now to say that
the same analysis on exponents yields a huge in-sample
variance and that tail events are very sensitive to small
changes in the exponent.
For instance, for a broad set of stocks over subsamples,
using a standard estimation method (the Hill estimator),
we get subsamples of securities. Simply, the variations
are too large for a reliable computation of probabilities,
which can vary by > 2 orders of magnitude. And the
effect on the mean of these probabilities is large since
they are way out in the tails.

1.5 2.0 2.5 3.0

Α

50

100

150

200

250

300

350

1!Pr

Table 9.1: The effect of small changes in tail exponent on a
probability of exceeding a certain point. Here Pareto(L,↵),
probability of exceeding 7 L ranges from 1 in 10 to 1 in 350.
For further in the tails the effect is more severe.
The way to see the response to small changes in
tail exponent with probability: considering P>K ⇠

K�↵, the sensitivity to the tail exponent @P
>K

@↵ =
�K�↵ log(K).
Now the point that probabilities are sensitive to assump-
tions brings us back to the Black Swan problem. One
might wonder, the change in probability might be large

99
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in percentage, but who cares, they may remain small.
Perhaps, but in fat tailed domains, the event multiplying
the probabilities is large. In life, it is not the probability
that matters, but what one does with it, such as the
expectation or other moments, and the contribution of
the small probability to the total moments is large in
power law domains.
For all powerlaws, when K is large, with
↵ > 1, the unconditional shortfall S

+

=
R1
K

x �(x)dx

and S�
R �K
�1 x �(x)dx approximate to ↵

↵�1K
�↵+1

and - ↵
↵�1K

�↵+1, which are extremely sensitive to
↵ particularly at higher levels of K, @S

+

@↵ =
�

K1�↵

((↵�1)↵ log(K)+1)

(↵�1)2 .
There is a deeper problem related to the effect of model
error on the estimation of ↵, which compounds the
problem, as ↵ tends to be underestimated by Hill es-
timators and other methods, but let us leave it for
now.

9.2 Extreme Value Theory:
Fuhgetaboudit

We saw earlier how difficult it is to compute risks using
power laws, owing to excessive model sensitivity. Let
us apply this to the so-called Extreme Value Theory,
EVT.
Extreme Value Theory has been considered a panacea
for dealing with extreme events by some “risk modelers”
. On paper it looks great. But only on paper. The
problem is the calibration and parameter uncertainty –
in the real world we don’t know the parameters. The
ranges in the probabilities generated we get are mon-
strous.
We start with a short presentation of the idea, followed
by an exposition of the difficulty.

9.2.1 What is Extreme Value Theory?
A Simplified Exposition

Let us proceed with simple examples.
Case 1, Thin Tailed Distribution
The Extremum of a Gaussian variableThe Extremum of a Gaussian variableThe Extremum of a Gaussian variable: Say we gener-
ate n Gaussian variables (Xi)

n
i=1

with mean 0 and uni-
tary standard deviation, and take the highest value we
find. We take the upper bound Mj for the n-size sample
run j
Mj = Max (Xi,j)

n
i=1

Assume we do so p times, to get p samples of maxima
for the sequence M
M =

�

Max {Xi,j}
n
i=1

 p

j=1

The next figure will plot a histogram of the result of
both the simulation and .

3.5 4.0 4.5 5.0 5.5

0.5

1.0

1.5

Figure 0.2. Taking p samples of Gaussian maxima; here
N = 30K, M = 10K. We get the Mean of the max-
ima = 4.11159 Standard Deviation= 0.286938; Median
= 4.07344
Let us now fit to the sample from the simulation to g,
the density of an Extreme Value Distribution for x (or
the Gumbel for the negative variable �x), with location
and scale parameters ↵ and �, respectively: g(x;↵,�)

= e
↵�x

�

�e

↵�x

�

�

3.5 4.0 4.5 5.0 5.5

0.5

1.0

1.5

Figure 0.3. ::: Fitting an extreme value distribu-
tion (Gumbel for the maxima) ↵= 3.97904, �=
0.235239

9.2.2 A Note. How does the Extreme
Value Distribution emerge?

Consider that the probability of exceeding the max-
imum corresponds to the rank statistics, that is
the probability of all variables being below the ob-
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served sample. P (X
1

< x,X
2

< x, ..., Xn < x)= 1 �

?

n
\

i=1

P (Xi)= F (x)n, where F is the cumulative Gaus-
sian. Taking the first derivative of the cumulative dis-
tribution to get the density of the distribution of the
maximum,

pn(x) ⌘ @x (F (x)n) = �

2

1

2

�nne�
x

2

2

⇣
erf

⇣
xp
2

⌘
+1

⌘
n�1

p
⇡

Now we have norming constants anand bn such
that

G(x) ⌘ P

✓

M(n)� an
bn

> x

◆

.
But there is a basin of attraction condition for that. We
need to find an x

0

< 1 beyond which at the limit of n
! 1 , x

0

= sup{x :F (x) < 1}

Derivations

(1� P (X > a(n)x+ b(n)))N = G(x)

exp(�NP (X > ax+ b)) = G(x)

After some derivations[see below], g(x) = e
↵�x

�

�e

↵�x

�

� ,
where
↵ = �

p

2erfc�1
�

2�

2

n

�

, where erfc�1is the inverse
error function, and
� =

p

2

⇣

erfc�1
�

2�

2

n

�

� erfc�1
�

2�

2

en

�

⌘

For n = 30K, {↵,�} = {3.98788, 0.231245}

The approximations become
p

2 log(n)� log(log(n))+log(4⇡)

2

p

2 log(n)

and (2 log(n))�
1

2 respectively + o
⇣

(Logn)� 1

2

⌘

9.2.3 Extreme Values for Fat-Tailed
Distribution

Now let us generate, exactly as before, but change the
distribution, with N random power law distributed vari-
ables Xi, with tail exponent ↵=3, generated from a Stu-
dent T Distribution with 3 degrees of freedom. Again,
we take the upper bound. This time it is not the Gum-
bel, but the Fréchet distribution that would fit the re-
sult, using �critically� the same ↵, Fréchet �(x; ↵,
�)=

↵e�(
x

�

)

�↵

⇣

x
�

⌘�↵�1

�
,

for x>0

100 200 300 400 500 600

0.01

0.02

0.03

0.04

Figure 0.4. Fitting a Fréchet distribution to the Stu-
dent T generated with ↵=3 degrees of freedom. The
Frechet distribution ↵=3, �=32 fits up to higher val-
ues of E. But next two graphs shows the fit more
closely.
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Figure 0.5. Seen more closely

9.2.4 How Extreme Value Has a Se-
vere Inverse Problem In the Real
World

In the previous case we start with the distribution, with
the assumed parameters, then get the corresponding
values, as these “risk modelers” do. In the real world,
we don’t quite know the calibration, the ↵ of the distri-
bution, assuming (generously) that we know the distri-
bution. So here we go with the inverse problem. The
next table illustrates the different calibrations of PK the
probabilities that the maximum exceeds a certain value
K (as a multiple of � under different values of K and
↵.
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↵ 1

P
>3�

1

P
>10�

1

P
>20�

1. 3.52773 10.5083 20.5042

1.25 4.46931 18.2875 42.7968

1.5 5.71218 32.1254 89.9437

1.75 7.3507 56.7356 189.649

2. 9.50926 100.501 400.5

2.25 12.3517 178.328 846.397

2.5 16.0938 316.728 1789.35

2.75 21.0196 562.841 3783.47

3. 27.5031 1000.5 8000.5

3.25 36.0363 1778.78 16918.4

3.5 47.2672 3162.78 35777.6

3.75 62.048 5623.91 75659.8

4. 81.501 10000.5 160000.

4.25 107.103 17783.3 338359.

4.5 140.797 31623.3 715542.

4.75 185.141 56234.6 1.51319⇥ 10

6

5. 243.5 100001. 3.2⇥ 10

6

Consider that the error in estimating the ↵ of a dis-
tribution is quite large, often > 1

2

, and typically over-
stimated. So we can see that we get the probabilities
mixed up > an order of magnitude.In other words the
imprecision in the computation of the ↵ compounds
in the evaluation of the probabilities of extreme val-
ues.

9.3 Using Power Laws With-
out Being Harmed by Mis-
takes

We can use power laws in the “near tails” for informa-
tion, not risk management. That is, not pushing out-

side the tails, staying within a part of the distribution
for which errors are not compounded.
I was privileged to get access to a database with cumu-
lative sales for editions in print that had at least one
unit sold that particular week (that is, conditional of
the specific edition being still in print). I fit a pow-
erlaw with tail exponent ↵ ' 1.3 for the upper 10% of
sales (graph), with N=30K. Using the Zipf variation for
ranks of powerlaws, with rx and ry the ranks of book
x and y, respectively, Sx and Sy the corresponding
sales

Sx

Sy
=

✓

rx
ry

◆

� 1

↵

So for example if the rank of x is 100 and y is 1000, x
sells

�

100

1000

�� 1

1.3 = 5.87 times what y sells.
Note this is only robust in deriving the sales of the lower
ranking edition (ry> rx) because of inferential problems
in the presence of fat-tails.

Α=1.3

Near tail

100 10
4

10
6

X

10
"4

0.001

0.01

0.1

1

P#X

Figure 9.1: Log-Log Plot of the probability of exceeding X
(book sales)
This works best for the top 10,000 books, but not quite
the top 20 (because the tail is vastly more unstable).
Further, the effective ↵ for large deviations is lower than
1.3. But this method is robust as applied to rank within
the “near tail”.



10 Brownian Motion in the Real World (Path
Dependence and Fat Tails)

Most of the work concerning martingales and Brownian motion can be idealized to the point of lacking any match
to reality, in spite of the sophisticated, rather complicated discussions. This section discusses the (consequential)
differences.

10.1 Path Dependence and His-
tory as Revelation of An-
tifragility

Let us examine the non-Markov property of antifragility.
Something that incurred hard times but did not fall
apart is giving us information about its solidity, com-
pared to something that has not been subjected to such
stressors.
(The Markov Property for, say, a Brownian Motion
XN |{X

1

,X
2

,...X
N�1

}= XN |{X
N�1

} , that is the last re-
alization is the only one that matters. Now if we take
fat tailed models, such as stochastic volatility processes,
the properties of the system are Markov, but the history
of the past realizations of the process matter in deter-
mining the present variance. )
Take M realizations of a Brownian Bridge process
pinned at St

0

= 100 and ST= 120, sampled with N peri-
ods separated by �t, with the sequence S, a collection
of Brownian-looking paths with single realizations in-
dexed by j ,

Sj
i =

✓

⇣

Sj
i�t+t

0

⌘N

i=0

◆M

j=1

Take m⇤ = minj mini§
j
i and

n

j : minSj
i = m⇤

o

Take 1) the sample path with the most direct route
(Path 1) defined as its lowest minimum , and 2) the
one with the lowest minimum m⇤ (Path 2). The state
of the system at period T depends heavily on whether
the process ST exceeds its minimum (Path 2), that is

whether arrived there thanks to a steady decline, or rose
first, then declined.
If the properties of the process depend on (ST - m*),
then there is path dependence. By properties of the pro-
cess we mean the variance, projected variance in, say,
stochastic volatility models, or similar matters.

Path 1 , Smin
j

ST
j

0.0 0.2 0.4 0.6 0.8 1.0
Time

80

100

120

140

S

Figure 10.1: Brownian Bridge Pinned at 100 and 120, with
multiple realizations {Sj

0,S
j

1...,S
j

T

}, each indexed by j ; the
idea is to find the path j that satisfies the maximum distance
D

j

=
��
S

T

� S

j

min

��

10.2 Brownian Motion in the
Real World

We mentioned in the discussion of the Casanova prob-
lem that stochastic calculus requires a certain class
of distributions, such as the Gaussian. It is not as we
expect because of the convenience of the smoothness
in squares (finite �x2), rather because the distribution
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conserves across time scales. By central limit, a Gaus-
sian remains a Gaussian under summation, that is sam-
pling at longer time scales. But it also remains a Gaus-
sian at shorter time scales. The foundation is infinite
dividability.
The problems are as follows:
The results in the literature are subjected to the con-
staints that the Martingale M is member of the sub-
set (H2) of square integrable martingales, suptTE[M2]
< 1

We know that the restriction does not work for lot or
time series.
We know that, with ✓ an adapted process, without
R T

0

✓2s ds < 1 we can’t get most of the results of Ito’s
lemma.
Even with

R T

o
dW 2< 1, The situation is far from

solved because of powerful, very powerful presamp-
totics.
Hint: Smoothness comes from

R T

o
dW 2 becoming

linear to T at the continuous limit –Simply dt is too
small in front of dW
Take the normalized (i.e. sum=1) cumulative variance
(see Bouchaud & Potters),

P
n

i=1

(W [i�t]�W [(i�1)�t])2
P

T/�t
i=1

(W [i�t]�W [(i�1)�t])2
.

Let us play with finite variance situations.
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Figure 10.2: Ito’s lemma in action. Three classes of pro-
cesses with tail exonents: ↵ = 1 (Gaussian), ↵ = 1.16 (the
80/20) and, ↵ = 3. Even finite variance does not lead to
the smoothing of discontinuities except in the infinitesimal
limit, another way to see failed asymptotes.

10.3 tochastic Processes and
Nonanticipating Strate-
gies

There is a difference between the Stratonovich and Ito’s
integration of a functional of a stochastic process. But
there is another step missing in Ito: the gap between
information and adjustment.
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10.4 0.4 Finite Variance not
Necessary for Anything
Ecological (incl. quant fi-
nance)
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11 The Fourth Quadrant Mitigation (or “Solution”)

Let us return to M [A, f(x)] of chapter 1. A quite sig-
nificant result is that M[A,xn] may not converge, in the
case of, say power laws with exponent ↵ < n, but
M [A, xm

] where m < n, would converge. Well, where
the integral

R1
�1 f(x)p(x) dx does not exist, by “clip-

ping tails”, we can make the payoff integrable. There
are two routes;
1) Limiting f (turning an open payoff to a binary):
when f(x) is a constant as in a binary

R1
�1Kp(x)dx

will necessarily converge if p is a probability distribu-
tion.
2) Clipping tails: (and this is the business we will deal
with in Antifragile, Monograph 2), where the payoff is
bounded, A = [L,H], or the integral

RH

L
f(x)p(x)dx

will necessarily converge.

11.1 Two types of Decisions

M0 depends on the 0

th moment, that is, “Binary”, or
simple, i.e., as we saw, you just care if something is true
or false. Very true or very false does not matter. Some-
one is either pregnant or not pregnant. A statement is
“true” or “false” with some confidence interval. (I call
these M0 as, more technically, they depend on the ze-
roth moment, namely just on probability of events, and
not their magnitude � � �you just care about “raw”
probability). A biological experiment in the laboratory

or a bet with a friend about the outcome of a soccer
game belong to this category.
M1+Complex, depend on the 1

st or higher moments.
You do not just care of the frequency� � �but of the
impact as well, or, even more complex, some function
of the impact. So there is another layer of uncertainty
of impact. (I call these M1+, as they depend on higher
moments of the distribution). When you invest you do
not care how many times you make or lose, you care
about the expectation: how many times you make or
lose times the amount made or lost.
Two types of probability structures:
There are two classes of probability domains���very
distinct qualitatively and quantitatively. The first, thin-
tailed: Mediocristan", the second, thick tailed Extrem-
istan:

Table 11.1: The Four Quadrants

Simple payoffs Complex payoffs

Distribution 1
(“thin tailed”)

First Quadrant
Extremely
Safe

Second Quad-
rant:
Safe

Distribution 2
(no or unknown
characteristic
scale)

Third Quad-
rant: Safe

Fourth Quad-
rant:
Dangers

Conclusion

The 4th Quadrant is mitigated by changes in exposures.
And exposures in the 4th quadrant can be to the nega-

tive or the positive, depending on if the domain subset
A exposed on the left on on the right.
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Table 11.2: Tableau of Decisions

Mo
“True/False”

f(x)=0

M1
Expectations
LINEAR PAYOFF
f(x)=1

M2+

NONLINEAR PAY-
OFF
f(x) nonlinear(= x2,
x3, etc.)

Medicine (health
not epidemics)

Finance : nonlever-
aged Investment Derivative payoffs

Psychology experi-
ments

Insurance, mea-
sures of expected
shortfall

Dynamically hedged
portfolios

Bets (prediction
markets)

General risk man-
agement

Leveraged portfolios
(around the loss
point)

Binary/Digital
derivatives Climate

Cubic payoffs (strips
of out of the money
options)

Life/Death Economics (Policy) Errors in analyses of
volatility

Security: Terror-
ism, Natural catas-
trophes

Calibration of non-
linear models

Epidemics
Expectation
weighted by nonlin-
ear utility

Casinos
Kurtosis-based po-
sitioning (“volatility
trading”)



Part II

Fragility and Nonlinear Exposure to

Random Variables
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12 Exposures and Nonlinear Transformations of
Random Variables

12.1 The Conflation Problem:
Exposures to x Confused
With Knowledge About x

12.1.1 Exposure, not knowledge

.Take x a random or nonrandom variable, and f(x)
the exposure, payoff, the effect of x on you, the end
bottom line. (To be technical, x is higher dimensions,
in RN but less assume for the sake of the examples
in the introduction that it is a simple one-dimensional
variable).
The disconnect. Practitioner and risk takers ob-
serve the following disconnect: people (nonpractition-
ers) talking x (with the implication that we practitioners
should care about x in running our affairs) while prac-
titioners think about f(x), nothing but f(x). And the
straight confusion since Aristotle between x and f(x) has
been chronic. Sometimes people mention f(x) as util-
ity but miss the full payoff. And the confusion is at two
level: one, simple confusion; second, in the decision-
science literature, seeing the difference and not realizing
that action on f(x) is easier than action on x.

Examples

The variable x is unemployment in Senegal, F
1

(x) is
the effect on the bottom line of the IMF, and F

2

(x)
is the effect on your grandmother (which I assume is
minimal).
x can be a stock price, but you own an option on it,
so f(x) is your exposure an option value for x, or, even
more complicated the utility of the exposure to the op-
tion value.

x can be changes in wealth, f(x) the convex-concave
value function of Kahneman-Tversky, how these “affect”
you. One can see that f(x) is vastly more stable or ro-
bust than x (it has thinner tails).
A convex and linear function of a variable x. Confusing
f(x) (on the vertical) and x (the horizontal) is more and
more significant when f(x) is nonlinear. The more con-
vex f(x), the more the statistical and other properties
of f(x) will be divorced from those of x. For instance,
the mean of f(x) will be different from f(Mean of x),
by Jensen’s ineqality. But beyond Jensen’s inequality,
the difference in risks between the two will be more and
more considerable. When it comes to probability, the
more nonlinear f, the less the probabilities of x matter
compared to the nonlinearity of f. Moral of the story:
focus on f, which we can alter, rather than the mea-
surement of the elusive properties of x.

Probability Distribution of x Probability Distribution of f!x"

There are infinite numbers of functions F depending
on a unique variable x.
All utilities need to be embedded in F.

12.1.2 Limitations of knowledge

. What is crucial, our limitations of knowledge apply
to x not necessarily to f(x). We have no control over
x, some control over F(x). In some cases a very, very
large control over f(x).
This seems naive, but people do, as something is lost in
the translation.
The danger with the treatment of the Black Swan prob-
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lem is as follows: people focus on x (“predicting x”).
My point is that, although we do not understand x,
we can deal with it by working on F which we can un-
derstand, while others work on predicting x which we
can’t because small probabilities are incomputable, par-
ticularly in “fat tailed” domains. f(x) is how the end
result affects you.
The probability distribution of f(x) is markedly different
from that of x, particularly when f(x) is nonlinear. We
need a nonlinear transformation of the distribution of x
to get f(x). We had to wait until 1964 to get a paper
on “convex transformations of random variables”, Van
Zwet (1964).

12.1.3 Bad news

F is almost always nonlinear, often “S curved”, that is
convex-concave (for an increasing function).

12.1.4 The central point about what

to understand

When f(x) is convex, say as in trial and error, or with
an option, we do not need to understand x as much
as our exposure to H. Simply the statistical properties
of x are swamped by those of H. That’s the point of
Antifragility in which exposure is more important than
the naive notion of “knowledge”, that is, understanding
x.

12.1.5 Fragility and Antifragility

When f(x) is concave (fragile), errors about x can trans-
late into extreme negative values for F. When f(x) is
convex, one is immune from negative variations.
The more nonlinear F the less the probabilities of x mat-
ter in the probability distribution of the final package
F.
Most people confuse the probabilites of x with those of
F. I am serious: the entire literature reposes largely on
this mistake.
So, for now ignore discussions of x that do not have F.
And, for Baal’s sake, focus on F, not x.

12.2 Transformations of Proba-
bility Distributions

Say x follows a distribution p(x) and z = f(x) follows a
distribution g(z). Assume g(z) continuous, increasing,
and differentiable for now.
The density p at point r is defined by use of the inte-
gral

D(r) ⌘

Z r

�1
p(x)dx

hence

Z r

�1
p(x) dx =

Z f(r)

�1
g(z) dz

In differential form

g(z)dz = p(x)dx

since x = f (�1)
(z), one obtains

g(z)dz = p
⇣

f (�1)
(z)

⌘

df (�1)
(z)

Now, the derivative of an inverse function

f (�1)
(z) =

1

f 0 (f�1(z))
,

which provides the useful transformation heuris-
tic:

g(z) =
p
�

f (�1)
(z)

�

f 0(u)|u =

�

f (�1)
(z)

� (12.1)

In the event that g(z) is monotonic decreasing,
then

g(z) =
p
�

f (�1)
(z)

�

|f 0(u)|u =

�

f (�1)
(z)

�

�

�

Where f is convex (and continuous), 1

2

(f(x � �x) +
f(�x+ x)) � f(x), concave if 1

2

(f(x��x) + f(�x+
x))  f(x). Let us simplify with sole condition, assum-
ing f(.) twice differentiable, @2f

@x2

� 0 for all values of x
in the convex case and <0 in the concave one.

12.2.1 Some Examples.
Squaring x: p(x) is a Gaussian(with mean 0, standard
deviation 1) , f(x)= x2
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g(x) =
e�

x

2

2

p

2⇡
p

x
, x

> 0

which corresponds to the Chi-square distribution with 1
degrees of freedom.
Exponentiating x :p(x) is a Gaussian(with mean µ,
standard deviation �)

g(x) =
e�

(log(x)�µ)

2

2�

2

p

2⇡�x

which is the lognormal distribution.

12.3 Application 1: Happiness
(f(x))does not have the
same statistical properties
as wealth (x)

There is a conflation of fat-tailedness of Wealth and
Utility

12.3.1 Case 1: The Kahneman Tver-
sky Prospect theory, which is
convex-concave

v(x) =

8

>

>

<

>

>

:

xa x � 0

�� (�xa
) x < 0

with a & � calibrated a = 0.88 and � = 2.25
For x (the changes in wealth) following a T distribution
with tail exponent ↵,

f(x) =

⇣

↵
↵+x2

⌘

↵+1

2

p

↵B
�

↵
2

, 1

2

�

Where B is the Euler Beta function, B(a, b) =

�(a)�(b)/�(a+b) =
R

1

0

ta�1(1�t)b�1dt; we get (skip-
ping the details of z= v(u) and f(u) du = z(x) dx), the
distribution z(x) of the utility of happiness v(x)

z(x|↵, a,�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

x
1�a

a

⇣
↵

↵+x

2/a
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2

a
p
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(

↵

2

, 1
2

)

x � 0

(

� x
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)
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(
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x < 0
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Figure 1: Simulation, first. The distribution of the
utility of changes of wealth, when the changes in wealth
follow a power law with tail exponent =2 (5 million
Monte Carlo simulations).

Distribution of V(x)

Distribution of x
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Figure 2: The graph in Figure 1 derived analyti-
cally
Fragility: as defined in the Taleb-Douady (2012) sense,
on which later, i.e. tail sensitivity below K, v(x) is less
“fragile” than x.
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Tail of x

Tail of v(x)
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Figure 3: Left tail.
v(x) has thinner tails than x , more robust.
ASYMPTOTIC TAIL More technically the asymptotic
tail for V(x) becomes ↵

a (i.e, for x and -x large, the ex-
ceedance probability for V, P>x ⇠ K x�

↵

a , with K a
constant, or

z(x) ⇠ Kx�
↵

a

�1

We can see that V(x) can easily have finite variance
when x has an infinite one. The dampening of the tail
has an increasingly consequential effect for lower values
of ↵.

Case 2: Compare to the Monotone Con-
cave of Classical Utility
Unlike the convex-concave shape in Kahneman Tver-
sky, classical utility is monotone concave. This leads to
plenty of absurdities, but the worst is the effect on the
distribution of utility.
Granted one (K-T) deals with changes in wealth, the
second is a function of wealth.
Take the standard concave utility function g(x)= 1-
e�ax. With a=1

!2 !1 1 2 3
x

!6

!5

!4

!3

!2

!1

1

g!x"

Plot of 1- e�ax
The distribution of v(x) will be
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With such a distribution of utility it would be absurd to
do anything.

The effect of convexity on the dis-
tribution of f(x)

Note the following property.
Distributions that are skewed have their mean depen-
dent on the variance (when it exists), or on the scale.
In other words, more uncertainty raises the expec-
tation.
Demonstration 1:TK

Outcome

Probability

Low Uncertainty

High Uncertainty

Example: the Lognormal Distribution has a term �2

2

in its mean, linear to variance.
Example: the Exponential Distribution

1� e�x� x � 0 has the mean a concave function
of the variance, that is, 1

� , the square root of its
variance.

Example: the Pareto Distribution
L↵x�1�↵↵ x � L , ↵ >2 has the mean

p

↵� 2

p

↵
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12.4 The Mistake of Using Reg-
ular Estimation Methods
When the Payoff is Con-
vex

A simple way to see the point: the Ilmanen study as-
sumes that one can derive strong conclusions from a
single historical path not taking into account sensitiv-
ity to counterfactuals and completeness of sampling. It
assumes that what one sees from a time series is the
entire story.

Where data tend to be missing

Outcomes

Probability

Figure 1: The Small Sample Effect and Naive Em-
piricism: When one looks at historical returns that are
skewed to the left, most missing observations are in the
left tails, causing an overestimation of the mean. The
more skewed the payoff, and the thicker the left tail, the
worst the gap between observed and true mean.
Now of concern for us is assessing the stub, or tail bias,
that is, the difference between M and M*, or the poten-
tial contribution of tail events not seen in the window
used for the analysis. When the payoff in the tails is
powerful from convex responses, the stub becomes ex-
tremely large. So the rest of this note will go beyond the
Ilmanen (2012) to explain the convexities of the payoffs
in the tails and generalize to classical mistakes of test-
ing strategies with explosive tail exposures on a finite
simple historical sample. It will be based on the idea of
metaprobability (or metamodel): by looking at effects
of errors in models and representations. All one needs
is an argument for a very small probability of a large
payoff in the tail (devastating for the option seller) to
reverse long shot arguments and make it uneconomic to
sell a tail option. All it takes is a small model error to

reverse the argument.

The Nonlineatities of Option Packages

There is a compounding effect of rarety of tail events
and highly convex payoff when they happen, a convexity
that is generally missed in the literature. To illustrate
the point, we construct a “return on theta” (or return
on time-decay) metric for a delta-neutral package of
an option, seen at t

0

o given a deviation of magnitude
N�K .

⇧(N,K) ⌘

1

✓S
0

,t
0

, �

✓
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,K, T � t
0

� �,�K)

��S
0
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0
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(12.2)

where 0 (S
0

,K, T � t
0

� �,�K)is the European option
price valued at time t

0

off an initial asset value S
0

,
with a strike price K, a final expiration at time T, and
priced using an “implied” standard deviation �K . The
payoff of ⇧ is the same whether O is a put or a call,
owing to the delta-neutrality by hegding using a hedge
ratio �S

0

,t
0

(thanks to put-call parity, �S
0

,t
0

is nega-
tive if O is a call and positive otherwise). ✓S

0

,t
0

is the
discrete change in value of the option over a time incre-
ment � (changes of value for an option in the absence
of changes in any other variable). With the increment
� = 1/252, this would be a single business day. We
assumed interest rate are 0, with no loss of general-
ity (it would be equivalent of expressing the problem
under a risk-neutral measure). What 12.2 did is re-
express the Fokker-Plank-Kolmogorov differential equa-
tion (Black Scholes), in discrete terms, away from the
limit of � !0. In the standard Black-Scholes World, the
expectation of ⇧(N,K ) should be zero, as N follows a
Gaussian distribution with mean -1/00082 �2. But we
are not about the Black Scholes world and we need to
examine payoffs to potential distributions. The use of
�Kneutralizes the effect of “expensive” for the option as
we will be using a multiple of �K as N standard devi-
ations; if the option is priced at 15.87% volatility, then
one standard deviation would correspond to a move of
about 1%, Exp[ Sqrt[1/252]. 1587].
Clearly, for all K, ⇧[0,K]=-1 , ⇧[ Sqrt[2/⇡],K]= 0 close
to expiration (the break-even of the option without time
premium, or when T � t

0

= �, takes place one mean
deviation away), and ⇧[ 1,K]= 0.
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12.4.1 Convexity and Explosive Pay-
offs

Of concern to us is the explosive nonlinearity in the tails.
Let us examine the payoff of ⇧ across many values of
K= S

0

Exp[⇤ �K

p

�], in other words how many “sig-
mas” away from the money the strike is positioned. A
package about 20 � out of the money , that is, ⇤=20,
the crash of 1987 would have returned 229,000 days of
decay, compensating for > 900 years of wasting pre-
mium waiting for the result. An equivalent reasoning
could be made for subprime loans. From this we can
assert that we need a minimum of 900 years of data to
start pronouncing these options 20 standard deviations
out-of-the money “expensive”, in order to match the
frequency that would deliver a payoff, and, more than
2000 years of data to make conservative claims. Clearly
as we can see with ⇤=0, the payoff is so linear that
there is no hidden tail effect.

! " 20

! " 10

! " 0 N

#!N"

5 10 15 20
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Figure 2: Returns for package ⇧(N,K= S
0

Exp[⇤
�K ] ) at values of ⇤= 0,10,20 and N, the conditional
“sigma” deviations.
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100 000

200 000

300 000
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Figure 3: The extreme convexity of an extremely out
of the money option, with ⇤=20
Visibly the convexity is compounded by the fat-
tailedness of the process: intuitively a convex transfor-

mation of a fat-tailed process, say a powerlaw, produces
a powerlaw of considerably fatter tails. The Variance
swap for instance results in 1

2

the tail exponent of the
distribution of the underlying security, so it would have
infinite variance with tail 3

2

off the “cubic” exonent dis-
cussed in the literature (Gabaix et al,2003; Stanley et
al, 2000) -and some out-of-the money options are more
convex than variance swaps, producing tail equivalent
of up to 1

5

over a broad range of fluctuations.
For specific options there may not be an exact convex
transformation. But we can get a Monte Carlo simula-
tion illustrating the shape of the distribution and visually
showing how sjewed it is.

Figure 4: In probability space. Histogram of the distri-
bution of the returns ⇤=10 using powerlaw returns for
underlying distribution with ↵ tail exponent =3.
Footnote 1: This convexity effect can be mitigated by
some dynamic hedges, assuming no gaps but, because
of “local time” for stochastic processes, in fact, some
smaller deviations can carry the cost of larger ones: for
a move of -10 sigmas followed by an upmove of 5 sig-
mas revision can end up costing a lot more than a mere
-5 sigmas. Tail events can come from a volatile sample
path snapping back and forth.

Fragility Heuristic and Nonlinear Exposure to Im-
plied Volatility

Most of the losses from option portfolios tend to take
place from the explosion of implied volatility, therefore
acting as if the market had already experienced a tail
event (say in 2008). The same result as Figure 3 can
be seen for changes in implied volatility: an explosion of
volatility by 5 ⇥ results in a 10 � option gaining 270 ⇥

(the VIx went up > 10 ⇥ during 2008). (In a well pub-
licized debacle, the speculator Niederhoffer went bust
because of explosive changes in implied volatility in his
option portfolio, not from market movement; further,
the options that bankrupted his fund ended up expiring
worthless weeks later).
The Taleb and Douady (2012), Taleb Canetti et al
(2012) fragility heuristic identifies convexity to signif-
icant parameters as a metric to assess fragility to model
error or representation: by theorem, model error maps
directly to nonlinearity of parameters. The heuristic cor-
responds to the perturbation of a parameter, say the
scale of a probability distribution and looks at the ef-
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fect of the expected shortfall; the same theorem asserts
that the asymmetry between gain and losses (convex-
ity) maps directly to the exposure to model error and to
fragility. The exercise allows us to re-express the idea
of convexity of payoff by ranking effects.

⇥2 ⇥3 ⇥4

ATM 2 3 4

⇤ = 5 5 10 16

⇤ = 10 27 79 143

⇤ = 20 7686 72741 208429

The Table presents differents results (in terms of multi-
ples of option premia over intrinsic value) by multiply-
ing implied volatility by 2, 3,4. An option 5 conditional
standard deviations out of the money gains 16 times its
value when implied volatility is multiplied by 4. Fur-
ther out of the money options gain exponentially. Note
the linearity of at-the-money options

Conclusion: The Asymmetry in Decision Making

To assert overpricing (or refute underpricing) of tail
events expressed by convex instruments requires an ex-
traordinary amount of “evidence”, a much longer time
series about the process and strong assumptions about
temporal homogeneity. Out of the money options are so

convex to events that a single crash (say every 50, 100,
200, even 900 years) could be sufficient to justify skep-
ticism about selling some of them (or avoiding to sell
them) –those whose convexity matches the frequency
of the rare event. The further out in the tails, the less
claims one can make about their “value”, state of being
“expensive’, etc. One can make claims on ”bounded"
variables perhaps, not for the tails.
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13 Generalized Dose-Response Curves and The Origin of
Thin-Tails

The literature of heavy tails starts with a random walk and finds mechanisms that lead to fat tails under aggregation. We
follow the inverse route and show how starting with fat tails we get to thin-tails from the probability distribution of the
response to a random variable. We introduce a general dose-response curve show how the left amd right-boundedness of
the reponse in natural things leads to thin-tails, even when the “underlying” variable of the exposure is fat-tailed.

The Origin of Thin Tails.

We have emprisoned the “statistical generator” of things
on our planet into the random walk theory: the sum of
i.i.d. variables eventually leads to a Gaussian, which is
an appealing theory. Or, actually, even worse: at the
origin lies a simpler Bernouilli binary generator with vari-
ations limited to the set {0,1}, normalized and scaled,
under summation. Bernouilli, De Moivre, Galton,
Bachelier: all used the mechanism, as illustrated by the
Quincunx in which the binomial leads to the Gaussian.
This has traditionally been the “generator” mechanism
behind everything, from martingales to simple conver-
gence theorems. Every standard textbook teaches the
“naturalness” of the thus-obtained Gaussian.
In that sense, powerlaws are pathologies. Traditionally,
researchers have tried to explain fat tailed distributions
using the canonical random walk generator, but twing-
ing it thanks to a series of mechanisms that start with an
aggregation of random variables that does not lead to
the central limit theorem, owing to lack of independence
and the magnification of moves through some mecha-
nism of contagion: preferential attachment, compara-
tive advantage, or, alternatively, rescaling, and similar
mechanisms.
But the random walk theory fails to accommodate some
obvious phenomena.
First, many things move by jumps and discontinuities
that cannot come from the random walk and the con-
ventional Brownian motion, a theory that proved to be
sticky (Mandelbrot, 1997).
Second, consider the distribution of the size of animals

in nature, considered within-species. The height of hu-
mans follows (almost) a Normal Distribution but it is
hard to find mechanism of random walk behind it (this
is an observation imparted to the author by Yaneer Bar
Yam).
Third, uncertainty and opacity lead to power laws, when
a statistical mechanism has an error rate which in turn
has an error rate, and thus, recursively (Taleb, 2011,
2013).
Our approach here is to assume that random vari-
ables, under absence of contraints, become power law-
distributed. This is the default in the absence of bound-
edness or compactness. Then, the response, that is, a
funtion of the random variable, considered in turn as an
“inherited” random variable, will have different proper-
ties. If the response is bounded, then the dampening of
the tails of the inherited distribution will lead it to bear
the properties of the Gaussian, or the class of distribu-
tions possessing finite moments of all orders.

The Dose Response

Let SN
(x): R! [kL, kR] be a continuous function pos-

sessing derivatives
�

SN
�

(n)
(x) of all orders, expressed

as an N -summed and scaled standard sigmoid func-
tions:

SN
(x) ⌘

N
X

i=1

ak
1 + exp (�bkx+ ck)

(13.1)
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where ak, bk, ck are norming constants 2 R, satisfy-
ing:
i) SN (-1) =kL
ii) SN (1) =kR
and (equivalently for the first and last of the following
conditions)
iii) @2SN

@x2

� 0 for x 2 (-1, k
1

) , @2SN

@x2

< 0 for x

2 (k
2

, k>2

), and @2SN

@x2

� 0 for x 2 (k>2

, 1), with
k
1

> k
2

� k
3

...� kN .
The shapes at different calibrations are shown in Fig-

ure 1, in which we combined different values of N=2
S2

(x, a
1

, a
2

, b
1

, b
2

, c
1

, c
2

) , and the standard sigmoid
S1

(x, a
1

, b
1

, c
1

), with a
1

=1, b
1

=1 and c
1

=0. As we
can see, unlike the common sigmoid, the asymptotic re-
sponse can be lower than the maximum, as our curves
are not monotonically increasing. The sigmoid shows
benefits increasing rapidly (the convex phase), then in-
creasing at a slower and slower rate until saturation.
Our more general case starts by increasing, but the
reponse can be actually negative beyond the satura-
tion phase, though in a convex manner. Harm slows
down and becomes “flat” when something is totally bro-
ken.

S2!x, 1, !2, 1, 2, 1, 15"
S2!x, 1, !2, 1, 2, 1, 25"
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1

2
, 2, 1, 1, 15$
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Figure 13.1: The Generalized Response Curve, S

2
(x, a1, a2, b1, b2, c1, c2) , S1

(x, a1, b1, c1) The convex part with positive first
detivative has been designated as "antifragile"

13.1 Properties of the Inher-
ited Probability Distribu-
tion

Now let x be a random variable with distributed
according to a general fat tailed distribution, with
power laws at large negative and positive values, ex-
pressed (for clarity, without loss of generality) as
a Student T Distribution with scale � and expo-
nent ↵, and support on the real line. Its domain

D

f= (1, 1), and density f�,↵(x):

xf�,↵ ⌘

✓

↵

↵+ x

2

�

2

◆

↵+1

2

p

↵�B
�

↵
2

, 1

2

� (13.2)

where B(a, b) = (a�)(b�)
�(a+b) =

R

1

0

dtta�1(1� t)b�1

. The simulation effect of the convex-concave transfor-
mations of the terminal probability distribution is shown
in Figure 2.
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Figure 13.2: Histograms for the different inherited probabil-
ity distributions (simulations ,N = 10

6)

And the Kurtosis of the inherited distributions drops
at higher � thanks to the boundedness of the payoff,
making the truncation to the left and the right visible.
Kurtosis for f.2,3 is infinite, but in-sample will be ex-
tremely high, but, of course, finite. So we use it as a
benchmark to see the drop from the calibration of the
response curves.

Distribution Kurtosis

f.2,3(x) 86.3988

S2

(1,�2, 1, 2, 1, 15) 8.77458

S2

(1,�1/2, 2, 1, 1, 15) 4.08643

S1

(1, 1, 0) 4.20523

Case of the standard sigmoid, i.e., N = 1

S(x) ⌘
a
1

1 + exp(�b
1

x+ c
1

)

(13.3)

g(x) is the inherited distribution, which can be shown
to have a scaled domain D

g= (kL, kR). It be-
comes

g(x) =

a1
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(13.4)
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Figure 13.3: The different inherited probability distributions.
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Figure 13.4: The Kurtosis of the standard drops along with
the scale � of the power law

Remark 1Remark 1Remark 1: The inherited distribution from S(x) will
have a compact support regardless of the probability
distribution of x.

13.2 Conclusion and Re-
marks

We showed the dose-response as the neglected origin
of the thin-tailedness of observed distributions in na-
ture. This approach to the dose-response curve is quite
general, and can be used outside biology (say in the
Kahneman-Tversky prospect theory, in which their ver-
sion of the utility concept with respect to changes in
wealth is concave on the left, hence bounded, and con-
vex on the right.



14 Why The World Will Progressively Look Wierder to
Us

The paradox is that increase in sample size magnifies the role of noise (or luck); it makes tail values even more extreme.
There are some problems associated with big data.

14.1 How Noise Explodes Faster
than Data

To the observer, every day will seem wierder than the
previous one. It has always been absolutely silly to be
exposed the news. Things are worse today thanks to
the web.

Source Effect

News Wierder and wierder events re-
ported on the front pages

Big Data More spurious "statistical" rela-
tionships that eventually fail to
replicate, with more accentuated
effects and more statistical "sig-
nificance" (sic)

Track Records Greater performance for (tempo-
rary) "star" traders

We are getting more information, but with constant
“consciouness”, “desk space”, or “visibility”. Google
News, Bloomberg News, etc. have space for, say, <100
items at any point in time. But there are millions of
events every day. As the world is more connected, with
the global dominating over the local, the number of
sources of news is multiplying. But your consciousness
remains limited. So we are experiencing a winner-take-
all effect in information: like a large movie theatre with
a small door.
Likewise we are getting more data. The size of the

door is remaining constant, the theater is getting
larger.
The winner-take-all effects in information space corre-
sponds to more noise, less signal. In other words the
spurious dominates.

Similarity with the Fooled by Random-
ness Bottleneck
This is similar to the idea that the more spurious re-
turns dominate finance as the number of players get
large, and swamp the more solid ones. Start with the
idea (see Taleb 2001), that as a population of operators
in a profession marked by a high degrees of randomness
increases, the number of stellar results, and stellar for
completely random reasons, gets larger. The “spuri-
ous tail” is therefore the number of persons who rise
to the top for no reasons other than mere luck, with
subsequent rationalizations, analyses, explanations, and
attributions. The performance in the “spurious tail”
is only a matter of number of participants, the base
population of those who tried. Assuming a symmetric
market, if one has for base population 1 million per-
sons with zero skills and ability to predict starting Year
1, there should be 500K spurious winners Year 2, 250K
Year 3, 125K Year 4, etc. One can easily see that the
size of the winning population in, say, Year 10 depends
on the size of the base population Year 1; doubling the
initial population would double the straight winners. In-
jecting skills in the form of better-than-random abilities
to predict does not change the story by much. (Note
that this idea has been severely plagiarized by someone,
about which a bit more soon).
Because of scalability, the top, say 300, managers get
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the bulk of the allocations, with the lion’s share going
to the top 30. So it is obvious that the winner-take-all
effect causes distortions: say there are m initial partici-
pants and the “top” k managers selected, the result will
be k

m managers in play. As the base population gets
larger, that is, N increases linearly, we push into the
tail probabilities.
Here read skills for information, noise for spurious per-
formance, and translate the problem into information
and news.

The paradox:The paradox:The paradox: This is quite paradoxical as we are ac-
customed to the opposite effect, namely that a large
increases in sample size reduces the effect of sampling
error; here the narrowness of M puts sampling error on
steroids.

14.2 Derivations

Let Z ⌘

⇣

zji

⌘

1<j<m,1i<nbe a (n ⇥ m) sized pop-
ulation of variations, m population series and n data
points per distribution, with i, j 2 N; assume “noise” or
scale of the distribution � 2 R+ , signal µ �0 . Clearly
� can accommodate distributions with infinite variance,
but we need the expectation to be finite. Assume i.i.d.
for a start.

Cross Sectional (n = 1)

Special case n = 1: we are just considering news/data
without historical attributes.
Let F be the generalized inverse distribution, or the
quantile,

F (w) = inf{t 2 R : F (t) � w},

for all nondecreasing distribution functions F (x) ⌘

P(X < x). For distributions without compact sup-
port, w 2 (0,1); otherwise w 2 [0, 1]. In the case of
continuous and increasing distributions, we can write
F�1 instead.
The signal is in the expectaion, so E(z) is the signal,
and � the scale of the distribution determines the noise
(which for a Gaussian corresponds to the standard devi-
ation). Assume for now that all noises are drawn from
the same distribution.
Assume constant probability the “threshold”, ⇣= k

m ,
where k is the size of the window of the arrival. Since
we assume that k is constant, it matters greatly that
the quantile covered shrinks with m.

Gaussian Noise
When we set ⇣ as the reachable noise. The quantile
becomes:

F�1(w) =
p

2 � erfc�1(2w) + µ,

where erfc�1is the inverse complementary error func-
tion.
Of more concern is the survival function, � ⌘ F (x) ⌘
P(X > x), and its inverse �

�1

�

�1
�,µ(⇣) = �

p

2�erfc�1
✓

2

k

m

◆

+ µ

Note that � (noise) is multiplicative, when µ (signal) is
additive.
As information increases, ⇣ becomes smaller, and �

�1

moves away in standard deviations. But nothing yet by
comparison with Fat tails.

Fat Tailed Noise
Now we take a Student T Distribution as a substitute
to the Gaussian.

(14.1)f(x) ⌘
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Where we can get the inverse survival function.
��1�,µ(⇣) = µ+

p
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(14.2)

where I is the generalized regularized incomplete
Beta function I

(z
0

,z
1

)

(a, b) = B
(z

0

,z

1

)

(a,b)

B(a,b) , and Bz(a, b)

the incomplete Beta function Bz(a, b) =

R z

0

ta�1(1 �

t)b�1dt. B(a, b) is the Euler Beta function B(a, b) =
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As we can see in Figure 2, the explosion in the tails of
noise, and noise only.
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Figure 14.1: Gaussian, �={1,2,3,4}
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Figure 14.2: Power Law, �={1,2,3,4}
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Figure 14.3: Alpha Stable Distribution
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Fatter Tails: Alpha Stable Distribu-
tion
Part 2 of the discussion to come soon.
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