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Abstract

Humans can perceive scenes in 3D from a handful of 2D
views. For Al agents, the ability to recognize a scene from
any viewpoint given only a few images enables them to effi-
ciently interact with the scene and its objects. In this work,
we attempt to endow machines with this ability. We propose
a model which takes as input a few RGB images of a new
scene and recognizes the scene from novel viewpoints by
segmenting it into semantic categories. All this without ac-
cess to the RGB images from those views. We pair 2D scene
recognition with an implicit 3D representation and learn
from multi-view 2D annotations of hundreds of scenes with-
out any 3D supervision beyond camera poses. We experi-
ment on challenging datasets and demonstrate our model’s
ability to jointly capture semantics and geometry of novel
scenes with diverse layouts, object types and shapes. '

1. Introduction

Humans can build a rich understanding of scenes from
a handful of images. The pictures in Fig. 1, for instance,
let us imagine how the objects would occlude, disocclude,
and change shape as we walk around the room. This skill
is useful in new environments, for example if one were at a
friend’s house, looking for a table to put a cup on. One can
reason that a side table may be by the couch without first
mapping the room or worrying about what color the side
table is. As one walks into a room, one can readily sense
floors behind objects and chair seats behind tables, etc. This
ability is so intuitive that entire industries like hotels and
real estate depend on persuading users with a few photos.

The goal of this paper is to give computers the same
ability. In Al, this skill allows autonomous agents to pur-
posefully and efficiently interact with the scene and its ob-
jects bypassing the expensive step of mapping. AR/VR and
graphics also benefit from 3D scene understanding. To this
end, we propose to learn a 3D representation that enables
machines to recognize a scene by segmenting it into seman-
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Figure 1. We propose ViewSeg which takes as input (a) a few im-
ages of a novel scene, and recognizes the scene from novel view-
points. The novel viewpoint, in the form of camera coordinates,
queries (b) our learnt 3D representation to produce (c) semantic
segmentations from the view without access to the view’s RGB
image. The view query additionally produces (c) depth. ViewSeg
trains on hundreds of scenes using multi-view 2D annotations and
no 3D supervision. Depth colormap: 0.1m HEE W 20m.

tic categories from novel views. Each novel view, provided
in the form of camera coordinates, queries the learnt 3D rep-
resentation to produce a semantic segmentation of the scene
from that view without access to the view’s RGB image, as
we show in Fig. 1. We aim to learn this 3D representation
without onerous 3D supervision.

Making progress on the problem in complex indoor
scenes requires connecting three key areas of computer vi-
sion: semantic understanding (i.e., naming objects), 3D un-
derstanding, and novel view synthesis (NVS). This puts the
problem out of reach of work in any one area. For in-
stance, there have been substantial advances in NVS, in-
cluding methods like NeRF [45] or SynSin [65]. These ap-
proaches perform well on NVS, including results in new
scenes [65, 70], but are focused on only appearance. In ad-
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dition to numerous semantic-specific details, recognition in
novel viewpoints via direct appearance synthesis is subop-
timal: one may be sure of the presence of a rug behind a
couch, but unsure of its particular color. Similarly, there
have been advances in learning to infer 3D properties of
scenes from image cues [20, 46, 63], or with differentiable
rendering [10, 29, 38, 50] and other methods for bypassing
the need for direct 3D supervision [27,33,34,68]. However,
these approaches do not connect to complex scene seman-
tics; they primarily focus on single objects or small, less
diverse 3D annotated datasets. More importantly, we em-
pirically show that merely using learned 3D to propagate
scene semantics to the new view is insufficient.

We tackle the problem of predicting scene semantics
from novel viewpoints, which we refer to as novel view
semantic understanding, and propose a new end-to-end
model, ViewSeg. ViewSeg fuses advances and insights
from semantic segmentation, 3D understanding, and novel
view synthesis with a number of task-specific modifica-
tions. As input, our model takes a few posed RGB images
from a previously unseen scene and a target pose (but not
image). As output, it recognizes and segments objects from
the target view by producing a semantic segmentation map.
As an additional product, it also produces depth in the target
view. During training, ViewSeg depends only on posed 2D
images and semantic segmentations, and in particular does
not use ground truth 3D annotations beyond camera pose.

Our experiments validate ViewSeg’s contributions on
two challenging datasets, Hypersim [52] and Replica [62].
We substantially outperform alternate framings of the
problem that build on the state-of-the-art: image-based
NVS [70] followed by semantic segmentation [8], which
tests whether NVS is sufficient for the task; and lifting se-
mantic segmentations [8] to 3D and differentiably render-
ing, like [65], which tests the value of using implicit func-
tions to tackle the problem. Our ablations further quan-
tify the value of our problem-specific design. Among oth-
ers, they reveal that ViewSeg trained for novel view se-
mantic segmentation obtains more accurate depth predic-
tions compared to a variant which trains without a seman-
tic loss and image-based NVS [70], indicating that seman-
tic understanding from novel viewpoints positively impacts
geometry understanding. Overall, our results demonstrate
ViewSeg’s ability to jointly capture the semantics and ge-
ometry of unseen scenes when tested on new, complex
scenes with diverse layouts, object types, and shapes.

2. Related Work

For the task of novel view semantic understanding, we
draw from 2D scene understanding, novel view synthesis
and 3D learning to recognize scenes from novel viewpoints.

Semantic Segmentation. Segmenting objects and stuff
from images is extensively researched. Initial efforts ap-

ply Bayesian classifiers on local features [32] or perform
grouping on low-level cues [56]. Others [5, 13] score
bottom-up mask proposals [1, 6]. With the advent of deep
learning, FCNs [40] perform per-pixel segmentation with a
CNN. DeepLab [7] use atrous convolutions and an encoder-
decoder architecture [8] to handle scale and resolution.

Regarding multi-view semantic segmentation, [35] im-
prove the temporal consistency of semantic segmentation
in videos by linking frames with optical flow and learned
feature similarity. [44] map semantic segmentations from
RGBD inputs on 3D reconstructions from SLAM. [23] fuse
predictions from video frames using super-pixels and opti-
cal flow. [42] learn scene dynamics to predict semantic seg-
mentations of future frames given several past frames.

Novel View Synthesis. Novel view synthesis is a pop-
ular topic of research in computer vision and graphics.
[19,60,61,64,67,74] show great results synthesizing views
from two or more narrow baseline images. Implicit voxel
representations have been used to fit a scene from many
scene views [39,57,59]. Recently, NeRF [45] learn a con-
tinuous volumetric scene function which emits density and
radiance at spatial locations and show impressive results
when fitted on a single scene with hundreds of views. We
extend NeRF to emit a distribution over semantic categories
at each 3D location. Semantic-NeRF [71] also predicts se-
mantic classes. We differ from [71] as we generalize to
novel scenes from sparse input views instead of in-place in-
terpolation within a single scene from hundreds of views.
NeRF extensions [24, 51], such as PixeINeRF [70], gener-
alize to novel scenes from few input views with the help of
learnt CNNs but show results on single-object benchmarks
for RGB synthesis. We differ from [70] by carefully pairing
a geometry-aware model with state-of-the-art scene recog-
nition [8] and experiment on realistic multi-object scenes.

3D Reconstruction from Images. Scene reconstruction
from multiple views is traditionally tackled with classical
binocular stereo [21, 54] or with the help of shape pri-
ors [2,3, 14,25]. Modern techniques learn disparity from
image pairs [30], estimate correspondences with contrastive
learning [55], perform multi-view stereopsis via differen-
tiable ray projection [28] or learn to reconstruct scenes
while optimizing for cameras [26, 48]. Differentiable ren-
dering [10,29,36,38,41,47,50] allows gradients to flow to
3D scenes via 2D re-projections. [10,29,38,50] reconstruct
single objects from a single view via rendering from 2 or
more views during training. We also use differentiable ren-
dering to learn 3D via 2D re-projections in semantic space.

Depth Estimation from Images. Recent methods train net-
works to predict depth from videos [11,43,73] or 3D super-
vision [9, 17,37,49,69]. We do not use depth supervision
but predict depth from novel views via training for semantic
and RGB reconstruction from sparse inputs.
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Figure 2. Our model, ViewSeg, uses a few source RGB views of a novel scene (here 2) and predicts the semantic segmentation of that scene
from a given unseen target viewpoint. Our approach embeds each source view into a latent semantic space with a 2D segmentation module;
this space is used to predict radiance, density and distribution over semantic classes at each spatial 3D location via an MLP. The final
semantic segmentation is created by volumetric rendering from the target viewpoint. We train with posed multi-view 2D object annotations
and no 3D supervision. We generalize to unseen scenes by training on hundreds of diverse scenes and thousands of source-target pairs.

3. Approach

We tackle novel view semantic understanding end-to-end
with a new model, ViewSeg. ViewSeg takes as input RGB
images from N source views and segments objects and stuff
from a novel target viewpoint without access to the target
image. We pair semantic segmentation with an implicit 3D
representation to learn semantics and geometry from hun-
dreds of scenes and thousands of source-target pairs. An
overview of our approach is shown in Fig. 2.

Our model consists of a 2D semantic segmentation mod-
ule which embeds each source view to a higher dimensional
semantic space. An implicit 3D representation [45] samples
features from the output of the segmentation module and
predicts radiance, density and a distribution over semantic
categories at each spatial 3D location with an MLP. The 3D
predictions are projected to the target view to produce the
segmentation from that view via volumetric rendering.

3.1. Semantic Segmentation Module

The role of the semantic segmentation module is to
project each source RGB view to a learnt feature space,
which will subsequently be used to make 3D semantic pre-
dictions. Our 2D segmentation backbone takes as input an
image I and outputs a spatial map M of the same spatial
resolution, %8 ; [HXWx3 _y pArHXWXK using a convo-
lutional neural network (CNN). Here, K is the dimension
of the feature space (K = 256).

We build on the state-of-the-art for single-view se-
mantic segmentation and follow the encoder-decoder
DeepLabv3+ [7, 8] architecture which processes an image
by downsampling and then upsampling it to its original res-
olution with a sequence of convolutions. We remove the
final layer, which predicts class probabilities, and use the
output from the penultimate layer.

We initialize our segmentation module by pre-training on
ADE20k [72], a dataset of over 20k images with semantic
annotations. We empirically show the impact of the network
architecture and pre-training in our experiments (Sec. 4).

3.2. Semantic 3D Representation

To recognize a scene from novel viewpoints, we learn
a 3D representation which predicts the semantic class for
each 3D location. To achieve this we learn a function f
which maps semantic features from our segmentation mod-
ule to distributions over semantic categories conditioned on
the 3D coordinates of each spatial location.

Assume N source views {I;}}X, and corresponding
cameras {m; }5\7:1 For each view we extract the seman-
tic maps {M;}?_, with our 2D segmentation module, or
M; = b*8(I;). We project every 3D point x to the j-th
view with the corresponding camera transformation, 7; (x),
and then sample the K -dimensional feature vector from M
from the projected 2D location. This yields a semantic fea-

ture from the j-th image denoted as ¢} (x) = M;(m;(x)).



Following NeRF [45] and PixelNeRF [70], f takes as
input a positional embedding of the 3D coordinates of x,
v(x), and the viewing direction d. We additionally feed the
semantic embeddings {¢}*}_,. As output, f produces

(¢, 0,8) = F(1(x), d, 6FE(x), s $2,(x)) (D)
where ¢ € R? is the RGB color, ¢ € R is the occupancy,
and s € RICl is the distribution over semantic classes C.

We model f as a fully-connected ResNet [22], similar
to PixelNeRF [70]. The positional embedding of the 3D
location and the direction are concatenated to each seman-
tic embedding ¢, and each is passed through 3 residual
blocks with 512 hidden units. The outputs are subsequently
aggregated using average pooling and used to predict the
final outputs of f via two branches: one predicts the se-
mantics s, the other the color c and density o. Each branch
consists of two residual blocks, each with 512 hidden units.
Read about the network architecture in the Supplementary.

Predicting Semantics. Rendering the semantic predictions,
s, from a given viewpoint gives the semantic segmentation
of the scene from that view. Following NeRF [45], we ac-
cumulate predictions on rays, r(t) = o + ¢ - d, originating
at the camera center o with direction d,

S(r) = /t Pt (s(t)dt o)

n

where T'(t) = exp(— ff ) is the accumulated trans-
mittance along the ray, and t and ts are near and far sam-
pling bounds, which are hyperparameters.

The values of the sampling bounds (¢,,ty) are crucial
for good performance. In the original NeRF [45] method,
(tn,tr) are manually set to tightly bound the scene. Pixel-
NeRF [71] uses manually selected parameters for each ob-
Ject category, i.e. different values for chairs, different val-
ues for cars, etc. In Semantic-NeRF [71], the values are se-
lected for the Replica rooms, which vary little in size. In the
datasets we experiment on in Sec. 4, scene scale varies dras-
tically from human living spaces with regular depth extents
(e.g. living rooms) to industrial facilities (e.g. warehouses),
lofts or churches with large far fields. With the goal of scene
generalization in mind, we set (¢,,ts) globally, regardless
of the true near/far bounds of each scene we encounter. This
more realistic setting makes the problem harder: our model
needs to predict the right density values for a large range of
depth fields, reasoning about occupancy within each scene
but also about the depth extent of the scene as a whole.

Replacing the semantic predictions s with the RGB pre-
dictions ¢ in Eq. 2 produces the RGB view C(r) from the
target viewpoint, as in [45]. While photometric reconstruc-
tion is not our goal, we use C during learning and show that
it helps capture the scene’s geometry more accurately.

Predicting Depth. In addition to the semantic segmentation
S and the RGB reconstruction C' from a target viewpoint,
we also predict the pixel-wise depth of the scene from that
view, as in [16] by computing

D(r) = /t Tttt 3)

n

We use the depth output D only during evaluation. By com-
paring single-view depth (D) and semantic segmentation
(S) from many novel viewpoints, we measure our model’s
ability to capture geometry and semantics.

3.3. Learning Objective

Our primary objective is to segment the scene from the
target view. We jointly train the segmentation module ¢
and implicit 3D function f to directly solve this task. We
also find that auxiliary photometric and source-view losses
are crucial for performance. Our objectives require RGB
images and 2D semantics from various views in the scene
as well as poses to perform re-projection.

Since our goal is to predict a semantic segmentation in
the target view, our primary objective is a per-pixel cross-
entropy loss between the true class labels S and predicted
class distribution S,

IC|
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where C is the set of semantic classes and R is the set of
rays in the target view. Here, S7(r) is the {0, 1} true label
for the j-th class at the intersection of ray r and the image.

In addition to this, we minimize auxiliary losses that im-
prove performance on our primary task. The first is a photo-
metric loss on RGB images, namely the squared Lo distance
between the prediction C and actual image C, or

o) - o[ 5)

2

P
L target — E

rcR

where C(r) is the true RGB color at the intersection of ray
r and the image.
Finally, in addition to standard losses on the target

view [45,70,71], we find it is important to apply losses on
the source views. Specifically, we create LS. and L .

that are the semantic and photometric losses, respectively,
applied to rays from the source views. These losses help
enforce consistency with the input views. Our final objec-
tive is given by

L =L +LE

target source

)‘ (Lgrgel + L;S(;urce) (6)

where )\ scales the semantic and photometric losses.



4. Experiments

We experiment on Hypersim [52] and Replica [62]. Both
provide posed views of complex scenes with over 30 object
types and under varying conditions of occlusion and light-
ing. At test time, we evaluate on novel scenes not seen dur-
ing training. Due to its large size, we treat Hypersim as our
main dataset where we run an extensive quantitative analy-
sis. We then show generalization to the smaller Replica.

Metrics. We report novel view metrics for semantics and
geometry. For a novel view of a test scene, we project the
semantic predictions (Eq. 2) and depth (Eq. 3) and compare
to the ground truth semantic and depth maps, respectively.
Ideally, we would also evaluate directly in 3D, which re-
quires access to full 3D ground truth. However, 3D ground
truth is not publicly available for Hypersim and is generally
hard to collect. Thus, we treat novel view metrics as proxy
metrics for 3D semantic segmentation and depth estimation.
For semantic comparisons, we report semantic segmen-
tation metrics [4] implemented in Detectron2 [66]: mIoU is
the intersection-over-union (IoU) averaged across classes,
ToU™ and IoUS report IoU by merging all things (object)
and stuff classes (wall, floor, ceiling), respetively. fwloU is
the per class IoU weighted by the pixel-level frequency of
each classs, pACC is the percentage of correctly labelled
pixels and mACC is the pixel accuracy averaged across
classes. For all, performance is in % and higher is better.
For depth comparisons, we report depth metrics follow-
ing [18]: Ly is the per-pixel average L, distance between
ground truth and predicted depth, Rel is the L; distance
normalized by the true depth value, Rel” and Rel® is the
Rel metric for all things and stuff, respectively. § < T is
the percentage of pixels with predicted depth within [%, T]%
the true depth. L, is in meters and 6 < 7 isin %. For§ < 7
metrics, higher is better. For all other, lower is better ({).

4.1. Experiments on Hypersim

Hypersim [52] is a dataset of 461 complex scenes. Cam-
era trajectories across scenes result in 77,400 images with
camera poses, masks for 40 semantic classes [58], along
with true depth maps. Hypersim contains on average 50
objects per image, making it a very challenging dataset.

Dataset. For each scene, we create source-target pairs from
the available views. Each image is labelled as target and is
paired with an image from a different viewpoint if: (1) the
view frustums intersect by no less than 10%; (2) the camera
translation is greater than 0.5m; and (3) the camera rotation
is at least 30°. This ensures that source and target views
are from different camera viewpoints and broadly depict the
same parts of the scene but without large overlap. We fol-
low the original Hypersim split, which splits train/val/test
to 365/46/50 disjoint scenes, respectively. Overall, there
are 120k/14k/14k pairs in train/val/test, respectively.

Training details. We implement ViewSeg in PyTorch with
Detectron2 [66] and PyTorch3D [50]. We train on the Hy-
persim training set for 13 epochs with a batch size of 32
across 32 Tesla V100 GPUs. The input and render resolu-
tion are set to 1024 x 768, maintaining the size of the orig-
inal dataset. We optimize with Adam [31] and a learning
rate of Se-4. We follow the PixelNeRF [70] strategy for ray
sampling: We sample 64 points per ray in the coarse pass
and 128 points per ray in the fine pass. In addition to the tar-
get view, we randomly sample rays on each source view and
additionally minimize the source view loss, as we describe
in Sec. 3.3. We sett, = 0.1m, ¢y = 20m in Eq. 2 & 3 and
A = 0.04 in Eq. 6. More details in the Supplementary.

Baselines. In addition to extensive ablations that reveal
which components of our method are most important, we
compare with multiple baselines and oracle methods to pro-
vide context for our method. Our baselines aim to test alter-
nate strategies, including inferring the true RGB image and
then predicting the pixel classes as well as lifting a predicted
semantic segmentation map to 3D and re-projecting.

To provide context, we report a Target View Oracle
that has access to the true target view’s image. The target
RGB image fundamentally resolves many ambiguities in
3D about what is where, and is not available to our method.
Instead, our method is tasked with predicting segmentations
and depth from new viewpoints without the target RGB im-
ages. Our oracle applies appropriate supervised models di-
rectly on the true target RGB. For semantic segmentation,
we use a model [8] that is identical to ours pre-trained on
ADE20k [72] and finetuned on all images of the Hypersim
training set. For depth, we use the model from [69], which
predicts normalized depth. We obtain metric depth by align-
ing with the optimal shift and scale following [49, 69].

Our first baseline, denoted PixelNeRF++, tests the im-
portance of the end-to-end nature of our approach by per-
forming a two stage process: we use the novel view syn-
thesis (NVS) method of PixelNeRF [70] to infer the RGB
of the target view and then apply an image-based model for
semantic segmentation. To ensure a fair comparison, Pixel-
NeRF is trained on the Hypersim training set. We use the
segmentation model we trained for the oracle to predict se-
mantic segmentations. Depth is predicted with Eq. 3.

Our second baseline, named CloudSeg, tests the im-
portance of an implicit representation by comparing with
an explicit 3D point cloud representation. Inspired by
SynSin [65], we train a semantic segmentation back-
bone similar to our ViewSeg, along with a depth model,
from [69], to lift each source view to a 3D point cloud with
per point class probabilities. A differentiable point cloud
renderer [50] projects the point clouds from the source im-
ages to the target view to produce a semantic and a depth
map. CloudSeg is trained on the Hypersim training set and
uses the same 2D supervision as our ViewSeg.
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Figure 3. Predictions on Hypersim. For each example, we show the 4 input RGB views (left), the ground truth RGB, semantic and depth
maps for the novel target view (middle) and ViewSeg’s predictions (right). RGB synthesis is not our goal, but we show the predicted RGB

for completeness. Our model does not have access to the true observations from the target view at test time. Depth: 0.1m HlE" M 20m.
Model mloU ToUT  ToUS fwloU pACC mACC L;(}) Rel(}) RelT(l) RelS() 6<125 §<1.25
PixelNeRF++ 1.58 149 479 179  3.63 359 2.80 0.746 0.856 0.653 0.300 0.531
CloudSeg 0.46 29.6 4.42 1.80 3.31 3.25 3.81 0.856 0.997 0.737 0.145 0.277
ViewSeg 171 332 589 448 239 622 229 0.646 0.721 0.584 0.409 0.656
Oracle 40.0 58.1 71.3 66.6 52.1 79.1 0.96 0.235 0.317 0.163 0.731 0.898

Table 1. Comparisons on Hypersim val. We report the performance of both semantic segmentation (blue) and depth estimation (green) for
our method, ViewSeg, an oracle which applies supervised single-image semantic segmantation and depth estimation models on the true
target RGB views, and two competing approaches, PixeINeRF++ and an explicit 3D point cloud model, CloudSeg, inspired by SynSin [65].

Results. Table 1 compares our ViewSeg, PixeINeRF++ and
CloudSeg with 4 source views and the oracle on Hypersim
val. We observe that PixeINeRF++, which predicts the tar-
get RGB view and then applies an image-based model for
semantic prediction, performs worse than ViewSeg. This
is explained by the low quality RGB predictions, shown
in Fig. 4. Predicting high fidelity RGB of novel complex
scenes from only 4 input views is still difficult for NVS
models, suggesting that a two-stage solution for seman-
tic segmentation will not perform competitively. Indeed,
ViewSeg significantly outperforms PixelNeRF++ showing
the importance of learning semantics end-to-end. In addi-
tion to semantics, ViewSeg outperforms PixelNeRF++ for
depth. This suggests that learning semantics jointly has a
positive impact on geometry as well. Finally, CloudSeg
has a hard time predicting semantics and geometry. This
is likely attributed to the wide baseline source and target
views in our task which cause explicit 3D representations to
produce holes and erroneous predictions in the rendered tar-
get output. In SynSin [65], the camera transform between
source and target in the datasets the authors explore is sig-
nificantly narrower, unlike our task where novel viewpoints
correspond to wider camera transforms, as shown in Fig. 3.

Fig. 3 shows ViewSeg’s predictions on Hypersim val.
We show the 4 source views (left), the ground truth tar-
get RGB, semantic and depth map (middle) and ViewSeg’s
predictions from the target viewpoint (right). Note that
ViewSeg does not have access to ground truth target ob-
servations and only receives the 4 images along with cam-
era coordinates for the source and the target viewpoints.
Examples in Fig. 3 are of diverse scenes (restaurant, bed-
room, kitchen, living room) with many objects (chair, table,
counter, cabinet, window, blinds, lamp, picture, floor mat,
etc.). We observe that the predicted RGB is of poor quality
proving that NVS has a hard time in complex scenes and
with few views. RGB synthesis is not our goal. We aim to
predict the scene semantics and Fig. 3 shows that our model
achieves this. ViewSeg detects stuff (floor, wall, ceiling)
well and predicts object segments for the right object types,
even for diverse target views. Our depth predictions show
that ViewSeg captures the scene’s geometry, even though it
was not trained with any 3D supervision.

Fig. 4 compares ViewSeg to PixeINeRF++. Semantic
segmentation from predicted RGB results in bad predic-
tions, as shown in the PixeINeRF++ column. Fig. 5 shows
examples of semantic 3D reconstructions.



ViewSeg loss | mloU ToU” 1oUS fwloU pACC mACC|L,() Rel()) Rel'()) RelS()) §<125 <125

w/o photometric loss | 16.9 30.8 58.7 44.8 22.7 62.5 2.49 0.677 0.750 0.615 0.359 0.611
w/o semantic loss - - - - - - 2.58 0.787 0.919 0.678 0.345 0.587
w/o source view loss | 143 282 579 282 19.3 61.1 2.37 0.683 0.764 0.615 0.397 0.649
w/o viewing dir 16.0 33.1 59.2 449 21.5 62.1 2.53 0.708 0.783 0.646 0.354 0.602
final 17.1 332 589 448 239 62.2 2.29 0.646 0.721 0.584 0.409 0.656

Table 2. Ablating loss components. We report semantic (blue) and depth (green) performance on Hypersim val without the photometric,
the semantic and the source view loss and when excluding the viewing direction from the input. Our model is reported in the last row.

ViewSeg backbone | mloU  IoUT  ToUS fwloU pACC mACC|L;(}) Rel()) Rel"()) RelS(}) 0§<1.25
DLv3+ [8] + ADE20k [72] 17.1 33.2 58.9 44.8 23.9 62.2 2.29 0.645 0.721 0.584 0.409
DLv3+ [8] + IN [15] 16.3 33.2 59.2 45.2 22.0 62.5 2.28 0.614 0.682 0.559 0.415

ResNet34 [22] + IN [15] 745 217 559 371 112 561 | 267 0712 0.815 0.626 0.320

Table 3. Performance on Hypersim val with different semantic segmentation backbones. We show the performance of ViewSeg with
DeepLabv3+ (DLv3+) [&] pretrained on ADE20k [72] and on ImageNet [15] and a ResNet34 [22] backbone pretrained on ImageNet [15].
The latter is used in PixeINeRF [70]. DLv3+ improves performance significantly, while ADE20k helps ever so slightly.

ViewSeg ‘ mloU pACC ‘ Li () Rel (]) Input GT Target PixelNeRF++ VleWSeg
w/ 4 views 17.1 23.9 2.29 0.584
w/ 3 views 15.5 20.8 2.39 0.652
w/ 2 views 13.6 18.2 2.57 0.765
w/ 1 view 11.6 15.8 2.62 0.734

Table 4. Input study on Hypersim val for varying number of source
views. More views improve semantic and depth performance.

Ablations and Input Study. Table 2 ablates various terms
in our objective. For reference, the performance of our
ViewSeg trained with 4 source views and with the final ob-
jective (Eq. 6) is shown in the last row. When we remove
the photometric loss, LP, semantic performance remains

roughly the same but depth performance drops (—20cm in Figure 4. Comparison of ViewSeg and PixelNeRF++ . For each
L,), which proves that appearance helps capture scene ge- example we show the 4 RGB inputs (1*-2" col.), the true RGB
ometry. When we remove the semantic loss, LS, and train and semantic map from the target view (3" col.), the RGB and
solely with a photometric loss, we observe a drop in depth semantic prediction by PixeINeRF++ (4" col.) and the RGB and
(—29cm in Ly). This suggests that semantics helps geom- semantic prediction by our ViewSeg (5" col.).

etry; we made a similar observation when comparing to . .
PixeINeRF++ in Table 1. When training without source e put oI iar et Predicted 3D Semantics
view losses both semantic and depth performance drop, - gt

with semantic performance deteriorating the most (—2.8%
in mloU). This confirms our insight that enforcing consis-
tency with the source views improves learning. Finally,
when we remove the viewing direction from the model’s
input, depth performance suffers the most (—24cm in Ly).

Table 3 compares different backbones for the 2D seg-
mentation module. We compare DeepLabv3+ (DLv3+) [§]
pre-trained on ImageNet [15] and ADE20k [72] and
ResNet34 [22] pre-trained on ImageNet [15]. The latter is
used in PixelNeRF [70]. DLv3+ significantly boosts per-
formance for both semantics and depth while pre-training
on ADE20k slightly adds to the final performance.

. . . Figure 5. 3D semantic reconstructions on Replica (top two) and

Table 4 compares ViewSeg with varying number of Hypersim (bottom). We show the 4 RGB inputs (1%-2™ col.), the
source views. We observe that more views improve both true RGB and semantic map from the novel view (3" col.), and
semantic segmentation and depth. More than 4 views two views of the 3D semantic reconstructions (4"-5% col.).
could lead to further improvements but substantially in-
crease memory and time requirements during training.




viewpoint (middle) and ViewSeg’s predictions (right). Depth colormap: 0.1m HEE" M 20m.
Model mloU  ToUT ToUS fwloU pACC mACC| L;(l) Rel(l) Rel™(l) RelS(l) 6<1.25 §<1.252
ViewSeg noft 13.2 44.8 56.0 51.4 27.1 66.8 | 0.982 0.222 0.194 0.254 0.623 0.880
ViewSeg 30.2 56.2 62.8 62.3 48.4 75.6 | 0.550 0.130 0.130 0.130 0.851 0.961
Oracle 56.2 76.8 78.0 90.1 79.4 93.8 0.226 0.058 0.065 0.050 0.976 0.998

Table 5. Performance for semantic segmentation (blue) and depth (green) on the Replica [62] test set before finetuning (noft) and after
finetuning ViewSeg on Replica’s training set. We additionally report the target view oracle.

4.2. Generalization to Replica

We experiment on the Replica dataset [62] which con-
tains real-world scenes such as living rooms and offices.
Scenes are complex with many object types and instances
in various layouts. We show generalization by applying
ViewSeg pre-trained on Hypersim and then further fine-tune
it on Replica to better fit to Replica’s statistics.

Dataset. We use Al-Habitat [53] to extract multiple views
per scene. For each view we collect the RGB image, seman-
tic labels and depth. For each Replica scene, we simulate an
agent circling around the center of the 3D scene and render
the observations. Note that this is unlike Hypersim [52],
where camera trajectories are extracted by the authors a-
priori. We use the same camera intrinsics and resolution as
Hypersim: the horizontal field of view is 60° and the image
resolution is 1024x768. Finally, we map the 88 semantic
classes from Replica to NYUv3-13, following [12,71]. Our
dataset consists of 12/3 scenes for train/test, respectively, re-
sulting in 360/90 source-target pairs. Note that this is 330 x
smaller than Hypersim. Yet, we show compelling results on
Replica by pre-training ViewSeg on Hypersim.

Results. Table 5 reports the performance of our ViewSeg,
trained on Hypersim, before fine-tuning (denoted as noft)
and after fine-tuning, as well as a Target View Oracle.
The oracle fine-tunes the supervised semantic segmentation
model on images from our Replica dataset and finds the op-
timal depth scale and shift for the test set. We observe that
ViewSeg’s performance improves significantly when fine-

tuning on Replica for both semantic segmentation and depth
across all metrics. It is not surprising that fine-tuning on
Replica improves performance as the scenes across the two
datasets vary in both object appearance and geometry. We
also observe that performance is significantly higher than
Hypersim (Table 1). Again, this is not a surprise, as Hy-
persim contains far more diverse and challenging scenes.
However, the trends across the both datasets remain.

Fig. 6 shows predictions on Replica by ViewSeg. We
show the 4 RGB inputs (left), the ground truth RGB , se-
mantic and depth map for the novel target viewpoing (mid-
dle) and ViewSeg’s predictions (right). Fig. 5 shows 3D
semantic reconstructions on two Replica test scenes.

5. Conclusion

We present ViewSeg, an end-to-end approach which
learns a 3D representation of a scene from merely 4 input
views. ViewSeg enables models to query its learnt 3D rep-
resentation with a previously unseen target viewpoint of a
novel sene to predict semantics and depth from that view,
without access to any visual information (e.g. RGB) from
the view. We discuss our work’s limitations with an exten-
sive quantitative and qualitative analysis. We believe that
we present a very promising direction to learn 3D from 2D
data with lots of potential for exciting future work.

Regarding ethical risks, we do not foresee any immediate
dangers. The datasets used in this work do not contain any
humans or any other sensitive information.
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A. Qualitative Results

Figure 7 shows more qualitative results on Hypersim.
We draw a few interesting observations. Overall our model
is able to segment objects and stuff from novel viewpoints
and capture the underlying 3D geometry as seen in the pre-
dicted depth maps. In addition, our model is able to gen-
eralize to completely unseen parts of a scene. For exam-
ple, consider the 4™ example in Figure 7 of a museum hall.
Here, the four input images show the left side of the hall
while the novel view queries the right side, which is not
captured by the inputs. As seen from our RGB prediction,
our model struggles to reconstruct that side of the scene in
appearance space. It does much better in semantic space,
by correctly placing the wall and the ceiling and by extend-
ing the floor. The predicted depth also shows that the model
can reason about the geometry of the scene as the right wall
starts close to the camera and extends backward consistent
with the overall structure of the room. Though both depth
and semantic predictions are not perfect, they are evidence
that our model has learnt to reason about 3D semantics. We
believe this is attributed to the scene priors our model has
captured after being trained on hundreds of diverse scenes.
The 8 (last) example in Figure 7 leads to a similar conclu-
sion. Our model correctly predicts the pillows in the target
viewpoint but additionally predicts a sofa which is sensibly
placed relative to the location and extent of the predicted
pillows. The sofa prediction, though not in the ground truth,
is a reasonable one and is likely driven by the scene priors
our model has captured during training; a line of pillows
usually exists on a sofa. Finally, the examples in Figure 7
and Figure 3 in the main paper also reveal our work’s limi-
tations. Our model does not make pixel-perfect predictions
and often misses parts of objects or misplaces them by a
few pixels in the target view. It is likely that more training
data would lead to significantly better predictions. Figure 8
shows more qualitative results on Replica.

Last but not least, we provide video animations of our
predictions in the supplementary folder. These complement
the static visualizations in the pdf submissions and better
demonstrate our model’s ability to make predictions from
novel viewpoints on novel scenes.

B. Network Architecture

The detailed architecture of f is illustrated in Figure 9.
It takes as input a positional embedding of the 3D coordi-
nates of x, y(x), the viewing direction d and the semantic
embeddings {¢}*}];. As output, f produces

(c. 0, 8) = f(v(x), d, $* (%), ..., o241 (x)) ()

where ¢ € R3 is the RGB color, o € R is the occupancy,
and s € RI¢l is the distribution over semantic classes C. Hy-
persim [52] provides annotations for 40 semantic classes.

We discard {otherstructure, otherfurniture, otherprop} and
thus |C| = 37 for both Hypersim [52] and Replica [62].

We largely follow PixelNeRF [70] for the design of our
network. We deviate from PixeINeRF and use 128 instead
of 512 for the dimension of hidden layers (as in NeRF [45])
for a more compact network. The dimension of the linear
layer which inputs ¢’ (x) is set to 256 to match the dimen-
sion of semantic features from DeepLabv3+ [S].

C. Training Details

Pretraining the Semantic Segmentation Module. We
first pretrain DeepLabv3+ [8] on ADE20k [72], which has
20,210 images for training and 2,000 images for valida-
tion. We implement DeepLabv3+ in PyTorch with Detec-
tron2 [66]. We train on the ADE20k training set for 160k
iterations with a batch size of 16 across 8 Tesla V100 GPUs.
The model is initialized using ImageNet weights [15]. We
optimize with SGD and a learning rate of le-2. During
training, we crop each input image to 512x512. We remove
the final layer, which predicts class probabilities, and use
the output from the penultimate layer as our semantic en-
coder. We do not freeze the model when training ViewSeg,
allowing finetuning on Hypersim semantic categories.

Training Details on Hypersim. We implement ViewSeg
in PyTorch3D [50] and Detectron2 [66]. We initialize the
semantic segmentation module with ADE20k pretrained
weights. We train on the training set for 13 epochs with
a batch size of 32 across 32 Tesla V100 GPUs. The in-
put and render resolution are set to 1024x768. We optimize
with Adam and a learning rate of 5e-4. We follow the Pixel-
NeRF [70] strategy for ray sampling: We sample 64 points
per ray in the coarse pass and 128 points per ray in the fine
pass; we sample 1024 rays per image.

Training Details on Replica. We finetune our model on
the Replica training set [62]. Replica has 18 scenes. In
practice, we find Replica does not have room-level anno-
tations and our sampled source and target views can be at
different rooms within the Replica apartments. Hence, we
exclude them from our data. We split the rest 15 scenes into
a train/val split of 12/3 scenes. We use the same hyperpa-
rameters as Hypersim to finetune our model on Replica.

D. Noisy Camera Experiment

In our experiments, we assume camera poses both dur-
ing training and evaluation. We perform an additional ab-
lation assuming noisy cameras for both during training and
testing. During evaluation, source view cameras are noisy
but not the target camera, as we wish to compare to the tar-
get view ground truth. We insert noise to the cameras by
perturbing the rotation matrix with random angles sampled
from [—10°, 10°] in all three axis (X, Y & Z) . This results
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Figure 7. More predictions on Hypersim. For each example, we show the 4 input RGB views (left), the ground truth RGB, semantic and
depth maps for the novel target view (middle) and ViewSeg’s predictions (right). Our model does not have access to the true observations
from the target view at test time. See our video animations. Depth: 0.1m HEE" M 20m.

in a significant camera noise and stretch tests our method
under such conditions.

Table 6 shows results on the noisy Replica test set. The
I* row shows the performance of our ViewSeg pre-trained
on Hypersim and without any finetuning. The 2™ row
shows the performance of our model finetuned on the noisy
Replica training set. We observe that performance for both
model variants is worse compared to having perfect cam-
eras, as is expected. Performance improves after training
with camera noise, suggesting that our ViewSeg is able to
generalize better when trained with noise in cameras. Fig-
ure 10 shows qualitative results on the noisy Replica test

set. The predicted RGB targets are significantly worse com-
pared to the perfect camera scenario, which suggests that
RGB prediction with imperfect cameras is very challeng-
ing. However, the semantic predictions are much better
computer to their RGB counterparts. This shows that our
approach is able to capture scene priors and generalize to
new scenes even under imperfect conditions.

E. Evaluation

We report the complete set of depth metrics for all the
tables in the main submission. The comparison with Pixel-
NeRF and CloudSeg is in Table 7. The ablation of different
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Figure 8. More predictions on Replica. For each example, we show the 4 input RGB views (left), the ground truth RGB, semantic and
depth maps for the novel target view (middle) and ViewSeg’s predictions (right). Our model does not have access to the true observations
from the target view at test time. See our video animations. Depth: 0.1m HEE" W 20m.

@G, d) _.i_.@_.'_.'_.e
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Figure 9. Detailed architecture of our semantic 3D representation f. Each cuboid is a linear layer where the number around it represents the
input dimension. The output dimension is always 128 except the last layer of RGB and semantic prediction. Before the mean aggregation,
the network takes inputs from each source view but weights are shared.

loss terms is in Table 8. The comparison of different back-
bones is in Table 9. The input study is in Table 10. Our
experiments on the Replica dataset are in Table 11.
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Figure 10. Predictions on Replica with noisy cameras. For each example, we show the 4 input RGB views (left), the ground truth RGB,
semantic and depth maps for the novel target view (middle) and ViewSeg’s predictions (right). Our model does not have access to the true

observations from the target view at test time. Depth: 0.1m HEE"

H 20m.

Model mloU IoUT IoUS fwloU pACC mACC| L;(l) Rel(l) Rel™(]) RelS() §<125 §<1.25?
ViewSeg noft 8.57 35.2 61.3 40.3 18.3 57.9 1.10 0.253 0.240 0.268 0.579 0.840
ViewSeg 14.1 40.1 62.8 42.8 24.6 60.6 0.887 0.208 0.232 0.180 0.631 0.888

Table 6. Performance for semantic segmentation (blue) and depth (green) on the Replica [62] test set with noisy cameras.

Model mloU  IoU"  IoU® fwloU pACC mACC|L;()) LI B Rel()) Rel"()) RelP()) d<125 4§T<125 65<125 5<125® §T<125® §5<125® §<125° o6T<1.25° 4% <1.25°
PixelNeRF++ 1.58 149 419 17.9 3.63 359 2.80 2.69 2.90 0.746 0.856 0.653 0.300 0.276 0.319 0.531 0.500 0.557 0.689 0.663 0.712
CloudSeg 0.46 296 4.42 1.80 3.31 a7 3.81 3.77 3.83 0.856 0.997 0.737 0.145 0.105 0.178 0.277 0.211 0.332 0.389 0314 0.451
ViewSeg 17.1 332 58.9 4.8 23.9 62.2 2.29 2.18 2.38 0.646 0.721 0.584 0.409 0.393 0.421 0.656 0.633 0.676 0.794 0.772 0.812
Oracle 40.0 58.1 L3 66.6 52.1 79.1 0.96 1.10 0.83 0.235 0.317 0.163 0.731 0.651 0.800 0.898 0.848 0.942 0.954 0.925 0.978
Table 7. Extended version of Table 1 in the main paper.
ViewSeg loss mloU  ToUT  ToUS fwloU pACC mACC Li()) LT() I1$() Rel() Rel"()) Relf()) <125 <125 &5<1.25 5<12? T<1252 S5<125? §<1.25% §T<125° 65<1.25°
w/o photometric loss 16.9 30.8 58.7 448 227 62.5 249 235 2.61 0.677 0.750 0.615 0.359 0.347 0.363 0.611 0.594 0.625 0.764 0.744 0.780
w/o semantic loss = = e e B = 2.58 252 2.63 0.787 0.919 0.678 0.345 0.317 0.369 0.587 0.548 0.621 0.740 0.704 0.770
w/o source view loss 14.3 282 519 28.2 19.3 61.1 2.37 227 245 0.683 0.764 0.615 0.397 0.378 0.413 0.649 0.623 0.670 0.785 0.761 0.806
w/o viewing dir 16.0 331 59.2 449 21.5 62.1 2.53 238 2.65 0.708 0.783 0.646 0.354 0.351 0.356 0.602 0.593 0.610 0.759 0.744 0.772
final 17.1 332 58.9 44.8 239 622 229 218 238 0.646 0.721 0.584 0.409 0.393 0.421 0.656 0.633 0.676 0.794 0.772 0.812
Table 8. Extended version of Table 2 in the main paper.
ViewSeg backbone mloU  ToUT  1oUS  fwloU pACC mACC|Li() LT() L) Rel()) Rel"()) RelS()) §<125 T<125 &5<125 <125 T<125° 55<1.2° §<1.2° §T<125 55<125°
DLv3+ [5] + ADE20k [72] ~ 17.1 332 58.9 44.8 239 62.2 229 2.18 2.38 0.645 0.721 0.584 0.409 0.393 0.421 0.656 0.633 0.676 0.794 0.772 0.812
DLv3+ [8] +IN [15] 163 332 59.2 45.2 220 625 2.28 217 2.36 0.614 0.682 0.559 0.415 0.400 0.427 0.663 0.640 0.682 0.799 0.776 0.818
ResNet34 [22] + IN[15] 745 21.7 559 37.1 112 56.1 2.67 251 2.81 0.712 0.815 0.626 0.320 0.304 0.333 0.562 0.541 0.580 0.720 0.702 0.736
Table 9. Extended version of Table 3 in the main paper.
ViewSeg | mloU  ToUT  ToUS fwloU pACC mACC| L, ()) LI() LY Rel(]) Rel'()) RelS(})) §<125 6T<125 6<1.25 §<125° §"<1.252 §5<1.252 §<1.25% T<125° & <1.25°
w/ 4 views 17.1 332 589 438 239 622 229 218 2.38 0.646 0.721 0.584 0.408 0.393 0.421 0.656 0.633 0.676 0.794 0.772 0.812
w/ 3 views 155 313 587 439 20.8 61.5 2.39 2.25 249 0.652 0.730 0.587 0.387 0.376 0.395 0.634 0.617 0.648 0.777 0.759 0.793
w/ 2 views 13.6 274 517 41.9 182 60.2 2.57 249 2.64 0.765 0.878 0.672 0.363 0.339 0.383 0.605 0.574 0.633 0.751 0.721 0.776
w/ 1 view 11.6 249 56.5 39.7 15.8 > 2.62 2.52 2.70 0.734 0.828 0.657 0.332 0.322 0.339 0.562 0.541 0.580 0.710 0.686 0.730
Table 10. Extended version of Table 4 in the main paper.
ViewSeg mloU  ToUT  1oUS  fwloU pACC mACC Li() LT() L15d) Rel()) Rel"()) Relf(l) 6<125 T<125 <125 §<1252 §T<1252 §5<1252 §5<125° T<125 4§5<125
ViewSeg noft 132 44.8 56.0 514 27.1 66.8 0982  0.851 1.138 0.222 0.194 0.254 0.623 0.687 0.546 0.880 0.905 0.850 0.968 0.974 0.961
ViewSeg 30.2 56.2 62.8 62.3 484 756 0550 0510 0.597 0.130 0.130 0.130 0.851 0.857 0.844 0.961 0.953 0.972 0.986 0.980 0.992
Oracle 56.2 76.8 78.0 90.1 794 938 0226 0.230 0.220 0.058 0.065 0.050 0.976 0.965 0.991 0.998 0.996 0.999 1.000 1.000 1.000
Table 11. Extended version of Table 5 in the main paper.
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