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Abstract 

This paper describes the simulation of an S(n) space- 
bounded deterministic Turing machine by a reversible Tur- 
ing machine operating in space S(n). It thus answers a 
question posed by Bennett in 1989 and refutes the conjec- 
ture, made by Li and Vitanyi in 1996, that any reversible sim- 
ulation of an irreversible computation must obey Bennett’s 
reversible pebble game rules. 

1 Introduction 

A Turing machine M is reversible iff the infinite graph 
of all configurations of M has indegree and outdegree one. 
Interest in reversibility arose at first in connection with 
the thermodynamics of computation, following Landauer ’s 
demonstration in 1961 that, contrary to earlier intuition (see 
[Ne66]), physical laws do not preclude using an arbitrarily 
small amount of energy to perform logically reversible com- 
puting steps [La61]. More recently, renewed interest in the 
notion of reversibility was sparked by the prospect of quan- 
tum computers, whose observation-free computational steps 
are intrinsically reversible [De85, Sh94, Br951. 

Early strategies to make a Turing machine reversible 
were terribly wasteful in terms of space: Lecerf’s method 
[Le63], rediscovered by Bennett [Be73], required space T 
to simulate a T(n)-time S(n)-space machine reversibly in 
time O(T). Bennett then greatly improved on this by reduc- 
ing the space to 0 (S log T) at the expense of an increase in 
time to T1+€ [Be89]. Levine and Sherman refined the analy- 
sis of Bennett’s algorithm and characterized the tradeoff be- 
tween time and space even more precisely [LeSh90]. 

Bennett questioned [Be891 whether the reversible sim- 
ulation of an irreversible computation necessarily incurs 
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a non constant factor increase in space usage. Bennett 
offered both a pebble game formalizing his intuition that 
the space increase is unavoidable, and a possible source 
of contrary evidence arising from the suprisingly width- 
efficient reversible simulations of irreversible circuits. At 
the 1996 IEEE Computational Complexity conference, Li 
and Vitanyi took up Bennett’s suggestion and performed 
an in-depth analysis of Bennett’s pebble game [LiVi96a, 
LiVi96bl. They proved that any strategy obeying Bennett’s 
game rules indeed requires the extra n(logT) multiplica- 
tive space factor, and they exhibited a trade-off between the 
need for extra space and the amount of irreversibility (in the 
form of irreversibly erased bits) which might be tolerated 
from the simulation. Li and Vitanyi then conjectured that all 
reversible simulations of an irreversible computation obey 
Bennett’s pebble game rules, hence that all such simulations 
require Q(S log T) space. 

Here we refute Li and Vitanyi’s conjecture: Using a strat- 
egy which of course does not obey Bennett’s game rules, 
we reversibly simulate irreversible space S computations in 
space S. Our strategy is the extreme opposite of Lecerf’s 
“space-hungry” method: While we scrupulously preserve 
space, time becomes exponential in S. We offer two reasons 
to justify interest in such a “time-hungry” method. First, the 
new method is proof that Bennett’s game rules do not cap- 
ture all strategies, leaving open the possibility that, unob- 
structed by Li and Vitanyi’s lower bounds, more efficient re- 
versible simulations of irreversible computation should ex- 
ist. Secondly, for problems in DSPACE(log), Bennett’s sim- 
ulation uses space (log’), while our new method uses only 
log n space and polynomial time. This could be interesting 
in the context of quantum computing, for then, space seems 
to be more of a concern than time. (Storing many entangled 
q-bits seems more difficult than applying basic unitary trans- 
formations.) 

Section 2 in this extended abstract contains preIiminaries 
and discusses the notion of reversibility. Section 3 presents 
our main result, first in detail in me context of linear space, 
and then in the more general context of any space bound. 
Section 4 concludes with a discussion. 
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2 Preliminaries 

We assume familiarity with basic notions of complexity 
theory such as can be found in [HoU179]. We refer to the 
finite set of states of a Turing machine as to its set of “lo- 
cal states”. We assume that, when computing a function f 
on input 2, a deterministic Turing machine halts in a unique 
final configuration with f (5) alone on its tape. 

2.1 Reversible Turing machines 

Definition. A Turing machine is reversible iff the infinite 
graph of M’s configurations, in which an arc (C, C‘) indi- 
cates that M can go from configuration C to configuration 
C’ in a single transition, has indegree and outdegree at most 
one. 

Following Bennett [Be89], we impose the following re- 
strictions on the transitions of a Turing machine and claim 
that these are sufficient to imply reversibility. 

A transition is either moving (i.e. the tape head moves), or 
stationary. Each moving transition must be oblivious (i.e. it 
depends only on the local state and not on the symbol read 
from the tape). We also require that no pair of transitions 
intersect, in the following sense. We say that two station- 
ary transitions intersect if their execution leaves the machine 
in the same local state with the same symbol under the tape 
head. We say that two moving transitions intersect if they 
lead from different local states to the same local state. Fi- 
nally, we say that a stationary transition and a moving tran- 
sition intersect if they lead to the same local state. 

We can extend these syntactic restrictions on the transi- 
tions of a machine to the case of a multi-tape machine, but 
these become trickier to describe. Intuitively however, we 
only require that the local state and symbols under the heads 
uniquely determine the most recent transition. 

2.2 Computing functions reversibly 

Unlike in the deterministic computation of a function f 
on input 2, the tape content beyond the value of f(x) at 
the end of a reversible computation is a concern. In any 
reversible computation model (even other than Turing ma- 
chines), one must know the content of a memory cell in or- 
der to use this cell in some useful computation later. This 
is because erasing is a fundamentally irreversible action. 
Since spoiled memory is no longer useful, it is importantthat 
the memory be restored to its initial state at the end of a re- 
versible computation. 

Two notions of memory ”cleanliness” have been studied 
in the literature: These correspond to input-saving and to 
input-erasing Turing machines [Be89]. In an input-saving 
computation, the final tape content is #x#f(x)#. In an 
input-erasing computation, only f(z) remains on the tape. 

The latter notion was only considered useful when f is in- 
jective. 

In this paper, we observe that reversibly computing an ar- 
bitrary function f in an input-erasing way is possible, with- 
out first embedding f in an injective function. We thus adopt 
the input-erasing mode of computing f ,  even when f is ar- 
bitrary. An interesting feature of our reversible machine on 
input 5 is that the machine will cycle through a11 the inverse 
images of f(z): the lack of injectivity o f f  only translates 
into the fact that the machine cannot tell which of these in- 
verse images was its actual input z. 

3 Main result 

3.1 Linear space 

Theorem 3.1 Any bijectivefunction computed in determin- 
istic space precisely equal to the input length can be com- 
puted reversibly in the same space. 

Proof. We begin by describing the idea intuitively. As 
with Bennett’s reversible simulations of irreversible compu- 
tations, our high level strategy is simple, but care is needed 
when filling in the details because the syntactic conditions 
required at the transition function level can be tricky to en- 
force and verify. 

The main idea for simulating a machine without using 
more space is to reversibly cycle through the configuration 
tree of the machine. For our purposes, it will suffice to con- 
sider the configuration tree as an undirected tree, in which 
each edge is duplicated. We will then in effect perform an 
Euler tour of the resulting tree. A similar technique was used 
by Sipser [SiSO] to simulate an S(n)  space-bounded Tur- 
ing machine accepting a language Y (i.e. with no bounds on 
space when the input ‘U) $! Y )  by a Turing machine deciding 
Y in space S(n). 

Let G, ( M )  be the infinite configuration graph of a sin- 
gle worktape linear space deterministic Turing machine M .  
Write c~ (w)  = #(,:M)~zw3 9 .  * w,# for the initial con- 
figuration of M on input w E C*, that is, the local initial 
state of M is q0,M and M’s input is placed within markers. 
Consider the weakly connected component G, of G, ( M )  
which contains Co(w) and which contains no configuration 
of M using more than linear space. Without loss of gener- 
ality we make the following assumptions concerning G,: 

e The graph G, is finite because M is space bounded. 
(We assume without loss of generality that the machine 
newer moves outside the space markers.) 

‘Induced by the connected component in the associated undirected 
graph. 
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The indegree of Co(w) is zero. This is accomplished 
by preventing the reversible machine M from ever 
transiting back into its initial local state. 

The outdegree of any final configuration of M is zero. 

The head positions in two adjacent configurations of M 
in G, differ by one. This is done by disallowing tran- 
sitions which leave the head stationary. 

G, contains no directed cycle. In other words, we as- 
sume that M’s computation on w necessarily ends in a 
final configuration. Note that some linear space config- 
urations of M could participate in directed cycles, but 
that these could not be weakly connected to CO(W). 

G, is acyclic even when its arcs are replaced by (undi- 
rected) edges. This follows from our previous assump- 
tion because M is deterministic and hence the directed 
G, has outdegree one. 

We think of G, as a tree with a final configuration as root 
at the bottom, and with CO(W) as one of its leaves on top. 
Observe that the irreversibility of M translates precisely into 
the fact that G, is a tree and not simply a line. Our idea is to 
design a reversible Turing machine R whose configurations 
on input w will form a line, which will include, among other 
configurations, a representation of sufficiently many config- 
urations of G, to reach the final configuration of M in G,. 
An obvious idea to design such an R is to have R perform an 
Euler tour of G, (more precisely, of the undirected tree ob- 
tained from G, by replacing each directed arc by two undi- 
rected edges). The difficulty is to ensure reversibility of R 
at the transition function level, 

To simplify the presentation of the machine R, we will 
make use of a construction developed in [CoMc87] for the 
purpose of showing that permutation representation prob- 
lems and tree traversal problems are logspace-complete. 
We now recall this construction. Denote by T the fol- 
lowing tree with nodes {1,2,3,4,5,6,7} and with edges 
{a,  b, c, d, e, f}: 

0 

Let RT = {el, e 3 ,  f2, f47 b3, b6,  c 4 ,  ‘%, d5 , d6,  a 6 ,  a 7 )  bethe 
set of “edge ends”. Note that l f l ~ l  equals twice the number 
of edges in the tree. Two permutations on f l ~  will be con- 
structed. We first construct the “ROTATION permutation” 
X T .  To define TT,  fix, locally at each node N in the tree, an 
arbitrary ordering of the “edge ends incident with N”. Then 
let TT be the product, over each node N, of a cycle permut- 
ing the edge ends incident with N according to this ordering. 
In our example, 

XT = ( b 3 e 3 ) ( ~ 4 f 4 ) ( a 6 b 6 ~ g d 6 ) ,  

where we have chosen the alphabetical ordering of the inci- 
dent edges as the local ordering at each node. We then con- 
struct the “SWAP permutation” CIT, defined simply as a prod- 
uct of as many transpositions as there are edges in T: 

Our interest lies in the permutation XTQ = 

scribed the construction of TT and OT in the context of a 
simple example, the construction as it applies to a general 
tree T should be clear. Among the properties of XT(TT 
proved in [CoMc87], we will only make use of the property 
that XTUT is a single cycle which includes precisely all 
the elements in f l ~ .  Our reversible Turing machine R 
will simulate the computation of XG,QG,. In this way, 
R will traverse the computation tree of M on input w, by 
traversing the cycle XG, g~~ (reversibly, T G ~  a ~ ,  being a 
permutation of R G ~ ) .  Since the unique final configuration 
of M present in G, is necessarily the final configuration 
reached by M on input w, R can reach the same final 
decision as that reached by M on input W. 

In terms of the above construction, we now complete 
the description of the reversible machine R simulating the 
reversible machine M computing a bijective function f : 
C* + C* in linear space. We assume that R’s input tape 
is also R s  (only) worktape. The initial configuration of R 
will have #w# on its tape, and the final configuration of R 
will have #f(w)# on its tape. We assume for ease of pre- 
sentation that the length of w is at least 1. 

Recall that f l ~ ,  is the set of all “edges ends” in the tree 
G, (which we now view as undirected). We view each con- 
figuration of M as a string representing M’s &pe content, 
with the local state q and head position of M recorded within 
this string in an amalgamated symbol (3). Let ec,c’ de- 
note the edge end incident with C of the edge (C, C’). The 
string representing C differs from the string representing C‘ 
in at most the three adjacent positions centered at the amal- 
gamated symbol within C: we call these three positions the 
active positions in G and G‘ with respwt to eC,C’. The re- 
versible machine R will represent ec,ca internally as fol- 
lows: 

(el e3b6C4 fi f4 C6d5d6 (17136 b3). Although We have de- 
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the tape of R will be identical to the tape of M in con- 
figuration C, 

the head position of R will be the position of the head 
of M in C, and 

the finite control of R will store the local state of M in 
C and the three active symbols xyz in C‘ (where either 
x or z is the amalgamed symbol representing M’s head 
position and local state in (7’). 

The reversible algorithm consists in iterating an “Euler 
stage”, which we now describe. The very simple setup and 
termination stages will be discussed afterwards. We adopt 
the following conventions when describing the transitions of 
R: 

when we omit the tape symbol in the range of a transi- 
tion, we mean that the transition leaves the tape content 
unmodified, and 

each local state of R having the syntactic form q+ 
(resp. qt) indicates the presence of the right (resp. left) 
head motion transition q-”’ -+ q, +1 (resp. qt + 
q, - 1): These transitions move the head and switch lo- 
cal state independently from the tape content. 

0 as an illustrative example, the name chosen for the state 
ab,qROTATE3,xyt found in the ROTATION substage be- 
low is intended to convey the information that: 

- q is the local state of the machine M in the con- 
figuration of M whose tape content is the current 
content of R’s tape, 

- ab is some information read off from R’s tape and 
stored in the finite control of R temporarily, 

- 3 identifies this particular ROTATION stage local 
state, and 

- xyz are the three active symbols of the configura- 
tion of M identifying the end, of the current “edge 
end” represented by R, which is stored in R’s fi- 
nite control. 

EULER STAGE: At the beginning of an Euler stage, R in- 
ternally represents some ec,cj E n~,. The goal of the 
stage is to replace ec,ct with B G ~  (TG, (ec,cl)). This is 
done in two substages. 

ROTATION substage: From ec,c’ to TG, (ec,ct). In the 
ROTATION substage, R must replace ec,c’ with the 
edge end ec,ctl coming next in the local ordering 
of the edge ends incident with C, where C’ is not 
necessarily distinct from C”. Hence, 

the tape content and head position of R are unaf- 
fected by this replacement, 

the three active positions (but generally not their 
contents) in C’ and C” are the same, 
C‘ and C” are identical outside the three active 
positions, 
given the contents of the three active positions in 
C (where we view the contents of the active po- 
sitions as including the local state and head po- 
sition, although for example R internally repre- 
sents the local state of M in C separately), the 
TGw-induced function f M , c  mapping the con- 
tents of the three active positions in C’ to the con- 
tents of the three active symbols in C” is well de- 
fined, and 
because TG, is a permutation, f M , C  is bijective. 

Hence, the ROTATION substage consists of reading the 
contents of the three active positions from R’s tape, and 
then modifying the active symbols in the finite control. 
To justify reversibility at the transition function level, 
we propose the following transitions: 

~ E U L E R X Y , ~  b -+ b,qROTATEcXyz 
blqROTATEl,~y,, a ab,qROTATE&y, 

ab,qROTATE2,xyz, b -+ ab,pROTATEzxy, 
ab,qROTATE,,xg,, C -+ ab,qROTATE&/yr~~ 

ab,qROTATE4,,ry,,i 7 b -+ a,qROTATE~,ryIZ, 
a,qROTATE5,x,y,,,,a t q S W A P ~ x , y l , ,  

where zyz are any legal combination of three active 
symbols in C’, q is any local state of M in C, z‘y‘z’ are 
the three active symbols in C” given by f~,c(zyz), 
and a ,  b and c are any tape alphabet symbols of M. 
Recall that, by convention, six head motion transition 
schemata are also implicitly defined above. 

SWAP substage: From T G ~  (ec,cJ)  to BG, (TG, (ec,ct)). 
In the SWAP substage, R must replace ec,,cz = 
TG, ( e c p )  with B G ~  (ecl,c2). By definition of BG,, 

this simply amounts to interchanging the internal 
representations of CI and C2. To do this, it suffices 
to interchange the three active symbols of CI with 
the three active symbols of C2. Such an interchange 
is obviously reversible globally. At the transition 
function level, the details must deal with the chosen 
internal representation of e q  ,cz . According to the 
head position in C2 we will distinguish two cases: 

(CXlC2) = (a(:,., ($)Ye) 
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SETUP STAGE: The only setup required consists in having 
three special symbols in place of rcyz in the initial R config- 
uration ,,,,EULER$$$. The function f ~ , c  used in defin- 
ing the first ROTATION should be the identity function, and 
the SWAP stage must have the effect of processing a virtual 
transition from a virtual configuration of A4 into M’s initial 
configuration. 
TERMINATION STAGE: Euler stages are repeated until 
the termination stage is triggered. This occurs when an Eu- 
ler stage finds that the local state of M is M’s unique final 
local state. In that case, R halts and the desired output f (w) 
is the sole content of R’s tape. 

Corollary 3.2 Any function computable in space n can be 
computed in space n with a reversible TM. 

Proof. This follows directly from the proof of Theorem 
3.1 because the latter does not appeal to the injectivity o f f .  
We make the observation that the lack of injectivity simply 
results in the tree G, containing more than one legal ini- 
tial configuration of M: one such initial configuration cor- 

m 
Remark. The reversible simulation in Corollary 3.2 does 
not keep track of the initial configurations along the Euler 
tour of Gw, so that, if the machine is reversed, it cannot 
distinguish between these. However, the Euler tour of G, 
canonically orders these initial configurations. It is possible 
to modify our simulation in order to count the number of ini- 
tial configurations encountered (at the expense of doubling 
the space used). If we allowed writing this count on the out- 
put tape together with f(w) (in effect rendering f injective 
in a “minimal” way), then the reversible machine R could 

This completes the proof of Theorem 3.1. 

responds to each element in f-’(f(w)). 

retrieve w from its output when run in reverse. 

a machine with a read-only input tape and a work tape. In- 
formally, when the space bound is not linear or is a priori 
unknown, we will successively cycle through the configura- 
tion trees GL, k 2 1, for k the amount of space on the work 
tape between the markers. The work tape is initially set to 
$ $, and whenever the “Euler tour” returns to the special ini- 
tial configuration, the space in incremented and another tour 
is initiated. As soon as k = S(n) is reached the simulation 
will find the answer and stop. Details will appear in the final 
version of this paper. 

Corollary 3.4 Any language in DSPACE(1og n) is accepted 
by a reversible Turing machine operating in logarithmic 
space (and polynomial time). 

4 Discussion 

In this paper we showed determinism to coincide with re- 
versibility for space. It is interesting to compare this with the 
equivalence of deterministic time and reversible time, which 
is simply shown by storing the whole computational history 
on a separate write-only tape [Le63, Be891. It is remark- 
able that this is the very same construction which proves the 
equivalence of nondeterministic time and symmetric2 time 
[LePa82]. This duality of the pairs nondeterminism versus 
symmetry and determinism versus reversibility is tied to the 
question of whether transitions can be regarded as directed 
or as undirected: This makes no difference if the indegree of 
every configuration is at most one. 

The duality mentioned above and our new results point 
to the question of the relationship between nondeterministic 
space and symmetric space. In this case however, some re- 
cent results like the inclusion of symmetric logspace in par- 
ity logspace, SC2, or DSPACE(~O~’’~ n) [KaWi93, Ni92, 
NiSzWi921 suggest that the computational power of nonde- 
terministic space and symmetric space differ. 
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