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Abstract

Recent work has shown that, in generative modeling, cross-entropy loss improves
smoothly with model size and training compute, following a power law plus
constant scaling law. One challenge in extending these results to reinforcement
learning is that the main performance objective of interest, mean episode return,
need not vary smoothly. To overcome this, we introduce intrinsic performance,
a monotonic function of the return defined as the minimum compute required to
achieve the given return across a family of models of different sizes. We find that,
across a range of environments, intrinsic performance scales as a power law in
model size and environment interactions. Consequently, as in generative modeling,
the optimal model size scales as a power law in the training compute budget.
Furthermore, we study how this relationship varies with the environment and with
other properties of the training setup. In particular, using a toy MNIST-based
environment, we show that varying the “horizon length” of the task mostly changes
the coefficient but not the exponent of this relationship.

1 Introduction

Recent studies of how neural network performance varies with model size and training compute have
found these relationships to be governed by smooth power laws [Kaplan et al., 2020, Henighan et al.,
2020, Droppo and Elibol, 2021, Ghorbani et al., 2021]. These studies have focused primarily on
generative modeling, in which the training objective is cross-entropy loss, and have found test loss to
scale smoothly. In this work we seek to extend these results to reinforcement learning, in which there
is generally no cross-entropy loss.

In some reinforcement learning environments, there is still a performance metric that varies smoothly
[Team et al., 2023]. For example, in competitive games, it is often possible to assign Elo ratings
to players such that scaled differences in Elo ratings give approximate logit probabilities of victory.
Recently it has been shown that, in the board games Hex [Jones, 2021], Connect Four and Pentago
[Neumann and Gros, 2022], the exponentiated Elo rating of a policy trained using AlphaZero [Silver
et al., 2018] follows a power law in training compute (within a certain Elo range). We call metrics
that follow such simple relationships natural performance metrics.

However, in other reinforcement learning environments, there may be no obvious natural performance
metric. For example, there may be no reason to expect the number of objects collected in a video
game to vary smoothly. One approach to overcoming this difficulty is to use “broken” power laws
[Caballero et al., 2022]. As an alternative, we introduce intrinsic performance, which is defined to be
equal to training compute on the compute-efficient frontier of the tradeoff between model size and
environment interactions. This causes the relationship between performance and training compute to
follow a power law by definition, thereby making it possible to study the remaining relationships
between performance, model size and environment interactions.

We study these relationships across a range of environments: the easy and hard modes of environments
from Procgen Benchmark [Cobbe et al., 2020]; a 1v1 version of Dota 2 [OpenAI et al., 2019]; and a toy
environment based on MNIST [LeCun, 1998] for which we vary the “horizon length”. Across these
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environments, we find intrinsic performance to scale as a power law in model size and environment
interactions, in much the same way as the analogous quantities in generative modeling.

One consequence of this scaling law is that, as in generative modeling, the optimal model size for
a given training compute budget follows a power law. We study in detail how the coefficient and
exponent of this relationship vary with properties of the training setup, including: the difficulty mode
of environment, for Procgen; the horizon length of the task, for the MNIST-based environment; the
period of training used to fit the power law; and whether the width or depth of the model is scaled.
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(a) Using the usual metric of mean episode return.
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(b) Using intrinsic performance instead.

Figure 1: Learning curves as a function of total training compute for StarPilot, an environment from
Procgen Benchmark, using CNNs of different widths. Mean ±1 sample standard deviation over three
seeds shown.

2 Scaling laws without cross-entropy loss

2.1 Intrinsic performance

In generative modeling, cross-entropy test loss scales smoothly with training compute, following a
power law plus constant scaling law [Henighan et al., 2020]. However, in reinforcement learning
(RL), there is generally no cross-entropy loss, and the usual objective of mean episode return need
not scale so smoothly.

For example, consider StarPilot, a side-scrolling shooter from Procgen Benchmark [Cobbe et al.,
2020]. The agent receives a reward of 1 for destroying each enemy, and the episode continues until
either the agent is destroyed, or the agent reaches the end of the level and obtains a bonus reward
of 10. There is no reason to expect mean episode return in this game to scale smoothly. Indeed, it
takes some ability with aiming and dodging to reach a mean episode return of 5 or 10, but not much
additional skill to reach a mean episode return of 15 or 20. This irregular difficulty profile is reflected
in the uneven shape of learning curves for this environment (see Figure 1(a)).

It may be tempting to conclude that the scaling law methodology cannot be applied to such an
environment. However, in generative modeling, there are smooth scaling laws that do not depend on
test loss per se. For example, the model size that achieves the minimum test loss for a given compute
budget scales as a power law with compute. In order to study such relationships in the context of
RL, we would like a performance metric that behaves like test loss, i.e., some monotonic function
of the return that scales as a power law with compute. We achieve this with our notion of intrinsic
performance by simply using compute itself as our performance metric.

Definition. A scalable model family is collection of models trained in a uniform way, parameterized
by the model size and the total compute used in training. Given a scalable model family, the intrinsic
performance of an arbitrary policy is the minimum compute required to train a model of any size in
the family to reach the same return (averaged over random seeds).

Another way of explaining this definition is to consider learning curves as a function of compute
for a family of models of different sizes, as in Figure 1. The maximum performance over all model
sizes defines the compute-efficient frontier. When using the usual metric of mean episode return (as
in Figure 1(a)), the compute-efficient frontier need not follow any particular trend. However, when
using intrinsic performance instead (as in Figure 1(b)), the efficient frontier is mapped onto the line
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Figure 2: Learning curves as a function of total training compute for StarPilot, together with their
power law fits. The asymptotes show the E → ∞ limits of the power law fits, representing the
predicted performance at convergence. The efficient points show where the power law fits are tangent
to the efficient frontier. Mean over three seeds shown.

y = x by definition. This reveals the regularity of the learning curves, which, as we shall see next,
now follow a power law trend.

We describe in detail how we compute intrinsic performance in Appendix A.

2.2 The power law for intrinsic performance

Our main empirical result is that intrinsic performance I scales approximately as a power law with
model parameters N and environment interactions E,

I−β =

(
Nc
N

)αN
+

(
Ec
E

)αE
, (1)

where αN , αE , β, Nc and Ec are positive constants.

This is essentially the same as the corresponding scaling law for language models [Kaplan et al.,
2020, equation (1.6)], but with test loss replaced by I−β . Although it appears that we have introduced
an additional exponent β, the intrinsic definition of I means that β is actually determined by αN and
αE (see Lemma 1).

The intuition behind this equation is that, when the number of interactions is not bottlenecked
(E → ∞), I scales as a power law in N , and when model size is not bottlenecked (N → ∞), I
scales as a power law in E.

2.3 Optimal model size vs compute

An important implication of equation (1) is that the optimal model size for a given compute budget
scales as a power law in that compute budget.

More precisely, we assume that total training compute is proportional to NE (ignoring the compute
required to run the environment, at least for now). Hence, for a given compute budget, there is a
trade-off between N and E (the optimum of which defines a point on the compute-efficient frontier).
What we will now show is that, under equation (1), the optimal value of N scales as a power law in
the compute budget, with an exponent that we will specify.
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Since training compute is proportional to NE, for convenience we choose units of compute such
that training compute equals NE exactly (although in plots we will continue to display compute in
FLOPs). This implies that I = NE along the compute-efficient frontier.

Lemma 1. If I satisfies equation (1) and I = NE along the compute-efficient frontier, then the
compute-efficient frontier is described by the equation

αN

(
Nc
N

)αN
= αE

(
Ec
E

)αE
. (2)

Moreover, once αN and αE are chosen, β and NcEc are determined:

1

β
=

1

αN
+

1

αE
and

1

NcEc
=

(
1 +

αN
αE

) 1
αN
(
1 +

αE
αN

) 1
αE

.

For a proof, see Appendix F.

Substituting equation (2) into equation (1), it follows that along the compute-efficient frontier,

N = Nc

(
1 +

αN
αE

) 1
αN

C
1

1+
αN
αE ,

where C := NE. In other words, for a given compute budget C, the optimal model size N scales as

N ∝ C
1

1+
αN
αE .

3 Experimental setup

We ran experiments using variety of RL environments:

• Procgen Benchmark [Cobbe et al., 2020]: CoinRun, StarPilot and FruitBot in both easy
and hard modes, separately varying CNN width and depth.

• Dota 2 [OpenAI et al., 2019]: a 1v1 version of the game, varying LSTM size.

• MNIST: an RL environment in which the agent has to correctly label a handwritten digit
from MNIST [LeCun, 1998], using hyperparameters to artificially alter the “horizon length”
of the task, varying CNN width.

All our experiments used a variant of either the PPO algorithm [Schulman et al., 2017] or its close
cousin PPG [Cobbe et al., 2021], along with the Adam optimization algorithm [Kingma and Ba,
2014].

The remainder of this section discusses further details of our experimental setup. Hyperparameters
for all our experiments are given in Appendix B.

3.1 Procgen Benchmark

For our Procgen Benchmark experiments, we used CoinRun, StarPilot and FruitBot. We chose these
environments because they have lower-variance learning curves than other Procgen environments,
and because CoinRun’s binary reward enabled us to study the scaling of natural performance metrics
(see Section 4.5). We used both the easy and hard difficulty modes of these environments to see if
this would have an effect on the scaling constants.

We used PPG-EWMA [Hilton et al., 2021] with a fixed KL penalty objective [Cobbe et al., 2021],
and trained for 200 million environment interactions.

We used the CNN architecture from IMPALA [Espeholt et al., 2018] and conducted both width-
scaling and depth-scaling experiments. For our width-scaling experiments, we varied the total number
of parameters from 1

64 of the default to 8 times the default, rounding to integer numbers of channels.
For our depth-scaling experiments, we varied the number of residual blocks per stack from 1 to 64,
and used 1

4 of the default width since the default number of residual blocks per stack was only 2.
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3.2 Dota 2

For our Dota 2 experiments, we used a 1v1 version of the game to save computational expense.

Following OpenAI et al. [2019], we used PPO, but we adjusted the asynchronous setup to ensure that
training used only on-policy data with no data reuse. We used 8 parallel GPU workers and trained for
between 13.6 billion and 82.6 billion environment interactions.

We used an LSTM architecture and varied the width of the network, with the sizes of the embedding
and hidden state varying from 8 to 4096.

3.3 MNIST

Our MNIST environment samples a handwritten digit from the MNIST training set uniformly and
independently random at each timestep, and provides an immediate reward of 1 for a correct label
and 0 for an incorrect label. There are no episode boundaries, and so we measure mean training
accuracy instead of mean episode return.

The use of immediate rewards with no episode boundaries allows the horizon length of the task
to be artificially controlled by varying the hyperparameters of our method advantage estimation,
GAE [Schulman et al., 2015]. First, we set the GAE credit assignment parameter λ to 1, so that the
algorithm assigns credit for each reward to all previous actions, instead of assigning more immediate
credit. Then we vary the GAE discount rate γ, so that the algorithm discounts future rewards at this
rate. In separate experiments, we set γ = 1 − 2

h+1 for different values of the “horizon length” h
ranging from 1 to 256. (This equation is equivalent to saying that an exponentially-weighted moving
average with decay parameter γ has the same center of mass as the interval [0, h− 1].)

We used PPO-EWMA [Hilton et al., 2021] with rollouts of length 512 (twice as long as our maximum
value of h), and trained for 225 environment interactions.

We used a simple CNN architecture with ReLU activations and the following layers: a 5 × 5
convolutional layer with 40 channels, 2×2 max pooling, a 3×3 convolutional layer with 80 channels,
2× 2 max pooling, and a dense layer with 1,000 channels. We scaled the width of this network by
varying total number of parameters from 1

64 of the default to 8 times the default. We used separate
policy and value function networks because we did not expect there to be much transfer between the
two objectives, since the environment samples digits independently.

3.4 Learning rates

Although we would not expect our qualitative results to change much, our quantitative results
such as scaling exponents depend crucially on using well-tuned hyperparameters. By far the most
important hyperparameter to tune in our setup is the Adam learning rate, whose optimal value can
vary substantially with model size and compute budget.

When varying model size, we found that a good heuristic is to keep the Adam learning rate propor-
tional to the initialization scale. For our width-scaling experiments, this means keeping the Adam
learning rate proportional to 1/

√
width, since we use Kaiming He initialization [He et al., 2015]. For

our Procgen depth-scaling experiments, which use a residual network, it means keeping the Adam

learning rate proportional to 1/

√
depth

1
L , where L is the number of layers per residual block (L = 2

in our case), since we use an initialization similar to Fixup initialization [Zhang et al., 2019]. For
Procgen and MNIST, we tuned the learning rate at one model size and followed this heuristic to select
the learning rate for the other model sizes. For Dota 2, we tuned the learning rate separately for each
model size, but this amounted to following approximately the same heuristic.

When varying the compute budget for a given model size, it can actually be necessary to use separate
training runs for each compute budget, each with its own learning rate schedule, rather than taking
different snapshots at different points of the same training run [Hoffmann et al., 2022]. Unfortunately,
due to the challenge of carefully tuning learning rate schedules for RL and the expense of multiplying
the number of training runs, we took the latter approach. To mitigate the impact of this, we found a
learning rate schedule that seemed to work well for a variety of compute budgets, which we explain
in Appendix B.1. Nevertheless, the values of our scaling exponents should be considered uncertain
because of this.
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4 Results

Our main result is that our power law for intrinsic performance, equation (1), holds across envi-
ronments and model sizes, at least after an initial transient period of training (which we discuss in
more detail in Section 4.3). This result is supported by the closeness of the power law fit to our
learning curves, as shown in Figure 2 for StarPilot and in Appendix C for all our environments. Our
methodology for fitting this power law is described in Appendix A.

It is interesting to study the sensitivity of the exponents αN and αE , which govern the scaling
behavior of I with N and E (and determine the other exponents of interest). The fitted values of
these exponents for the different environments are shown in Figure 3. The numerical values of all of
the fitted constants may be found in Appendix E.

Although our measurements of these exponents are uncertain, due to the limitations discussed in
Section 5.3, we make a number of observations:

• The primary determinant of αN and αE is the domain (Procgen, Dota 2, or MNIST), which
we expect is a consequence of the fact that so many experimental details are shared within
each domain.

• Within MNIST, increasing the horizon seems to lower αE , but as we explain in Section 4.2,
this effect is confounded by a measurement problem caused by under-training.

• Within Procgen, the easy and hard modes of each Procgen game tend to have closer
exponents to one another than to other Procgen games. We believe that this is because
identifying visual features is a core part of Procgen, and the two modes of each game have
very similar observation distributions.
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• The Procgen difficulty mode does not obviously have any particular effect on the scaling
exponents. We hypothesize that humans tend to judge a task as easier when a near-perfect
score can be achieved with less compute, even if it takes a lot of additional compute to eke
out the final few points. Conversely, it does not seem to matter to the RL algorithm exactly
how the score maps on to intrinsic performance (i.e., the compute required).

4.1 Optimal model size vs compute

As explained in Section 2.3, our power law for intrinsic performance implies that, for a given compute
budget, the optimal model size scales as a power law with exponent 1

1+αN/αE
.

Figure 4 shows these inferred relationships for our different environments, along with some generative
modeling relationships taken from the literature. The full equations for these relationships are
provided in Appendix E.

The exponent 1
1+αN/αE

varied between around 0.40 and 0.65 for Procgen and 0.66 and 0.80 for
MNIST, and was around 0.76 for Dota 2. By comparison, the corresponding exponent for language
modeling, which was carefully measured by Hoffmann et al. [2022], is around 0.50. Previous work
by Kaplan et al. [2020] and Henighan et al. [2020] measured this exponent less carefully but using a
methodology that more closely matches our own, and found an exponent of around 0.73 for language
0.65 for 32x32 images.

An intriguing conjecture, which is also suggested by theoretical considerations [Bahri et al., 2021],
is that the exponent of this relationship would be around 0.5 in every domain if it were measured
carefully enough (i.e., with optimal hyperparameters and enough random seeds). Given the limitations
of our experiments, we consider our results to be inconclusive on this question.

Nevertheless, it is clear that the scaling coefficient of this relationship varies significantly between
domains. With the exception of our toy MNIST environment, the optimal model size for RL for

8



a given compute budget is consistently smaller than for generative modeling, in some cases by
multiple orders of magnitude. We believe that this is because RL tasks have a longer horizon length
than generative modeling in some sense, and explore this hypothesis with our MNIST environment
in Section 4.2. Another possibility is that the arithmetic intensity (i.e., the number of FLOPs per
parameter in a forward pass) of the architecture is a confounder, which we discuss in more depth in
Section 4.4.

4.2 Effect of task horizon length

As explained in Section 3.3, for our MNIST experiments, we artificially altered the “horizon length”
of the task by setting the GAE credit assignment parameter λ to 1 and varying the GAE discount rate
γ.

The expected effect of varying γ in this context is given by the following theoretical result.

Proposition 1. Consider an MDP with independent timesteps (by which we mean that each st is
identically distributed and independent of st−1 and at−1, and episodes never terminate). Suppose we
train a model with parameters θ on this MDP using Vanilla Policy Gradient,1 estimating advantages
using GAE with γ = 1 − 2

h+1 and λ = 1, and working with separate policy and value function
networks. Then the covariance matrix of the policy gradient is approximately

Σθ +Πθ

(
h+

1

h
− 2

)
for some symmetric positive semi-definite matrices Σθ and Πθ that do not depend on h.

For a proof sketch, see Appendix G.

Intuitively, this result says that gradient variance may be decomposed into two pieces: one piece that
is inherent to the task (the Σθ term), and one piece that comes from imperfect credit assignment (the
Πθ term). For example, when h = 1 (i.e., γ = 0), credit is correctly assigned to the previous action
only, and hence the second term vanishes. Ignoring the 1

h term (since h ≥ 1), we may stylize this
result as: gradient variance is an affine function of h (i.e., a linear function with an intercept).

This can be directly translated into a statement about sample efficiency, since multiplying the gradient
variance by some factor c can be exactly compensated for by multiplying the batch size by c, which
multiplies the number of samples used by c. Hence in order to reach a given performance level,
the number of environment interactions required should be an affine function of h. This affine
function will come from integrating certain functionals of Σθ and Πθ over the course of training,
and will therefore depend both on the model architecture and on the choice of performance level.

To test this prediction, we looked at the number of environment interactions required to reach a
1% failure rate (i.e., 99% training accuracy) on MNIST as a function of the horizon length h. Our
results are shown in Figure 5, along with affine fits. As expected, the number of interactions closely
follows an affine function of the horizon length, although the fit is less good for shorter horizons and
larger models. At very short horizons, the number of interactions even decreases with the horizon
length, suggesting a hyperparameter issue (perhaps a suboptimal learning rate schedule, or reward
normalization implicitly decreasing the KL penalty and entropy bonus).

The implication of this for our optimal model size vs compute scaling law is that once h becomes large
enough, further increasing h should lead to a proportional increase the compute budget corresponding
to each given optimal model size, without changing the scaling exponent of this relationship. This
is because the intercept term of the affine function will eventually become dominated by the term
involving h, and so the number of environment interactions required to reach a given performance
level will eventually scale approximately proportionally to h. (For small values of h, however, the
relationship between the two components of the covariance matrix of the policy gradient may have a
more complex dependence on model size.)

This effect is visible in Figure 4, where the main impact of increasing the horizon length is to shift
the optimal model size vs compute curve to the right. The curve also gets shallower as the horizon

1Vanilla Policy Gradient is a primitive version of PPO, explained here: https://spinningup.openai.
com/en/latest/algorithms/vpg.html
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length is increased, but this effect is confounded by a measurement problem caused by under-training,
which we explain in more detail in Section 4.3.

Our MNIST environment is useful because our it allows us to vary the task horizon length in a fine-
grained, quantifiable way by varying γ. But our analysis of this environment relies on the assumption
of independent timesteps, which does not hold in most environments (and in particular removes the
need for exploration). Nevertheless, our results are suggestive of a more general explanation for the
large differences in optimal model size for a given compute budget between different environments:
that different environments have different task horizon lengths in a more general sense. We speculate
that, in this more general sense, task horizon length is influenced by how long rewards are delayed
for relative to the actions the agent is currently learning (which may increase throughout training as
the agent learns skills with feedback loops that are less and less tight), and that γ determines only an
upper bound on the task horizon length.

4.3 Variability of exponents over training

Although our power law for intrinsic performance holds across environments and model sizes, we
only obtain a good fit by excluding an initial transient period of training. Put another way, the scaling
constants vary over the course of training.

This phenomenon is clearest with with our MNIST environment, since we were able to use many
random seeds to reduce variance. Recall that in this environment, the agent observes a randomly
sampled MNIST training set digit each timestep, and the horizon length of the task is artificially
controlled using the GAE discount rate γ, as explained in Section 3.3. We fitted our power law to
three different periods of training for this environment: an early period (216–219 interactions), a
middle period (219–222 interactions), and a late period (222–225 interactions).

Figure 6 shows the fitted values of αN and αE for these different periods of training. We found αE
to be significantly lower during the early and middle periods of training, especially for the shorter
horizon lengths.

In order to accurately measure the scaling constants for optimal model size vs compute, it is best to
use a period of training during which the learning curves reach the compute-efficient frontier, since
otherwise the measurement is an extrapolation. As shown in Figure 7, this is always in the late period
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of training, if at all. For this reason, we use the late period of training for all of our results on MNIST
outside of this section.

Figure 7 also shows that, for the longer horizon lengths, the learning curves of the larger models
did not reach the compute-efficient frontier even during the late period of training. Hence our
measurements of 1

1+αN/αE
, the exponent for the scaling of optimal model size with compute, are

likely underestimates for these longer horizon lengths.

For our other environments, we found that it was enough to exclude only the first 1
64 of training

in order for our power law for intrinsic performance to be a good fit around the compute-efficient
frontier. This is similar to what is needed for the corresponding law for language [Kaplan et al., 2020,
Figure 4, right]. Nevertheless, it is possible that the measurement problem identified in this section
affects some of our other results.

4.4 Scaling depth

Most of our experiments involved scaling the width of our networks, but for Procgen, we also tried
scaling the depth, as explained in Section 3.1. We found that our power law for intrinsic performance
still held, but with more noise than the width-scaling experiments, as a consequence of using fewer
model sizes. The fitted values of αN and αE for the depth-scaling experiments lay in a similar region
to the width-scaling experiments, but there were no clear relationships between the depth-scaling
exponents for the different environments, nor between the width-scaling and depth-scaling exponents
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for a given environment. Plots of our results may be found in Appendix C, and the numerical values
of the fitted constants may be found in Appendix E.

The main difference between our width-scaling and depth-scaling results is that the optimal model
size for a given compute budget was significantly smaller for our depth-scaling experiments, but
this was an artifact of how we counted parameters and FLOPs. As explained in Appendix D, we
only included the part of the network being scaled in our parameter and FLOP calculations, which
meant excluding the final dense layer of the network for our depth-scaling experiments, but not our
width-scaling experiments. If this layer had been included in our depth-scaling calculations, it would
have accounted for between 16% and 90% of the parameters but only 2% or fewer of the FLOPs,
depending on the depth.

Interestingly, as shown in Figure 8, the optimal model size vs compute scaling laws for our width-
and depth-scaling experiments become much more similar if we measure model size using FLOPs
per forward pass rather than parameters. This is because excluding the final dense layer from the
parameter and FLOP calculations significantly increases the arithmetic intensity (i.e., FLOPs per
parameter in a forward pass) as calculated for the depth-scaling experiments. This suggests that,
when comparing models with very different arithmetic intensities, FLOPs per forward pass may
be a better measure of model size than parameters (or perhaps arithmetic intensity should even be
considered as an additional independent variable).

4.5 Natural performance metrics

Although in general there may be no obvious performance metric that scales smoothly with model
parameters and environment interactions, motivating our use of intrinsic performance, there may still
be such a metric in some environments. We call such metrics natural performance metrics, and we
were able to find them in a couple of our environments:

• CoinRun: In the CoinRun environment from Procgen Benchmark, the episode return is
always either 10 or 0, corresponding to whether or the agent successfully collects the coin at
the end of the level. We found the fail-to-success ratio F := 10−R

R , where R is the mean
episode return, to be a natural performance metric for CoinRun. This is similar to the failure
rate 1 − R

10 , since R is close to 10 for most of training, but provides a slightly better fit
early in training, since it does not have an upper bound of 1. Note that the logarithm of the
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fail-to-success ratio can also be thought of as the logit function (inverse sigmoid) of the
failure rate.

• Dota 2: Dota 2 is a two-player game, and so the performance of a policy must be measured
by comparing it to other policies. The standard method for this is the TrueSkill rating
system,2 in which differences in rating between policies correspond to win probabilities
when the policies are played against one another, similarly to the Elo rating system. We
found TrueSkill to be a natural performance metric for Dota 2.

Specifically, we found that our power law for intrinsic performance, equation (1), still roughly held
with the left-hand side replaced by a suitable function of the natural performance metric. For CoinRun,
we used the fail-to-success ratio directly, but discarded data from early in training where this ratio
was above 0.5. For Dota 2, we used e−αTT , where T is TrueSkill and αT is a fitted constant, which
was needed because the scale of T is arbitrary.

Figures 9 and 10 compare the efficient frontier fits for intrinsic performance and for the natural
performance metric, for CoinRun and Dota 2 respectively. The fits match closely, except for Dota 2 at
higher levels of TrueSkill. We conjecture that Dota 2 has an analog of an irreducible loss [Henighan
et al., 2020], representing the maximum attainable TrueSkill for the family of models we trained.

We explored introducing an additional fitted constant T ∗ for this maximum attainable TrueSkill, and
using either of the functional forms e−αTT − e−αTT∗

and (T ∗ − T )αT . However, it was unclear
to us which of these forms made the most theoretical sense, and we were unsure whether we could
justify the extra degree of freedom given the lack of data at higher levels of TrueSkill.

The fitted constants for all of these alternative power laws for both CoinRun and Dota 2 are given in
Appendix E. Interestingly, for CoinRun, the values of the scaling exponent for the fail-to-success
ratio F in terms of intrinsic performance I , corresponding to the slopes of the lines in Figure 9, are
similar between the two difficulty modes: F ∝ I−0.40 in easy mode and F ∝ I−0.48 in hard mode.

5 Discussion

5.1 Extrapolating sample efficiency

We may use our power law for intrinsic performance, equation (1), to extrapolate sample efficiency
to unseen model sizes N and environment interactions E. For example, in Figure 11, we show the

2https://en.wikipedia.org/wiki/TrueSkill

13

https://en.wikipedia.org/wiki/TrueSkill


0.0 0.5 1.0 1.5 2.0

Interactions ×108

5

10

15

20

25

30

M
ea

n
ep

is
od

e
re

tu
rn

Parameters
104.3

104.6

104.9

105.2

105.5

105.8

106.1

106.4

106.7

107.0

Learning
curve
Power law fit
Power law
N → ∞
limit

Sample efficiency, StarPilot, hard

Figure 11: Learning curves for StarPilot (hard
mode, scaling width), together with their power
law fits, and the N →∞ limit of the power law.

10−7 10−6 10−5 10−4 10−3 10−2

Compute (PF-days)

103

104

105

106

107

Pa
ra

m
et

er
s

Procgen (width)
CoinRun
StarPilot
FruitBot
Easy
Hard

Dota 2
1v1

GM (various)

MNIST horizons
1–256

Optimal model size vs compute, Ne = 105

Figure 12: Optimal model size vs compute, taking
into account a hypothetical compute cost per en-
vironment interaction equal to that of a model of
size Ne = 105. See Figure 4 for the full legend.

extrapolated learning curve for StarPilot in the infinite-width limit. This reaches the final performance
of our largest model in about half the number of environment interactions. Note, however, that
without a natural performance metric, we cannot extrapolate to unseen performance levels.

It is natural to ask how this extrapolated infinite-width limit compares to human sample efficiency. On
StarPilot (slowed down to 3 frames per second), a human can reach a mean episode return of around
20 after a few episodes, whereas the extrapolated infinitely-wide model takes 18 million interactions,
around 10,000 times as many. This is not really a fair comparison though, because much of the
challenge in Procgen is to learn to identify basic visual features, which humans are already able to do.
For Dota 2, we crudely estimate that it would take a human around 50–500 hours of gameplay to
reach the performance of the extrapolated infinitely-wide LSTM after 5 billion interactions, a factor
of 100–1,000 in sample efficiency. This comparison may be fairer, because Dota 2 has a structured
observation space and is more challenging than StarPilot, although it still draws on many pre-existing
human intuitions. Of course, our models were all trained from scratch, and we should expect this
factor to be smaller for models that have been pre-trained to learn useful representations.

5.2 Cost-efficient reinforcement learning

In the reinforcement learning literature, sample efficiency is usually taken to be the primary metric
of algorithmic progress. This can be thought of as focusing on the cost of running the environment,
but not the algorithm. At the other extreme, we have so far focused on the computational cost of the
algorithm, but not on the cost of the environment. However, it is straightforward to now take both
into account. To do this, let Ne be the cost of the environment, measured in terms of the number of
parameters in a model with the same cost per interaction. Thus the total cost of both the algorithm
and the environment is proportional to (N +Ne)E.

The cost-efficient frontier is now described by the following generalization of equation (2):(
1 +

Ne
N

)
αN

(
Nc
N

)αN
= αE

(
Ec
E

)αE
.

Substituting this into our power law given by equation (1), it follows that along the cost-efficient
frontier,

C =

(
1 +

Ne
N

)(
1

1 + αN
αE

(
1 + Ne

N

)) 1
αN

+ 1
αE
(
N

Nc

)1+
αN
αE

,
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where C := (N +Ne)E. Thus for a given budget C, the optimal model size N scales as the same
power law in C as before once N � Ne, and it is only efficient to take N � Ne when C is very
small. This validates and makes precise the rule-of-thumb that it is usually inefficient to use a model
that is much cheaper to run than the environment, at least when training from scratch.

To illustrate this relationship, Figure 12 shows the optimal model size vs compute relationship from
Figure 4, but incorporating a fixed hypothetical compute cost associated with each environment
interaction.

5.3 Limitations

Our experiments have several limitations:

• As explained in Section 3.4, we did not use separate training runs for each compute budget,
each with their own learning rate schedule, which can be necessary to accurately measure
scaling exponents [Hoffmann et al., 2022]. We tried to mitigate this by using a learning rate
schedule that worked well for a variety of compute budgets, as explained in Appendix B.1,
but this may not have been enough.

• As explained in Section 4.3, the variability of exponents over training gives rise to a
measurement problem. We mitigated this to some extent by excluding data from early in
training when fitting our power law, but this does not fully correct for the fact that some of
our models were under-trained relative to the compute-efficient frontier.

• We did not carefully optimize the aspect ratios of our models, instead scaling width and
depth separately. More generally, suboptimal hyperparameters or other problems with our
training setups could have lead to errors in our measurements of scaling constants.

• Learning curves in reinforcement learning are often very high-variance, adding significant
noise to power law fits. We mitigated this to some extent by choosing environments with
relatively low-variance learning curves and using multiple random seeds, but a lot of variance
still remained.

As a result of these limitations, we do not think conclusions that depend on the precise fitted values of
our scaling constants can be drawn with confidence, although we consider our mitigations sufficient
for more qualitative conclusions. We are excited for future work to fix these limitations, explore
new domains, and more carefully disentangle the effects of the choice of algorithm, architecture and
hyperparameters as well as properties of the environment.

5.4 Forecasting compute requirements

The scaling of optimal model size with compute is a key input into the biological anchors framework
for forecasting transformative artificial intelligence [Cotra, 2020]. In this framework, the human brain
is used as a biological anchor for estimating the number of parameters in a transformative model, and
optimal model size vs compute scaling laws are used to forecast the total compute required to train
such a model. In this section we summarize the main implications of our work for this framework.

Scaling exponents for reinforcement learning lie in a similar range to generative modeling. The
exponent for the scaling of optimal model size with compute, 1

1+αN/αE
, varied between around 0.4

and 0.8 for our environments, a range that encompasses previous measurements of this exponent for
generative modeling. However, as discussed in Section 5.3, we do not think our measurements of this
exponent should be taken literally, due to the limitations of our experiments. The results of Hoffmann
et al. [2022] and Bahri et al. [2021] suggest the possibility that this exponent would be around 0.5 in
every domain if it were measured carefully enough, and we consider our results to be inconclusive on
this question.

Scaling coefficients for reinforcement learning vary by multiple orders of magnitude. The

coefficient for the scaling of optimal model size with compute,Nc
(
1 + αN

αE

) 1
αN , varied substantially,

enough that we do not think this variation is attributable only to the limitations of our experiments.
For example, the scaling exponents for MNIST (with a horizon length of 1) and Dota 2 are very
similar, but a model of the same size needs to be trained for around 2,000 times longer on Dota 2
than on MNIST to be compute-efficient. By comparison, Henighan et al. [2020] found generative
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modeling to require around 20 times as much training on 32x32 images than on language. Moreover,
our analysis of the effect of the task horizon length gives a plausible mechanism for this variation.

Arithmetic intensity may confound scaling coefficients. As discussed in Section 4.4, the coefficient
for the scaling of optimal model size with compute can be affected by the arithmetic intensity (i.e.,
the number of FLOPs per parameter in a forward pass) of the model. This alone does not explain the
large variation in this coefficient between MNIST and Dota 2, for example, but it may explain some
of the other variation. We hypothesize that, when comparing models with very different arithmetic
intensities, due to parameter sharing or methods such as mixture of experts, it may be better to
measure model size in FLOPs per forward pass rather than in parameters.

Number of samples required is an affine function of the task horizon length. We study the effect
of the task horizon length using a toy MNIST-based environment in Section 4.2. Both theoretically
(see Proposition 1) and empirically, the number of samples required to reach a given level of
performance grows with the horizon length as an affine function (i.e., a linear function with an
intercept) that depends on both the model size and the target performance level. However, our
analysis makes a simplifying assumption of independent timesteps, which does not hold in most
environments. In particular, we do not analyze the need for curricula and/or exploration to solve tasks
for which it is challenging to obtain useful feedback. Instead, we simply assume that the algorithm
pays attention to rewards over a longer time horizon, making credit assignment harder.

This result validates and refines the analysis of Cotra [2020], who defined the “effective horizon
length” as a quantity that scales linearly with training data requirements, incorporating not only the
horizon length as we define it, but also reward sparsity, noise and so on. Our result specifically isolates
the explicit horizon length, showing that training data requirements are a sum of two components,
at least in our toy setting: one corresponding to a version of the task in which the horizon ends
immediately, and another that is proportional to the horizon length. This implies that, for a given fixed
task, continuing to increase the horizon length will eventually lead to a proportional increase in the
compute budget corresponding to a given optimal model size, without changing the exponent of this
scaling law. However, this will only happen once the first component has become negligible, and it is
unclear whether there are realistic tasks of different horizon lengths for which this first component is
negligible in practice.

We are excited for future work to study other aspects of the “effective horizon length”, such as
reward sparsity and noise, as well as studying the explicit horizon length in environments that are less
artificial. It is not entirely clear how to quantify these properties in general, and they could potentially
affect scaling exponents as well as scaling coefficients, if for example they change over the course of
training.

Measuring scaling exponents precisely is challenging. The biological anchors framework uses
the scaling of optimal model size with compute to perform a substantial extrapolation, making it
particularly sensitive to the exponent of this relationship. This makes it challenging to measure this
exponent with sufficient precision. In addition to the challenges raised by Hoffmann et al. [2022]
involving learning rate schedules, we hope that others will benefit from learning about the other
challenges we faced, which are summarized in Section 5.3.

6 Conclusion

We have shown how to extend scaling laws to single-agent reinforcement learning using the notion of
intrinsic performance. Across a range of environments, intrinsic performance scales as a power law
in model size and environment interactions, and hence the optimal model size scales as a power law in
the training compute budget. We have studied how this relationship is affected by various properties
of the training setup, including the horizon length of the task, and have discussed the implications of
this for the biological anchors framework for forecasting transformative artificial intelligence.
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A Curve-fitting methodology

In this section we discuss our methodology for computing intrinsic performance and fitting the power
law constants, which require some care. Code for our full procedure, along with its application to
our experiments, may be found in this Colab notebook: https://colab.research.google.com/
drive/1PzwZyXsi9jRdVCj1GJrS8JdOPBQ7LHZV.

Recall that the intrinsic performance of a policy is the minimum compute required to train a model of
any size in the same family to reach the same return (averaged over random seeds). The naive way to
compute this would be to train models of many different sizes, and to take the best-performing model
size for each possible compute budget. However, it may not be feasible to train models of enough
different sizes to get a reasonable level of granularity, while using enough different random seeds
sufficiently to reduce the high variance of learning curves.

To cope with this, we compute intrinsic performance and fit the power law constants together. This
allows us to make use of all the data from each learning curve, instead of just a single point from
each one. We do this by jointly fitting the power law constants and a monotonic function f to

f (R)
−β

=

(
Nc
N

)αN
+

(
Ec
E

)αE
,

where R is the mean episode return (or another performance metric such as TrueSkill), N is the
number of model parameters, and E is the number of environment interactions. By also requiring the
relationships between the constants from Lemma 1 to hold, this provides us both with the power law
constants, and with the desired function f satisfying f (R) = I , where I is intrinsic performance.

We perform this fit by using a black-box optimization algorithm such as CMA-ES to fit αN , αE
and Nc, which determine β and Ec, with monotonic regression3 in the inner loop to fit f , using the
squared error of the regression as the black-box loss function. We actually fit log (f) rather than f in
order to obtain a good fit to I on a logarithmic scale, and we weight the data in proportion to 1

E so
that each interval is given equal weight on a logarithmic scale. In our Colab notebook, this routine is
performed by the function fit_coeffs.

This procedure seems to work well off-the-shelf, typically converging to a unique local minimum.
However:

• When there is a lack of data or the data is very noisy, the local minimum may not be a global
minimum, and the procedure can diverge to a degenerate solution.

• It is necessary to first smooth learning curves so that they are mostly monotonic, to prevent
the monotonic regression from overfitting. In our Colab notebook, we use the function
smooth, which uses standard errors to automatically choose smoothing parameters (although
note that we used slightly different smoothing parameters for MNIST).

• As discussed in Section 4.3, it is important to exclude data from early in training.

Our full procedure is therefore as follows.

• Smooth learning curves. Plot the smoothed curves on a logarithmic scale to check the
monotonicity and fit, and adjust the smoothing parameters if necessary.

• Exclude data from early in training, balancing the need for data against how much the early
data skews the fit. Typically at least the first 1

64 of training should be excluded.

• Fit the power law constants and f using the black-box optimization with monotonic regres-
sion routine.

• Plot the fit to check the routine did not diverge. If it did, re-run routine, or constrain the
constants and re-run, or include more data in step 2. If none of these fixes the divergence,
then it may be necessary to collect more data.

• Check the fit is not overly skewed by data from early in training. If it is, exclude more data
in step 2.

3https://en.wikipedia.org/wiki/Isotonic_regression
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This procedure led us to exclude the first 3 million environment interactions for Procgen, the first 2
billion environment interactions for Dota 2, and the first 216, 219 or 222 environment interactions for
MNIST depending on the period of training being considered, as discussed in Section 4.3.

A.1 Fitting to natural performance metrics

As discussed in Section 4.5, as well as fitting our power law with I−β on the left-hand side, as in
equation (1), we also fit it using various other expressions, such as e−αTT , where T is TrueSkill and
αT is a fitted constant. When doing this, we adopt the convention that the constraints on β and Ec
from Lemma 1 should continue to hold. This necessitates introducing an additional multiplier, and
instead fitting

Tce
−αTT =

(
Nc
N

)αN
+

(
Ec
E

)αE
for example, where Tc is a fitted constant. Doing this allows us to continue interpret the left-hand
side of this equation as I−β .

To fit equations of this form, we continue use the same black-box optimization method, and simply
replace the monotonic regression by another method of fitting log (f). For example, we may fit

f (T )
−β

= Tce
−αTT

by using linear regression to fit log (f). (Recall that β is already determined by αN and αE .)

The function from our Colab notebook, fit_coeffs, provides options for fitting various functional
forms for f , although it can sometimes be slow. (This is because it sometimes uses black-box
optimization again in the inner loop for ease of implementation, even though this could be collapsed
into the outer loop if speed were important.)
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B Hyperparameters

Our default hyperparameters for Procgen, Dota 2 and MNIST are given in Tables 1, 2 and 3
respectively. We modified these defaults in two ways:

• We adjusted the Adam step size as the model was scaled, as explained in Section 3.4.
• For Procgen and MNIST, we incorporated a batch ramp and learning rate schedule, as

explained in Section B.1.

Table 1: Default PPG-EWMA hyperparameters for Procgen.

Hyperparameter Value

PPO Parallel environments 1024
Timesteps per rollout (T ) 256
Minibatches per epoch 8
Adam step size (α) 5× 10−4

Value function coefficient 0.5
Entropy coefficient 0.01
PPO clipping parameter (ε) Not used
PPO KL penalty coefficient (β) 1
GAE discount rate (γ) 0.999
GAE bootstrapping parameter (λ) 0.95
Reward normalization? Yes
Advantage normalization? Yes
Total environment interactions 200 million

PPG Policy iterations per phase (Nπ) 32
Policy phase policy epochs (Eπ) 1
Policy phase value function epochs (EV ) 1
Auxiliary phase epochs (Eaux) 6
Auxiliary phase minibatches per epoch 16Nπ
Auxiliary phase cloning coefficient (βclone) 1

PPG-EWMA Proximal policy EWMA decay rate (βprox) 8
9

Batch ramp Initial batch size multiplier 1
32

Table 2: PPO hyperparameters for Dota 2.

Hyperparameter Value

Parallel environments 6144
Timesteps per rollout (T ) 512
Minibatches per epoch 32
Epochs (E) 1
Adam step size (α) 10−4 to 10−3

PPO clipping parameter (ε) 0.2
PPO KL penalty coefficient (β) Not used
GAE bootstrapping parameter (λ) 0.95
Total environment interactions 13.6–82.6 billion
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Table 3: Default PPO-EWMA hyperparameters for MNIST in terms the horizon length h, which
varied from 1 to 256.

Hyperparameter Value

PPO Parallel environments 16
Timesteps per rollout (T ) 512
Minibatches per epoch 8
Epochs (E) 1
Adam step size (α) 1× 10−3

Value function coefficient 0.5
Entropy coefficient 0.01
PPO clipping parameter (ε) Not used
PPO KL penalty coefficient (β) 1
GAE discount rate (γ) 1− 2

h+1
GAE bootstrapping parameter (λ) 1
Reward normalization? Yes
Advantage normalization? Yes
Total environment interactions 225

PPO-EWMA Proximal policy EWMA decay rate (βprox) 8
9

Batch ramp Initial batch size multiplier
√
h

64

B.1 Batch ramp and learning rate schedule

As explained in Section 3.4, it was important to use a well-tuned learning rate schedule, and to use
a schedule that works well for a variety of compute budgets. It was also important to use a batch
ramp, i.e., to start with a small batch size and increase it over the course of training, because the
critical batch size is smaller at the start of training, and we needed training to still be sample-efficient
for small compute budgets. Without a batch ramp, we would have needed to adjust our power law,
equation (1), in much the same way as the corresponding law for language [Kaplan et al., 2020,
equation (1.6)], which uses Smin (S), the minimum number of optimization steps as estimated using
a power law fit to the gradient noise scale.

Note, however, that increasing the batch size has a very similar effect to lowering the learning rate.
To simplify matters, we used PPO-EWMA and PPG-EWMA, which are batch size-invariant [Hilton
et al., 2021], allowing us to have almost the same effect as increasing the batch size by instead
lowering the learning rate and increasing the center of mass of the proximal policy EWMA. We then
considered only the batch size schedule, whether implemented explicitly or implicitly via these other
hyperparameters.

To explore promising schedules, we implemented a greedy adaptive batch size algorithm, which tries
doubling the batch size and switches if that performs better, or else backtracks and stays with the
current batch size. We experimented with this on StarPilot’s easy difficulty setting, using model sizes
spanning a factor of around 2048. We found our algorithm to fairly consistently choose a schedule
that can be well-approximated by the power law

B = max

(
Bmin,

E0.84

80

)
,

where B is the batch size in interactions, E is the total number of interactions so far, and Bmin = 256
was our initial batch size.

Having fit this power law schedule on one Procgen environment, we tested it on several different
Procgen environments, and found it to consistently outperform our usual fixed batch size both at the
start and end of training. (Curiously, our schedule sometimes underperformed the fixed batch size in
the middle of training. We believe this may be explained by the smaller initial batch size causing the
entropy to fall too quickly at the start of training, highlighting a pitfall of the greedy approach.) In
particular, we were able to use the same schedule on both the easy and hard difficulty settings. Our
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usual fixed batch size, on the other hand, was larger for the hard setting, corresponding to the fact
that it was tuned to longer training runs.

The same schedule also worked well on our MNIST environment at every horizon length, although it
was necessary to tune Bmin. Using too small a value for Bmin seemed to result in an instability which
could not always be recovered from. We found the optimal Bmin to vary based on the horizon length
h, and we took Bmin = 16

√
h (though taking Bmin to have the form A0 +A1h would probably have

made more theoretical sense in hindsight, given the results of Section 4.2). If trying our schedule
on other environments, we suggest tuning Bmin to ensure stability at the start of training, but it is
probably less important to tune the power law constants.

We used this batch size schedule for both our Procgen and MNIST experiments (although it would
probably have been better to fully re-fit the schedule for MNIST). We implemented this using a batch
size multiplier, explicitly reducing the batch size when the multiplier was less than 1, and changing
the learning rate and center of mass of the proximal policy EWMA instead when the multiplier was
greater than 1. With Procgen, for which we used PPG-EWMA, we also changed the number of policy
iterations per phase, Nπ , in proportion to the batch size, since we thought the number of optimization
steps per phase should remain constant, and we rounded the batch size multiplier to the nearest power
of two, with minimum and maximum multipliers of 1

32 and 4 (corresponding to batch sizes of 1024
and 131072 respectively).

For Dota 2, we did not use a batch size schedule, since those experiments were carried out before we
investigated batch size schedules.
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C Results in full

All the data from our experiments may be accessed using this Colab notebook: https://colab.
research.google.com/drive/1PzwZyXsi9jRdVCj1GJrS8JdOPBQ7LHZV. This also includes
code for analyzing this data, including model size and compute calculations, intrinsic performance
and power law fitting, and generating all the plots in this paper.

Figures 13, 14, 15 and 16 show learning curves as a function of total training compute, together with
their power law fits, for all of our experiments. On the left of each figure we show mean episode
return (or failure rate for CoinRun and MNIST, or TrueSkill for Dota 2), with error bars showing
mean ±1 sample standard deviation over the random seeds. On the right of each figure, we show
intrinsic performance, with error bars hidden for clarity.

1015 1017

Compute (FLOPs)

10−2

10−1

Fa
ilu

re
ra

te

CoinRun, easy

1015 1017

Compute (FLOPs)

10−1

Fa
ilu

re
ra

te

CoinRun, hard

1015 1017

Compute (FLOPs)

1014

1015

1016

1017

In
tr

in
si

c
pe

rf
or

m
an

ce
(F

L
O

Ps
)

CoinRun, easy

1015 1017

Compute (FLOPs)

1014

1015

1016

1017

1018

In
tr

in
si

c
pe

rf
or

m
an

ce
(F

L
O

Ps
)

CoinRun, hard Parameters
104.3

104.6

104.9

105.2

105.5

105.8

106.1

106.4

106.7

107.0

1015 1017

Compute (FLOPs)

10

20

30

40

50

60

M
ea

n
ep

is
od

e
re

tu
rn

StarPilot, easy

1015 1017

Compute (FLOPs)

5

10

15

20

25

30

M
ea

n
ep

is
od

e
re

tu
rn

StarPilot, hard

1015 1017

Compute (FLOPs)

1014

1015

1016

1017

1018

In
tr

in
si

c
pe

rf
or

m
an

ce
(F

L
O

Ps
)

StarPilot, easy

1015 1017

Compute (FLOPs)

1014

1015

1016

1017

1018

In
tr

in
si

c
pe

rf
or

m
an

ce
(F

L
O

Ps
)

StarPilot, hard

Learning
curve
Power law
fit
Power law
asymptote
Efficient
frontier
Efficient
points

1015 1017

Compute (FLOPs)

5

10

15

20

25

30

M
ea

n
ep

is
od

e
re

tu
rn

FruitBot, easy

1015 1017

Compute (FLOPs)

0

5

10

15

20

25

M
ea

n
ep

is
od

e
re

tu
rn

FruitBot, hard

1015 1017

Compute (FLOPs)

1014

1015

1016

1017

In
tr

in
si

c
pe

rf
or

m
an

ce
(F

L
O

Ps
)

FruitBot, easy

1015 1017

Compute (FLOPs)

1014

1015

1016

1017

1018

In
tr

in
si

c
pe

rf
or

m
an

ce
(F

L
O

Ps
)

FruitBot, hard

Procgen, width

Figure 13: Learning curves as a function of total training compute for our Procgen width-scaling
experiments, together with their power law fits. Left half: mean episode return or failure rate, mean
±1 sample standard deviation over three seeds shown. Right half: intrinsic performance, mean only
shown.
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Figure 14: Learning curves as a function of total training compute for our Procgen depth-scaling
experiments, together with their power law fits. Left half: mean episode return or failure rate, mean
±1 sample standard deviation over three seeds shown. Right half: intrinsic performance, mean only
shown.
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Figure 15: Learning curves as a function of total training compute for Dota 2, together with their
power law fits. Only one random seed was used. Left: TrueSkill. Right: intrinsic performance.
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Figure 16: Learning curves as a function of total training compute for MNIST, together with their
power law fits, for the late period of training (222–225 environment interactions). Left half: failure
rate, mean ±1 sample standard deviation over the middle-performing 16 of 20 random seeds shown.
Right: intrinsic performance, mean only shown.
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D Parameter and FLOP calculations

In counting parameters and FLOPs, we apply the following principles:

• We only include the part of the network that is being scaled (ignoring things like embedding
parameters), since we consider that to be the bottleneck.

• We use round numbers (ignoring negligible contributions such as as biases and activations),
for simplicity.

• We include both rollout and optimization FLOPs (including any additional overhead of
PPO-EWMA).

• We treat an add-multiply as 2 FLOPs.

For example, we treat the forward pass of a dense layer as taking 2 FLOPs per batch item per
parameter, and a convolutional layer as taking 2houtwout FLOPs per batch item per parameter. We
treat a backward pass as taking 2× the FLOPs of a forward pass.

For the Procgen width-scaling experiments, we ignore the first convolution, since it scales as width
(instead of as width squared), and has few parameters. Similarly, for the depth-scaling experiments,
we ignore the final dense layer, since we only vary the number of convolutional layers. Unfortunately,
as discussed in Section 4.4, the final dense layer contains many parameters, which skews our constants.
In both cases, we include both the policy and value networks, which are separate with identical
architectures. We use PPG-EWMA with 1 policy epoch and 6 auxiliary epochs, totaling 9 forward
and 7 backward passes per interaction.

For the Dota experiments, we ignore the embedding layer, considering only the LSTM. Since each
interaction was used only once, we count 2 forward passes and 1 backward pass per interaction (1
forward pass for the rollout, and 1 forward-backward pass for optimization).

For the MNIST experiments, we ignore the first convolution, as for the Procgen width-scaling
experiments. However, we only include the policy network, since the task of the value network is
trivial (due to timesteps being independent). We use PPO-EWMA with 1 epoch, totaling 3 forward
passes and 1 backward pass per interaction.

The numerical results of these calculations are as follows.

• Procgen, scaling width: for the width multiplier w = 2−3, 2−2.52−2, . . . , 22.5, we count
1242112w2 parameters and 2652897280w2 FLOPs per interaction.

• Procgen, scaling depth: for the number of residual blocks b = 1, 2, 4, . . . , 64, we count
5184b+ 1944 parameters and 61046784b+ 81395712 FLOPs per interaction.

• Dota 2: for the LSTM size s = 8, 64, 128, 256, 512, 1024, 4096, we count 8s2 parameters
and 64s2 FLOPs per interaction.

• MNIST: for the width multiplier w = 2−3, 2−2.52−2, . . . , 22.5, we count 3948800w2

parameters and 95648000w2 FLOPs per interaction.

Note that one of our modeling assumptions is that the number of FLOPs per interaction is proportional
to the number of parameters, but this is not true for our Procgen depth-scaling experiments. In other
words, the number of FLOPs per param-interact, which is used to convert compute from units of
parameters × interactions to units of FLOPs, is not constant. However, this number differs by at most
40% from the mean of this number over the different depths, and so we simply used the mean when
doing this conversion.
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E Fitted constants

In this section we provide the constants αN , αE and Nc, together with the values of β and Ec derived
using Lemma 1, for our fitted power laws for intrinsic performance I as given by equation (1). We
also provide Imin and Imax, the minimum and maximum intrinsic performance obtained during the
span of interaction counts considered; our model is not able to predict mean episode return outside
this range. Recall that the units of I are parameters × interactions; the conversion to FLOPs may be
performed using the values given in Appendix D.

We also provide the derived equations for optimal model size N vs compute C in PF-days. By
substituting equation (2) for the compute-efficient frontier into equation (1), these are given by

N = Nc

(
1 +

αN
αE

) 1
αN
(

C × 1015 × 24× 3600

FLOPs per param-interact

) 1

1+
αN
αE for Nmin ≤ N ≤ Nmax.

We take Nmin and Nmax to be the minimum and maximum model sizes we tested whose power law
fit intersects the compute-efficient frontier somewhere between Imin and Imax.

For our comparison to generative modeling, we use these equations for optimal model size N vs
compute C in PF-days:

• Language [Hoffmann et al., 2022]: N = ( C
1.4×10−18 )

0.5

• Language [Kaplan et al., 2020]: N = ( C
3.3×10−13 )

0.73

• Image 32x32 [Henighan et al., 2020]: N = ( C
1.6×10−13 )

0.65

Further fitted constants, such as for single seeds, for different spans of interaction counts (see Section
4.2), and fitted to natural performance metrics (see Section 4.5), may be found in this Colab notebook:
https://colab.research.google.com/drive/1PzwZyXsi9jRdVCj1GJrS8JdOPBQ7LHZV.

E.1 Procgen, scaling width

The fitted constants for our Procgen width-scaling experiments are as follows.

Environment αN αE β Nc Ec Imin Imax

CoinRun, easy 0.542 0.462 0.249 2.53× 10−2 2.49× 100 4.83× 1010 2.55× 1014

CoinRun, hard 0.759 0.576 0.328 1.55× 10−1 8.00× 10−1 6.07× 1010 3.45× 1014

StarPilot, easy 0.318 0.604 0.208 2.25× 10−4 2.02× 102 4.88× 1010 1.95× 1015

StarPilot, hard 0.453 0.533 0.245 4.55× 10−3 1.31× 101 5.43× 1010 1.09× 1015

FruitBot, easy 0.527 0.350 0.210 9.17× 10−2 4.46× 10−1 5.24× 1010 1.67× 1014

FruitBot, hard 0.478 0.346 0.201 1.14× 10−1 2.96× 10−1 6.00× 1010 7.26× 1014

These imply the following equations for optimal model size N vs compute C in PF-days.

• CoinRun, easy: N = 4.615× 106 × C0.4600 for 19408 ≤ N ≤ 310528

• CoinRun, hard: N = 6.881× 106 × C0.4315 for 43668 ≤ N ≤ 587092

• StarPilot, easy: N = 6.383× 107 × C0.6549 for 19408 ≤ N ≤ 4968448

• StarPilot, hard: N = 1.668× 107 × C0.5404 for 19408 ≤ N ≤ 1242112

• FruitBot, easy: N = 2.243× 106 × C0.3994 for 19408 ≤ N ≤ 174672

• FruitBot, hard: N = 6.631× 106 × C0.4201 for 43668 ≤ N ≤ 587092

As discussed in Section 4.5, for CoinRun, we also fit power laws using the fail-to-success ratio F ,
excluding data for which F > 0.5. As explained in Section A.1, we replaced I−β with F

Fc
, where Fc

is a fitted constant. The fitted constants for these power laws are as follows.

28

https://colab.research.google.com/drive/1PzwZyXsi9jRdVCj1GJrS8JdOPBQ7LHZV


Difficulty αN αE β Nc Ec Imin Imax

Easy 0.899 1.007 0.475 1.00× 10−2 2.33× 101 2.55× 1010 2.60× 1014

Hard 0.833 0.776 0.402 4.69× 10−2 3.80× 100 5.14× 1011 7.38× 1014

Difficulty Fc

Easy 3.88× 104

Hard 2.52× 104

These imply the following relationships between I and F .

• Easy: I = 4.57× 109 × F− 1
0.475

• Hard: I = 9.15× 1010 × F− 1
0.402

They also imply the following equations for optimal model size N vs compute C in PF-days.

• Easy: N = 1.216× 107 × C0.5285 for 19408 ≤ N ≤ 587092

• Hard: N = 1.148× 107 × C0.4822 for 77632 ≤ N ≤ 1242112

E.2 Procgen, scaling depth

The fitted constants for our Procgen depth-scaling experiments are as follows.

Environment αN αE β Nc Ec Imin Imax

CoinRun, easy 0.351 0.469 0.201 2.64× 10−4 1.26× 102 5.43× 109 3.72× 1013

CoinRun, hard 0.336 0.581 0.213 1.02× 10−4 4.47× 102 6.58× 109 6.24× 1013

StarPilot, easy 0.800 0.821 0.405 9.65× 10−3 1.87× 101 1.70× 1010 5.52× 1013

StarPilot, hard 0.380 0.381 0.190 2.87× 10−3 9.11× 100 1.58× 1010 5.21× 1013

FruitBot, easy 0.539 0.564 0.276 2.92× 10−3 2.77× 101 9.58× 109 3.76× 1013

FruitBot, hard 0.401 0.463 0.215 1.23× 10−3 3.26× 101 1.34× 1010 4.64× 1013

These imply the following equations for optimal model size N vs compute C in PF-days. Note,
however, that:

• As discussed in Section 4.4, we exclude the final dense layer, which would have accounted
for between 16% and 90% of the parameters, depending on the depth. This skews the
leading constants here.

• As discussed in Appendix D, we also ignored the variation in the number of FLOPs per
param-interact between models of different depths, leading to errors of up to 40%.

• CoinRun, easy: N = 1.390× 106 × C0.5723 for 7128 ≤ N ≤ 43416

• CoinRun, hard: N = 3.962× 106 × C0.6337 for 7128 ≤ N ≤ 167832

• StarPilot, easy: N = 2.202× 106 × C0.5063 for 7128 ≤ N ≤ 167832

• StarPilot, hard: N = 1.410× 106 × C0.5007 for 7128 ≤ N ≤ 84888

• FruitBot, easy: N = 1.172× 106 × C0.5110 for 7128 ≤ N ≤ 84888

• FruitBot, hard: N = 1.671× 106 × C0.5359 for 7128 ≤ N ≤ 84888
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E.3 Dota 2

As explained in Sections 4.5 and A.1, we fit power laws to I−β , Tce−αTT , Tc
(
e−αTT − eαTT∗)

and Tc (T ∗ − T )αT , where I is intrinsic performance, T is TrueSkill, and αT , Tc and T ∗ are fitted
constants. The fitted constants for these different functional forms are as follows.

Fit to αN αE β Nc Ec Imin Imax

I−β 0.186 0.593 0.141 1.98× 10−8 1.04× 106 6.83× 1011 1.79× 1018

Tce
−αTT 0.180 0.486 0.131 3.53× 10−8 3.33× 105 4.62× 1011 2.24× 1017

Tc(e
−αTT − eαTT∗

) 0.181 0.560 0.137 2.07× 10−8 8.32× 105 6.31× 1011 1.77× 1018

Tc(T
∗ − T )αT 0.183 0.569 0.138 2.06× 10−8 8.82× 1005 6.71× 1011 1.23× 1018

Fit to αT Tc T ∗

I−β - - -
Tce
−αTT 0.0572 2.16× 10−2 -

Tc(e
−αTT − eαTT∗

) 0.0402 2.40× 10−2 35.43
Tc(T

∗ − T )αT 2.84 2.14× 10−7 54.01

As discussed in Section 4.5, we have less confidence in the last two functional forms, which is
reflected in the very different estimates for T ∗, which represents the maximum attainable TrueSkill
for the family of models we trained.

These imply the following relationships between I and T for the last three fits.

• Tce−αTT : I = 4.93× 1012 × 1.5462T

• Tc(e−αTT − eαTT
∗
): I = 6.49× 1011 ×

(
1.0410−T − 1.0410−35.43

)− 1
0.137

• Tc(T ∗ − T )αT : I = 1.48× 1048 × (54.01− T )−
2.84
0.138

They also imply the following equations for optimal model size N vs compute C in PF-days.

• I−β : N = 2.703× 107 × C0.7617 for 512 ≤ N ≤ 2097152

• Tce−αTT : N = 1.607× 107 × C0.7302 for 512 ≤ N ≤ 524288

• Tc(e−αTT − eαTT
∗
): N = 2.305× 107 × C0.7552 for 512 ≤ N ≤ 2097152

• Tc(T ∗ − T )αT : N = 2.385× 107 × C0.7567 for 512 ≤ N ≤ 2097152

E.4 MNIST

The fitted constants for our MNIST experiments are as follows. As discussed in Section 4.3, these
constants are for the late period of training (222–225 environment interactions). Recall also that the
horizon h is such that the interval [0, h− 1] has the same center of mass as an exponentially-weighted
moving average with decay parameter γ, i.e., γ = 1− 2

h+1 .
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Horizon αN αE β Nc Ec Imin Imax

1 0.263 1.050 0.210 9.79× 10−6 9.43× 103 1.79× 1011 1.00× 1015

2 0.265 0.979 0.208 1.32× 10−5 6.30× 103 1.87× 1011 9.66× 1014

4 0.284 0.791 0.209 4.21× 10−5 1.50× 103 1.94× 1011 4.19× 1014

8 0.276 0.826 0.207 2.83× 10−5 2.33× 103 1.80× 1011 6.24× 1014

16 0.252 0.830 0.193 1.59× 10−5 3.78× 103 1.62× 1011 7.69× 1014

32 0.263 0.856 0.201 1.73× 10−5 3.83× 103 1.59× 1011 7.47× 1014

64 0.307 0.736 0.217 7.27× 10−5 8.40× 102 1.64× 1011 4.16× 1014

128 0.315 0.769 0.224 6.27× 10−5 1.08× 103 1.45× 1011 3.64× 1014

192 0.330 0.688 0.223 1.22× 10−4 4.86× 102 1.33× 1011 2.08× 1014

256 0.358 0.681 0.235 2.11× 10−4 3.04× 102 1.33× 1011 1.53× 1014

These imply the following equations for optimal model size N vs compute C in PF-days.

• Horizon 1: N = 1.586× 1010 × C0.7999 for 61700 ≤ N ≤ 15795200

• Horizon 2: N = 1.309× 1010 × C0.7871 for 61700 ≤ N ≤ 15795200

• Horizon 4: N = 5.507× 109 × C0.7357 for 61700 ≤ N ≤ 3948800

• Horizon 8: N = 6.406× 109 × C0.7493 for 61700 ≤ N ≤ 7739648

• Horizon 16: N = 7.787× 109 × C0.7671 for 61700 ≤ N ≤ 7739648

• Horizon 32: N = 7.535× 109 × C0.7652 for 61700 ≤ N ≤ 7739648

• Horizon 64: N = 2.746× 109 × C0.7053 for 61700 ≤ N ≤ 3948800

• Horizon 128: N = 2.681× 109 × C0.7092 for 61700 ≤ N ≤ 3948800

• Horizon 192: N = 1.376× 109 × C0.6757 for 61700 ≤ N ≤ 987200

• Horizon 256: N = 9.876× 108 × C0.6553 for 61700 ≤ N ≤ 987200
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F Proof of the lemma

Proof of Lemma 1. We may write I (N,E) as a function of N and compute C := NE:

I (N,C)
−β

=

(
Nc
N

)αN
+

(
EcN

C

)αE
.

The compute-efficient frontier is defined by the value of N that maximizes I (N,C) for each C.
Equivalently, since β > 0, this value of N minimizes I (N,C)−β , and so it satisfies

∂

∂N

(
I (N,C)

−β
)
= 0.

Differentiating and multiplying through by N , this equation becomes

−αN
(
Nc
N

)αN
+ αE

(
EcN

C

)αE
= 0.

Eliminating C, this is exactly equation (2), as required.

By assumption, we also have I (N,E) = NE along the compute-efficient frontier. Substituting (2)
into I (N,E), this equation becomes(

1 +
αN
αE

)(
Nc
N

)αN
= (NE)

−β
. (3)

Thus both equations (2) and (3) are power law relationships between N and E that hold along the
compute-efficient frontier, so we may simply equate exponents and constants. Equating exponents,

αN
αE

=
αN
β
− 1 and hence

1

β
=

1

αN
+

1

αE
,

as required. Equating constants,(
αN
αE

) 1
αE

N
αN
αE
c E−1c =

(
1 +

αN
αE

) 1
β

N
αN
β

c ,

and hence

1

NcEc
=

(
1 +

αN
αE

) 1
αN

+ 1
αE
(
αE
αN

) 1
αE

=

(
1 +

αN
αE

) 1
αN
(
1 +

αE
αN

) 1
αE

,

as required.
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G Proof sketch of the proposition

A formal statement and proof of Proposition 1 would require a formal analysis of Vanilla Policy
Gradient, which is beyond the scope of this work. Instead, we provide a proof sketch in which we
make approximations informally.

Proof sketch of Proposition 1. The horizon length h only affects the algorithm via GAE, which in
the case λ = 1 produces the value function targets and advantage estimates

V̂t := rt + γrt+1 + · · ·+ γT−trT = rt + γV̂t+1 and

Ât := V̂t − V (st) = rt − V (st) + γV̂t+1,

where V is the value function. Since timesteps are independent, γV̂t+1 is independent of st and at,
and so should be thought of as noise. The value function will quickly learn to incorporate the mean
of this noise, and so

V (st) ≈ V 0 (st) + E
[
γV̂t+1

]
,

where V 0 (st) is the “immediate reward value function” that would have been obtained had we
used the value function targets V̂ 0

t := V̂t − E
[
γV̂t+1

]
. Writing ε := γV̂t+1 − E

[
γV̂t+1

]
for the

zero-mean component of γV̂t+1, we obtain

V̂ 0
t = rt + ε and

Ât ≈ rt − V 0 (st) + ε.

In other words, the entire impact of varying h is that it changes the variance of the noise term ε added
to the value function targets and advantage estimates.

Let us now analyze the policy gradient, which equals

Êt
[
∇θρt (θ) Ât

]
≈ Êt

[
∇θρt (θ)

(
rt − V 0 (st) + ε

)]
,

where ρt (θ) :=
πθ(at|st)
πθold (at|st)

. Since ε is independent of st and at and E [ε] = 0, the covariance matrix
of this decomposes as

Σθ +ΦθVar [ε] ,

where Σθ is the covariance matrix of∇θρt (θ)
(
rt − V 0 (st)

)
, and Φθ := E

[
∇θρt (θ)∇T

θ ρt (θ)
]

is
the uncentered covariance matrix of∇θρt (θ).
Note that V 0 (st) simply estimates E [rt], which does not depend on h. The variance of V 0 (st) does
depend on h via the addition of ε to the value function targets, but this additional variance is small
compared to the variance of ε itself. We may therefore treat Σθ as approximately independent of h.

It remains to express Var [ε] in terms of h. We assume that T is large enough compared to h that we
may take T →∞. (In our experiments, we use rollouts of length 512 and h ≤ 256.) Thus

Var [ε] = Var
[
γV̂t+1

]
=
(
γ2 + γ4 + γ6 + . . .

)
Var [rt]

=
γ2

1− γ2
Var [rt]

=
1

4

(
h+

1

h
− 2

)
Var [rt] .

Hence the covariance matrix of the policy gradient is approximately

Σθ +Πθ

(
h+

1

h
− 2

)
,

where Σθ and Πθ :=
1
4Var [rt]Φθ are symmetric positive semi-definite matrices that do not depend

on h, as required.
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