
Stan Modeling Language

User’s Guide and Reference Manual

Stan Development Team

Stan Version 2.2.0

Thursday 13th February, 2014

http://mc-stan.org/

http://mc-stan.org/

Stan Development Team. 2014. Stan Modeling Language: User’s Guide

and Reference Manual. Version 2.2.0

Copyright © 2011–2014, Stan Development Team.

This document is distributed under the Creative Commons Attribute

4.0 Unported License (CC BY 4.0). For full details, see

https://creativecommons.org/licenses/by/4.0/legalcode

https://creativecommons.org/licenses/by/4.0/legalcode

Contents

Preface vi

Acknowledgements xi

I Introduction 1

1. Overview 2

2. Getting Started 7

II Commands and Data Formats 21

3. Compiling Stan Programs 22

4. Running a Stan Program 30

5. Print Command for Output Analysis 60

6. Dump Data Format 63

III Programming Techniques 69

7. Model Building as Software Development 70

8. Containers: Arrays, Vectors, and Matrices 76

9. Regression Models 80

10. Time-Series Models 97

11. Missing Data & Partially Known Parameters 114

12. Truncated or Censored Data 117

13. Mixture Modeling 122

14. Measurement Error and Meta-Analysis 125

15. Clustering Models 130

16. Gaussian Processes 142

17. Reparameterization & Change of Variables 155

18. Custom Probability Functions 161

19. Problematic Posteriors 163

iii

20. Optimizing Stan Code 176

IV Modeling Language Reference 196

21. Execution of a Stan Program 197

22. Data Types and Variable Declarations 203

23. Expressions 220

24. Statements 233

25. Program Blocks 248

26. Modeling Language Syntax 259

V Built-In Functions 263

27. Vectorization 264

28. Void Functions 266

29. Integer-Valued Basic Functions 268

30. Real-Valued Basic Functions 270

31. Array Operations 284

32. Matrix Operations 289

VI Discrete Distributions 305

33. Binary Distributions 306

34. Bounded Discrete Distributions 308

35. Unbounded Discrete Distributions 314

36. Multivariate Discrete Distributions 317

VII Continuous Distributions 318

37. Unbounded Continuous Distributions 319

38. Positive Continuous Distributions 327

39. Non-negative Continuous Distributions 334

40. Positive Lower-Bounded Probabilities 335

41. Continuous Distributions on [0, 1] 336

iv

42. Circular Distributions 338

43. Bounded Continuous Probabilities 339

44. Distributions over Unbounded Vectors 340

45. Simplex Distributions 344

46. Correlation Matrix Distributions 345

47. Covariance Matrix Distributions 346

VIII Additional Topics 348

48. Point Estimation 349

49. Bayesian Data Analysis 359

50. Markov Chain Monte Carlo Sampling 363

51. Transformations of Variables 371

IX Contributed Modules 386

52. Contributed Modules 387

Appendices 389

A. Licensing 389

B. Installation and Compatibility 390

C. Stan for Users of BUGS 404

D. Stan Program Style Guide 414

Bibliography 421

Index 427

v

Preface

Why Stan?

We1 did not set out to build Stan as it currently exists. We set out to apply full
Bayesian inference to the sort of multilevel generalized linear models discussed in
Part II of (Gelman and Hill, 2007). These models are structured with grouped and
interacted predictors at multiple levels, hierarchical covariance priors, nonconjugate
coefficient priors, latent effects as in item-response models, and varying output link
functions and distributions.

The models we wanted to fit turned out to be a challenge for current general-
purpose software to fit. A direct encoding in BUGS or JAGS can grind these tools to a
halt. Matt Schofield found his multilevel time-series regression of climate on tree-ring
measurements wasn’t converging after hundreds of thousands of iterations.

Initially, Aleks Jakulin spent some time working on extending the Gibbs sampler
in the Hierarchical Bayesian Compiler (Daumé, 2007), which as its name suggests, is
compiled rather than interpreted. But even an efficient and scalable implementation
does not solve the underlying problem that Gibbs sampling does not fare well with
highly correlated posteriors. We finally realized we needed a better sampler, not a
more efficient implementation.

We briefly considered trying to tune proposals for a random-walk Metropolis-
Hastings sampler, but that seemed too problem specific and not even necessarily
possible without some kind of adaptation rather than tuning of the proposals.

The Path to Stan

We were at the same time starting to hear more and more about Hamiltonian Monte
Carlo (HMC) and its ability to overcome some of the the problems inherent in Gibbs
sampling. Matt Schofield managed to fit the tree-ring data using a hand-coded imple-
mentation of HMC, finding it converged in a few hundred iterations.

1In Fall 2010, the “we” consisted of Andrew Gelman and his crew of Ph.D. students (Wei Wang and Vince
Dorie), postdocs (Ben Goodrich, Matt Hoffman and Michael Malecki), and research staff (Bob Carpenter and
Daniel Lee). Previous postdocs whose work directly influenced Stan included Matt Schofield, Kenny Shirley,
and Aleks Jakulin. Jiqiang Guo joined as a postdoc in Fall 2011. Marcus Brubaker, a computer science
postdoc at Toyota Technical Institute at Chicago, joined the development team in early 2012. Michael
Betancourt, a physics Ph.D. about to start a postdoc at University College London, joined the development
team in late 2012 after months of providing useful feedback on geometry and debugging samplers at
our meetings. Yuanjun Gao, a statistics graduate student at Columbia, and Peter Li, an undergraduate
student at Columbia, joined the development team in the Fall semester of 2012. Allen Riddel joined the
development team in Fall of 2013 and is currently maintaining PyStan.

vi

HMC appeared promising but was also problematic in that the Hamiltonian dy-
namics simulation requires the gradient of the log posterior. Although it’s possible
to do this by hand, it is very tedious and error prone. That’s when we discovered
reverse-mode algorithmic differentiation, which lets you write down a templated C++

function for the log posterior and automatically compute a proper analytic gradient
up to machine precision accuracy in only a few multiples of the cost to evaluate the
log probability function itself. We explored existing algorithmic differentiation pack-
ages with open licenses such as rad (Gay, 2005) and its repackaging in the Sacado
module of the Trilinos toolkit and the CppAD package in the coin-or toolkit. But nei-
ther package supported very many special functions (e.g., probability functions, log
gamma, inverse logit) or linear algebra operations (e.g., Cholesky decomposition) and
were not easily and modularly extensible.

So we built our own reverse-mode algorithmic differentiation package. But once
we’d built our own reverse-mode algorithmic differentiation package, the problem
was that we could not just plug in the probability functions from a package like Boost
because they weren’t templated on all the arguments. We only needed algorithmic
differentiation variables for parameters, not data or transformed data, and promotion
is very inefficient in both time and memory. So we wrote our own fully templated
probability functions.

Next, we integrated the Eigen C++ package for matrix operations and linear alge-
bra functions. Eigen makes extensive use of expression templates for lazy evaluation
and the curiously recurring template pattern to implement concepts without virtual
function calls. But we ran into the same problem with Eigen as with the existing prob-
ability libraries — it doesn’t support mixed operations of algorithmic differentiation
variables and primitives like double. This is a problem we have yet to optimize away
as of Stan version 1.3, but we have plans to extend Eigen itself to support heteroge-
neous matrix operator types.

At this point (Spring 2011), we were happily fitting models coded directly in C++

on top of the pre-release versions of the Stan API. Seeing how well this all worked, we
set our sights on the generality and ease of use of BUGS. So we designed a modeling
language in which statisticians could write their models in familiar notation that could
be transformed to efficient C++ code and then compiled into an efficient executable
program.

The next problem we ran into as we started implementing richer models is vari-
ables with constrained support (e.g., simplexes and covariance matrices). Although it
is possible to implement HMC with bouncing for simple boundary constraints (e.g.,
positive scale or precision parameters), it’s not so easy with more complex multi-
variate constraints. To get around this problem, we introduced typed variables and
automatically transformed them to unconstrained support with suitable adjustments
to the log probability from the log absolute Jacobian determinant of the inverse trans-

vii

forms.
Even with the prototype compiler generating models, we still faced a major hurdle

to ease of use. HMC requires two tuning parameters (step size and number of steps)
and is very sensitive to how they are set. The step size parameter could be tuned
during warmup based on Metropolis rejection rates, but the number of steps was not
so easy to tune while maintaining detailed balance in the sampler. This led to the
development of the No-U-Turn sampler (NUTS) (Hoffman and Gelman, 2011, 2013),
which takes an ever increasing number of steps until the direction of the simulation
turns around, then uses slice sampling to select a point on the simulated trajectory.

We thought we were home free at this point. But when we measured the speed of
some BUGS examples versus Stan, we were very disappointed. The very first example
model, Rats, ran more than an order of magnitude faster in JAGS than in Stan. Rats
is a tough test case because the conjugate priors and lack of posterior correlations
make it an ideal candidate for efficient Gibbs sampling. But we thought the efficiency
of compilation might compensate for the lack of ideal fit to the problem.

We realized we were doing redundant calculations, so we wrote a vectorized form
of the normal distribution for multiple variates with the same mean and scale, which
sped things up a bit. At the same time, we introduced some simple template metapro-
grams to remove the calculation of constant terms in the log probability. These both
improved speed, but not enough. Finally, we figured out how to both vectorize and
partially evaluate the gradients of the densities using a combination of expression
templates and metaprogramming. At this point, we are within a factor of two or so
of a hand-coded gradient function.

Later, when we were trying to fit a time-series model, we found that normalizing
the data to unit sample mean and variance sped up the fits by an order of magnitude.
Although HMC and NUTS are rotation invariant (explaining why they can sample effec-
tively from multivariate densities with high correlations), they are not scale invariant.
Gibbs sampling, on the other hand, is scale invariant, but not rotation invariant.

We were still using a unit mass matrix in the simulated Hamiltonian dynamics.
The last tweak to Stan before version 1.0 was to estimate a diagonal mass matrix
during warmup; this has since been upgraded to a full mass matrix in version 1.2.
Both these extensions go a bit beyond the NUTS paper on arXiv. Using a mass matrix
sped up the unscaled data models by an order of magnitude, though it breaks the
nice theoretical property of rotation invariance. The full mass matrix estimation has
rotational invariance as well, but scales less well because of the need to invert the
mass matrix once and then do matrix multiplications every leapfrog step.

viii

Stan 2

It’s been over a year since the initial release of Stan, and we have been overjoyed by
the quantity and quality of models people are building with Stan. We’ve also been a
bit overwhelmed by the volume of traffic on our user’s list and issue tracker.

We’ve been particularly happy about all the feedback we’ve gotten about instal-
lation issues as well as bugs in the code and documentation. We’ve been pleasantly
surprised at the number of such requests which have come with solutions in the form
of a GitHub pull request. That certainly makes our life easy.

As the code base grew and as we became more familiar with it, we came to realize
that it required a major refactoring (see, for example, (Fowler et al., 1999) for a nice
discussion of refactoring). So while the outside hasn’t changed dramatically in Stan 2,
the inside is almost totally different in terms of how the HMC samplers are organized,
how the output is analyzed, how the mathematics library is organized, etc.

We’ve also improved our optimization algorithm (BFGS) and its parameterization.
We’ve added more compile-time and run-time error checking for models. We’ve added
many new functions, including new matrix functions and new distributions. We’ve
added some new parameterizations and managed to vectorize all the univariate dis-
tributions. We’ve increased compatibility with a range of C++ compilers.

We’ve also tried to fill out the manual to clarify things like array and vector in-
dexing, programming style, and the I/O and command-line formats. Most of these
changes are direct results of user-reported confusions. So please let us know where
we can be clearer or more fully explain something.

Finally, we’ve fixed all the bugs which we know about. It was keeping up with the
latter that really set the development time back, including bugs that resulted in our
having to add more error checking.

Stan’s Future

We’re not done. There’s still an enormous amount of work to do to improve Stan. Our
to-do list is in the form of a Wiki on GitHub:

https://github.com/stan-dev/stan/wiki/To-Do-List

We are gradually weaning ourselves off of the to-do list in favor of the GitHub issue
tracker (see the next section for a link).

Two major features are on the short-term horizon for us after Stan 2. The first
is a differential equation solver, which will allow fitting parameters of ordinary dif-
ferential equations as part of model building (PKBUGS supplies this functionality for
BUGS and it has been rolled into OpenBUGS). The second big project is Riemannian
manifold Hamiltonian Monte Carlo (RMHMC). Both of these projects require us to put

ix

https://github.com/stan-dev/stan/wiki/To-Do-List

the finishing touches on higher-order automatic differentiation. We also have a num-
ber of smaller projects in the works, including more improvements to the modeling
language itself, such as a way to define and reuse functions and general matrix and
array index slicing.

You Can Help

Please let us know if you have comments about this manual or suggestions for Stan.
We’re especially interested in hearing about models you’ve fit or had problems fitting
with Stan. The best way to communicate with the Stan team about user issues is
through the following user’s group.

http://groups.google.com/group/stan-users

For reporting bugs or requesting features, Stan’s issue tracker is at the following
location.

https://github.com/stan-dev/stan/issues

One of the main reasons Stan is freedom-respecting, open-source software2 is that
we love to collaborate. We’re interested in hearing from you if you’d like to volunteer
to get involved on the development side. We have all kinds of projects big and small
that we haven’t had time to code ourselves. For developer’s issues, we have a separate
group.

http://groups.google.com/group/stan-dev

To contact the project developers off the mailing lists, send email to

stan@mc-stan.org

The Stan Development Team
Thursday 13th February, 2014

2See Appendix A for more information on Stan’s licenses and the licenses of the software on which it
depends.

x

http://groups.google.com/group/stan-users
https://github.com/stan-dev/stan/issues
http://groups.google.com/group/stan-dev
mailto:stan@mc-stan.org

Acknowledgements

Institutions

We thank Columbia University along with the Departments of Statistics and Political
Science, the Applied Statistics Center, the Institute for Social and Economic Research
and Policy (iserp), and the Core Research Computing Facility.

Grants

Stan was supported in part by the U. S. Department of Energy (DE-SC0002099), the
U. S. National Science Foundation ATM-0934516 “Reconstructing Climate from Tree
Ring Data.” and the U. S. Department of Education Institute of Education Sciences
(ED-GRANTS-032309-005: “Practical Tools for Multilevel Hierarchical Modeling in Edu-
cation Research” and R305D090006-09A: “Practical solutions for missing data”). The
high-performance computing facility on which we ran evaluations was made possi-
ble through a grant from the U. S. National Institutes of Health (1G20RR030893-01:
“Research Facility Improvement Grant”).

Stan is currently supported in part by a grant from the National Science Founda-
tion (CNS-1205516)

Individuals

We thank John Salvatier for pointing us to automatic differentiation and HMC in the
first place. And a special thanks to Kristen van Leuven (formerly of Columbia’s ISERP)
for help preparing our initial grant proposals.

Code and Doc Patches

Thanks for bug reports, code patches, pull requests, and diagnostics to: Ethan
Adams, Jeffrey Arnold, Jarret Barber, David R. Blair, Ross Boylan, Eric N. Brown, Devin
Caughey, Ctross (GitHub ID), Robert Goedman, Marco Inacio, B. Harris, Kevin Van
Horn, Andrew Hunter, Filip Krynicki Dan Lakeland, Devin Leopold, Nathanael I. Lichti,
P. D. Metcalfe, Jeffrey Oldham, Fernando H. Toledo, and Zhenming Su.

Thanks for documentation bug reports and patches to: Jeffrey Arnold, Asim,
Jarret Barber, Luca Billi, Eric C. Brown, David Chudzicki, Andria Dawson, Seth Flax-
man, Wayne Folta, Mauricio Garnier-Villarreal, Marco Inacio, Louis Luangkesorn, Mitzi
Morris, Tamas Papp, Sergio Polini, Sean O’Riordain, Cody Ross, Mike Ross, Nathan

xi

Sanders, Terrance Savitsky, Janne Sinkkonen, Dan Stowell, Dougal Sutherland, An-
drew J. Tanentzap, Shravan Vashisth, and Sebastian Weber.

Thanks to Kevin van Horn for install instructions for Cygwin and to Kyle Foreman
for instructions on using the MKL compiler.

Bug Reports

We’re really thankful to everyone who’s had the patience to try to get Stan working
and reported bugs. All the gory details are available from Stan’s issue tracker at the
following URL.

https://github.com/stan-dev/stan/issues

Stanislaw Ulam, namesake of Stan and co-
inventor of Monte Carlo methods (Metropo-
lis and Ulam, 1949), shown here holding
the Fermiac, Enrico Fermi’s physical Monte
Carlo simulator for neutron diffusion.

Image from (Giesler, 2000).

!"#$%&'()*+,

!"#$%&'()$"("%#*+"')(,-./0"1)",(/'"(-2(#%1,-0('%0&*+13()-('-*4"(%
0%)$"0%)+.%*(&#-5*"0(6%'()$%)(-2(7-0&)"(,"(8/22-1(+1(9::;<(=1()$"(2-**-6+13(1">)()6-
."1)/#+"'?()$+'()".$1+@/"($%,(%(1/05"#(-2(-)$"#(/'"'<((=1()$"(9ABC'?(D1#+.-(E"#0+(/'",(+)
)-('-*4"(&#-5*"0'(+1(1"/)#-1(&$F'+.'?(%*)$-/3$($"(1"4"#(&/5*+'$",($+'(#"'/*)'<((=1(G-'
H*%0-'(,/#+13(I-#*,(I%#(==?(E"#0+(%*-13(6+)$(J)%1(K*%0?(L-$1(4-1(M"/0%11?(M+.$-*%'
N")#-&-*+'?(%1,(-)$"#'(,+'./''",()$"(%&&*+.%)+-1(-2()$+'(')%)+')+.%*('%0&*+13()".$1+@/"()-
)$"(&#-5*"0'()$"F(6"#"(6-#O+13(-1<((K*%0(&-+1)",(-/)()$"(/'"(-2("*".)#-0".$%1+.%*
.-0&/)"#'()-(-4"#.-0"()$"(*-13(%1,
)",+-/'(1%)/#"(-2()$"(.%*./*%)+-1'?(%1,
N")#-&-*+'(1%0",()$+'(&#"4+-/'*F(/11%0",
)".$1+@/"(PN-1)"(7%#*-Q(%2)"#(K*%0R'(/1.*"
6$-(5-##-6",(0-1"F(2#-0(#"*%)+4"'
5".%/'"($"(ST/')($%,()-(3-()-(N-1)"(7%#*-Q
U)$"(3%05*+13(.%'+1-V<

W1(N%#.$(99?(9AX:?(L-$1(4-1
M"/0%11('"1)(%(*"))"#(UY+.$)0F"#?(9AX:V()-
)$"(Z$"-#")+.%*([+4+'+-1(*"%,"#(&#-&-'+13
)$"(/'"(-2()$+'()".$1+@/"(-1(DM=H7()-('-*4"
1"/)#-1(,+22/'+-1(%1,(0/*)+&*+.%)+-1
&#-5*"0'<((Z$+'(6%'()$"(2+#')(&#-&-'%*()-
/'"()$"(N-1)"(7%#*-()".$1+@/"(-1(%1
"*".)#-1+.(,+3+)%*(.-0&/)"#<((H*'-(+1(9AX:?
D1#+.-(E"#0+($%,(EDYN=H7(UE+3/#"(9V?(%
0".$%1+.%*(%1%*-3(.-0&/)"#?(&#-3#%00",
)-(#/1(N-1)"(7%#*-(&#-5*"0'<((=1(9AX\?()$"
2+#')(#/1'(-1(%
,+3+)%*(.-0&/)"#
)--O(&*%."(-1
DM=H7(UE+3/#"(;V<
=1()$"(*%)"(9AXC'
%1,("%#*F(9A]C'?
0%1F(&%&"#'(6"#"
6#+))"1(,"'.#+5+13
)$"(N-1)"(7%#*-
0")$-,(%1,(+)'
/'"(+1('-*4+13
&#-5*"0'(+1
#%,+%)+-1(%1,
&%#)+.*"()#%1'&-#)
%1,(-)$"#(%#"%'<
Z$"(2+#')(-&"1
N-1)"(7%#*-
.-12"#"1."(6%'
$"*,(%)(K7GH(+1
)$"('/00"#(-2
9AXA<((N%1F(-2()$-'"(0")$-,'(%#"(')+**(+1(/'"()-,%F(+1.*/,+13()$"(#%1,-0(1/05"#
3"1"#%)+-1(0")$-,(/'",(+1(N7M!<

-'./+0%12%%3#45"

-'./+0%62%%7)89%:;8<%&*;='9.%-3>!45"

xii

https://github.com/stan-dev/stan/issues

Part I

Introduction

1

1. Overview

This document is both a user’s guide and a reference manual for Stan’s probabilistic
modeling language. This introductory chapter provides a high-level overview of Stan.
The next chapter provides a hands-on quick-start guide showing how Stan works in
practice. Installation instructions are in Appendix B. The remaining parts of this
document include a practically-oriented user’s guide for programming models and a
detailed reference manual for Stan’s modeling language and associated programs and
data formats.

1.1. Stan Interfaces

There are three interfaces for Stan that are supported as part of the Stan project.
Models and their use are the same across the three interfaces, and this manual is the
modeling language manual for all three interfaces. All of the interfaces share initial-
ization, sampling and tuning controls, and roughly share posterior analysis function-
ality.

CmdStan

CmdStan allows Stan to be run from the command line. In some sense, CmdStan is
the reference implementation of Stan. This manual currently doubles as the CmdStan
documentation. In the near term, the CmdStan documentation will be broken out of
this manual and given its own manual.

RStan

RStan is the R interface to Stan. The installation and getting started guide for RStan
can be found on GitHub at:

https://github.com/stan-dev/rstan/wiki/
RStan-Getting-Started

PyStan

PyStan is the Python interface to Stan. The installation and getting started guide for
PyStan can be found on Read the Docs at:

https://pystan.readthedocs.org/en/latest/getting_started.
html

2

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://pystan.readthedocs.org/en/latest/getting_started.html
https://pystan.readthedocs.org/en/latest/getting_started.html

1.2. Stan Programs

A Stan program defines a statistical model through a conditional probability function
p(θ|y ;x), where θ is a sequence of modeled unknown values (e.g., model parame-
ters, latent variables, missing data, future predictions), y is a sequence of modeled
known values, and x is a sequence of unmodeled predictors and constants (e.g., sizes,
hyperparameters).

Stan programs consist of variable type declarations and statements. Variable
types include constrained and unconstrained integer, scalar, vector, and matrix types,
as well as (multidimensional) arrays of other types. Variables are declared in blocks
corresponding to the variable’s use: data, transformed data, parameter, transformed
parameter, or generated quantity. Unconstrained local variables may be declared
within statement blocks.

Statements in Stan are interpreted imperatively, so their order matters. Atomic
statements involve the assignment of a value to a variable. Sequences of statements
(and optionally local variable declarations) may be organized into a block. Stan also
provides bounded for-each loops of the sort used in R and BUGS.

The transformed data, transformed parameter, and generated quantities blocks
contain statements defining the variables declared in their blocks. A special model
block consists of statements defining the log probability for the model.

Within the model block, BUGS-style sampling notation may be used as shorthand
for incrementing an underlying log probability variable, the value of which defines the
log probability function. The log probability variable may also be accessed directly,
allowing user-defined probability functions and Jacobians of transforms.

1.3. Compiling and Running Stan Programs

A Stan program is first compiled to a C++ program by the Stan compiler stanc, then
the C++ program compiled to a self-contained platform-specific executable. Stan can
generate executables for various flavors of Windows, Mac OS X, and Linux.1 Running
the Stan executable for a model first reads in and validates the known values y and
x, then generates a sequence of (non-independent) identically distributed samples
θ(1), θ(2), . . ., each of which has the marginal distribution p(θ|y ;x).

1.4. Sampling

For continuous parameters, Stan uses Hamiltonian Monte Carlo (HMC) sampling (Du-
ane et al., 1987; Neal, 1994, 2011), a form of Markov chain Monte Carlo (MCMC) sam-

1A Stan program may also be compiled to a dynamically linkable object file for use in a higher-level
scripting language such as R or Python.

3

pling (Metropolis et al., 1953). Stan 1.0 does not do discrete sampling.2 Chapter 13
discusses how finite discrete parameters can be summed out of models.

HMC accelerates both convergence to the stationary distribution and subsequent
parameter exploration by using the gradient of the log probability function. The un-
known quantity vector θ is interpreted as the position of a fictional particle. Each iter-
ation generates a random momentum and simulates the path of the particle with po-
tential energy determined the (negative) log probability function. Hamilton’s decom-
position shows that the gradient of this potential determines change in momentum
and the momentum determines the change in position. These continuous changes
over time are approximated using the leapfrog algorithm, which breaks the time into
discrete steps which are easily simulated. A Metropolis reject step is then applied to
correct for any simulation error and ensure detailed balance of the resulting Markov
chain transitions (Metropolis et al., 1953; Hastings, 1970).

Standard HMC involves three “tuning” parameters to which its behavior is quite
sensitive. Stan’s samplers allow these parameters to be set by hand or set automati-
cally without user intervention.

The first two tuning parameters set the temporal step size of the discretization of
the Hamiltonian and the total number of steps taken per iteration (with their prod-
uct determining total simulation time). Stan can be configured with a user-specified
step size or it can estimate an optimal step size during warmup using dual averaging
(Nesterov, 2009; Hoffman and Gelman, 2011, 2013). In either case, additional ran-
domization may be applied to draw the step size from an interval of possible step
sizes (Neal, 2011).

Stan can be set to use a specified number of steps, or it can automatically adapt
the number of steps during sampling using the No-U-Turn (NUTS) sampler (Hoffman
and Gelman, 2011, 2013).

The third tuning parameter is a mass matrix for the fictional particle. Stan can be
configured to estimate a diagonal mass matrix or a full mass matrix during warmup;
Stan will support user-specified mass matrices in the future. Estimating a diago-
nal mass matrix normalizes the scale of each element θk of the unknown variable
sequence θ, whereas estimating a full mass matrix accounts for both scaling and ro-
tation,3 but is more memory and computation intensive per leapfrog step due to the
underlying matrix operations.

2Plans are in place to add full discrete sampling in Stan 2.0. An intermediate step will be to allow
forward sampling of discrete variables in the generated quantities block for predictive modeling and model
checking.

3These estimated mass matrices are global, meaning they are applied to every point in the parameter
space being sampled. Riemann-manifold HMC generalizes this to allow the curvature implied by the mass
matrix to vary by position.

4

Convergence Monitoring and Effective Sample Size

Samples in a Markov chain are only drawn with the marginal distribution p(θ|y ;x) af-
ter the chain has converged to its equilibrium distribution. There are several methods
to test whether an MCMC method has failed to converge; unfortunately, passing the
tests does not guarantee convergence. The recommended method for Stan is to run
multiple Markov chains each with different diffuse initial parameter values, discard
the warmup/adaptation samples, then split the remainder of each chain in half and
compute the potential scale reduction statistic, R̂ (Gelman and Rubin, 1992).

When estimating a mean based on M independent samples, the estimation error
is proportional to 1/

√
M . If the samples are positively correlated, as they typically are

when drawn using MCMC methods, the error is proportional to 1/
√

ess, where ess is
the effective sample size. Thus it is standard practice to also monitor (an estimate of)
the effective sample size of parameters of interest in order to estimate the additional
estimation error due to correlated samples.

Bayesian Inference and Monte Carlo Methods

Stan was developed to support full Bayesian inference. Bayesian inference is based in
part on Bayes’s rule,

p(θ|y ;x)∝ p(y|θ;x)p(θ;x),

which, in this unnormalized form, states that the posterior probability p(θ|y ;x) of
parameters θ given data y (and constants x) is proportional (for fixed y and x) to the
product of the likelihood function p(y|θ;x) and prior p(θ;x).

For Stan, Bayesian modeling involves coding the posterior probability function up
to a proportion, which Bayes’s rule shows is equivalent to modeling the product of
the likelihood function and prior up to a proportion.

Full Bayesian inference involves propagating the uncertainty in the value of pa-
rameters θ modeled by the posterior p(θ|y ;x). This can be accomplished by basing
inference on a sequence of samples from the posterior using plug-in estimates for
quantities of interest such as posterior means, posterior intervals, predictions based
on the posterior such as event outcomes or the values of as yet unobserved data.

1.5. Optimization

Stan also supports optimization-based inference for models. Given a posterior
p(θ|y), Stan can find the posterior mode θ∗, which is defined by

θ∗ = argmaxθ p(θ|y).

5

Here the notation argmaxu f (v) is used to pick out the value of v at which f (v) is
maximized.

If the prior is uniform, the posterior mode corresponds to the maximum likeli-
hood estimate (MLE) of the parameters. If the prior is not uniform, the posterior
mode is sometimes called the maximum a posterior (MAP) estimate. If parameters
(typically hierarchical) have been marginalized out, it’s sometimes called a maximum
marginal likelihood (MML) estimate.

Inference with Point Estimates

The estimate θ∗ is a so-called “point estimate,” meaning that it summarizes the pos-
terior distribution by a single point, rather than with a distribution. Of course, a point
estimate does not, in and of itself, take into account estimation variance. Posterior
predictive inferences p(ỹ|y) can be made using the posterior mode given data y as
p(ỹ|θ∗), but they are not Bayesian inferences, even if the model involves a prior, be-
cause they do not take posterior uncertainty into account. If the posterior variance is
low and the posterior mean is near the posterior mode, inference with point estimates
can be very similar to full Bayesian inference.

“Empirical Bayes”

Fitting point estimates of priors and then using them for subsequent inference is
sometimes called “empirical Bayes” (see, e.g., (Efron, 2012)).4 Typically these op-
timizations will be done using maximum marignal likelihood rather than posterior
modes of a full model. Sometimes Empirical Bayes point estimates will be obtained
using moment matching (see, e.g., the rat-tumor example in Chapter 5 of (Gelman
et al., 2013)).

Experimental Feature

Stan’s optimizers have not been as well tested as its samplers, so they are still con-
sidered an “experimental” feature. We would love to hear back about successess or
failures users have with optimization.

4The scare quotes on “empirical Bayes” are because the approach is no more empirical than full Bayes.
Empirical Bayes approaches merely ignore some posterior uncertainty to make inference more efficient
computationally.

6

2. Getting Started

This chapter is designed to help users get acquainted with the overall design of the
Stan language and calling Stan from the command line. Later chapters are devoted
to expanding on the material in this chapter with full reference documentation. The
content is identical to that found on the getting-started with the command-line docu-
mentation on the Stan home page, http://mc-stan.org/.

2.1. For BUGS Users

Appendix C describes some similarities and important differences between Stan and
BUGS (including WinBUGS, OpenBUGs, and JAGS).

2.2. Installation

For information about supported versions of Windows, Mac and Linux platforms
along with step-by-step installation instructions, see Appendix B.

2.3. Building Stan

Building Stan itself works the same way across platforms. To build Stan, first open a
command-line terminal application. Then change directories to the directory in which
Stan is installed (i.e., the directory containing the file named makefile).

> cd <stan-home>

Then make the library with the following make command

> make bin/libstan.a

then make the model parser and code generator with the following call, adjusting the
2 in -j2 to the number of CPU cores available

> make -j2 bin/stanc

On Windows, that’ll be bin/stanc.exe.
Warning: The make program may take 10+ minutes and consume 2+ GB of mem-

ory to build stanc. Compiler warnings, such as uname: not found, may be safely
ignored.

Finally, make the Stan output summary program with the following make com-
mand.

7

http://mc-stan.org/

> make bin/print

Building libstan.a, bin/stanc, and bin/print needs to be done only once.

2.4. Compiling and Executing a Model

The rest of this quick-start guide explains how to code and run a very simple Bayesian
model.

A Simple Bernoulli Model

The following simple model is available in the source distribution located at
<stan-home> as

src/models/basic_estimators/bernoulli.stan

The file contains the following model.

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {
real<lower=0,upper=1> theta;

}
model {
theta ~ beta(1,1);
for (n in 1:N)

y[n] ~ bernoulli(theta);
}

The model assumes the binary observed data y[1],...,y[N] are i.i.d. with Bernoulli
chance-of-success theta. The prior on theta is beta(1,1) (i.e., uniform).

Implicit Uniform Priors

If no prior is specified for a parameter, it is implicitly given a uniform prior on its sup-
port. For parameters such as theta in the example, which are constrained to fall be-
tween 0 and 1, this produces a proper uniform distribution on the support of theta.
Because Beta(1,1) is the uniform distribution, the following sampling statement can
be eliminated from the model without changing the log probability calculation.

theta ~ beta(1,1);

8

For parameters with unbounded support, the implicit uniform prior is improper.
Stan allows improper priors to be specified in models, but posteriors must be proper
in order for sampling to succeed.

Constraints on Parameters

The variable theta is defined with lower and upper bounds, which constrain its value.
Parameters with constrained support should always specify appropriate constraints
in the parameter declaration; if the constraints are absent, sampling will either slow
down or stop altogether based on whether the initial values satisfy the constraints.

Vectorizing Sampling Statements

Iterations of the model will be faster if the loop over sampling statements is vectorized
by replacing

for (n in 1:N)
y[n] ~ bernoulli(theta);

with the equivalent vectorized form,

y ~ bernoulli(theta);

Performance gains from vectorization are not because loops are slow in Stan, but
because calls to sampling statements are slow. Vectorization allows multiple calls
to a sampling statement to be replaced with a single call that can share common
calculations for the log probability function, its gradients, and error checking. For
more tips on optimizing the performance of Stan models, see Chapter 20.

Data Set

A data set of N = 10 observations is available in the file

src/models/basic_estimators/bernoulli.data.R

The content of the file is as follows.

N <- 10
y <- c(0,1,0,0,0,0,0,0,0,1)

This defines the contents of two variables, N and y, using an R-like syntax (see Chap-
ter 6 for more information).

9

Generating and Compiling the Model

A single call to make will generate the C++ code for a model with a name ending in
.stan and compile it for execution. This call will also compile the library libstan.a
and the parser/code generator stanc if they have not already been compiled.

First, change directories to <stan-home>, the directory where Stan was unpacked
that contains the file named makefile and a subdirectory called src/.

> cd <stan-home>

Then issue the following command:

> make src/models/basic_estimators/bernoulli

The command for Windows is the same, including the forward slashes.
The make command may be applied to files in locations that are not subdi-

rectories issued from another directory as follows. Just replace the relative path
src/models/... with the actual path.

The C++ generated for the model and its compiled executable form will be placed
in the same directory as the model.

Sampling from the Model

The model can be executed from the directory in which it resides.

> cd src/models/basic_estimators

To execute sampling of the model under Linux or Mac, use

> ./bernoulli sample data file=bernoulli.data.R

The ./ prefix before the executable is only required under Linux and the Mac when
executing a model from the directory in which it resides.

For the Windows DOS terminal, the ./ prefix is not needed, resulting in the fol-
lowing command.

> bernoulli sample data file=bernoulli.data.R

Whether the command is run in Windows, Linux, or on the Mac, the output is the
same. First, the parameters are echoed to the standard output, which shows up on
the terminal as follows.

10

method = sample (Default)

sample

num_samples = 1000 (Default)

num_warmup = 1000 (Default)

save_warmup = 0 (Default)

thin = 1 (Default)

adapt

engaged = 1 (Default)

gamma = 0.050000000000000003 (Default)

delta = 0.80000000000000004 (Default)

kappa = 0.75 (Default)

t0 = 10 (Default)

init_buffer = 75 (Default)

term_buffer = 50 (Default)

window = 25 (Default)

algorithm = hmc (Default)

hmc

engine = nuts (Default)

nuts

max_depth = 10 (Default)

metric = diag_e (Default)

stepsize = 1 (Default)

stepsize_jitter = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 4294967295 (Default)

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

...

The ellipses (...) indicate that the output continues (as described below).
After the configuration has been displayed a short timing warning is given.

...

Gradient evaluation took 4e-06 seconds

1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.

Adjust your expectations accordingly!

...

11

Next, the sampler counts up the iterations in place, reporting percentage com-
pleted, ending as follows.

...

Iteration: 1 / 2000 [0%] (Warmup)

...

Iteration: 1000 / 2000 [50%] (Warmup)

Iteration: 1001 / 2000 [50%] (Sampling)

...

Iteration: 2000 / 2000 [100%] (Sampling)

...

Sampler Output

Each execution of the model results in the samples from a single Markov chain being
written to a file in comma-separated value (CSV) format. The default name of the
output file is output.csv.

The first part of the output file just repeats the parameters as comments (i.e., lines
beginning with the pound sign (#)).

stan_version_major = 2

stan_version_minor = 1

stan_version_patch = 0

model = bernoulli_model

method = sample (Default)

sample

num_samples = 1000 (Default)

num_warmup = 1000 (Default)

save_warmup = 0 (Default)

thin = 1 (Default)

adapt

engaged = 1 (Default)

gamma = 0.050000000000000003 (Default)

delta = 0.80000000000000004 (Default)

kappa = 0.75 (Default)

t0 = 10 (Default)

init_buffer = 75 (Default)

term_buffer = 50 (Default)

window = 25 (Default)

algorithm = hmc (Default)

hmc

engine = nuts (Default)

nuts

max_depth = 10 (Default)

12

metric = diag_e (Default)

stepsize = 1 (Default)

stepsize_jitter = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 355899897

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

...

This is then followed by a header indicating the names of the values sampled.

...

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,n_divergent__,theta

...

The first column gives the log probability. The next columns, here columns
two through five, provide sampler-dependent information. For basic Hamiltonian
Monte Carlo (HMC) and its adaptive variant No-U-Turn sampler (NUTS), the sampler-
depedent parameters are described in the following table.

Sampler Parameter Description

HMC accept_stat__ Metropolis acceptance probability
HMC stepsize__ Integrator step size
HMC int_time__ Total integration time
NUTS accept_stat__ Metropolis acceptance probability

averaged over samples in the slice
NUTS stepsize__ Integrator step size
NUTS treedepth__ Tree depth
NUTS n_leapfrog__ Number of leapfrog calculations
NUTS n_divergent__ Number of divergent iterations

The rest of the columns in the header correspond to model parameters, here just
theta in the sixth column. The parameter name header is output before warmup
begins.

The result of any adaptation taking place during warmup is output next after the
parameter names.

13

...

Adaptation terminated

Step size = 1.81311

Diagonal elements of inverse mass matrix:

0.415719

...

The default sampler is NUTS with an adapted step size and a diagonal inverse mass
matrix. For the running example, the step size is 1.81311, and the inverse mass
contains the single entry 0.415719 corresponding to the parameter theta.

Samples from each iteration are printed out next, one per line in columns corre-
sponding to the headers. 1

...

-6.95293,0.945991,1.09068,2,3,0.335074

-6.92373,0.938744,1.09068,1,1,0.181194

-6.83655,0.934833,1.09068,2,3,0.304882

...

-7.01732,1,1.09068,1,1,0.348244

-8.96652,0.48441,1.09068,1,1,0.549066

-7.22574,1,1.09068,1,1,0.383089

The output ends with timing details,

...

Elapsed Time: 0.006811 seconds (Warm-up)

0.011645 seconds (Sampling)

0.018456 seconds (Total)

Summarizing Sampler Output

The command-line program bin/print will display summary information about the
run (for more information, see Chapter 5). To run print on the output file generated
for bernoulli on Linux or Mac, use

> <stan-home>/bin/print output.csv

where <stan-home> is the path to where Stan was unpacked. For Windows use back-
slashes for the executable,

> <stan-home>\bin\print output.csv

1There are repeated entries due to the Metropolis accept step in the No-U-Turn sampling algorithm.

14

The output of the command will display information about the run followed by infor-
mation for each parameter and generated quantity. For bernoulli, we ran 1 chain
and saved 1000 iterations. The information is echoed to the standard output stream.
For the running example, the path to <stan-home> can be specified from the direc-
tory in which the Bernoulli model resides using ../ (with backslashes on Windows)
as

> ../../../bin/print output.csv

For Windows, reverse the slashes. The output is

Inference for Stan model: bernoulli_model
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.

Warmup took (0.0066) seconds, 0.0066 seconds total
Sampling took (0.011) seconds, 0.011 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -7.3 3.5e-02 6.9e-01 -8.7e+00 -7.0 -6.7 390 34020 1.00
accept_stat__ 0.64 1.2e-02 3.6e-01 5.1e-03 0.74 1.0 882 76898 1.00
stepsize__ 1.8 7.8e-15 5.6e-15 1.8e+00 1.8 1.8 0.50 44 1.00
treedepth__ 0.076 8.6e-03 2.7e-01 0.0e+00 0.00 1.0 942 82167 1.00
n_leapfrog__ 2.7 4.9e-02 1.3e+00 1.0 3.0 3.0 716 65090 1.0e+00
n_divergent__ 0.00 0.0e+00 0.0e+00 0.0e+00 0.00 0.00 1000 90909 1.00
theta 0.25 4.2e-03 1.2e-01 9.0e-02 0.23 0.47 827 72146 1.00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

In addition to the general information about the runs, print displays summary statis-
tics for each parameter and generated quantity.

In the bernoulli model, there is a single parameter, theta. The mean, standard
error of the mean, standard deviation, the 5%, 50%, and 95% quantiles, number of
effective samples (total and per second), and R̂ value are displayed. These quantities
and their uses are described in detail in Chapter 50.

The command bin/print can be called with more than one csv file by separating
filenames with spaces. It will also take wildcards in specifying filenames. A typical
usage of Stan from the command line would first create one or more Markov chains by
calling the model executable, typically in parallel, writing the output CSV file for each
into its own directory. Next, after all of the processes are finished, the results would
be analyzed using print to assess convergence and inspect the means and quantiles
of the fitted variables. Additionally, downstream inferences may be performed using
the samples (e.g., to make decisions or predictions for unseen data).

15

Compile-time and Run-time Warnings

Stan tries to report warnings in order to help users correctly formulate and ebug
models. There are two warnings in particular that deserve further explanation up
front because we have not been able to formulate wording clearly enough to prevent
confusion.

Metropolis Rejection Warning

The first problematic warning message involves the Metropolis sampler rejecting a
proposal due to an error arising in the evaluation of the log probability function.
Such errors are typically due to underflow or overflow in numerical computations
that are the unavoidable consequence of floating-point approximations to continuous
real values. The following is an example of such a message.

Informational Message: The current Metropolis proposal is about

to be rejected because of the following issue:

Error in function stan::prob::normal_log(N4stan5agrad3varE):

Scale parameter is 0:0, but must be > 0!

If this warning occurs sporadically, such as for highly constrained

variable types like covariance matrices, then the sampler is fine,

but if this warning occurs often then the model may be either severely

ill-conditioned or misspecified.

Despite using the word “Error” in the embedded report of the numerical issue, this
is just an informational message (i.e., a warning); it is not an error. Particularly
in early stages of sampler adaptation before adaptation has converged on the high-
mass volume of the posterior, the numerical approximation to functions and to the
Hamiltonian dynamics followed by the sampler can lead to numerical issues. As the
message tries to indicate, if the message only occurs sporadically, then the sampler
is fine and the user need not worry. In particular, the post-adaptation draws are still
valid.

The reason this message is presented at all is that if it occurs repeatedly, the
model may have a poorly conditioned constraint (typically with covariance or correla-
tion matrices) or may be misformulated. In a future version of Stan, we plan to rank
such messages by severity and turn this one off by default so as not to needlessly
worry users.

Jacobian Required Warning

The second problematic warning message appears when a model is compiled and
involves the requirement of a Jacobian adjustment to the log probability. If the left-
hand side of a sampling statement involves a non-linear transform, then a Jacobian

16

adjustment must be made; see Section 17.2.1 for an example of how to calculate the
required Jacobian adjustment and apply it in a model.

In linear transforms or matrix/array slicing, spurious warnings arise. Ane example
is the following model, which involves extraction of a rwo from a matrix for vectorized
sampling.

parameters {
matrix[20,10] y;

}
model {
for (m in 1:20)

row(y,m) ~ normal(0,1);
}

Compiling the above model leads to the following spurious warning.

Warning (non-fatal): sampling statement (~) contains a transformed

parameter or local variable. You must increment lp__ with the log

absolute determinant of the Jacobian of the transform.

Sampling Statement left-hand-side expression:

row(y,m) ~ normal_log(...)

Such messages may be ignored if the transform involves is linear or only involves
pulling out slices or blocks of larger structures.

Optimization

Stan can be used for finding posterior modes as well as sampling from the posterior.
The model does not need to be recompiled in order to switch from optimization to
sampling, and the data input format is the same. Although many command-line argu-
ments may be provided to configure the optimizer, the following minimal command
suffices, using defaults for everything but where to find the data file.

./bernoulli optimize data file=bernoulli.data.R

which prints out

method = optimize
optimize

algorithm = bfgs (Default)
bfgs

init_alpha = 0.001 (Default)
tol_obj = 1e-08 (Default)
tol_grad = 1e-08 (Default)
tol_param = 1e-08 (Default)

17

iter = 2000 (Default)
save_iterations = 0 (Default)

id = 0 (Default)
data

file = bernoulli.data.R
init = 2 (Default)
random
seed = 2907588507

output
file = output.csv (Default)
append_sample = 0 (Default)
diagnostic_file = (Default)
append_diagnostic = 0 (Default)
refresh = 100 (Default)

initial log joint probability = -10.9308
Iter log prob ||dx|| ||grad|| alpha # evals Notes

7 -5.00402 3.67055e-07 3.06339e-11 1 10
Optimization terminated normally:

Convergence detected: change in objective function was below
tolerance

The first part of the output reports on the configuration used, here indicating the
default BFGS optimizer, with default initial stepsize and tolerances for monitoring
convergence. The second part of the output indicates how well the algorithm fared,
here converging and terminating normally. The numbers reported indicate that it
took 7 iterations and 10 gradient evaluations, resulting in a final state state where
the change in parameters was roughly 3.7e-7 and the length of the gradient roughly
3e-11. The alpha value is for step size used. This is, not surprisingly, far fewer
iterations than required for sampling; even fewer iterations would be used with less
stringent user-specified convergence tolerances.

Output from Optimization

The output from optimization is written into the file output.csv by default. The
output follows the same pattern as the output for sampling, first dumping the entire
set of parameters used.

stan_version_major = 2

stan_version_minor = 1

stan_version_patch = 0

model = bernoulli_model

method = optimize

optimize

algorithm = bfgs (Default)

bfgs

18

init_alpha = 0.001 (Default)

tol_obj = 1e-08 (Default)

tol_grad = 1e-08 (Default)

tol_param = 1e-08 (Default)

iter = 2000 (Default)

save_iterations = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 2907588507

output

file = output.csv (Default)

append_sample = 0 (Default)

diagnostic_file = (Default)

append_diagnostic = 0 (Default)

refresh = 100 (Default)

lp__,theta

-5.00402,0.2000000000030634

Note that everything is a comment other than a line for the header, and a line for the
values. Here, the header indicates the unnormalized log probability with lp__ and
the model parameter theta. The maximum log probability is -5.0 and the posterior
mode for theta is 0.20. The mode exactly matches what we would expect from the
data. 2 Because the prior was uniform, the result 0.20 represents the maximum like-
lihood estimate (MLE) for the very simple Bernoulli model. Note that no uncertainty
is reported.

Configuring Command-Line Options

The command-line options for running a model are detailed in Chapter 4. They can
also be printed on the command line using Linux or Mac OS with

> ./bernoulli help-all

and on Windows with

> bernoulli help-all

It may help to glance at the command-line skeletons in Figure 4.4 through Figure 4.9
to get a handle on the options then read the detailed descriptions earlier in Chapter 4.

2The Jacobian adjustment included for the sampler’s log probability function is not applied during
optimization, because it can change the shape of the posterior and hence the solution.

19

Testing Stan

To run the Stan unit tests of basic functionality, run the following commands from
a shell (where <stan-home> is replaced top-level directory into which Stan was un-
packed; it should contain a file named makefile).3

> cd <stan-home>
> make -j4 O=0 test-headers
> make -j4 O=0 src/test/unit
> make -j4 O=0 src/test/unit-agrad-rev
> make -j4 O=0 src/test/unit-agrad-fwd
> make -j4 O=0 src/test/unit-distribution
> make -j4 O=3 src/test/CmdStan/models

As before, -j4 indicates that four processes should be run in parallel; adjust the
value 4 to correspond to the number of CPU cores available. Code optimization is
specified by the letter ‘O’ followed by an equal sign followed by the digit ‘0’ for no
optimization and ‘3’ for more optimization; optimization slows down compilation of
the executable but reduces its execution time. Warnings can be safely ignored if the
tests complete without a FAIL error.

Warning: The unit tests can take 30+ minutes and consume 3+ GB of memory
with the default compiler, g++. The distribution test and model tests can take even
longer. It is faster to run the Clang compiler (option CC=clang++), and to run in
multiple processes in parallel (e.g., option -j4 for four threads).

3Although command-line Stan runs with earlier versions of make, the unit tests require version 3.81 or
higher; see Section B.8.2 for installation instructions.

20

Part II

Commands and Data Formats

21

3. Compiling Stan Programs

Preparing a Stan program to be run involves two steps,

1. translating the Stan program to C++, and

2. compiling the resulting C++ to an executable.

This chapter discusses both steps, as well as their encapsulation into a single make
target.

3.1. Installing Stan

Before Stan can be run, it must be installed; see Appendix B for complete platform-
specific installation details.

3.2. Translating and Compiling through make

The simplest way to compile a Stan program is through the make build tool, which
encapsulates the translation and compilation step into a single command. The com-
mands making up the make target for compiling a model are described in the follow-
ing sections, and the following chapter describes how to run a compiled model.

Translating and Compiling Test Models

There are a number of test models distributed with Stan which unpack into the
path src/models. To build the simple example src/models/basic_estimators/
bernoulli.stan, the following call to make suffices. First the directory is changed to
Stan’s home directory by replacing <stan-home> with the appropriate path.

> cd <stan-home>

The current directory should now contain the file named makefile, which is the
default instructions used by make. From within the top-level Stan directory, the fol-
lowing call will build an executable form of the Bernoulli estimator.

> make src/models/basic_estimators/bernoulli

This will translate the model bernoulli.stan to a C++ file and compile that C++ file,
putting the executable in src/models/basic_distributions/bernoulli(.exe).
Although the make command including arguments is itself portable, the target it

22

creates is different under Windows than in Unix-like platforms. Under Linux and the
Mac, the executable will be called bernoulli, whereas under Windows it will be called
bernoulli.exe.

Dependencies in make

A make target can depend on other make targets. When executing a make target, first
all of the targets on which it depends are checked to see if they are up to date, and
if they are not, they are rebuilt. This includes the top-level target itself. If the make
target to build the Bernoulli estimator is invoked a second time, it will see that it is up
to date, and not compile anything. But if one of the underlying files has changes since
the last invocation make, such as the model specification file, it will be retranslated to
C++ and recompiled to an executable.

There is a dependency included in the make target that will automatically build
the bin/stanc compiler and the bin/libstan.a library whenever building a model.

Getting Help from the makefile

Stan’s makefile, which contains the top-level instructions to make, provides exten-
sive help in terms of targets and options. It is located at the top-level of the distribu-
tion, so first change directories to that location.

> cd <stan-home>

and then invoke make with the target help,

> make help

Options to make

Stan’s make targets allow the user to change compilers, library versions for Eigen and
Boost, as well as compilation options such as optimization.

These options should be placed right after the call to make itself. For instance, to
specify the clang++ compiler at optimization level 0, use

> make CC=clang++ O=0 ...

Compiler Option

The option CC=g++ specifies the g++ compiler and CC=clang++ specifies the clang++
compiler. Other compilers with other names may be specified the same way. A full
path may be used, or just the name of the program if it can be found on the system
execution path.

23

Optimization Option

The option O=0 (that’s letter ‘O’, equal sign, digit ‘0’), specifies optimization level 0
(no optimization), whereas O=3 specifies optimization level 3 (effectively full opti-
mization), with levels 1 and 2 in between.

With higher optimization levels, generated executable tends to be bigger (in terms
of bytes in memory) and faster. For best results on computationally-intensive models,
use optimization level 3 for the Stan library and for compiling models.

Library Options

Alternative versions of Eigen, Boost, and Google Test may be specified using the prop-
erties EIGEN, BOOST, and GTEST. Just set them equal to a path that resolves to an ap-
propriate library. See the libraries distributed under lib to see which subdirectory of
the library distribution should be specified in order for the include paths in the C++

code to resolve properly.

Additional make Targets

All of these targets are intended to be invoked from the top-level directory in which
Stan was unpacked (i.e., the directory that contains the file named makefile).

Clean Targets

A very useful target is clean-all, invoked as

> make clean-all

This removes everything that’s created automatically by make, including the stanc
translator, the Stan libraries, and all the automatically generated documentation.

Make Target for stanc

To make the stanc compiler, use

> make bin/stanc

As with other executables, the executable bin/stanc will be created under Linux and
Mac, whereas bin/stanc.exe will be created under Windows.

Make Target for Stan Library

To build the Stan library, use the following target,

> make bin/libstan.a

24

3.3. Translating Stan to C++ with stanc

Building the stanc Compiler and the Stan Library

Before the stanc compiler can be used, it must be built. Use the following command
from the top-level distribution directory containing the file named makefile.

> make bin/stanc

This invocation produces the executable bin/stanc under Linux and Mac, and
bin/stanc.exe under Windows. The invocation of make, including the forward slash,
is the same on both platforms.

The default compiler option is CC=g++ and the default optimization level is O=3
(the letter ‘O’); to see how to change these, see the previous section in this chapter on
make.

The stanc Compiler

The stanc compiler converts Stan programs to C++ programs. The first stage of com-
pilation involves parsing the text of the Stan program. If the parser is successful, the
second stage of compilation generates C++ code. If the parser fails, it will provide a di-
agnostic error message indicating the location in the input where the failure occurred
and reason for the failure.

The following example illustrates a fully qualified call to stanc to build the simple
Bernoulli model; just replace <stan-home> with the top-level directory containing
Stan (i.e., the directory containing the file named makefile).

For Linux and Mac:

> cd <stan-home>
> bin/stanc --name=bernoulli --o=bernoulli.cpp \
src/models/basic_estimators/bernoulli.stan

The backslash (\) indicates a continuation of the same line.
For Windows:

> cd <stan-home>
> bin\stanc --name=bernoulli --o=bernoulli.cpp ^

src/models/basic_estimators/bernoulli.stan

The caret (^) indicates continuation on Windows.
This call specifies the name of the model, here bernoulli. This will determine

the name of the class implementing the model in the C++ code. Because this name is
the name of a C++ class, it must start with an alphabetic character (a-z or A-Z) and

25

contain only alphanumeric characters (a-z, A-Z, and 0-9) and underscores (_) and
should not conflict with any C++ reserved keyword.

The C++ code implementing the class is written to the file bernoulli.cpp in the
current directory. The final argument, bernoulli.stan, is the file from which to read
the Stan program.

Command-Line Options for stanc

The model translation program stanc is called as follows.

> stanc [options] model_file

The argument model_file is a path to a Stan model file ending in suffix .stan. The
options are as follows.

--help
Displays the manual page for stanc. If this option is selected, nothing else is
done.

--version
Prints the version of stanc. This is useful for bug reporting and asking for help
on the mailing lists.

--name=class_name
Specify the name of the class used for the implementation of the Stan model in
the generated C++ code.

Default: class_name = model_file_model

--o=cpp_file_name
Specify the name of the file into which the generated C++ is written.

Default: cpp_file_name = class_name.cpp

--no_main
Include this flag to prevent the generation of a main function in the output.

Default: generate a main function

3.4. Compiling C++ Programs

As shown in the previous section (Section 3.3), Stan converts a program in the Stan
modeling language to a C++ program. This C++ program must then be compiled using
a C++ compiler.

The C++ compilation step described in this chapter, the model translation step de-
scribed in the last chapter, and the compilation of the dependent binaries bin/stanc
and bin/libstan.a may be automated through make; see Section 3.2 for details.

26

Which Compiler?

Stan has been developed using two portable, open-source C++ compilers, g++ and
clang++, both of which run under and generate code for Windows, Macintosh, and
Unix/Linux.1

The clang++ compiler is almost twice as fast at low levels of optimization, but the
machine code generated by g++ at high optimization levels is faster.

What the Compiler Does

A C++ compiler like g++ or clang++ performs several lower-level operations in se-
quence,

1. parsing the input C++ source file(s),

2. generating (static or dynamically) relocatable object code, and

3. linking the relocatable object code into executable code.

These stages may be called separately, though the examples in this manual perform
them in a single call. The compiler invokes the assembler to convert assembly lan-
guage code to machine code, and the linker to resolve the location of references in
the relocatable object files.

Compiler Optimization

Stan was written with an optimizing compiler in mind, which allows the code to be
kept relatively clean and modular. As a result, Stan code runs as much as an order of
magnitude or more faster with optimization turned on.

For development of C++ code for Stan, use optimization level 0; for sampling,
use optimization level 3. These are controlled through Stan’s makefile using O=0 and
directly through clang++ or g++ with -O0; in both cases, the first character is the letter
‘O’ and the second the digit ‘0’.

Building the Stan Library

Before compiling a Stan-generated C++ program, the Stan object library archive must
be built using the makefile. This only needs to be done once and then the archive
may be reused. The recommended build command for the Stan archive is as follows
(replacing <stan-home> with the directory into which Stan was unpacked and which
contains the file named makefile).

1As of the current version, Stan cannot be compiled using MSVC, the Windows-specific compiler from
Microsoft. MSVC is able to compile the stanc compiler, but not the templates required for algorithmic
differentiation and the Eigen matrix library.

27

> cd <stan-home>
> make CC=g++ O=3 bin/libstan.a

Please be patient and ignore the (unused function) warning messages. Compilation
with high optimization on g++ takes time (as much as 10 minutes or more) and mem-
ory (as much as 3GB).

This example uses the g++ compiler for C++ (makefile option CC=g++). The
clang++ compiler may be used by specifying CC=clang++.

This example uses compiler optimization level 3 (makefile option O=3). Turning
the optimization level down to 0 allows the code to built in under a minute in less
than 1GB of memory. This will slow down sampling as much as an order of magnitude
or more, so it is not recommended for running models. It can be useful for working
on Stan’s C++ code.

Compiling a Stan Model

Suppose following the instructions in the last chapter (Section 3.3) that a Stan
program has been converted to a C++ program that resides in the source file
<stan-home>/my_model.cpp.

The following commands will produce an executable in the file my_model in the
current working directory (<stan-home>).

> cd <stan-home>
> g++ -O3 -Lbin -Isrc -isystem lib/boost_1.54.0 \

-isystem lib/eigen_3.2.0 my_model.cpp -o my_model -lstan

The backslash (\) is used to indicate that the command is continued; it should be
entered all one one line. The options used here are as follows.

-O3 sets optimization level 3,

-Lbin specifies that the archive is in the bin directory,

-Isrc specifies that the directory src should be searched for code (it
contains the top-level Stan headers),

-isystem lib/boost_1.54.0 specifies the include directory for the
Boost library,

-isystem lib/eigen_3.2.0 specifies the include directory for the
Eigen library,

my_model.cpp specifies the name of the source file to compile, and

-o my_model is the name of the resulting executable produced by the
command (suffixed by .exe in Windows).

28

-lstan specifies the name of the archived library (not the name of the
file in which it resides),

The library binary and source specifications are required, as is the name of the C++

file to compile. User-supplied directories may be included in header or archive form
by specifying additional -L, -l, and -I options.

A lower optimization level may be specified. If there is no executable name speci-
fied using the -o option, then the model is written into a file named a.out.

Library Dependencies

Stan depends on two open-source libraries,

1. the Boost general purpose C++ libraries, and

2. the Eigen matrix and linear algebra C++ libraries.

These are both distributed along with Stan in the directory <stan-home>/lib.
The code for Stan itself is located in the directory <stan-home>/src. Because not

all of Stan is included in the archive bin/libstan.a, the src directory must also be
included for compilation.

29

4. Running a Stan Program

Once a Stan program is compiled, it can be run in many different ways. It can be used
to sample or optimize parameters, or to diagnose a model. Before diving into the
detailed configurations, the first section provides some simple examples.

4.1. Getting Started by Example

Once a Stan program defining a model has been converted to a C++ program for that
model (see Section 3.3) and the resulting C++ program compiled to a platform-specific
executable (see Section 3.4), the model is ready to be run.

All of the Stan functionality is highly configurable from the command line; the
options are defined later in this chapter. Each command option also has defaults,
which are used in this section.

Sampling

Suppose the executable is in file my_model and the data is in file my_data, both in
the current working directory. To generate samples from a data set using the default
settings, use one of the following, depending on platform.

Mac OS and Linux

> ./my_model sample data file=my_data

Windows

> my_model sample data file=my_data

On both platforms, this command reads the data from file my_data, runs warmup
tuning for 1000 iterations (the values of which are discarded), and then runs the
fully-adaptive NUTS sampler for 1000 iterations, writing the parameter (and other)
values to the file samples.csv in the current working directory. When no random
number seed is specified, a seed is generated from the system time.

Sampling in Parallel

The previous example executes one chain, which can be repeated to generate multiple
chains. However, users may want to execute chains in parallel on a multicore machine.

30

Mac OS and Linux

To sample four chains using a Bash shell on Mac OS or Linux, execute

> for i in {1..4} \
do \

./my_model sample random seed=12345 \
id=$i data file=my_data \
output file=samples$i.csv & \

done

The backslash (\) indicates that the big command continues on the next display line;
the blank line at the end that returns control to the prompt. The ampersand (&) at
the end of the nested command pushes each process into the background, so that
the loop can continue without waiting for the current chain to finish. The id value
makes sure that a non-overlapping set of random numbers are used for each chain.
Also note that the output file is explicitly specified, with the variable $i being used to
ensure the output file name for each chain is unique.

The terminal standard output will be interleaved for all chains running concur-
rently. To suppress all terminal output, direct the standard output to the “null” de-
vice. This is achieved by postfixing > /dev/null to a command, which in the above
case, means changing the second-to-last line to

output file=samples$i.csv > /dev/null & \

Windows

On Windows, the following is functionally equivalent to the Bash snippet above

> for /l %x in (1, 1, 4) do start /b model sample ^
random seed=12345 id=%x data file=my_data ^
output file=samples%x.csv

The caret (^) indicates a line continuation in DOS.

Combining Parallel Chains

Stan has commands to analyze the output of multiple chains, each stored in their own
file; see Chapter 5. RStan also has commands to read in multiple CSV files produced
by Stan’s command-line sampler.

To compute posterior quantities, it is sometimes easier to have the chains merged
into a single CSV file. If the grep and sed programs are installed, then the following
will combine the four comma-separated values files into a single comma-separated
values file. The command is the same on Windows, Mac OS and Linux.

31

> grep lp__ samples1.csv > combined.csv
> sed ’/^[#l]/d’ samples*.csv >> combined.csv

Scripting and Batching

The previous examples show how to sample in parallel from the command line. Op-
erations like these can also be scripted, using shell scripts (.sh) on Mac OS and Linux
and DOS batch (.bat) files on Windows. A sequence of several such commands can
be executed from a single script file. Such scripts might contain stanc commands
(see Section 3.3) and bin/print commands (see Chapter 5) can be executed from a
single script file. At some point, it is worthwhile to move to something with stronger
dependency control such as makefiles.

Optimization

Stan can find the posterior mode (assuming there is one). If the posterior is not
convex, there is no guarantee Stan will be able to find the global mode as opposed to
a local optimum of log probability.

For optimization, the mode is calculated without the Jacobian adjustment for con-
strained variables, which shifts the mode due to the change of variables. Thus modes
correspond to modes of the model as written.

Windows

> my_model optimize data file=my_data

Mac OS and Linux

> ./my_model optimize data file=my_data

4.2. Diagnostics

Stan has a basic diagnostic feature that will calculate gradients of the initial state and
compare them with those calculated with finite differences. If there are discrepancies,
there is a problem with the model or initial states (or a bug in Stan). To run on the
different platforms, use one of the following.

Windows

> my_model diagnose data file=my_data

32

Mac OS and Linux

> ./my_model diagnose data file=my_data

4.3. Command-Line Options

Stan executables are highly configurable, allowing the user to specify and customize
not only the calculation method but also the data, output, initialization, and random
number generation. The arguments are defined hierarchically so that, for example,
optimization settings are not necessary when sampling.

The atomic elements of the hierarchy (i.e., those without corresponding values)
are categorical arguments (sometimes called “flags”) which define self-contained cat-
egories of arguments.

Stan’s commands have more hierarchical structure than is typical of command line
executables, which usually have at most two subgroups of commands. Arguments
grouped within a category are not ordered with respect to each other. The only order-
ing is that the global options come before the method argument and subcommand-
specific options after the method argument. For example, the following four com-
mands all define the same configuration:1

> ./model sample output file=samples.csv \
diagnostic_file=diagnostics.csv \

random seed=1

> ./model sample output diagnostic_file=diagnostics.csv \
file=samples.csv \

random seed=1

> ./model sample random seed=1 \
output file=samples.csv \

diagnostic_file=diagnostics.csv

> ./model sample random seed=1 \
output diagnostic_file=diagnostics.csv \

file=samples.csv

The categorical arguments output and random can be in any order provided that
the subarguments follow their respective parent, here diagnostic_file and file

1 The backslash (\) is used at the end of a line in a command to indicate that it continues on the next
line. The indentation to indicate the structure of the command is for pedagogical purposes only; the same
result would be obtained writing each command on one line with single spaces separating the elements.

33

following output and seed coming after random. These four configurations exhaust
all valid combinations.

Categorical arguments may appear is isolation, for example when introducing
sample or random, or they may appear as the values for other arguments, such as
hmc which not only introduces a category of HMC related arguments but also defines
the value of the argument algorithm. A visual diagram of the available categorical
arguments is shown in Figure 4.1, with the mutual exclusivity of these arguments as
values shown in Figure 4.2. Specifying conflicting arguments causes the execution to
immediately terminate.

Note that any valid argument configuration must either specify a method or a help
request.

Method

All commands other than help must include at least one method, specified explic-
itly as method=method_name or implicitly with only method_name. Currently Stan
supports the following methods:

Method Description

sample sample using MCMC
optimize find posterior mode using optimization
diagnose diagnose models

All remaining configurations are option, with default values provided for all argu-
ments not explicitly specified.

Help

Informative output can be retrieved either globally, by requesting help at the top-
level, or locally, by requesting help deeper into the hierarchy. Note that after any help
has been displayed the execution immediately terminates, even if a method has been
specified.

Top-Level Help

If help is specified as the only argument then a usage message is displayed. Similarly,
specifying help_all by itself displays the entire argument hierarchy.

Context-Sensitive Help

Specifying help after any argument displays a description and valid options for that
argument. For example,

34

id, data, init

random

seed

output

file, diagnostic_file, ...

method

-

-

-
diagnose

. . .

optimize

. . .

sample

num_samples, num_warmup, save_warmup, thin

adapt

. . .

algorithm

-

-

hmc

. . .

rw_metropolis

. . .

Figure 4.1: In the hierarchical argument structure, certain arguments, such as random and

output, introduce new categories of arguments. Categorical arguments may also appear as

values of other arguments, such as diagnose, optimize, and sample, which define the mutually

exclusive values for the argument method.

35

id, data, init

random

seed

output

file, diagnostic_file, ...

method

-

-

-
diagnose

. . .

optimize

. . .

sample

num_samples, num_warmup, save_warmup, thin

adapt

. . .

algorithm

-

-

hmc

. . .

rw_metropolis

. . .

Figure 4.2: A valid argument configuration defines only one mutually exclusive argument.

If conflicting arguments are specified, for example method=optimize method=sample, then

execution immediately terminates with a warning message.

36

./my_model sample help

provides the top-level options for the sample method.
Detailed information on the argument, and all arguments deriving from it, can

accessed by specifying help-all instead,

./my_model sample help-all

4.4. Full Argument Hierarchy

Here we present the full argument hierarchy, along with relevant details. Some typical
use-case examples are provided in the next section.

Typographical Conventions

The following typographical conventions are obeyed in the hierarchy.

• arg=<value-type>
Arguments with values; displays the value type, legal values, and default value

• arg
Isolated categorical arguments; displays all valid subarguments

• value
Values; describes effect of selecting the value

• avalue
Categorical arguments that appear as values to other arguments; displays all
valid subarguments

Top-Level Method Argument

Every command must have exactly one method specified as the very first argument.
The value type of list element means that the valid values are enumerated as a list.

method=<list element>
Analysis method (Note that method= is optional)
Valid values: sample, optimize, diagnose
(Defaults to sample)

37

Sampling-Specific Arguments

The following arguments are specific to sampling. The method argument sample (or
method=sample) must come first in order to enable the subsequent arguments. The
other arguments are optional and may appear in any order.

↖

sample
Bayesian inference with Markov Chain Monte Carlo
Valid subarguments: num_samples, num_warmup, save_warmup,

thin, adapt, algorithm

↖ ↖

num_samples=<int>
Number of sampling iterations
Valid values: 0 ≤ num_samples
(Defaults to 1000)

↖ ↖

num_warmup=<int>
Number of warmup iterations
Valid values: 0 ≤ warmup
(Defaults to 1000)

↖ ↖

save_warmup=<boolean>
Stream warmup samples to output?
Valid values: 0, 1
(Defaults to 0)

↖ ↖

thin=<int>
Period between saved samples
Valid values: 0 < thin
(Defaults to 1)

Sampling Adaptation-Specific Parameters

When adaptation is engaged the warmup period is split into three stages (Figure 4.3),
with two fast intervals surrounding a series of growing slow intervals. Here fast and
slow refer to parameters that adapt using local and global information, respectively;
the Hamiltonian Monte Carlo samplers, for example, define the step size as a fast pa-
rameter and the (co)variance as a slow parameter. The size of the the initial and final
fast intervals and the initial size of the slow interval are all customizable, although
user-specified values may be modified slightly in order to ensure alignment with the
warmup period.

38

I II II II II II III

-
Iteration

Figure 4.3: Adaptation during warmup occurs in three stages: an initial fast adaptation interval

(I), a series of expanding slow adaptation intervals (II), and a final fast adaptation interval (III).

For HMC, both the fast and slow intervals are used for adapting the step size, while the slow

intervals are used for learning the (co)variance necessitated by the metric. Iteration numbering

starts at 1 on the left side of the figure and increases to the right.

The motivation behind this partitioning of the warmup period is to allow for more
robust adaptation. In the initial fast interval the chain is allowed to converge to-
wards the typical set,2 with only parameters that can learn from local information
adapted. After this initial stage parameters that require global information, for exam-
ple (co)variances, are estimated in a series of expanding, memoryless windows; often
fast parameters will be adapted here as well. Lastly the fast parameters are allowed
to adapt to the final update of the slow parameters.

Currently all Stan sampling algorithms utilize dual averaging to optimize the step
size (this optimization during adaptation of the sampler should not be confused with
running Stan’s optimization method). This optimization procedure is extremely flex-
ible and for completeness we have exposed each option, using the notation of (Hoff-
man and Gelman, 2011, 2013). In practice the efficacy of the optimization is sensitive
to the value of these parameters, and we do not recommend changing the defaults
without experience with the dual averaging algorithm. For more information, see the
discussion of dual averaging in (Hoffman and Gelman, 2011, 2013).

Variances or covariances are estimated using Welford accumulators to avoid a loss
of precision over many floating point operations.

The following subarguments are introduced by the categorical argument adapt.
Each subargument must contiguously follow adapt, though they may appear in any
order.

↖ ↖

adapt
Warmup Adaptation
Valid subarguments: engaged, gamma, delta, kappa, t0

2The typical set is a concept borrowed from information theory and refers to the neighborhood (or
neighborhoods in multimodal models) of significant posterior probability mass through which the Markov
chain will travel in equilibrium.

39

↖ ↖ ↖

engaged=<boolean>
Adaptation engaged?
Valid values: 0, 1
(Defaults to 1)

↖ ↖ ↖

gamma=<double>
Adaptation regularization scale
Valid values: 0 < gamma
(Defaults to 0.05)

↖ ↖ ↖

delta=<double>
Adaptation target acceptance statistic
Valid values: 0 < delta < 1
(Defaults to 0.8)

↖ ↖ ↖

kappa=<double>
Adaptation relaxation exponent
Valid values: 0 < kappa
(Defaults to 0.75)

↖ ↖ ↖

t0=<double>
Adaptation iteration offset
Valid values: 0 < t0
(Defaults to 10)

↖ ↖ ↖

init_buffer=<unsigned int>
Width of initial fast adaptation interval
Valid values: All
(Defaults to 75)

↖ ↖ ↖

term_buffer=<unsigned int>
Width of final fast adaptation interval
Valid values: All
(Defaults to 50)

↖ ↖ ↖

window=<unsigned int>
Initial width of slow adaptation interval
Valid values: All
(Defaults to 25)

By setting the acceptance statistic delta to a value closer to 1 (its value must be
strictly less than 1 and its default value is 0.8), adaptation will be forced to use smaller
step sizes. This can improve sampling efficiency (effective samples per iteration)

40

at the cost of increased iteration times. Raising the value of delta will also allow
some models that would otherwise get stuck overcome their blockages; see also the
stepsize_jitter argument.

Sampling Algorithm- and Engine-Specific Arguments

The following batch of arguments are used to control the sampler used for sampling.
The top-level specification is for engine, the only valid value of which is hmc (this will
change in the future as we add new samplers).

↖ ↖

algorithm=<list element>
Sampling algorithm
Valid values: hmc, fixed_param
(Defaults to hmc)

Hamiltonian Monte Carlo is a very general approach to sampling that utilizes tech-
niques of differential geometry and mathematical physics to generate efficient MCMC
transitions. This generality manifests in a wealth of implementation choices.

↖ ↖ ↖

hmc
Hamiltonian Monte Carlo
Valid subarguments: engine, metric, stepsize, stepsize_jitter

All HMC implementations require at least two parameters: an integration step size
and a total integration time. We refer to different specifications of the latter as en-
gines.

In the static_hmc implementation the total integration time must be specified by
the user, where as the nuts implementation uses the No-U-Turn Sampler to determine
an optimal integration time dynamically.

↖ ↖ ↖ ↖

engine=<list element>
Engine for Hamiltonian Monte Carlo
Valid values: static, nuts
(Defaults to nuts)

The following options are activated for static HMC.

↖ ↖ ↖ ↖ ↖

static
Static integration time
Valid subarguments: int_time

↖ ↖ ↖ ↖ ↖ ↖

int_time=<double>
Total integration time for Hamiltonian evolution
Valid values: 0 < int_time
(Defaults to 2π)

41

These options are for NUTS, an adaptive version of HMC.

↖ ↖ ↖ ↖ ↖

nuts
The No-U-Turn Sampler
Valid subarguments: max_depth

Tree Depth

NUTS generates a proposal by evolving the initial system both forwards and back-
wards in time to form a balanced binary tree. At each iteration of the NUTS algorithm
the tree depth is increased by one, doubling the number of leapfrog steps and effec-
tively doubles the computation time. The algorithm terminates in one of two ways:
either the NUTS criterion is satisfied for a new subtree or the completed tree, or the
depth of the completed tree hits max_depth.

Both the tree depth and the actual number of leapfrog steps computed are re-
ported along with the parameters in the output as treedepth__ and n_leapfrog__,
respectively. Because the final subtree may only be partially constructed, these two
will always satisfy

2treedepth−1 − 1 < Nleapfrog ≤ 2treedepth − 1.

treedepth__ is an important diagnostic tool for NUTS. For example,
treedepth__ = 0 occurs when the first leapfrog step is immediately rejected and
the initial state returned, indicating extreme curvature and poorly-chosen step size
(at least relative to the current position). On the other hand, if treedepth__ =
max_depth then NUTS is taking many leapfrog steps and being terminated prema-
turely to avoid excessively long execution time. For the most efficient sampling
max_depth should be increased to ensure that the NUTS tree can grow as large as
necessary.

For more information on the NUTS algorithm see (Hoffman and Gelman, 2011,
2013).

↖ ↖ ↖ ↖ ↖ ↖

max_depth=<int>
Maximum tree depth
Valid values: 0 < max_depth
(Defaults to 10)

Euclidean Metric

All HMC implementations in Stan utilize quadratic kinetic energy functions which are
specified up to the choice of a symmetric, positive-definite matrix known as a mass
matrix or, more formally, a metric (Betancourt and Stein, 2011).

42

If the metric is constant then the resulting implementation is known as Euclidean
HMC. Stan allows for three Euclidean HMC implementations: a unit metric, a diagonal
metric, and a dense metric. These can be specified with the values unit_e, diag_e,
and dense_e, respectively.

Future versions of Stan will also include dynamic metrics associated with Rieman-
nian HMC (Girolami and Calderhead, 2011; Betancourt, 2012).

↖ ↖ ↖ ↖

metric=<list element>
Geometry of base manifold
Valid values: unit_e, diag_e, dense_e
(Defaults to diag_e)

↖ ↖ ↖ ↖ ↖

unit_e
Euclidean manifold with unit metric

↖ ↖ ↖ ↖ ↖

diag_e
Euclidean manifold with diag metric

↖ ↖ ↖ ↖ ↖

dense_e
Euclidean manifold with dense metric

Step Size and Jitter

All implementations of HMC also use numerical integrators requiring a step size.
We also allow that step size to be “jittered” randomly during sampling to avoid any
poor interactions with a fixed step size and regions of high curvature. The maximum
amount of jitter is 1, which will cause step sizes to be selected in the range of 0 to
twice the adapted step size. Low step sizes can get HMC samplers unstuck that would
otherwise get stuck with higher step sizes. The downside is that jittering below the
adapted value will increase the number of leapfrog steps required and thus slow down
iterations, whereas jittering above the adapted value can cause premature rejection
due to simulation error in the Hamiltonian dynamics calculation. See (Neal, 2011) for
further discussion of step-size jittering.

↖ ↖ ↖ ↖

stepsize=<double>
Step size for discrete evolution
Valid values: 0 < stepsize
(Defaults to 1)

↖ ↖ ↖ ↖

stepsize_jitter=<double>
Uniformly random jitter of the stepsize, in percent
Valid values: 0 ≤ stepsize_jitter ≤ 1
(Defaults to 0)

43

Fixed Parameter Sampler

The fixed parameter sampler generates a new sample without changing the current
state of the Markov chain; only generated quantities may change. This can be useful
when, for example, trying to generate pseudo-data using the generated quantities
block.

↖ ↖ ↖

fixed_param
Fixed Parameter Sampler

Optimization-Specific Commands

The following arguments are for the top-level method optimize. They allow control
of the optimization algorithm, and some of its configuration. The other arguments
may appear in any order.

↖

optimize
Point estimation
Valid subarguments: algorithm, iter, save_iterations

↖ ↖
algorithm=<list element>
Optimization algorithm
Valid values: nesterov, bfgs, newton
(Defaults to bfgs)

The following options are for the BFGS optimizer. BFGS is the default optimizer and
also much faster than the other optimizers.

Convergence monitoring in BFGS is controlled by a number of tolerance values,
any one of which being satisified causes the algorithm to terminate with a solution.

• The log probability is considered to have converged if∣∣∣logp(θ(i)|y)− logp(θ(i−1)|y)
∣∣∣ < tol_obj.

• The parameters are considered to have converged if

||θ(i) − θ(i−1)|| < tol_param.

• The gradient is considered to have converged to 0 if

||∇θ logp(θ(i)|y)|| < tol_grad.

44

Here, i is the current iteration, θ(i) is the value of the parameters at iteration i, y is
the data, p(θ(i)|y) is the posterior probability of θ(i) up to a proportion, ∇θ is the
gradient operator with respect to θ, |u| is absolute value (L1 norm) of u, and ||u|| is
vector length (L2 norm) of u.

The other command-line argument for BFGS is init_alpha, which is first step size
to try on the initial iteration. If the first iteration takes a long time (and requires a lot
of function evaluations) set init_alpha to be the roughly equal to the alpha used in
that first iteration. init_alpha has a tiny default value, which is reasonable for many
problems but might be too large or too small depending on the objective function and
initialization. Being too big or too small just means that the first iteration will take
longer (i.e., require more gradient evaluations) before the line search finds a good
step length. It’s not a critical parameter, but for optimizing the same model multiple
times (as you tweak things or with different data) being able to change it can save
some real time.

↖ ↖ ↖

bfgs
BFGS with linesearch
Valid subarguments: stepsize

↖ ↖ ↖ ↖

init_alpha=<double>
Line search step size for first iteration
Valid values: 0 < init_alpha
(Defaults to 0.001)

↖ ↖ ↖ ↖

tol_obj=<double>
Convergence tolerance on changes in objective function value
Valid values: 0 < tol_obj
(Defaults to 1e-8)

↖ ↖ ↖ ↖

tol_grad=<double>
Convergence tolerance on the norm of the gradient
Valid values: 0 < tol_grad
(Defaults to 1e-8)

↖ ↖ ↖ ↖

tol_param=<double>
Convergence tolerance on changes in parameter value
Valid values: 0 < tol_param
(Defaults to 1e-8)

The following options are for the Nesterov optimizer.

↖ ↖ ↖

nesterov
Nesterov’s accelerated gradient method
Valid subarguments: stepsize

45

↖ ↖ ↖ ↖

stepsize=<double>
Step size for discrete evolution
Valid values: 0 < stepsize
(Defaults to 1)

The following argument is for Newton’s optimization method; there are currently no
configuration parameters for Newton’s method, and it is not recommended because
of the slow Hessian calcuation involving finite differences.

↖ ↖ ↖

newton
Newton’s method

The remaining arguments apply to all optimizers.

↖ ↖

iter=<int>
Total number of iterations
Valid values: 0 < iter
(Defaults to 2000)

↖ ↖

save_iterations=<boolean>
Stream optimization progress to output?
Valid values: 0, 1
(Defaults to 0)

Diagnostic-Specific Arguments

The following arguments are specific to diagnostics. As of now, the only diagnostic is
gradients of the log probability function.

↖

diagnose
Model diagnostics
Valid subarguments: test

↖ ↖

test=<list element>
Diagnostic test
Valid values: gradient
(Defaults to gradient)

↖ ↖ ↖

gradient
Check model gradient against finite differences Valid subarguments: epsilon,
error

↖ ↖ ↖ ↖

epsilon=<real>
Finite difference step size

46

Valid values: 0 < epsilon
(Defaults to 1e-6)

↖ ↖ ↖ ↖

error=<real>
Error threshold
Valid values: 0 < error
(Defaults to 1e-6)

General-Purpose Arguments

The following arguments may be used with any of the previous configurations. They
may come either before or after the other subarguments of the top-level method.

Process Identifier Argument

id=<int>
Unique process identifier
Valid values: 0 < id
(Defaults to 0)

Input Data Arguments

data
Input data options
Valid subarguments: file

↖

file=<string>
Input data file
Valid values: Path to existing file
(Defaults to empty path)

Initialization Arguments

Initialization is only applied to parameters defined in the parameters block. Any ini-
tial values supplied for transformed parameters or generated quantities are ignored.

init=<string>
Initialization method:
• real number x > 0 initializes randomly bewteen [-x, x];
• 0 initializes to 0;
• non-number interpreted as a data file

Valid values: All
(Defaults to 2)

47

Random Number Generator Arguments

random
Random number configuration
Valid subarguments: seed

↖

seed=<unsigned int>
Random number generator seed
Valid values:
• seed ≥ 0 generates seed;
• seed < 0 uses seed generated from time

(Defaults to -1)

Output Arguments

output
File output options
Valid subarguments: file, diagnostic_file,

, refresh

↖

file=<string>
Output file
Valid values: Valid path
(Defaults to output.csv)

↖

diagnostic_file=<string>
Auxiliary output file for diagnostic information
Valid values: Valid path
(Defaults to empty path)

↖

refresh=<int>
Number of interations between screen updates
Valid values: 0 < refresh
(Defaults to 100)

4.5. Command-Line Option Examples

The hierarchical structure of the command-line options can be intimidating, and here
we provide an example workflow to help ease the introduction to new users, especially
those used to Stan 1.3 or earlier releases. The examples in this section are for Mac
OS and Linux; on Windows, just remove the ./ before the executable and change the
line-continuation character from Unix’s \ to DOS’s ^. As in previous sections, the

48

indentation on continued lines is for pedagogical purposes only and does not convey
any content to the executable.

Let’s say that we’ve just built our model, model, and are ready to run. We begin
by specifying data and init files,

> ./model data file=model.data.R init=model.init.R

but our model doesn’t run. Instead, the above command prints

A method must be specified!
Failed to parse arguments, terminating Stan

The problem is that we forgot to specify a method.
All Stan arguments have default values, except for the method. This is the only

argument that must be specified by the user and a model will not run without it (not
to say that the model will run without error, for example a model that requires data
will eventually fail unless an input file is specified with file under data). Assuming
that we want to draw MCMC samples from our model, we can either specify a method
implicitly,

> ./model sample data file=model.data.R init=model.init.R

or explicitly,

> ./model method=sample data file=model.data.R \
init=model.init.R

In either case our model now executes without any problem.
Now let’s say that we want to customize our execution. In particular we want to

set the seed for the random number generator, but we forgot the specific argument
syntax. Information for each argument can displayed by calling help,

> ./model random help

which returns

random
Random number configuration
Valid subarguments: seed

...

before printing usage information. For information on the seed argument we just call
help one level deeper,

> ./model random seed help

49

which returns

seed=<unsigned int>
Random number generator seed
Valid values: seed > 0, if negative seed is generated from time
Defaults to -1
...

Fully informed, we can now run with a given seed,

> ./model method=sample data fle=model.data.R \
init=model.init.R \
random seed=5

The arguments method, data, init, and random are all top-level arguments. To
really see the power of a hierarchical argument structure let’s try to drill down and
specify the metric we use for HMC: instead of the default diagonal Euclidean metric,
we want to use a dense Euclidean metric. Attempting to specify the metric we try

> ./model method=sample data file=model.data.R \
init=model.init.R \
random seed=5 \
metric=unit

only to have the execution fail with the message

metric=unit_e is either mistyped or misplaced.
Perhaps you meant one of the following valid configurations?
method=sample algorithm=hmc metric=<list_element>

Failed to parse arguments, terminating Stan

The argument metric does exist, but not at the top-level. In order to specify it we
have to drill down into sample by first specifying the sampling algorithm, as noted in
the suggestion,

> ./model method=sample algorithm=hmc metric=unit \
data file=model.data.R \
init=model.init.R \
random seed=5

Unfortunately we still messed up,

unit is not a valid value for "metric"
Valid values: unit_e, diag_e, dense_e

Failed to parse arguments, terminating Stan

50

Tweaking the metric name we make one last attempt,

> ./model method=sample algorithm=hmc metric=unit_e \
data file=model.data.R \
init=model.init.R \
random seed=5

which successfully runs.
Finally, let’s consider the circumstance where our model runs fine but the NUTS

iterations keep saturating the default tree depth limit of 10. We need to change the
limit, but how do we specify NUTS let alone the maximum tree depth? To see how
let’s take advantage of the help-all option which prints all arguments that derive
from the given argument. We know that NUTS is somehow related to sampling, so we
try

> ./model method=sample help-all

which returns the verbose output,

sample

Bayesian inference with Markov Chain Monte Carlo

Valid subarguments: num_samples, num_warmup,

save_warmup, thin, adapt, algorithm

num_samples=<int>

Number of sampling iterations

Valid values: 0 <= num_samples

Defaults to 1000

num_warmup=<int>

Number of warmup iterations

Valid values: 0 <= warmup

Defaults to 1000

save_warmup=<boolean>

Stream warmup samples to output?

Valid values: [0, 1]

Defaults to 0

thin=<int>

Period between saved samples

Valid values: 0 < thin

Defaults to 1

51

adapt

Warmup Adaptation

Valid subarguments: engaged, gamma, delta, kappa, t0

engaged=<boolean>

Adaptation engaged?

Valid values: [0, 1]

Defaults to 1

gamma=<double>

Adaptation regularization scale

Valid values: 0 < gamma

Defaults to 0.05

delta=<double>

Adaptation target acceptance statistic

Valid values: 0 < delta < 1

Defaults to 0.65

kappa=<double>

Adaptation relaxation exponent

Valid values: 0 < kappa

Defaults to 0.75

t0=<double>

Adaptation iteration offset

Valid values: 0 < t0

Defaults to 10

algorithm=<list element>

Sampling algorithm

Valid values: hmc

Defaults to hmc

hmc

Hamiltonian Monte Carlo

Valid subarguments: engine, metric, stepsize,

stepsize_jitter

engine=<list element>

Engine for Hamiltonian Monte Carlo

Valid values: static, nuts

Defaults to nuts

52

static

Static integration time

Valid subarguments: int_time

int_time=<double>

Total integration time for Hamiltonian evolution

Valid values: 0 < int_time

Defaults to 2 * pi

nuts

The No-U-Turn Sampler

Valid subarguments: max_depth

max_depth=<int>

Maximum tree depth

Valid values: 0 < max_depth

Defaults to 10

metric=<list element>

Geometry of base manifold

Valid values: unit_e, diag_e, dense_e

Defaults to diag_e

unit_e

Euclidean manifold with unit metric

diag_e

Euclidean manifold with diag metric

dense_e

Euclidean manifold with dense metric

stepsize=<double>

Step size for discrete evolution

Valid values: 0 < stepsize

Defaults to 1

stepsize_jitter=<double>

Uniformly random jitter of the stepsize, in percent

Valid values: 0 <= stepsize_jitter <= 1

Defaults to 0

...

Following the hierarchy, the maximum tree depth derives from nuts, which itself is a

53

value for the argument engine which derives from hmc. Adding this to our previous
call we attempt

> ./model method=sample \
algorithm=hmc \

metric=unit_e \
engine=nuts max_depth=-15 \

data file=model.data.R \
init=model.init.R \
random seed=5 \

which yields

-1 is not a valid value for "max_depth"
Valid values: 0 < max_depth

Failed to parse arguments, terminating Stan

Where did that negative sign come from? Clumsy fingers are nothing to be embar-
rassed about, especially with such complex argument configurations. Removing the
guilty character, we try

> ./model method=sample \
algorithm=hmc \

metric=unit_e \
engine=nuts max_depth=15 \

data file=model.data.R \
init=model.init.R \
random seed=5

which finally runs without issue.

4.6. Command Templates

This section provides templates for all of the arguments deriving from each of the
possible methods: sample, optimize, and diagnose. Arguments in square brackets
are optional, those not in square brackets are required for the template.

Sampling Templates

The No-U-Turn sampler (NUTS) is the default (and recommended) sampler for Stan.
The full set of configuration options is in Figure 4.4.

54

> ./my_model sample \

algorithm=hmc \

engine=nuts \

[max_depth=<int>] \

[metric={unit_e,diag_e,dense_e}] \

[stepsize=<double>] \

[stepsize_jitter=<double>] \

[num_samples=<int>] \

[num_warmup=<int>] \

[save_warmup=<boolean>] \

[thin=<int>] \

[adapt \

[engaged=<boolean>] \

[gamma=<double>] \

[delta=<double>] \

[kappa=<double>] \

[t0=<double>]] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 4.4: Command skeleton for invoking the no-U-turn sampler (NUTS). This is the same

skeleton as that for basic HMC in Figure 4.5. Elements in braces are optional. All arguments and

their default values are described in detail in Section 4.4.

55

A standard Hamiltonian Monte Carlo (HMC) sampler with user-specified integra-
tion time may also be used. Its set of configuration options are shown in Figure 4.5.

Both NUTS and HMC may be configured with either a unit, diagonal or dense
Euclidean metric, with a diagonal metric the default.3 A unit metric provides no
parameter-by-parameter scaling, a diagonal metric scales each parameter indepen-
dently, and a dense metric also rotates the parameters so that correlated parameters
may move together. Although dense metrics offer the hope of superior simulation
performance, they require more computation per iteration. Specifically form samples
of a model with n parameters, the dense metric requires O(n3 log(m)+ n2m) opera-
tions, whereas diagonal metrics require only O(nm). Furthermore, dense metrics are
difficult to estimate, given the O(n2) components with complex interdependence.

Optimization Templates

Stan supports several optimizers. These share many of their configuration options
with the samplers. The default optimizer is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method (see (Nocedal and Wright, 2006) for more information on BFGS). The
command skeleton for BFGS is in Figure 4.6.

Stan also supports Nesterov’s dual-averaging method (Nesterov, 2009) for opti-
mization. The BFGS method is the default approach because it is more efficient. The
command skeleton for dual averaging is shown in Figure 4.7; it is identical to that
for BFGS other than the algorithm name. Stan also supports Newton’s method; see
(Nocedal and Wright, 2006) for more information. This method is the least efficient of
the three, but has the advantage of setting its own step size. Other than not having a
stepsize argument, the skeleton for Newton’s method shown in Figure 4.8 is identical
to that for BFGS and Nesterov’s dual averaging.

Diagnostic Command Skeleton

Stan reports on gradients for the model at a specified or randomly generated initial
value. The command-skeleton in this case is very simple, and shown in Figure 4.9.

3In Euclidean HMC, a diagonal metric emulates different step sizes for each parameter. Explicitly varying
step sizes were used in Stan 1.3 and before; Neal (2011) discusses the equivalence.

56

> ./my_model sample \

algorithm=hmc \

engine=static \

[int_time=<double>] \

[metric={unit_e,diag_e,dense_e}] \

[stepsize=<double>] \

[stepsize_jitter=<double>] \

[num_samples=<int>] \

[num_warmup=<int>] \

[save_warmup=<boolean>] \

[thin=<int>] \

[adapt \

[engaged=<boolean>] \

[gamma=<double>] \

[delta=<double>] \

[kappa=<double>] \

[t0=<double>]] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 4.5: Command skeleton for invoking the basic Hamiltonian Monte Carlo sampler (HMC).

This is the same as the NUTS command skeleton shown in Figure 4.4 other than for the engine.

Elements in braces are optional. All arguments and their default values are described in detail

in Section 4.4.

57

> ./my_model optimize \

algorithm=bfgs \

[init_alpha=<double>] \

[tol_obj=<double>] \

[tol_grad=<double>] \

[tol_param=<double>] \

[iter=<int>] \

[save_iterations=<boolean>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 4.6: Command skeleton for invoking the BFGS optimizer. All arguments and their default

values are described in detail in Section 4.4.

> ./my_model optimize \

algorithm=nesterov \

[stepsize=<double>] \

[iter=<int>] \

[save_iterations=<boolean>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 4.7: Command skeleton for invoking the Nesterov dual-averaging ptimizer. All argu-

ments and their default values are described in detail in Section 4.4.

58

> ./my_model optimize \

algorithm=newton \

[iter=<int>] \

[save_iterations=<boolean>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 4.8: Command skeleton for invoking the Newton optimizer. All arguments and their

default values are described in detail in Section 4.4.

> ./my_model diagnose \

[test=gradient] \

[epsilon=<real>] \

[error=<real>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

Figure 4.9: Command skeleton for invoking model diagnostics. All arguments and their default

values are described in detail in Section 4.4.

59

5. Print Command for Output Analysis

Stan is distributed with a print command that is able to read in the output of one
or more Markov chains and summarize the posterior fits. This operation mimics the
print(fit) command in RStan, which itself was modeled on the print functions from
R2WinBUGS and R2jags.

5.1. Building the Print Command

Stan’s print command is built along with stanc into the bin directory. It can be
compiled directly using the makefile as follows from the home directory into which
Stan was unpacked (here written as <stan-home>).

> cd <stan-home>
> make bin/print

All the usual compiler options from Stan’s makefile apply, such as O=N to set opti-
mization level to N, and CC=clang++ to set the compilation to use clang.

5.2. Running the Print Command

The print command is executed on one or more samples.csv files. These files may
be provided as command-line arguments separated by spaces. That means that wild-
cards may be used, as they will be replaced by space-separated file names by the
operating system’s command-line interpreter.

Suppose there are three samples files in a directory generated by fitting a negative
binomial model to a small data set.

> ls samples*.csv

samples1.csv samples2.csv samples3.csv

> bin/print samples*.csv

The result of bin/print is displayed in Figure 5.1.1 The posterior is skewed to the
high side, resulting in posterior means (α = 17 and β = 10) that are a long way away
from the posterior medians (α = 9.5 and β = 6.2); the posterior median is the value
listed under 50%, which is the 50th percentile of the posterior values.

For Windows, the forward slash in paths need to be converted to backslashes.

1RStan’s and PyStan’s output analysis print may be different than that in the command-line version of
Stan.

60

Inference for Stan model: negative_binomial_model
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.

Warmup took (0.054) seconds, 0.054 seconds total
Sampling took (0.059) seconds, 0.059 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -14 6.2e-02 1.0e+00 -16 -14 -13 283 4773 1.00
accept_stat__ 0.88 5.6e-03 1.8e-01 0.51 0.95 1.0 1000 16881 1.00
stepsize__ 0.30 1.3e-15 8.9e-16 0.30 0.30 0.30 0.50 8.5 1.00
treedepth__ 1.4 2.6e-02 8.0e-01 0.00 1.0 2.0 946 15978 1.00
n_divergent__ 1.4 0.0e+00 0.0e+00 0.00 0.0 0.0 1000 16949 1.00
alpha 17 1.8e+00 2.5e+01 1.9 9.5 50 181 3054 1.00
beta 10 1.1e+00 1.4e+01 1.2 6.2 31 181 3057 1.00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

Figure 5.1: Example output from bin/print. The model parameters are alpha and beta.

The values for each quantity are the posterior means, standard deviations, and quantiles, along

with Monte-Carlo standard error, effective sample size estimates (per second), and convergence

diagnostic statistic. These values are all estimated from samples. In addition to the parame-

ters, the value lp__ is the total log probability computed by the model (up to an additive con-

stant). The quantity accept_stat__ is the NUTS acceptance statistic used by NUTS for slice

and Metropolis rejection, stepsize__ the step size used by NUTS in its Hamiltonian simulation,

and treedepth__ is the depth of tree used by NUTS, which is the log (base 2) of the number of

leapfrog steps taken during the Hamiltonian simulation. n_divergent__ gives the number of

leapfrog iterations with diverging error; because NUTS terminates at the first divergent iteration

this should always be either 0 or 1.

61

5.3. Command-line Options

In addition to the filenames, print includes three flags to customize the output.

help
Prints usage information
No help output by default

sig_figs=<int>
Sets the number of significant figures displayed in the output
Valid values: 0 <sig_figs
(default = 2)

autocorr=<int>
Calculates and then displays the autocorrelation of the specified chain
Valid values: Any integer matching a chain index
(No autocorrelation output by default)

62

6. Dump Data Format

For representing structured data in files, Stan uses the dump format introduced in S
and used in R and JAGS (and in BUGS, but with a different ordering). A dump file is
structured as a sequence of variable definitions. Each variable is defined in terms of
its dimensionality and its values. There are three kinds of variable declarations, one
for scalars, one for sequences, and one for general arrays.

6.1. Creating Dump Files

Dump files can be created from R using RStan. The function is stan_rdump in package
rstan.

Using R’s native dump() function can produce dump files which Stan cannot read
in. The underlying cause is that R gets creative in the format it uses for output, only
being constrained to something that can be executed in R. So it will write the array
containing the values 1, 2, 3, 4 as 1:4 rather than as c(1,2,3,4).

6.2. Scalar Variables

A simple scalar value can be thought of as having an empty list of dimensions. Its
declaration in the dump format follows the S assignment syntax. For example, the
following would constitute a valid dump file defining a single scalar variable y with
value 17.2.

y <-
17.2

A scalar value is just a zero-dimensional array value.

6.3. Sequence Variables

One-dimensional arrays may be specified directly using the S sequence notation. The
following example defines an integer-value and a real-valued sequence.

n <- c(1,2,3)
y <- c(2.0,3.0,9.7)

Arrays are provided without a declaration of dimensionality because the reader just
counts the number of entries to determine the size of the array.

63

Sequence variables may alternatively be represented with R’s colon-based nota-
tion. For instance, the first example above could equivalently be written as

n <- 1:3

The sequence denoted by 1:3 is of length 3, running from 1 to 3 inclusive. The colon
notation allows sequences going from high to low, as in the first of the following
examples, which is equivalent to the second.

n <- 2:-2
n <- c(2,1,0,-1,-2)

6.4. Array Variables

For more than one dimension, the dump format uses a dimensionality specification.
For example,

y <- structure(c(1,2,3,4,5,6), .Dim = c(2,3))

This defines a 2× 3 array. Data is stored in column-major order, meaning the values
for y will be as follows.

y[1,1] = 1 y[1,2] = 3 y[1,3] = 5
y[2,1] = 2 y[2,2] = 4 y[2,3] = 6

The structure keyword just wraps a sequence of values and a dimensionality decla-
ration, which is itself just a sequence of non-negative integer values. The product of
the dimensions must equal the length of the array.

If the values happen to form a contiguous sequence of integers, they may be
written with colon notation. Thus the example above is equivalent to the following.

y <- structure(1:6, .Dim = c(2,3))

The same applies to the specification of dimensions, though it is perhaps less likely
to be used. In the above example, c(2,3) could be written as 2:3.

Arrays of more than two dimensions are written in a last-index major form. For
example,

z <- structure(1:24, .Dim = c(2,3,4))

produces a three-dimensional int (assignable to real) array z with values

64

z[1,1,1] = 1 z[1,2,1] = 3 z[1,3,1] = 5
z[2,1,1] = 2 z[2,2,1] = 4 z[2,3,1] = 6

z[1,1,2] = 7 z[1,2,2] = 9 z[1,3,2] = 11
z[2,1,2] = 8 z[2,2,2] = 10 z[2,3,2] = 12

z[1,1,3] = 13 z[1,2,3] = 15 z[1,3,3] = 17
z[2,1,3] = 14 z[2,2,3] = 16 z[2,3,3] = 18

z[1,1,4] = 19 z[1,2,4] = 21 z[1,3,4] = 23
z[2,1,4] = 20 z[2,2,4] = 22 z[2,3,4] = 24

6.5. Matrix- and Vector-Valued Variables

The dump format for matrices and vectors, including arrays of matrices and vectors,
is the same as that for arrays of the same shape.

Vector Dump Format

The following three declarations have the same dump format for their data.

real a[K];
vector[K] b;
row_vector[K] c;

Matrix Dump Format

The following declarations have the same dump format.

real a[M,N];
matrix[M,N] b;

Arrays of Vectors and Matrices

The key to undertanding arrays is that the array indexing comes before any of the
container indexing. That is, an array of vectors is just that — provide an index and get
a vector. See Section Section 22.5 for more information on indexing and assignment.

For the dump data format, the following declarations have the same arrangement.

real a[M,N];
matrix[M,N] b;
vector[N] c[M];
row_vector[N] d[M];

65

Similarly, the following also have the same dump format.

real a[P,M,N];
matrix[M,N] b[P];
vector[N] c[P,M];
row_vector[N] d[P,M];

6.6. Integer- and Real-Valued Variables

There is no declaration in a dump file that distinguishes integer versus continuous
values. If a value in a dump file’s definition of a variable contains a decimal point
(e.g., 132.3) or uses scientific notation (e.g., 1.323e2), Stan assumes that the values
are real.

For a single value, if there is no decimal point, it may be assigned to an int or
real variable in Stan. An array value may only be assigned to an int array if there
is no decimal point or scientific notation in any of the values. This convention is
compatible with the way R writes data.

The following dump file declares an integer value for y.

y <-
2

This definition can be used for a Stan variable y declared as real or as int. Assigning
an integer value to a real variable automatically promotes the integer value to a real
value.

Integer values may optionally be followed by L or l, denoting long integer values.
The following example, where the type is explicit, is equivalent to the above.

y <-
2L

The following dump file provides a real value for y.

y <-
2.0

Even though this is a round value, the occurrence of the decimal point in the value,
2.0, causes Stan to infer that y is real valued. This dump file may only be used for
variables y declared as real in Stan.

Scientific Notation

Numbers written in scientific notation may only be used for real values in Stan. R will
write out the integer one million as 1e+06.

66

Infinite and Not-a-Number Values

Stan’s reader supports infinite and not-a-number values for scalar quantities (see Sec-
tion 22.2 for more information). Both infinite and not-a-number values are supported
by Stan’s dump-format readers.

Value Preferred Form Alternative Forms

positive infinity Inf Infinity, infinity
negative infinity -Inf -Infinity, -infinity

not a number NaN

These strings are not case sensitive, so inf may also be used for positive infinity, or
NAN for not-a-number.

6.7. Quoted Variable Names

In order to support JAGS data files, variables may be double quoted. For instance, the
following definition is legal in a dump file.

"y" <-
c(1,2,3)

6.8. Line Breaks

The line breaks in a dump file are required to be consistent with the way R reads in
data. Both of the following declarations are legal.

y <- 2
y <-
3

Also following R, breaking before the assignment arrow are not allowed, so the fol-
lowing is invalid.

y
<- 2 # Syntax Error

Lines may also be broken in the middle of sequences declared using the c(...)
notation., as well as between the comma following a sequence definition and the
dimensionality declaration. For example, the following declaration of a 2×2×3 array
is valid.

67

y <-
structure(c(1,2,3,
4,5,6,7,8,9,10,11,
12), .Dim = c(2,2,
3))

Because there are no decimal points in the values, the resulting dump file may be
used for three-dimensional array variables declared as int or real.

6.9. BNF Grammar for Dump Data

A more precise definition of the dump data format is provided by the following
(mildly templated) Backus-Naur form grammar.

definitions ::= definition+

definition ::= name ("<-" | ’=’) value optional_semicolon

name ::= char*
| ’’’ char* ’’’

| ’"’ char* ’"’

value ::= value<int> | value<double>

value<T> ::= T

| seq<T>

| ’structure’ ’(’ seq<T> ’,’ ".Dim" ’=’ seq<int> ’)’

seq<int> ::= int ’:’ int

| cseq<int>

seq<real> ::= cseq<real>

cseq<T> ::= ’c’ ’(’ vseq<T> ’)’

vseq<T> ::= T

| T ’,’ vseq<T>

The template parameters T will be set to either int or real. Because Stan allows
promotion of integer values to real values, an integer sequence specification in the
dump data format may be assigned to either an integer- or real-based variable in
Stan.

68

Part III

Programming Techniques

69

7. Model Building as Software Development

Developing a Stan model is a software development process. Developing software is
hard. Very hard. So many things can go wrong because there are so many moving
parts and combinations of parts.

Software development practices are designed to mitigate the problems caused by
the inherent complexity of software development. Unfortunately, many methodolo-
gies veer off into dogma, bean counting, or both. A couple we can recommend that
provide solid, practical advice for developers are (Hunt and Thomas, 1999) and (Mc-
Connell, 2004). This section tries to summarize some of their advice.

7.1. Use Version Control

Version control software, such as Subversion or Git, should be in place before starting
to code.1 It may seem like a big investment to learn version control, but it’s well worth
it to be able to type a single command to revert to a previously working version or
to get the difference between the current version and an old version. It’s even better
when you need to share work with others, even on a paper.

7.2. Make it Reproducible

Rather than entering commands on the command-line when running models (or en-
tering commands directly into an interactive programming language like R or Python),
try writing scripts to run the data through the models and produce whatever poste-
rior analysis you need. Scripts can be written for the shell, R, or Python. Whatever
language a script is in, it should be self contained and not depend on global variables
having been set, other data being read in, etc.

Scripts are Good Documentation

It may seem like overkill if running the project is only a single line of code, but the
script provides not only a way to run the code, but also a form of concrete documen-
tation for what is run.

1Stan started using Subversion (SVN), then switched to the much more feature-rich Git package. Git
does everything SVN does and a whole lot more. The price is a steeper learning curve. For individual or
very-small-team development, SVN is just fine.

70

Randomization and Saving Seeds

Randomness defeats reproducibility. MCMC methods are conceptually randomized.
Stan’s samplers involve random initializations as well as randomization during each
iteration (e.g., Hamiltonian Monte Carlo generates a random momentum in each iter-
ation).

Computers are deterministic. There is no real randomness, just pseudo-random
number generators. These operate by generating a sequence of random numbers
based on a “seed.” Stan (and other languages like R) can use time-based methods to
generate a seed based on the time and date, or seeds can be provided to Stan (or R)
in the form of long integers. Stan writes out the seed used to generate the data as
well as the version number of the Stan software so that results can be reproduced at
a later date.2

7.3. Make it Readable

Treating programs and scripts like other forms of writing for an audience provides
an important perspective on how the code will be used. Not only might others want
to read a program or model, the developer will want to read it later. One of the mo-
tivations of Stan’s design was to make models self-documenting in terms of variable
usage (e.g., data versus parameter), types (e.g., covariance matrix vs. unconstrained
matrix) and sizes.

A large part of readability is consistency. Particularly in naming and layout. Not
only of programs themselves, but the directories and files in which they’re stored.

Readability of code is not just about comments (see Section Section 7.8 for com-
menting recommendations and syntax in Stan).

It is surprising how often the solution to a debugging or design problem occurs
when trying to explain enough about the problem to someone else to get help. This
can be on a mailing list, but it works best person-to-person. Finding the solution
to your own problem when explaining it to someone else happens so frquently in
software development that the listener is called a “rubber ducky,” because they only
have to nod along.3

2This also requires fixing compilers and hardware, because floating-point arithmetic does not have an
absolutely fixed behavior across platforms or compilers, just operating parameters.

3Research has shown an actual rubber ducky won’t work. For some reason, the rubber ducky must
actually be capable of understanding the explanation.

71

7.4. Explore the Data

Although this should go without saying, don’t just fit data blindly. Look at the data
you actually have to understand its properties. If you’re doing a logistic regression,
is it separable? If you’re building a multilevel model, do the basic outcomes vary by
level? If you’re fitting a linear regression, see whether such a model makes sense by
scatterplotting x vs. y .

7.5. Design Top-Down, Code Bottom-Up

Software projects are almost always designed top-down from one or more intended
use cases. Good software coding, on the other hand, is typically done bottom-up.

The motivation for top-down design is obvious. The motivation for bottom-up
development is that it is much easier to develop software using components that have
been thoroughly tested. Although Stan has no built-in support for either modularity
or testing, many of the same principles apply.

The way the developers of Stan themselves build models is to start as simply as
possibly, then build up. This is true even if we have a complicated model in mind as
the end goal, and even if we have a very good idea of the model we eventually want to
fit. Rather than building a hierarchical model with multiple interactions, covariance
priors, or other complicated structure, start simple. Build just a simple regression
with fixed (and fairly tight) priors. Then add interactions or additional levels. One at
a time. Make sure that these do the right thing. Then expand.

7.6. Fit Simulated Data

One of the best ways to make sure your model is doing the right thing computationally
is to generate simulated (i.e., “fake”) data with known parameter values, then see if
the model can recover these parameters from the data. If not, there is very little hope
that it will do the right thing with data from the wild.

There are fancier ways to do this, where you can do things like run χ2 tests on
marginal statistics or follow the paradigm introduced in (Cook et al., 2006), which
involves interval tests.

72

7.7. Debug by Print

Although Stan does not have a stepwise debugger or any unit testing framework in
place, it does support the time-honored tradition of debug-by-printf. 4

Stan supports print statements with one or more string or expression arguments.
Because Stan is an imperative language, variables can have different values at dif-
ferent points in the execution of a program. Print statements can be invaluable for
debugging, especially for a language like Stan with no stepwise debugger.

For instance, to print the value of variables y and z, use the following statement.

print("y=", y, " z=", z);

This print statement prints the string “y=” followed by the value of y, followed by the
string “ z=” (with the leading space), followed by the value of the variable z.

Each print statement is followed by a new line. The specific ASCII character(s)
generated to create a new line are platform specific.

Arbitrary expressions can be used. For example, the statement

print("1+1=", 1+1);

will print “1 + 1 = 2” followed by a new line.
Print statements may be used anywhere other statements may be used, but their

behavior in terms of frequency depends on how often the block they are in is eval-
uated. See Section 24.8 for more information on the syntax and evaluation of print
statements.

7.8. Comments

Code Never Lies

The machine does what the code says, not what the documentation says. Documen-
tation, on the other hand, might not match the code. Code documentation easily rots
as the code evolves if the documentation is not well maintained.

Thus it is always preferable to write readable code as opposed to documenting un-
readable code. Every time you write a piece of documentation, ask yourself if there’s
a way to write the code in such a way as to make the documentation unnecessary.

4The “f” is not a typo — it’s a historical artifact of the name of the printf function used for formatted
printing in C.

73

Comment Styles in Stan

Stan supports C++-style comments; see Section 25.1 for full details. The recom-
mended style is to use line-based comments for short comments on the code or to
comment out one or more lines of code. Bracketed comments are then reserved for
long documentation comments. The reason for this convention is that bracketed
comments cannot be wrapped inside of bracketed comments.

What Not to Comment

When commenting code, it is usually safe to assume that you are writing the com-
ments for other programmers who understand the basics of the programming lan-
guage in use. In other words, don’t comment the obvious. For instance, there is no
need to have comments such as the following, which add nothing to the code.

y ~ normal(0,1); // y has a unit normal distribution

A Jacobian adjustment for a hand-coded transform might be worth commenting, as
in the following example.

exp(y) ~ normal(0,1);

// adjust for change of vars: y = log | d/dy exp(y) |

increment_log_prob(y);

It’s an art form to empathize with a future code reader and decide what they will or
won’t know (or remember) about statistics and Stan.

What to Comment

It can help to document variable declarations if variables are given generic names like
N, mu, and sigma. For example, some data variable declarations in an item-response
model might be usefully commented as follows.

int<lower=1> N; // number of observations

int<lower=1> I; // number of students

int<lower=1> J; // number of test questions

The alternative is to use longer names that do not require comments.

int<lower=1> n_obs;

int<lower=1> n_students;

int<lower=1> n_questions;

74

Both styles are reasonable and which one to adopt is mostly a matter of taste (mostly
because sometimes models come with their own naming conventions which should
be followed so as not to confuse readers of the code familiar with the statistical
conventions).

Some code authors like big blocks of comments at the top explaining the purpose
of the model, who wrote it, copyright and licensing information, and so on. The
following bracketed comment is an example of a conventional style for large comment
blocks.

/*

* Item-Response Theory PL3 Model

* ---

* Copyright: Joe Schmoe <joe@schmoe.com>

* Date: 19 September 2012

* License: GPLv3

*/

data {

...

The use of leading asterisks helps readers understand the scope of the comment. The
problem with including dates or other volatile information in comments is that they
can easily get out of synch with the reality of the code. A misleading comment or one
that is wrong is worse than no comment at all!

75

8. Containers: Arrays, Vectors, and Matrices

Stan provides three types of container objects: arrays, vectors, and matrices. The
three types are not interchangeable. Vectors, matrices, and arrays are not assignable
to one another, even if their dimensions are identical. A 3 × 4 matrix is a different
kind of object in Stan than a 3× 4 array.

8.1. Vectors and Matrices

Vectors and matrices are more limited kinds of data structures than arrays. Vectors
are intrinsically one-dimensional collections of reals, whereas matrices are intrinsi-
cally two dimensional.

The intention of using matrix types is to call out their usage in the code. There
are three situations in Stan where only vectors and matrices may be used,

• matrix arithmetic operations (e.g., matrix multiplication)

• linear algebra functions (e.g., eigenvalues and determinants), and

• multivariate function parameters and outcomes (e.g., multivariate normal dis-
tribution arguments).

Vectors and matrices cannot be typed to return integer values. They are restricted
to real values.1

8.2. Arrays

Arrays, on the other hand, are intrinsically one-dimensional collections of other kinds
of objects. The values in an array can be any type, so that arrays may contain values
that are simple reals or integers, vectors, matrices, or other arrays. Arrays are the
only way to store sequences of integers, and some functions in Stan, such as discrete
distributions, require integer arguments.

A two-dimensional array is just an array of arrays, both conceptually and in terms
of current implementation. When an index is supplied to an array, it returns the
value at that index. When more than one index is supplied, this idexing operation is
chained. For example, if a is a two-dimensional array, then a[m,n] is just a convenient
shorthand for a[m][n].

1This may change if Stan is called upon to do complicated integer matrix operations or boolean matrix
operations. Integers are not appropriate inputs for linear algebra functions.

76

8.3. Efficiency Considerations

One of the motivations for Stan’s underlying design is efficiency.
The underlying matrix and linear algebra operations are implemented in terms of

data types from the Eigen C++ library. By having vectors and matrices as basic types,
no conversion is necessary when invoking matrix operations or calling linear algebra
functions.

Arrays, on the other hand, are implemented as instances of the C++ std::vector
class (not to be confused with Eigen’s Eigen::Vector class or Stan vectors). By im-
plementing arrays this way, indexing is very efficient because values can be returned
by reference rather than copied by value.

Matrices vs. Two-Dimensional Arrays

In Stan models, there are a few minor efficiency considerations in deciding between a
two-dimensional array and a matrix, which may seem interchangeable at first glance.

First, matrices use a bit less memory than two-dimensional arrays. This is because
they don’t store a sequence of arrays, but just the data and the two dimensions.

Second, matrices store their data in column-major order. Furthermore, all of the
data in a matrix is guaranteed to be contiguous in memory. This is an important
consideration for optimized code because bringing in data from memory to cache
is much more expensive than performing arithmetic operations with contemporary
CPUs. Arrays, on the other hand, only guarantee that the values of primitive types are
contiguous in memory; otherwise, they hold copies of their values (which are returned
by reference wherever possible).

Third, both data structures are best traversed in the order in which they are
stored. This also helps with memory locality. This is column-major for matrices,
so the following order is appropriate.

matrix[M,N] a;
...
for (n in 1:N)
for (m in 1:M)

... do something with a[m,n] ...

Arrays, on the other hand, should be traversed in row-major (or first-index fastest)
order.

real a[M,N];
...
for (m in 1:M)

77

for (n in 1:N)
... do something with a[m,n] ...

The first use of a[m,n] should bring a[m] into memory. Overall, traversing matrices
is more efficient than traversing arrays.

This is true even for arrays of matrices. For example, the ideal order in which to
traverse a two-dimensional array of matrices is

matrix[M,N] b[I,J];
...
for (i in 1:I)
for (j in 1:J)

for (n in 1:N)
for (m in 1:M)
... do someting with b[i,j,m,n] ...

If a is a matrix, the notation a[m] picks out row m of that matrix. This is a rather
inefficient operation for matrices. If indexing of vectors is needed, it is much better
to declare an array of vectors. That is, this

row_vector[N] b[M];
...
for (m in 1:M)

... do something with row vector b[m] ...

is much more efficient than the pure matrix version

matrix b[M,N];
...
for (m in 1:M)

... do something with row vector b[m] ...

Similarly, indexing an array of column vectors is more efficient than using the col
function to pick out a column of a matrix.

In contrast, whatever can be done as pure matrix algebra will be the fastest. So if
I want to create a row of predictor-coefficient dot-products, it’s more efficient to do
this

matrix[N,K] x; // predictors (aka covariates)
...
vector[K] beta; // coeffs
...
vector[N] y_hat; // linear prediction

78

...
y_hat <- x * beta;

than it is to do this

row_vector[K] x[N]; // predictors (aka covariates)
...
vector[K] beta; // coeffs
...
vector[N] y_hat; // linear prediction
...
for (n in 1:N)
y_hat[n] <- x[n] * beta;

(Row) Vectors vs. One-Dimensional Arrays

For use purely as a container, there is really nothing to decide among vectors, row
vectors and one-dimensional arrays. The Eigen::Vector template specialization
and the std::vector template class are implemented very similarly as containers
of double values (the type real in Stan). Only arrays in Stan are allowed to store
integer values.

79

9. Regression Models

Stan supports regression models from simple linear regressions to multilevel gener-
alized linear models. Coding regression models in Stan is very much like coding them
in BUGS.

9.1. Linear Regression

The simplest linear regression model is the following, with a single predictor and a
slope and intercept coefficient, and normally distributed noise. This model can be
written using standard regression notation as

Yn = α+ βxn + εn where εn ∼ Normal(0, σ).

This is equivalent to the following sampling involving the residual,

Yn − (α+ βXn) ∼ Normal(0, σ),

and reducing still further, to

Yn ∼ Normal(α+ βXn, σ).

This latter form of the model is coded in Stan as follows.

data {

int<lower=0> N;

vector[N] x;

vector[N] y;

}

parameters {

real alpha;

real beta;

real<lower=0> sigma;

}

model {

for (n in 1:N)

y[n] ~ normal(alpha + beta * x[n], sigma);

}

There are N observations, each with predictor x[n] and outcome y[n]. The intercept
and slope parameters are alpha and beta. The model assumes a normally distributed
noise term with scale sigma. This model has improper priors for the two regression
coefficients.

80

Matrix Notation and Vectorization

The sampling statement in the previous model can be vectorized and written equiva-
lently as follows:

model {
y ~ normal(alpha + beta * x, sigma);

}

The main difference is that the vectorized form is much faster.1

In general, Stan allows the arguments to distributions such as normal to be vec-
tors. If any of the other arguments are vectors or arrays, they have to be the same
size. If any of the other arguments is a scalar, it is reused for each vector entry. See
Chapter 27 for more information on vectorization.

The other reason this works is that Stan’s arithmetic operators are overloaded to
perform matrix arithmetic on matrices. In this case, because x is of type vector and
beta of type real, the expression beta * x is of type vector. Because Stan supports
vectorization, a regression model with more than one predictor can be written directly
using matrix notation.

data {
int<lower=0> N; // number of data items
int<lower=0> K; // number of predictors
matrix[N,K] x; // predictor matrix
vector[N] y; // outcome vector

}
parameters {
real alpha; // intercept
vector[N] beta; // coefficients for predictors
real<lower=0,upper=10> sigma; // error scale

}
model {
y ~ normal(x * beta, sigma); // likelihood

}

The constraint on sigma gives it a uniform prior on (0,10). The sampling statement
in the model above is equivalent to

1Unlike in Python and R, which are interpreted, Stan is translated to C++ and compiled, so loops and
assignment statements are fast. Vectorized code is faster in Stan because (a) the expression tree used to
compute derivatives can be simplified, leading to fewer virtual function calls, and (b) computations that
would be repeated in the looping version, such as log(sigma) in the above model, will be computed once
and reused.

81

for (n in 1:N)
y ~ normal(x[n] * beta, sigma);

With Stan’s matrix indexing scheme, x[n] picks out row n of the matrix x; because
beta is a column vector, the product x[n] * beta is a scalar of type real.

9.2. Coefficient and Noise Priors

There are several ways in which the model in the previous section can be generalized.
For example, weak priors can be assigned to the coefficients as follows.

alpha ~ normal(0,100);

beta ~ normal(0,100);

And an upper bound to sigma can be given in order to implicitly give it a uniform
prior.

real<lower=0,upper=100> sigma;

More informative priors based the (half) Cauchy distribution are coded as follows.

alpha ~ cauchy(0,2.5);

beta ~ cauchy(0,2.5);

sigma ~ cauchy(0,2.5);

The regression coefficients alpha and beta are unconstrained, but sigma must be
positive and properly requires the half-Cauchy distribution. Although Stan supports
truncated distributions with half distributions being a special case, it is not necessary
here because the full distribution is proportional when the parameters are constant.2

9.3. Robust Noise Models

The standard approach to linear regression is to model the noise term ε as having a
normal distribution. From Stan’s perspective, there is nothing special about normally
distributed noise. For instance, robust regression can be accommodated by giving the
noise term a Student-t distribution. To code this in Stan, the sampling distribution is
changed to the following.

2Stan does not (yet) support truncated Cauchy distributions. The distributions which may be truncated
are listed for discrete distributions in Part VI and for continuous distributions in Part VII. Available trun-
cated distributions may be found in the index by looking for suffix _cdf.

82

data {

...

real<lower=0> nu;

}

...

model {

for (n in 1:N)

y[n] ~ student_t(nu, alpha + beta * x[n], sigma);

}

The degrees of freedom constant nu is specified as data.

9.4. Logistic and Probit Regression

For binary outcomes, either of the closely related logistic or probit regression models
may be used. These generalized linear models vary only in the link function they
use to map linear predictions in (−∞,∞) to probability values in (0,1). Their respec-
tive link functions, the logistic function and the unit normal cumulative distribution
function, are both sigmoid functions (i.e., they are both S-shaped).

A logistic regression model with one predictor and an intercept is coded as fol-
lows.

data {

int<lower=0> N;

real x[N];

int<lower=0,upper=1> y[N];

}

parameters {

real alpha;

real beta;

}

model {

for (n in 1:N)

y[n] ~ bernoulli(inv_logit(alpha + beta * x[n]));

}

The noise parameter is built into the Bernoulli formulation here rather than specified
directly.

Logistic regression is a kind of generalized linear model with binary outcomes
and the log odds (logit) link function. The inverse of the link function appears in the
model.

83

Other link functions may be used in the same way. For example, probit regression
uses the cumulative normal distribution function, which is typically written as

Φ(x) =
∫ x
−∞

Normal(y|0,1) dy.

The cumulative unit normal distribution function Φ is implemented in Stan as the
function Phi. The probit regression model may be coded in Stan by replacing the
logistic model’s sampling statement with the following.

y[n] ~ bernoulli(Phi(alpha + beta * x[n]));

A fast approximation to the cumulative unit normal distribution function Φ is im-
plemented in Stan as the function Phi_approx. The approximate probit regression
model may be coded with the following.

y[n] ~ bernoulli(Phi_approx(alpha + beta * x[n]));

9.5. Multi-Logit Regression

Multiple outcome forms of logistic regression can be coded directly in Stan. For in-
stance, suppose there are K possible outcomes for each output variable yn. Also
suppose that there is a D-dimensional vector xn of predictors for yn. The multi-logit
model with Normal(0,5) priors on the coefficients is coded as follows.

data {

int K;

int N;

int D;

int y[N];

vector[D] x[N];

}

parameters {

matrix[K,D] beta;

}

model {

for (k in 1:K)

for (d in 1:D)

beta[k,d] ~ normal(0,5);

for (n in 1:N)

y[n] ~ categorical(softmax(beta * x[n]));

}

84

The softmax function is defined for a K-vector γ ∈ RK by

softmax(γ) =
(

exp(γ1)∑K
k=1 exp(γk)

, . . . ,
exp(γK)∑K
k=1 exp(γk)

)
.

The result is in the unit K-simplex and thus appropriate to use as the parameter for
a categorical distribution.

Constraints on Data Declarations

The data block in the above model is defined without constraints on sizes K, N, and D
or on the outcome array y. Constraints on data declarations provide error checking
at the point data is read (or transformed data is defined), which is before sampling
begins. Constraints on data declarations also make the model author’s intentions
more explicit, which can help with readability. The above model’s declarations could
be tightened to

int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
int<lower=1,upper=K> y[N];

These constraints arise because the number of categories, K, must be at least two in
order for a categorical model to be useful. The number of data items, N, can be zero,
but not negative; unlike R, Stan’s for-loops always move forward, so that a loop extent
of 1:N when N is equal to zero ensures the loop’s body will not be executed. The
number of predictors, D, must be at least one in order for beta * x[n] to produce
an appropriate agrument for softmax(). The categorical outcomes y[n] must be
between 1 and K in order for the discrete sampling to be well defined.

Constraints on data declarations are optional. Constraints on parameters declared
in the parameters block, on the other hand, are not optional—they are required to
ensure support for all parameter values satisfying their constraints. Constraints on
transformed data, transformed parameters, and generated quantities are also op-
tional.

Identifiability

Because softmax is invariant under adding a constant to each component of its input,
the model is typically only identified if there is a suitable prior on the coefficients.

An alternative is to use K − 1 vectors by fixing one of them to be zero. See Sec-
tion 11.2 for an example of how to mix known quantities and unknown quantities in
a vector.

85

9.6. Ordered Logistic and Probit Regression

Ordered regression for an outcome yn ∈ {1, . . . , K} with predictors xn ∈ RD is de-
termined by a single coefficient vector β ∈ RD along with a sequence of cutpoints
c ∈ RD−1 sorted so that cd < cd+1. The discrete output is k if the linear predictor xnβ
falls between ck−1 and ck, assuming c0 = −∞ and cK = ∞. The noise term is fixed by
the form of regression, with examples for ordered logistic and ordered probit models.

Ordered Logistic Regression

The ordered logistic model can be coded in Stan using the ordered data type for the
cutpoints and the built-in ordered_logistic distribution.

data {

int<lower=2> K;

int<lower=0> N;

int<lower=1> D;

int<lower=1,upper=K> y[N];

row_vector[D] x[N];

}

parameters {

vector[D] beta;

ordered[K-1] c;

}

model {

for (n in 1:N)

y[n] ~ ordered_logistic(x[n] * beta, c);

}

The vector of cutpoints c is declared as ordered[K-1], which guarantees that c[k]
is less than c[k+1].

If the cutpoints were assigned independent priors, the constraint effectively trun-
cates the joint prior to support over points that satisfy the ordering constraint. Luck-
ily, Stan does not need to compute the effect of the constraint on the normalizing
term because the probability is needed only up to a proportion.

Ordered Probit

An ordered probit model could be coded in a manner similar to the BUGS encoding
of an ordered logistic model.

data {

int<lower=2> K;

86

int<lower=0> N;

int<lower=1> D;

int<lower=1,upper=K> y[N];

row_vector[D] x[N];

}

parameters {

vector[D] beta;

ordered[K-1] c;

}

model {

vector[K] theta;

for (n in 1:N) {

real eta;

eta <- x[n] * beta;

theta[1] <- 1 - Phi(eta - c[1]);

for (k in 2:(K-1))

theta[k] <- Phi(eta - c[k-1]) - Phi(eta - c[k]);

theta[K] <- Phi(eta - c[K-1]);

y[n] ~ categorical(theta);

}

}

The logistic model could also be coded this way by replacing Phi with inv_logit,
though the built-in encoding based on the softmax transform is more efficient and
more numerically stable. A small efficiency gain could be achieved by computing the
values Phi(eta - c[k]) once and storing them for re-use.

9.7. Hierarchical Logistic Regression

The simplest multilevel model is a hierarchical model in which the data is grouped
into L distinct categories (or levels). An extreme approach would be to completely
pool all the data and estimate a common vector of regression coefficients β. At the
other extreme, an approach would no pooling assigns each level l its own coefficient
vector βl that is estimated separately from the other levels. A hierarchical model is
an intermediate solution where the degree of pooling is determined by the data and
a prior on the amount of pooling.

Suppose each binary outcome yn ∈ {0,1} has an associated level, lln ∈ {1, . . . , L}.
Each outcome will also have an associated predictor vector xn ∈ RD . Each level l gets
its own coefficient vector βl ∈ RD . The hierarchical structure involves drawing the co-
efficients βl,d ∈ R from a prior that is also estimated with the data. This hierarchically
estimated prior determines the amount of pooling. If the data in each level are very

87

similar, strong pooling will be reflected in low hierarchical variance. If the data in the
levels are dissimilar, weaker pooling will be reflected in higher hierarchical variance.

The following model encodes a hierarchical logistic regression model with a hier-
archical prior on the regression coefficients.

data {

int<lower=1> D;

int<lower=0> N;

int<lower=1> L;

int<lower=0,upper=1> y[N];

int<lower=1,upper=L> ll[N];

row_vector[D] x[N];

}

parameters {

real mu[D];

real<lower=0,upper=1000> sigma[D];

vector[D] beta[L];

}

model {

for (d in 1:D) {

mu[d] ~ normal(0,100);

for (l in 1:L)

beta[l,d] ~ normal(mu[d],sigma[d]);

}

for (n in 1:N)

y[n] ~ bernoulli(inv_logit(x[n] * beta[ll[n]]));

}

Optimizing the Model

Where possible, vectorizing sampling statements leads to faster log probability and
derivative evaluations. The speed boost is not because loops are eliminated, but
because vectorization allows sharing subcomputations in the log probability and gra-
dient calculations and because it reduces the size of the expression tree required for
gradient calculations.

The first optimization vectorizes the for-loop over D as

mu ~ normal(0,100);
for (l in 1:L)

beta[l] ~ normal(mu,sigma);

The declaration of beta as an array of vectors means that the expression beta[l]
denotes a vector. Although beta could have been declared as a matrix, an array of

88

vectors (or a two-dimensional array) is more efficient for accessing rows; see Chapter 8
for more information on the efficiency tradeoffs among arrays, vectors, and matrices.

This model can be further sped up and at the same time made more arithmetically
stable by replacing the application of inverse-logit inside the Bernoulli distribution
with the logit-parameterized Bernoulli,

for (n in 1:N)
y[n] ~ bernoulli_logit(x[n] * beta[ll[n]]);

See Section 33.2 for a definition of bernoulli_logit.
Unlike in R or BUGS, loops, array access and assignments are fast in Stan because

they are translated directly to C++. In most cases, the cost of allocating and assigning
to a container is more than made up for by the increased efficiency due to vectorizing
the log probability and gradient calculations. Thus the following version is faster than
the original formulation as a loop over a sampling statement.

{
vector[N] x_beta_ll;
for (n in 1:N)

x_beta_ll[n] <- x[n] * beta[ll[n]];
y ~ bernoulli_logit(x_beta_ll);

}

The brackets introduce a new scope for the local variable x_beta_ll; alternatively,
the variable may be declared at the top of the model block.

In some cases, such as the above, the local variable assignment leads to models
that are less readable. The recommended practice in such cases is to first develop and
debug the more transparent version of the model and only work on optimizations
when the simpler formulation has been debugged.

9.8. Item-Response Theory Models

Item-response theory (IRT) models the situation in which a number of students each
answer one or more of a group of test questions. The model is based on parameters
for the ability of the students, the difficulty of the questions, and in more articu-
lated models, the discriminativeness of the questions and the probability of guessing
correctly; see (Gelman and Hill, 2007, pps. 314–320) for a textbook introduction to
hierarchical IRT models and (Curtis, 2010) for encodings of a range of IRT models in
BUGS.

89

Data Declaration with Missingness

The data provided for an IRT model may be declared as follows to account for the
fact that not every student is required to answer every question.

data {

int<lower=1> J; // number of students

int<lower=1> K; // number of questions

int<lower=1> N; // number of observations

int<lower=1,upper=J> jj[N]; // student for observation n

int<lower=1,upper=K> kk[N]; // question for observation n

int<lower=0,upper=1> y[N]; // correctness for observation n

}

This declares a total of N student-question pairs in the data set, where each n in 1:N
indexes a binary observation y[n] of the correctness of the answer of student jj[n]
on question kk[n].

The prior hyperparameters will be hard coded in the rest of this section for sim-
plicity, though they could be coded as data in Stan for more flexibility.

1PL (Rasch) Model

The 1PL item-response model, also known as the Rasch model, has one parameter
(1P) for questions and uses the logistic link function (L). This model is distributed
with Stan in the file src/models/misc/irt/irt.stan.

The model parameters are declared as follows.

parameters {

real delta; // mean student ability

real alpha[J]; // ability of student j - mean ability

real beta[K]; // difficulty of question k

}

The parameter alpha[j] is the ability coefficient for student j and beta[k] is the dif-
ficulty coefficient for question k. The non-standard parameterization used here also
includes an intercept term delta, which represents the average student’s response
to the average question.3 The model itself is as follows.

model {

alpha ~ normal(0,1); // informative true prior

beta ~ normal(0,1); // informative true prior

delta ~ normal(.75,1); // informative true prior

3(Gelman and Hill, 2007) treat the δ term equivalently as the location parameter in the distribution of
student abilities.

90

src/models/misc/irt/irt.stan

for (n in 1:N)

y[n] ~ bernoulli_logit(alpha[jj[n]] - beta[kk[n]] + delta);

}

This model uses the logit-parameterized Bernoulli distribution, where

bernoulli_logit(y|α) = bernoulli(y|logit−1(α)).

The key to understanding it is the term inside the bernoulli_logit distribution,
from which it follows that

Pr[Yn = 1] = logit−1(αjj[n] − βkk[n] + δ).

The model suffers from additive identifiability issues without the priors. For example,
adding a term ξ to each αj and βk results in the same predictions. The use of priors
for α and β located at 0 identifies the parameters; see (Gelman and Hill, 2007) for a
discussion of identifiability issues and alternative approaches to identification.

For testing purposes, the IRT 1PL model distributed with Stan uses informative
priors that match the actual data generation process used to simulate the data in R
(the simulation code is supplied in the same directory as the models). This is unre-
alistic for most practical applications, but allows Stan’s inferences to be validated. A
simple sensitivity analysis with fatter priors shows that the posterior is fairly sensi-
tive to the prior even with 400 students and 100 questions and only 25% missingness
at random. For real applications, the priors should be fit hierarchically along with the
other parameters, as described in the next section.

Multilevel 2PL Model

The simple 1PL model described in the previous section is generalized in this section
with the addition of a discrimination parameter to model how noisy a question is and
by adding multilevel priors for the student and question parameters.

The model parameters are declared as follows.

parameters {

real delta; // mean student ability

real alpha[J]; // ability for j - mean

real beta[K]; // difficulty for k

real log_gamma[K]; // discrimination of k

real<lower=0> sigma_alpha; // scale of abilities

real<lower=0> sigma_beta; // scale of difficulties

real<lower=0> sigma_gamma; // scale of log discrimination

}

The parameters should be clearer after the model definition.

91

model {

alpha ~ normal(0,sigma_alpha);

beta ~ normal(0,sigma_beta);

log_gamma ~ normal(0,sigma_gamma);

delta ~ cauchy(0,5);

sigma_alpha ~ cauchy(0,5);

sigma_beta ~ cauchy(0,5);

sigma_gamma ~ cauchy(0,5);

for (n in 1:N)

y[n] ~ bernoulli_logit(

exp(log_gamma[kk[n]])

* (alpha[jj[n]] - beta[kk[n]] + delta));

}

First, the predictor inside the bernoulli_logit term is equivalent to the pre-
dictor of the 1PL model multiplied by the discriminativeness for the question,
exp(log_gamma[kk[n]]). The parameter log_gamma[k] represents how discrimi-
native a question is, with log discriminations above 0 being less (because their ex-
ponentiation drives the predictor away from zero, which drives the prediction away
from 0.5) and discriminations below 0 being more noisy (driving the predictor toward
zero and hence the prediction toward 0.5).

An alternative to explicitly exponentiating the unconstrained discrimination pa-
rameter log_gamma would be to declare a discrimination parameter gamma with a
constraint <lower=0> and provide a lognormal or other positive-constrained prior.
Either way, the positive-constrained discrimination term identifies the signs in the
model, while at the same time eliminating the unlikely possibility that there is a ques-
tion that is easier for less able students to answer correctly.

The intercept term delta can’t be modeled hierarchically, so it is given a weakly
informative Cauchy(0,5) prior. Similarly, the scale terms, sigma_alpha, sigma_beta,
and sigma_gamma, are given half-Cauchy priors. The truncation in the half-Cauchy
prior is implicit; explicit truncation is not necessary because the log probability need
only be calculated up to a proportion and the scale variables are constrained to (0,∞)
by their declarations.

9.9. Multivariate Priors for Hierarchical Models

In hierarchical regression models (and other situations), several individual-level vari-
ables may be assigned hierarchical priors. For example, a model with multiple varying
intercepts and slopes within might assign them a multivariate prior.

As an example, the individuals might people and the outcome income, with pre-
dictors such as income and age, and the groups might be states or other geographic

92

divisions. The effect of education level and age as well as an intercept might be al-
lowed to vary by state. Furthermore, there might be state-level predictors, such as
average state income and unemployment level.

Multivariate Regression Example

(Gelman and Hill, 2007, Chapter 13, Chapter 17) discuss a hierarchical model with
N individuals organized into J groups. Each individual has a predictor row vector
xn of size K; to unify the notation, they assume that xn,1 = 1 is a fixed “intercept”
predictor. To encode group membership, they assume individual n belongs to group
jj[n] ∈ 1:J. Each individual n also has an observed outcome yn taking on real values.

Likelihood

The model is a linear regression with slope and intercept coefficients varying by
group, so that βj is the coefficient K-vector for group j . The likelihood function
for individual n is then just

yn ∼ Normal(xn βjj[n], σ) for n ∈ 1:N.

Coefficient Prior

Gelman and Hill model the coefficient vectors βj as being drawn from a multivariate
distribution with mean vector µ and covariance matrix Σ,

βj ∼ MultiNormal(µ, Σ) for j ∈ 1:J.

Below, we discuss the full model of Gelman and Hill, which uses group-level predic-
tors to model µ; for now, we assume µ is a simple vector parameter.

Hyperpriors

For hierarchical modeling, the group-level mean vector µ and covariance matrix Σ
must themselves be given priors. The group-level mean vector can be given a reason-
able weakly-informative prior for independent coefficients, such as

µj ∼ Normal(0,5).

Of course, if more is known about the expected coefficient values βj,k, this informa-
tion can be incorporated into the prior for µk.

For the prior on the covariance matrix, Gelman and Hill suggest using a scaled in-
verse Wishart. That choice was motivated primarily by convenience as it is conjugate
to the multivariate likelihood function and thus simplifies Gibbs sampling.

93

In Stan, there is no restriction to conjugacy for multivariate priors, and we in fact
recommend a slightly different approach. Like Gelman and Hill, we decompose our
prior into a scale and a matrix, but are able to do so in a more natural way based on
the actual variable scales and a correlation matrix. Specifically, we define

Σ = diag_matrix(τ)Ωdiag_matrix(τ),

where Ω is a correlation matrix and τ is the vector of coefficient scales.
The components of the scale vector τ can be given any reasonable prior for scales,

but we recommend something weakly informative like a half-Cauchy distribution with
a small scale, such as

τk ∼ Cauchy(0,2.5) for k ∈ 1:J and τk > 0.

As for the prior means, if there is information about the scale of variation of co-
efficients across groups, it should be incorporated into the prior for τ . For large
numbers of exchangeable coefficients, the components of τ itself (perhaps excluding
the intercept) may themselves be given a hierarchical prior.

Our final recommendation is to give the correlation matrix Ω an LKJ prior with
shape ν ≥ 1,

Ω ∼ LKJcorr(ν).

The LKJ correlation distribution is defined in Section 46.1, but the basic idea for mod-
eling is that as ν increases, the prior increasingly concentrates around the unit corre-
lation matrix (i.e., favors less correlation among the components of βj). At ν = 1, the
LKJ correlation distribution reduces to the identity distribution over correlation ma-
trices. The LKJ prior may thus be used to control the expected amount of correlation
among the parameters βj .

Group-Level Predictors for Prior Mean

To complete Gelman and Hill’s model, suppose each group j ∈ 1:J is supplied with
an L-dimensional row-vector of groupl-level predictors uj . The prior mean for the βj
can then itself be modeled as a regression, using an L-dimensional coefficient vector
γ. The prior for the group-level coefficients then becomes

βj ∼ MultiNormal(uj γ,Σ)

The group-level coefficients γ may themselves be given independent weakly infor-
mative priors, such as

γl ∼ Normal(0,5).

As usual, information about the group-level means should be incorporated into this
prior.

94

Coding the Model in Stan

The Stan code for the full hierarchical model with multivariate priors on the group-
level coefficients and group-level prior means follows its definition.

data {

int<lower=0> N; // num individuals

int<lower=1> K; // num ind predictors

int<lower=1> J; // num groups

int<lower=1> L; // num group predictors

int<lower=1,upper=J> jj[N]; // group for individual

matrix[N,K] x; // individual predictors

matrix[J,L] u; // group predictors

vector[N] y; // outcomes

}

parameters {

corr_matrix[K] Omega; // prior covariance

vector<lower=0>[K] tau; // prior scale

matrix[L,K] gamma; // group coeffs

vector[K] beta[J]; // indiv coeffs by group

real<lower=0> sigma; // prediction error scale

}

model {

matrix[K,K] Sigma_beta;

Sigma_beta <- diag_matrix(tau) * Omega * diag_matrix(tau);

tau ~ cauchy(0,2.5);

Omega ~ lkj_corr(2);

for (l in 1:L)

gamma[l] ~ normal(0,5);

for (j in 1:J)

beta[j] ~ multi_normal((u[j] * gamma)’, Sigma_beta);

for (n in 1:N)

y[n] ~ normal(x[n] * beta[jj[n]], sigma);

}

The hyperprior covariance matrix is defined as a local variable in the model because
the correlation matrix Omega and scale vector tau are more natural to inspect in
the output; to output Sigma, define it as a transformed parameter. The function
diag_matrix converts the vector tau to a diagonal matrix.

95

Optimizations

This model could be made more efficient in a several ways. First, the covariance ma-
trix Sigma_beta can be defined using the specialized diagonal pre- and post-multiply
functions (see Section 32.2.8 for definitions).

Sigma_beta
<- diag_pre_multiply(tau, diag_post_multiply(Sigma, tau));

If there are a large number of groups J, a further optimization would be to use
the Cholesky factorization of Sigma_beta in the Cholesky parameterization of the
multivariate normal.

{
matrix[K,K] L_beta;
L_beta <- cholesky_decompose(Sigma_beta);
for (j in 1:J)

beta[j] ~ multi_normal_cholesky((u[j] * gamma)’, L_beta);
}

The brackets introduce a block in which the local variable L_beta may be defined.
An additional speedup could be achieved by defining L_beta by Cholesky decom-

posing the correlation matrix Omega and scaling that rather than using the diagonal
pre- and post-multiplies.

{
matrix[K,K] L_beta;
L_beta <- cholesky_decompose(Omega);
for (k1 in 1:K)

for (k2 in 1:k1)
L_beta[k1,k2] <- tau[k1] * L_beta[k1,k2];

}

Another optimization would be to vectorize the likelihood sampling statement by
generating a temporary vector of the linear predictor.

{
vector[N] x_beta_jj;
for (n in 1:N)

x_beta_jj[n] <- x[n] * beta[jj[n]];
y ~ normal(x_beta_jj, sigma);

}

96

10. Time-Series Models

Times series data come arranged in temporal order. This chapter presents two kinds
of time series models, regression-like models such as autogression and moving aver-
age models, and hidden Markov models.

10.1. Autoregressive Models

A first-order autoregressive model (AR(1)) with normal noise takes each point yn in a
sequence y to be generated according to

yn ∼ Normal(α+ βyn−1, σ).

That is, the expected value of yn is α+ βyn−1, with noise scaled as σ .

AR(1) Models

With improper flat priors on the regression coefficients for slope (β), intercept (α),
and noise scale (σ), the Stan program for the AR(1) model is as follows.

data {

int<lower=0> N;

real y[N];

}

parameters {

real alpha;

real beta;

real sigma;

}

model {

for (n in 2:N)

y[n] ~ normal(alpha + beta*y[n-1], sigma);

}

The first observed data point, y[1], is not modeled here.

Extensions to the AR(1) Model

Proper priors of a range of different families may be added for the regression co-
efficients and noise scale. The normal noise model can be changed to a Student-t
distribution or any other distribution with unbounded support. The model could also
be made hierarchical if multiple series of observations are available.

97

To enforce the estimation of a stationary AR(1) process, the slope coefficient beta
may be constrained with bounds as follows.

real<lower=-1,upper=1> beta;

In practice, such a constraint is not recommended. If the data is not stationary, it is
best to discover this while fitting the model. Stationary parameter estimates can be
encouraged with a prior favoring values of beta near zero.

AR(2) Models

Extending the order of the model is also straightforward. For example, an AR(2) model
could be coded with the second-order coefficient gamma and the following model state-
ment.

for (n in 3:N)

y[n] ~ normal(alpha + beta*y[n-1] + gamma*y[n-2], sigma);

AR(K) Models

A general model where the order is itself given as data can be coded by putting the
coefficients in an array and computing the linear predictor in a loop.

data {

int<lower=0> K;

int<lower=0> N;

real y[N];

}

parameters {

real alpha;

real beta[K];

real sigma;

}

model {

for (n in (K+1):N) {

real mu;

mu <- alpha;

for (k in 1:K)

mu <- mu + beta[k] * y[n-k];

y[n] ~ normal(mu, sigma);

}

}

98

ARCH(1) Models

Econometric and financial time-series models usually assume heteroscedasticity (i.e.,
they allow the scale of the noise terms defining the series to vary over time). The sim-
plest such model is the autoregressive conditional heteroscedasticity (ARCH) model
(Engle, 1982). Unlike the autoregressive model AR(1), which modeled the mean of the
series as varying over time but left the noise term fixed, the ARCH(1) model takes
the scale of the noise terms to vary over time but leaves the mean term fixed. Of
course, models could be defined where both the mean and scale vary over time; the
econometrics literature presents a wide range of time-series modeling choices.

The ARCH(1) model is typically presented as the following sequence of equations,
where rt is the observed return at time point t and µ, α0, and α1 are unknown regres-
sion coefficient parameters.

rt = µ + at
at = σtεt

εt ∼ Normal(0,1)

σ 2t = α0 +α1a2t−1
In order to ensure the noise terms σ 2t are positive, the scale coefficients are con-
strained to be positive, α0, α1 > 0. To ensure stationarity of the time series, the slope
is constrained to to be less than one, α1 < 1.1 The ARCH(1) model may be coded
directly in Stan as follows.

data {

int<lower=0> T; // number of time points

real r[T]; // return at time t

}

parameters {

real mu; // average return

real<lower=0> alpha0; // noise intercept

real<lower=0,upper=1> alpha1; // noise slope

}

model {

for (t in 2:T)

r[t] ~ normal(mu, sqrt(alpha0 + alpha1 * pow(r[t-1] - mu,2)));

}

The loop in the model is defined so that the return at time t = 1 is not modeled; the
model in the next section shows how to model the return at t = 1. The model can be
vectorized to be more efficient; the model in the next section provides an example.

1In practice, it can be useful to remove the constraint to test whether a non-stationary set of coefficients
provides a better fit to the data.

99

10.2. Modeling Temporal Heteroscedasticity

A set of variables is homoscedastic if their variances are all the same; the variables are
heteroscedastic if they do not all have the same variance. Heteroscedastic time-series
models allow the noise term to vary over time.

GARCH(1,1) Models

The basic generalized autoregressive conditional heteroscedasticity (GARCH) model,
GARCH(1,1), extends the ARCH(1) model by including the squared previous difference
in return from the mean at time t − 1 as a predictor of volatility at time t , defining

σ 2t = α0 +α1a2t−1 + β1σ 2t−1.

To ensure the scale term is positive and the resulting time series stationary, the coef-
ficients must all satisfy α0, α1, β1 > 0 and the slopes α1 + β1 < 1.

data {

int<lower=0> T;

real r[T];

real<lower=0> sigma1;

}

parameters {

real mu;

real<lower=0> alpha0;

real<lower=0,upper=1> alpha1;

real<lower=0,upper=(1-alpha1)> beta1;

}

transformed parameters {

real<lower=0> sigma[T];

sigma[1] <- sigma1;

for (t in 2:T)

sigma[t] <- sqrt(alpha0

+ alpha1 * pow(r[t-1] - mu, 2)

+ beta1 * pow(sigma[t-1], 2));

}

model {

r ~ normal(mu,sigma);

}

To get the recursive definition of the volatility regression off the ground, the data
declaration includes a non-negative value sigma1 for the scale of the noise at t = 1.

The constraints are coded directly on the parameter declarations. This declaration
is order-specific in that the constraint on beta1 depends on the value of alpha1.

100

A transformed parameter array of non-negative values sigma is used to store the
scale values at each time point. The definition of these values in the transformed pa-
rameters block is where the regression is now defined. There is an intercept alpha0, a
slope alpha1 for the squared difference in return from the mean at the previous time,
and a slope beta1 for the previous noise scale squared. Finally, the whole regression
is inside the sqrt function because Stan requires scale (deviation) parameters (not
variance parameters) for the normal distribution.

With the regression in the transformed parameters block, the model reduces a
single vectorized sampling statement. Because r and sigma are of length T, all of the
data is modeled directly.

10.3. Moving Average Models

A moving average model uses previous errors as predictors for future outcomes. For
a moving average model of orderQ, MA(Q), there is an overall mean parameter µ and
regression coefficients θq for previous error terms. With εt being the noise at time t ,
the model for outcome yt is defined by

yt = µ + θ1εt−1 + · · · + θQεt−Q + εt ,

with the noise term εt for outcome yt modeled as normal,

εt ∼ Normal(0, σ).

In a proper Bayesian model, the parameters µ, θ, and σ must all be given priors.

MA(2) Example

An MA(2) model can be coded in Stan as follows.

data {

int<lower=3> T; // number of observations

vector[T] y; // observation at time T

}

parameters {

real mu; // mean

real<lower=0> sigma; // error scale

vector[2] theta; // lag coefficients

}

transformed parameters {

vector[T] epsilon; // error terms

epsilon[1] <- y[1] - mu;

epsilon[2] <- y[2] - mu - theta[1] * epsilon[1];

101

for (t in 3:T)

epsilon[t] <- (y[t] - mu

- theta[1] * epsilon[t - 1]

- theta[2] * epsilon[t - 2]);

}

model {

mu ~ cauchy(0,2.5);

theta ~ cauchy(0,2.5);

sigma ~ cauchy(0,2.5);

for (t in 3:T)

y[t] ~ normal(mu

+ theta[1] * epsilon[t - 1]

+ theta[2] * epsilon[t - 2],

sigma);

}

The error terms εt are defined as transformed parameters in terms of the observa-
tions and parameters. The definition of the sampling statement (defining the like-
lihood) follows the definition, which can only be applied to yn for n > Q. In this
example, the parameters are all given Cauchy (half-Cauchy for σ) priors, although
other priors can be used just as easily.

This model could be improved in terms of speed by vectorizing the sampling
statement in the model block. Vectorizing the calculation of the εt could also be sped
up by using a dot product instead of a loop.

Vectorized MA(Q) Model

A general MA(Q) model with a vectorized sampling probability may be defined as
follows.

data {

int<lower=0> Q; // num previous noise terms

int<lower=3> T; // num observations

vector[T] y; // observation at time t

}

parameters {

real mu; // mean

real<lower=0> sigma; // error scale

vector[Q] theta; // error coeff, lag -t

}

transformed parameters {

vector[T] epsilon; // error term at time t

for (t in 1:T) {

epsilon[t] <- y[t] - mu;

102

for (q in 1:min(t-1,Q))

epsilon[t] <- epsilon[t] - theta[q] * epsilon[t - q];

}

}

model {

vector[T] eta;

mu ~ cauchy(0,2.5);

theta ~ cauchy(0,2.5);

sigma ~ cauchy(0,2.5);

for (t in 1:T) {

eta[t] <- mu;

for (q in 1:min(t-1,Q))

eta[t] <- eta[t] + theta[q] * epsilon[t - q];

}

y ~ normal(eta,sigma);

}

Here all of the data is modeled, with missing terms just dropped from the regres-
sions as in the calculation of the error terms. Both models converge very quickly and
mix very well at convergence, with the vectorized model being quite a bit faster (per
iteration, not to converge — they compute the same model).

10.4. Autoregressive Moving Average Models

Autoregressive moving-average models (ARMA), combine the predictors of the autore-
gressive model and the oving average model. An ARMA(1,1) model, with a single state
of history, can be encoded in Stan as follows.

data {

int<lower=1> T; // num observations

real y[T]; // observed outputs

}

parameters {

real mu; // mean coeff

real phi; // autoregression coeff

real theta; // moving avg coeff

real<lower=0> sigma; // noise scale

}

model {

vector[T] nu; // prediction for time t

vector[T] err; // error for time t

nu[1] <- mu + phi * mu; // assume err[0] == 0

err[1] <- y[1] - nu[1];

103

for (t in 2:T) {

nu[t] <- mu + phi * y[t-1] + theta * err[t-1];

err[t] <- y[t] - nu[t];

}

mu ~ normal(0,10); // priors

phi ~ normal(0,2);

theta ~ normal(0,2);

sigma ~ cauchy(0,5);

err ~ normal(0,sigma); // likelihood

}

The data is declared in the same way as the other time-series regressions. Here the
are parameters for the mean output mu and error scale sigma, as well as regression
coefficients phi for the autoregression and theta for the moving average component
of the model.

In the model block, the local vector nu stores the predictions and err the errors.
These are computed similarly to the errors in the moving average models described
in the previous section.

The priors are weakly informative for stationary processes. The likelihood only
involves the error term, which is efficiently vectorized here.

Often in models such as these, it is desirable to inspect the calculated error terms.
This could easily be accomplished in Stan by declaring err as a transformed parame-
ter, then defining it the same way as in the model above. The vector nu could still be
a local variable, only now it will be in the transformed parameter block.

Wayne Folta suggested encoding the model without local vector variables as fol-
lows.

model {

real err;

mu ~ normal(0,10);

phi ~ normal(0,2);

theta ~ normal(0,2);

sigma ~ cauchy(0,5);

err <- y[1] - mu + phi * mu;

err ~ normal(0,sigma);

for (t in 2:T) {

err <- y[t] - (mu + phi * y[t-1] + theta * err);

err ~ normal(0,sigma);

}

}

This approach to ARMA models provides a nice example of how local variables, such
as err in this case, can be reused in Stan. Folta’s approach could be extended to

104

higher order moving-average models by storing more than one error term as a local
variable and reassigning them in the loop.

Both encodings are very fast. The original encoding has the advantage of vector-
izing the normal distribution, but it uses a bit more memory. A halfway point would
be to vectorize just err.

10.5. Stochastic Volatility Models

Stochastic volatility models treat the volatility (i.e., variance) of a return on an asset,
such as an option to buy a security, as following a latent stochastic process in discrete
time (Kim et al., 1998). The data consist of mean corrected (i.e., centered) returns
yt on an underlying asset at T equally spaced time points. Kim et al. formulate a
typical stochastic volatility model using the following regression-like equations, with
a latent parameter ht for the log volatility, along with parameters µ for the mean log
volatility, and φ for the persistence of the volatility term. The variable εt represents
the white-noise shock (i.e., multiplicative error) on the asset return at time t , whereas
δt represents the shock on volatility at time t .

yt = εt exp(ht/2),

ht+1 = µ +φ(ht − µ)+ δtσ

h1 ∼ Normal

µ, σ√
1−φ2


εt ∼ Normal(0,1); δt ∼ Normal(0,1)

Rearranging the first line, εt = yt exp(−ht/2), allowing the sampling distribution for
yt to be written as

yt ∼ Normal(0, exp(ht/2)).

The recurrence equation for ht+1 may be combined with the scaling and sampling of
δt to yield the sampling distribution

ht ∼ Normal(µ +φ(ht − µ),σ).

This formulation can be directly encoded, as shown in the following Stan
model, which is also available in the file <stan>/src/models/misc/moving-avg/
stochastic-volatility.stan along with R code to simulate data from the model
for testing.

data {

int<lower=0> T; // # time points (equally spaced)

105

vector[T] y; // mean corrected return at time t

}

parameters {

real mu; // mean log volatility

real<lower=-1,upper=1> phi; // persistence of volatility

real<lower=0> sigma; // white noise shock scale

vector[T] h; // log volatility at time t

}

model {

phi ~ uniform(-1,1);

sigma ~ cauchy(0,5);

mu ~ cauchy(0,10);

h[1] ~ normal(mu, sigma / sqrt(1 - phi * phi));

for (t in 2:T)

h[t] ~ normal(mu + phi * (h[t - 1] - mu), sigma);

for (t in 1:T)

y[t] ~ normal(0, exp(h[t] / 2));

}

Compared to the Kim et al. formulation, the Stan model adds priors for the parame-
ters φ, σ , and µ. Note that the shock terms εt and δt do not appear explicitly in the
model, although they could be calculated efficiently in a generated quantities block.

The posterior of a stochastic volatility model such as this one typically has high
posterior variance. For example, simulating 500 data points from the above model
with µ = −1.02, φ = 0.95, and σ = 0.25 leads to 95% posterior intervals for µ of
(−1.23,−0.54), for φ of (0.82,0.98) and for σ of (0.16,0.38).

The samples using NUTS show a high degree of autocorrelation among the sam-
ples, both for this model and the stochastic volatility model evaluated in (Hoffman
and Gelman, 2011, 2013). Using a non-diagonal mass matrix provides faster conver-
gence and more effective samples than a diagonal mass matrix, but will not scale to
large values of T .

It is relatively straightforward to speed up the effective samples per second gen-
erated by this model by one or more orders of magnitude. First, the sampling state-
ments for return y is easily vectorized to

y ~ normal(0, exp(h / 2));

This speeds up the iterations, but does not change the effective sample size because
the underlying parameterization and log probability function have not changed. Mix-
ing is improved by by reparameterizing in terms of a standardized volatility, then
rescaling. This requires a standardized parameter h_std to be declared instead of h.

parameters {

...

106

vector[T] h_std; // std log volatility time t

The original value of h is then defined in a transformed parameter block.

transformed parameters {

vector[T] h; // log volatility at time t

h <- h_std * sigma;

h[1] <- h[1] / sqrt(1 - phi * phi);

h <- h + mu;

for (t in 2:T)

h[t] <- h[t] + phi * (h[t-1] - mu);

}

Finally, the sampling statement for h[1] and loop for sampling h[2] to h[T] are
replaced with a single vectorized unit normal sampling statement.

model {

...

h_std ~ normal(0,1);

Although the original model can take hundreds and sometimes thousands of itera-
tions to converge, the reparameterized model reliably converges in tens of iterations.
Mixing is also dramatically improved, which results in higher effective sample sizes
per iteration. Finally, each iteration runs in roughly a quarter of the time of the origi-
nal iterations.

10.6. Hidden Markov Models

A hidden Markov model (HMM) generates a sequence of T output variables yt con-
ditioned on a parallel sequence of latent categorical state variables zt ∈ {1, . . . , K}.
These “hidden” state variables are assumed to form a Markov chain so that zt is
conditionally independent of other variables given zt−1. This Markov chain is param-
eterized by a transition matrix θ where θk is a K-simplex for k ∈ {1, . . . , K}. The
probability of transitioning to state zt from state zt−1 is

zt ∼ Categorical(θz[t−1]).

The output yt at time t is generated conditionally independently based on the latent
state zt . This section describes HMMs with a simple categorical model for outputs
yt ∈ {1, . . . , V}. The categorical distribution for latent state k is parameterized by a
V -simplex φk. The observed output yt at time t is generated based on the hidden
state indicator zt at time t ,

yt ∼ Categorical(φz[t]).

107

In short, HMMs form a discrete mixture model where the mixture component indica-
tors form a latent Markov chain.

Supervised Parameter Estimation

In the situation where the hidden states are known, the following naive model can be
used to fit the parameters θ and φ. (This model is distributed with Stan on the path
<stan>/src/models/misc/hmm/hmm.stan.)

data {

int<lower=1> K; // num categories

int<lower=1> V; // num words

int<lower=0> T; // num instances

int<lower=1,upper=V> w[T]; // words

int<lower=1,upper=K> z[T]; // categories

vector<lower=0>[K] alpha; // transit prior

vector<lower=0>[V] beta; // emit prior

}

parameters {

simplex[K] theta[K]; // transit probs

simplex[V] phi[K]; // emit probs

}

model {

for (k in 1:K)

theta[k] ~ dirichlet(alpha);

for (k in 1:K)

phi[k] ~ dirichlet(beta);

for (t in 1:T)

w[t] ~ categorical(phi[z[t]]);

for (t in 2:T)

z[t] ~ categorical(theta[z[t - 1]]);

}

Explicit Dirichlet priors have been provided for θk and φk; dropping these two state-
ments would implicitly take the prior to be uniform over all valid simplexes.

Start-State and End-State Probabilities

Although workable, the above description of HMMs is incomplete because the start
state z1 is not modeled (the index runs from 2 to T). If the data are conceived as
a subsequence of a long-running process, the probability of z1 should be set to the
stationary state probabilities in the Markov chain. In this case, there is no distinct
end to the data, so there is no need to model the probability that the sequence ends
at zT .

108

An alternative conception of HMMs is as models of finite-length sequences. For
example, human language sentences have distinct starting distributions (usually a
capital letter) and ending distributions (usually some kind of punctuation). The sim-
plest way to model the sequence boundaries is to add a new latent state K+1, generate
the first state from a categorical distribution with parameter vector θK+1, and restrict
the transitions so that a transition to state K + 1 is forced to occur at the end of the
sentence and is prohibited elsewhere.

Calculating Sufficient Statistics

The naive HMM estimation model presented above can be sped up dramatically by
replacing the loops over categorical distributions with a single multinomial distri-
bution. A complete implementation is available in the Stan source distribution at
path <stan>/src/models/misc/hmm/hmm-sufficient.stan. The data is declared
as before, but now a transformed data blocks computes the sufficient statistics for
estimating the transition and emission matrices.

transformed data {

int<lower=0> trans[K,K];

int<lower=0> emit[K,V];

for (k1 in 1:K)

for (k2 in 1:K)

trans[k1,k2] <- 0;

for (t in 2:T)

trans[z[t - 1], z[t]] <- 1 + trans[z[t - 1], z[t]];

for (k in 1:K)

for (v in 1:V)

emit[k,v] <- 0;

for (t in 1:T)

emit[z[t], w[t]] <- 1 + emit[z[t], w[t]];

}

The likelihood component of the model based on looping over the input is replaced
with multinomials as follows.

model {
...
for (k in 1:K)

trans[k] ~ multinomial(theta[k]);
for (k in 1:K)

emit[k] ~ multinomial(phi[k]);
}

109

In a continuous HMM with normal emission probabilities could be sped up in the
same way by computing sufficient statistics.

Analytic Posterior

With the Dirichlet-multinomial HMM, the posterior can be computed analytically be-
cause the Dirichlet is the conjugate prior to the multinomial. The following example,
available in <stan>/src/models/hmm/hmm-analytic.stan, illustrates how a Stan
model can define the posterior analytically. This is possible in the Stan language be-
cause the model only needs to define the conditional probability of the parameters
given the data up to a proportion, which can be done by defining the (unnormalized)
joint probability or the (unnormalized) conditional posterior, or anything in between.

The model has the same data and parameters as the previous models, but now
computes the posterior Dirichlet parameters in the transformed data block.

transformed data {

vector<lower=0>[K] alpha_post[K];

vector<lower=0>[V] beta_post[K];

for (k in 1:K)

alpha_post[k] <- alpha;

for (t in 2:T)

alpha_post[z[t-1],z[t]] <- alpha_post[z[t-1],z[t]] + 1;

for (k in 1:K)

beta_post[k] <- beta;

for (t in 1:T)

beta_post[z[t],w[t]] <- beta_post[z[t],w[t]] + 1;

}

The posterior can now be written analytically as follows.

model {

for (k in 1:K)

theta[k] ~ dirichlet(alpha_post[k]);

for (k in 1:K)

phi[k] ~ dirichlet(beta_post[k]);

}

Semisupervised Estimation

HMMs can be estimated in a fully unsupervised fashion without any data for which
latent states are known. The resulting posteriors are typically extremely multimodal.
An intermediate solution is to use semisupervised estimation, which is based on a
combination of supervised and unsupervised data. Implementing this estimation

110

strategy in Stan requires calculating the probability of an output sequence with an
unknown state sequence. This is a marginalization problem, and for HMMs, it is
computed with the so-called forward algorithm.

In Stan, the forward algorithm is coded as follows (the full model is in <stan>
/src/models/misc/hmm/hmm-semisup.stan). First, two additional data variable are
declared for the unsupervised data.

data {

...

int<lower=1> T_unsup; // num unsupervised items

int<lower=1,upper=V> u[T_unsup]; // unsup words

...

The model for the supervised data does not change; the unsupervised data is handled
with the following Stan implementation of the forward algorithm.

model {

...

{

real acc[K];

real gamma[T_unsup,K];

for (k in 1:K)

gamma[1,k] <- log(phi[k,u[1]]);

for (t in 2:T_unsup) {

for (k in 1:K) {

for (j in 1:K)

acc[j] <- gamma[t-1,j] + log(theta[j,k]) + log(phi[k,u[t]]);

gamma[t,k] <- log_sum_exp(acc);

}

}

increment_log_prob(log_sum_exp(gamma[T_unsup]));

}

The forward values gamma[t,k] are defined to be the log marginal probability of the
inputs u[1],...,u[t] up to time t and the latent state being equal to k at time t; the
previous latent states are marginalized out. The first row of gamma is initialized by
setting gamma[1,k] equal to the log probability of latent state k generating the first
output u[1]; as before, the probability of the first latent state is not itself modeled.
For each subsequent time t and output j, the value acc[j] is set to the probability
of the latent state at time t-1 being j, plus the log transition probability from state
j at time t-1 to state k at time t, plus the log probability of the output u[t] being
generated by state k. The log_sum_exp operation just multiplies the probabilities for
each prior state j on the log scale in an arithmetically stable way.

111

The brackets provide the scope for the local variables acc and gamma; these could
have been declared earlier, but it is clearer to keep their declaration near their use.

Predictive Inference

Given the transition and emission parameters, θk,k′ and φk,v and an observation se-
quence u1, . . . , uT ∈ {1, . . . , V}, the Viterbi (dynamic programming) algorithm com-
putes the state sequence which is most likely to have generated the observed output
u.

The Viterbi algorithm can be coded in Stan in the generated quantities block as
follows. The predictions here is the most likely state sequence y_star[1], ...,
y_star[T_unsup] underlying the array of observations u[1], ..., u[T_unsup].
Because this sequence is determined from the transition probabilities theta and
emission probabilities phi, it may be different from sample to sample in the pos-
terior.

generated quantities {

int<lower=1,upper=K> y_star[T_unsup];

real log_p_y_star;

{

int back_ptr[T_unsup,K];

real best_logp[T_unsup,K];

real best_total_logp;

for (k in 1:K)

best_logp[1,K] <- log(phi[k,u[1]]);

for (t in 2:T_unsup) {

for (k in 1:K) {

best_logp[t,k] <- negative_infinity();

for (j in 1:K) {

real logp;

logp <- best_logp[t-1,j]

+ log(theta[j,k]) + log(phi[k,u[t]]);

if (logp > best_logp[t,k]) {

back_ptr[t,k] <- j;

best_logp[t,k] <- logp;

}

}

}

}

log_p_y_star <- max(best_logp[T_unsup]);

for (k in 1:K)

if (best_logp[T_unsup,k] == log_p_y_star)

y_star[T_unsup] <- k;

112

for (t in 1:(T_unsup - 1))

y_star[T_unsup - t] <- back_ptr[T_unsup - t + 1,

y_star[T_unsup - t + 1]];

}

}

The bracketed block is used to make the three variables back_ptr, best_logp, and
best_total_logp local so they will not be output. The variable y_star will hold
the label sequence with the highest probability given the input sequence u. Unlike the
forward algorithm, where the intermediate quantities were total probability, here they
consist of the maximum probabilty best_logp[t,k] for the sequence up to time t
with final output category k for time t, along with a backpointer to the source of the
link. Following the backpointers from the best final log probability for the final time
t yields the optimal state sequence.

This inference can be run for the same unsupervised outputs u as are used to
fit the semisupervised model. The above code can be found in the same model file
as the unsupervised fit. This is the Bayesian approach to inference, where the data
being reasoned about is used in a semisupervised way to train the model. It is not
“cheating” because the underlying states for u are never observed — they are just
estimated along with all of the other parameters.

If the outputs u are not used for semisupervised estimation but simply as the basis
for prediction, the result is equivalent to what is represented in the BUGS modeling
language via the cut operation. That is, the model is fit independenlty of u, then those
parameters used to find the most likely state to have generated u.

113

11. Missing Data & Partially Known Parame-

ters

BUGS and R support mixed arrays of known and missing data. In BUGS, known and
unknown values may be mixed as long as every unknown variable appears on the
left-hand side of either an assignment or sampling statement.

11.1. Missing Data

Stan treats variables declared in the data and transformed data blocks as known
and the variables in the parameters block as unknown.

The next section shows how to create a mixed array of known and unknown values
as in BUGS. The recommended approach to missing data in Stan is slightly different
than in BUGS. An example involving missing normal observations1 could be coded as
follows.

data {

int<lower=0> N_obs;

int<lower=0> N_miss;

real y_obs[N_obs];

}

parameters {

real mu;

real<lower=0> sigma;

real y_miss[N_miss];

}

model {

for (n in 1:N_obs)

y_obs[n] ~ normal(mu,sigma);

for (n in 1:N_miss)

y_miss[n] ~ normal(mu,sigma);

}

The number of observed and missing data points are coded as data with non-negative
integer variables N_obs and N_miss. The observed data is provided as an array data
variable y_obs. The missing data is coded as an array parameter, y_miss. The ordi-
nary parameters being estimated, the location mu and scale sigma, are also coded as

1A more meaningful estimation example would involve a regression of the observed and missing obser-
vations using predictors that were known for each and specified in the data block.

114

parameters. A better way to write the model would be to vectorize, so the body would
be

y_obs ~ normal(mu,sigma);

y_miss ~ normal(mu,sigma);

The model contains one loop over the observed data and one over the missing
data. This slight redundancy in specification leads to much more efficient sampling
for missing data problems in Stan than the more general technique described in the
next section.

11.2. Partially Known Parameters

In some situations, such as when a multivariate probability function has partially ob-
served outcomes or parameters, it will be necessary to create a vector mixing known
(data) and unknown (parameter) values. This can be done in Stan by creating a vector
or array in the transformed parameters block and assigning to it.

The following example involves a bivariate covariance matrix in which the vari-
ances are known, but the covariance is not.

data {

int<lower=0> N;

vector[2] y[N];

real<lower=0> var1; real<lower=0> var2;

}

transformed data {

real<upper=0> min_cov;

real<lower=0> max_cov;

max_cov <- sqrt(var1 * var2);

min_cov <- -max_cov;

}

parameters {

vector[2] mu;

real<lower=min_cov,upper=max_cov> cov;

}

transformed parameters {

matrix[2,2] sigma;

sigma[1,1] <- var1; sigma[1,2] <- cov;

sigma[2,1] <- cov; sigma[2,2] <- var2;

}

model {

for (n in 1:N)

y[n] ~ multi_normal(mu,sigma);

}

115

The variances are defined as data in variables var1 and var2, whereas the covariance
is defined as a parameter in variable cov. The 2×2 covariance matrix sigma is defined
as a transformed parameter, with the variances assigned to the two diagonal elements
and the covariance to the two off-diagonal elements.

The constraint on the covariance declaration ensures that the resulting covariance
matrix sigma is positive definite. The bound, plus or minus the square root of the
product of the variances, is defined as transformed data so that it is only calculated
once.

11.3. Efficiency Note

The missing-data example in the first section could be programmed with a mixed data
and parameter array following the approach of the partially known parameter exam-
ple in the second section. The behavior will be correct, but the computation is waste-
ful. Each parameter, be it declared in the parameters or transformed parameters
block, uses an algorithmic differentiation variable which is more expensive in terms
of memory and gradient-calculation time than a simple data variable. Furthermore,
the copy takes up extra space and extra time.

116

12. Truncated or Censored Data

Data in which measurements have been truncated or censored can be coded in Stan
following their respective probability models.

12.1. Truncated Distributions

Truncation in Stan is restricted to univariate distributions for which the correspond-
ing log cumulative distribution function (cdf) and log completmentary cumulative dis-
tribution (ccdf) functions are available. See the subsection on truncated distributions
in Section 24.3 for more information on truncated distributions, cdfs, and ccdfs.

12.2. Truncated Data

Truncated data is data for which measurements are only reported if they fall above a
lower bound, below an upper bound, or between a lower and upper bound.

Truncated data may be modeled in Stan using truncated distributions. For exam-
ple, suppose the truncated data is yn with an upper truncation point of U = 300 so
that yn < 300. In Stan, this data can be modeled as following a truncated normal
distribution for the observations as follows.

data {

int<lower=0> N;

real U;

real<upper=U> y[N];

}

parameters {

real mu;

real<lower=0> sigma;

}

model {

for (n in 1:N)

y[n] ~ normal(mu,sigma) T[,U];

}

The model declares an upper bound U as data and constrains the data for y to respect
the constraint; this will be checked when the data is loaded into the model before
sampling begins.

This model implicitly uses an improper flat prior on the scale and location param-
eters; these could be given priors in the model using sampling statements.

117

Constraints and Out-of-Bounds Returns

If the sampled variate in a truncated distribution lies outside of the truncation range,
the probability is zero, so the log probability will evaluate to −∞. For instance, if
variate y is sampled with the statement.

for (n in 1:N)

y[n] ~ normal(mu,sigma) T[L,U];

then if the value of y[n] is less than the value of L or greater than the value of U, the
sampling statement produces a zero-probability estimate.

To avoid variables straying outside of truncation bounds, appropriate constraints
are required. For example, if y is a parameter in the above model, the declaration
should constrain it to fall between the values of L and U.

parameters {

real<lower=L,upper=U> y[N];

...

If in the above model, L or U is a parameter and y is data, then L and U must be
appropriately constrained so that all data is in range and the value of L is less than
that of U (if they are equal, the parameter range collapses to a single point and the
Hamiltonian dynamics used by the sampler break down). The following declarations
ensure the bounds are well behaved.

parameters {

real<upper=min(y)> L; // L < y[n]

real<lower=fmax(L,max(y))> U; // L < U; y[n] < U

Note that for pairs of real numbers, the function fmax is used rather than max.

Unknown Truncation Points

If the truncation points are unknown, they may be estimated as parameters. This can
be done with a slight rearrangement of the variable declarations from the model in
the previous section with known truncation points.

data {

int<lower=1> N;

real y[N];

}

parameters {

real<upper = min(y)> L;

real<lower = max(y)> U;

real mu;

118

real<lower=0> sigma;

}

model {

L ~ ...;

U ~ ...;

for (n in 1:N)

y[n] ~ normal(mu,sigma) T[L,U];

}

Here there is a lower truncation point L which is declared to be less than or equal
to the minimum value of y. The upper truncation point U is declared to be larger
than the maximum value of y. This declaration, although dependent on the data,
only enforces the constraint that the data fall within the truncation bounds. With N
declared as type int<lower=1>, there must be at least one data point. The constraint
that L is less than U is enforced indirectly, based on the non-empty data.

The ellipses where the priors for the bounds L and U should go should be filled
in with a an informative prior in order for this model to not concentrate L strongly
around min(y) and U strongly around max(y).

12.3. Censored Data

Censoring hides values from points that are too large, too small, or both. Unlike with
truncated data, the number of data points that were censored is known. The textbook
example is the household scale which does not report values above 300 pounds.

Estimating Censored Values

One way to model censored data is to treat the censored data as missing data that
is constrained to fall in the censored range of values. Because Stan does not allow
unknown values in its arrays or matrices, the censored values must be represented
explicitly.

data {

int<lower=0> N_obs;

int<lower=0> N_cens;

real<lower=0> y_obs[N_obs];

real<lower=max(y_obs)> U;

}

parameters {

real<lower=U> y_cens[N_cens];

real mu;

real<lower=0> sigma;

119

}

model {

for (n in 1:N_obs)

y_obs[n] ~ normal(mu,sigma);

for (n in 1:N_cens)

y_cens[n] ~ normal(mu,sigma);

}

Because the censored data array y_cens is declared to be a parameter, it will be
sampled along with the location and scale parameters mu and sigma. Because the
censored data array y_cens is declared to have values of type real<lower=U>, all
imputed values for censored data will be greater than U. The imputed censored data
affects the location and scale parameters through the last sampling statement in the
model.

Integrating out Censored Values

Although it is wrong to ignore the censored values in estimating location and scale,
it is not necessary to impute values. Instead, the values can be integrated out. Each
censored data point has a probability of

Pr[y > U] =
∫∞
U

Normal(y|µ,σ)dy = 1− Φ
(
y − µ
σ

)
,

where Φ() is the unit normal cumulative distribution function. With M censored
observations, the total probability on the log scale is

log
M∏
m=1

Pr[ym > U] = log
(
1− Φ

(
y − µ
σ

))M
= M log

(
1− Φ

(
y − µ
σ

))

Although Stan implements Φ with the function Phi, Stan also provides the cumulative
distribution function normal_cdf, defined by

normal_cdf(y, µ,σ) = Φ
(
y − µ
σ

)
.

The following model assumes that the censoring point is known, so it is declared as
data.

data {

int<lower=0> N_obs;

int<lower=0> N_cens;

real<lower=0> y_obs[N_obs];

real<lower=max(y_obs)> U;

}

120

parameters {

real mu;

real<lower=0> sigma;

}

model {

for (n in 1:N_obs)

y_obs[n] ~ normal(mu,sigma);

increment_log_prob(N_cens * log1m(normal_cdf(U,mu,sigma)));

}

For the observed values in y_obs, the normal sampling model is used without trunca-
tion. The log probability is directly incremented using the calculated log cumulative
normal probability of the censored data items. The built-in function log1m is used,
which maps x to log(1− x) in an arithmetically stable way.

To deal with situations where the censoring point variable U is unknown, the dec-
laration of U should be moved from the data block to the parameters block.

121

13. Mixture Modeling

Mixture models of an outcome assume that the outcome is drawn from one of several
distributions, the identity of which is controlled by a categorical mixing distribution.
Mixture models typically have multimodal densities with modes near the modes of
the mixture components. Mixture models may be parameterized in several ways, as
described in the following sections.

13.1. Latent Discrete Parameterization

One way to parameterize a mixture model is with a latent categorical variable in-
dicating which mixture component was responsible for the outcome. For example,
consider K normal distributions with locations µk ∈ R and scales σk ∈ (0,∞). Now
consider mixing them in proportion θ, where θk ≥ 0 and

∑K
k=1 θk = 1 (i.e., θ lies in the

unit K-simplex). For each outcome yn there is a latent variable zn in {1, . . . , K} with a
categorical distribution parameterized by θ,

zn ∼ Categorical(θ).

The variable yn is distributed according to the parameters of the mixture component
zn,

yn ∼ Normal(µz[n], σz[n]).

This model is not directly supported by Stan because it involves discrete parameters
zn, but Stan can sample µ and σ by summing out the z parameter as described in the
next section.

13.2. Summing out the Responsibility Parameter

To implement the normal mixture model outlined in the previous section in Stan, the
discrete parameters can be summed out of the model. If Y is a mixture of K normal
distributions with locations µk and scales σk with mixing proportions θ in the unit
K-simplex, then

pY (y) =
K∑
k=1
θk Normal(µk, σk).

For example, the mixture of Normal(−1,2) and Normal(3,1) with mixing propor-
tion θ = (0.3,0.7)> can be implemented in Stan as follows.

parameters {

real y;

122

}

model {

increment_log_prob(log_sum_exp(log(0.3)

+ normal_log(y,-1,2),

log(0.7)

+ normal_log(y,3,1));

}

The log probability term is derived by taking

logpY (y) = log (0.3× Normal(y| − 1,2) + 0.7× Normal(y|3,1))

= log(exp(log(0.3× Normal(y| − 1,2)))
+ exp(log(0.7× Normal(y|3,1))))

= log_sum_exp(log(0.3)+ log Normal(y| − 1,2),
log(0.7)+ log Normal(y|3,1)).

Given the scheme for representing mixtures, it may be moved to an estimation
setting, where the locations, scales, and mixture components are unknown. Further
generalizing to a number of mixture components specified as data yields the follow-
ing model.

data {

int<lower=1> K; // number of mixture components

int<lower=1> N; // number of data points

real y[N]; // observations

}

parameters {

simplex[K] theta; // mixing proportions

real mu[K]; // locations of mixture components

real<lower=0,upper=10> sigma[K]; // scales of mixture components

}

model {

real ps[K]; // temp for log component densities

for (k in 1:K) {

mu[k] ~ normal(0,10);

}

for (n in 1:N) {

for (k in 1:K) {

ps[k] <- log(theta[k])

+ normal_log(y[n],mu[k],sigma[k]);

}

increment_log_prob(log_sum_exp(ps));

}

}

123

The model involves K mixture components and N data points. The mixing proportion
parameter theta is declared to be a unit K-simplex, whereas the component location
parameter mu and scale parameter sigma are both defined to be arrays of size K. The
values in the scale array sigma are constrained to be non-negative, and have an upper
bound of 10. Since no prior is explicitly defined for the sigma parameters, their
implicit prior distributions are uniform over their ranges. The model declares a local
array variable ps to be size K and uses it to accumulate the contributions from the
mixture components.

The locations and scales are drawn from simple priors for the sake of this exam-
ple, but could be anything supported by Stan. The mixture components could even
be modeled hierarchically.

The main action is in the loop over data points n. For each such point, the log of
θk × Normal(yn|µk, σk) is calculated and added to the array ps. Then the log proba-
bility is incremented with the log sum of exponentials of those values.

124

14. Measurement Error and Meta-Analysis

Most quantities used in statistical models arise from measurements. Most of these
measurements are taken with some error. When the measurement error is small
relative to the quantity being measured, its effect on a model are usually small. When
measurement error is large relative to the quantity being measured, or when very
precise relations can be estimated being measured quantities, it is useful to introduce
an explicit model of measurement error.

14.1. Bayesian Measurement Error Model

A Bayesian approach to measurement error can be formulated directly by treating the
true quantities being measured as missing data (Clayton, 1992; Richardson and Gilks,
1993). This requires a model of how the measurements are derived from the true
values.

Regression with Measurement Error

Before considering regression with measurement error, first consider a linear regres-
sion model where the observed data for N cases includes a predictor xn and outcome
yn. In Stan, a linear regression for y based on x with a slope and intercept is modeled
as follows.

data {

int<lower=0> N; // number of cases

real x[N]; // predictor (covariate)

real y[N]; // outcome (variate)

}

parameters {

real alpha; // intercept

real beta; // slope

real<lower=0> sigma; // outcome noise

}

model {

y ~ normal(alpha + beta * x, sigma);

alpha ~ normal(0,10);

beta ~ normal(0,10);

sigma ~ cauchy(0,5);

}

Now suppose that the true values of the predictors xn are not known, but for
each n, a measurement xmeas

n of xn is available. If the error in measurement can be

125

modeled, the measured value xmeas
n can be modeled in terms of the true value xn

plus measurement noise. The true value xn is treated as missing data and estimated
along with other quantities in the model. A very simple approach is to assume the
measurement error is normal with known deviation τ . This leads to the following
regression model with constant measurement error.

data {

...

real x_meas[N]; // measurement of x

real<lower=0> tau; // measurement noise

}

parameters {

real x[N]; // unknown true value

...

}

model {

x_meas ~ normal(x, tau); // measurement model

y ~ normal(alpha + beta * x, sigma);

...

}

The regression coefficients alpha and beta and regression noise scale sigma are the
same as before, but now x is declared as a parameter rather than as data. The data
is now x_meas, which is a measurement of the true x value with noise scale tau.
The model then specifies that the measurement error for x_meas[n] given true value
x[n] is normal with deviation tau.

A simple generalization of the above model is to allow the measurement noise
term tau to vary with item. This only requires changing its declaration in the data
block to

real<lower=0> tau[N]; // measurement noise for case n

In cases where the measurement errors are not normal, richer measurement error
models may be specified.

Modeling the True Values

Although no prior is specified for the true value x, the posterior will be proper for the
above model because

Normal(x|µ,Σ) = Normal(µ|x,Σ).

Nevertheless, it is common to provide some model of the true value x in terms of
other covariates. For instance, (Clayton, 1992) introduces an exposure model for the

126

unknown (but noisily measured) risk factors x in terms of known (without measure-
ment error) risk factors c. A simple model would regress xn on the covariates cn with
noise term υ,

xn ∼ Normal(γ>c, υ).

This can be coded in Stan just like any other regression. And, of course, other expo-
sure models can be provided.

14.2. Meta-Analysis

Meta-analysis aims to pool the data from several studies, such as the application of
a tutoring program in several schools or treatment using a drug in several clinical
trials.

The Bayesian framework is particularly convenient for meta-analysis, because
each previous study can be treated as providing a noisy measurement of some un-
derlying quantity of interest. The model then follows directly from two components,
a prior on the underlying quantities of interest and a measurement-error style model
for each of the studies being analyzed.

Treatment Effects in Controlled Studies

Suppose the data in question arise from a total ofM studies providing paired binomial
data for a treatment and control group. For instance, the data might be post-surgical
pain reduction under a treatment of ibuprofen (Warn et al., 2002) or mortality after
myocardial infarction under a treatment of beta blockers (Gelman et al., 2013, Sec-
tion 5.6).

Data

The clinical data consists of J trials, each with nt treatment cases, nc control cases, r t

successful outcomes among those treated and r c successful outcomes among those
in the control group. This data can be declared in Stan as follows.1

data {

int<lower=0> J;

int<lower=0> n_t[J]; // num cases, treatment

int<lower=0> r_t[J]; // num successes, treatment

int<lower=0> n_c[J]; // num cases, control

int<lower=0> r_c[J]; // num successes, control

}

1Stan’s integer constraints are not powerful enough to express the constraint that r_t[j] ≤ n_t[j],
but this constraint could be checked in the transformed data block.

127

Converting to Log Odds and Standard Error

Although the clinical trial data is binomial in its raw format, it may be transformed
to an unbounded scale by considering the log odds ratio

yj = log

(
r tj/(n

t
j − r tj)

r cj /(n
c
j − r cj)

)
= log

(
r tj

ntj − r tj

)
− log

(
r cj

ncj − r cj

)

and corresponding standard errors

σj =
√
1
rTi
+ 1
nTi − rTi

+ 1
rCi
+ 1
nCi − rCi

.

The log odds and standard errors can be defined in a transformed parameter block,
though care must be taken not to use integer division (see Section 29.1).

transformed data {

real y[J];

real<lower=0> sigma[J];

for (j in 1:J)

y[j] <- log(r_t[j]) - log(n_t[j] - r_t[j])

- (log(r_c[j]) - log(n_c[j] - r_c[j]);

for (j in 1:J)

sigma[j] <- sqrt(1.0/r_t[i] + 1.0/(n_t[i] - r_t[i])

+ 1.0/r_c[i] + 1.0/(n_c[i] - r_c[i]));

}

This definition will be problematic if any of the success counts is zero or equal to
the number of trials. If that arises, a direct binomial model will be required or other
transforms must be used than the unregularized sample log odds.

Non-Hierarchical Model

With the transformed data in hand, two standard forms of meta-analysis can be ap-
plied. The first is a so-called “fixed effects” model, which assumes a single parameter
for the global odds ratio. This model is coded in Stan as follows.

parameters {

real theta; // global treatment effect, log odds

}

model {

y ~ normal(theta,sigma);

}

The sampling statement for y is vectorized; it has the same effect as the following.

128

for (j in 1:J)

y[j] ~ normal(theta,sigma[j]);

It is common to include a prior for theta in this model, but it is not strictly necessary
for the model to be proper because y is fixed and Normal(y|µ,σ) = Normal(µ|y,σ).

Hierarchical Model

To model so-called “random effects,” where the treatment effect may vary by clinical
trial, a hierarchical model can be used. The parameters include per-trial treatment
effects and the hierarchical prior parameters, which will be estimated along with other
unknown quantities.

parameters {

real theta[J]; // per-trial treatment effect

real mu; // mean treatment effect

real<lower=0> tau; // deviation of treatment effects

}

model {

y ~ normal(theta,sigma);

theta ~ normal(mu,tau);

mu ~ normal(0,10);

tau ~ cauchy(0,5);

}

Although the vectorized sampling statement for y appears unchanged, the parameter
theta is now a vector. The sampling statement for theta is also vectorized, with
the hyperparameters mu and tau themselves being given wide priors compared to the
scale of the data.

Rubin (1981) provided a hierarchical Bayesian meta-analysis of the treatment ef-
fect of Scholastic Aptitude Test (SAT) coaching in eight schools based on the sample
treatment effect and standard error in each school. The model provided for this data
in (Gelman et al., 2013, Section 5.5) is included with the data in the Stan distribution
in directory src/models/misc/eight-schools/.

Extensions and Alternatives

Smith et al. (1995) and Gelman et al. (2013, Section 19.4) provide meta-analyses based
directly on binomial data. Warn et al. (2002) consider the modeling implications of
using alternatives to the log-odds ratio in transforming the binomial data.

If trial-specific predictors are available, these can be included directly in a regres-
sion model for the per-trial treatment effects θj .

129

15. Clustering Models

Unsupervised methods for organizing data into groups are collectively referred to
as clustering. This chapter describes the implementation in Stan of two widely used
statistical clustering models, soft K-means and latent Dirichlet allocation (LDA). In
addition, this chapter includes naive Bayesian classification, which can be viewed as
a form of clustering which may be supervised. These models are typically expressed
using discrete parameters for cluster assignments. Nevertheless, they can be im-
plemented in Stan like any other mixture model by marginalizing out the discrete
parameters (see Chapter 13).

15.1. Soft K-Means

K-means clustering is a method of clustering data represented as D-dimensional vec-
tors. Specifically, there will be N items to be clustered, each represented as a vector
yn ∈ RD . In the “soft” version of K-means, the assignments to clusters will be proba-
bilistic.

Geometric Hard K-Means Clustering

K-means clustering is typically described geometrically in terms of the following al-
gorithm, which assumes the number of clusters K and data vectors y as input.

1. For each n in 1 : N, randomly assign vector yn to a cluster in 1:K;

2. Repeat

(a) For each cluster k in 1:K, compute the cluster centroid µk by averaging the
vectors assigned to that cluster;

(b) For each n in 1 : N, reassign yn to the cluster k to for which the (Euclidean)
distance from yn to µk is smallest;

(c) If no vectors changed cluster, return the cluster assignments.

This algorithm is guaranteed to terminate.

Soft K-Means Clustering

Soft K-means clustering treats the cluster assignments as probability distributions
over the clusters. Because of the connection between Euclidean distance and multi-
variate normal models with a fixed covariance, soft K-means can be expressed (and
coded in Stan) as a multivariate normal mixture model.

130

In the full generative model, each data point n in 1:N is assigned a cluster zn ∈ 1:K
with symmetric uniform probability,

zn ∼ Categorical(1/K),

where 1 is the unit vector of K dimensions, so that 1/K is the symmetric K-simplex.
Thus the model assumes that each data point is drawn from a hard decision about
cluster membership. The softness arises only from the uncertainty about which clus-
ter generated a data point.

The data points themselves are generated from a multivariate normal distribution
whose parameters are determined by the cluster assignment zn,

yn ∼ Normal(µz[n],Σz[n])

The sample implementation in this section assumes a fixed unit covariance matrix
shared by all clusters k,

Σk = diag_matrix(1),

so that the log multivariate normal can be implemented directly up to a proportion
by

Normal
(
yn|µk,diag_matrix(1)

)
∝ exp

−1
2

D∑
d=1

(
µk,d − yn,d

)2 .
The spatial perspective on K-means arises by noting that the inner term is just half
the negative Euclidean distance from the cluster mean µk to the data point yn.

Stan Implementation of Soft K-Means

The following model is available in the Stan distribution (along with an R program
to randomly generate data sets and a sample data set) in the directory stan/src/
models/misc/soft-k-means.

data {

int<lower=0> N; // number of data points

int<lower=1> D; // number of dimensions

int<lower=1> K; // number of clusters

vector[D] y[N]; // observations

}

transformed data {

real<upper=0> neg_log_K;

neg_log_K <- -log(K);

}

parameters {

vector[D] mu[K]; // cluster means

131

}

transformed parameters {

real<upper=0> soft_z[N,K]; // log unnormalized clusters

for (n in 1:N)

for (k in 1:K)

soft_z[n,k] <- neg_log_K

- 0.5 * dot_self(mu[k] - y[n]);

}

model {

// prior

for (k in 1:K)

mu[k] ~ normal(0,1);

// likelihood

for (n in 1:N)

increment_log_prob(log_sum_exp(soft_z[n]));

}

There is an independent unit normal prior on the centroid parameters; this prior
could be swapped with other priors, or even a hierarchical model to fit an overall
problem scale and location.

The only parameter is mu, where mu[k] is the centroid for cluster k. The trans-
formed parameters soft_z[n] contain the log of the unnormalized cluster assign-
ment probabilities. The vector soft_z[n] can be converted back to a normalized
simplex using the softmax function (see Section 32.6), either externally externally or
within the model’s generated quantities block.

Generalizing Soft K-Means

The multivariate normal distribution with unit covariance matrix produces a log prob-
ability density proportional to Euclidean distance (i.e., L2 distance). Other distribu-
tions relate to other geometries. For instance, replacing the normal distribution with
the double exponential (Laplace) distribution produces a clustering model based on
L1 distance (i.e., Manhattan or taxicab distance).

Within the multivariate normal version of K-means, replacing the unit covariance
matrix with a shared covariance matrix amounts to working with distances defined in
a space transformed by the inverse covariance matrix.

Although there is no global spatial analog, it is common to see soft K-means
specified with a per-cluster covariance matrix. In this situation, a hierarchical prior
may be used for the covariance matrices.

132

15.2. The Difficulty of Bayesian Inference for Clustering

Two problems make it pretty much impossible to perform full Bayesian inference for
clustering models, the lack of parameter identifiability and the extreme multimodality
of the posteriors.

Non-Identifiability

Cluster assignments are not identified — permuting the cluster mean vectors mu leads
to a model with identical likelihoods. For instance, permuting the first two indexes in
mu and the first two indexes in each soft_z[n] leads to an identical likelihood (and
prior).

The lack of identifiability means that the the cluster parameters cannot be com-
pared across multiple Markov chains. In fact, the only parameter in soft K-means
is not identified, leading to problems in monitoring convergence. Clusters can even
fail to be identified within a single chain, with indices swapping if the chain is long
enough or the data is not cleanly separated.

Multimodality

The other problem with clustering models is that their posteriors are highly multi-
modal. One form of multimodality is the non-identifiability leading to index swap-
ping. But even without the index problems the posteriors are highly mulitmodal.

Bayesian inference fails in cases of high multimodality because there is no way to
visit all of the modes in the posterior in appropriate proportions and thus no way to
evaluate integrals involved in posterior predictive inference.

In light of these two problems, the advice often given in fitting clustering models
is to try many different initializations and select the sample with the highest overall
probability. It is also popular to use optimization-based point estimators such as
expectation maximization or variational Bayes, which can be much more efficient than
sampling-based approaches.

15.3. Naive Bayes Classification and Clustering

Multinomial mixture models are referred to as “naive Bayes” because they are often
applied to classification problems where the multinomial independence assumptions
are clearly false.

Naive Bayes classification and clustering can be applied to any data with multino-
mial structure. A typical example of this is natural language text classification and
clustering, which is used an example in what follows.

133

The observed data consists of a sequence of M documents made up of bags of
words drawn from a vocabulary of V distinct words. A document m has Nm words,
which are indexed as wm,1, . . . , wm,N[m] ∈ 1:V . Despite the ordered indexing of words
in a document, this order is not part of the model, which is clearly defective for
natural human language data. A number of topics (or categories) K is fixed.

The multinomial mixture model generates a single category zm ∈ 1:K for each
document m ∈ 1:M according to a categorical distribution,

zm ∼ Categorical(θ).

The K-simplex parameter θ represents the prevalence of each category in the data.
Next, the words in each document are generated conditionally independently of

each other and the words in other documents based on the category of the document,
with word n of document m being generated as

wm,n ∼ Categorical(φz[m]).

The parameter φz[m] is a V -simplex representing the probability of each word in the
vocabulary in documents of category zm.

The parameters θ and π are typically given symmetric Dirichlet priors. The preva-
lence θ is sometimes fixed to produce equal probabilities for each category k ∈ 1 : K.

Representing Ragged Arrays in Stan

The specification for naive Bayes in the previous sections have used a ragged array
notation for the words w . Because Stan does not support ragged arrays, the models
are coded using an alternative strategy that provides an index for each word in a
global list of words. The data is organized as follows, with the word arrays layed out
in a column and each assigned to its document in a second column.

n w[n] doc[n]

1 w1,1 1
2 w1,2 1
...

...
...

N1 w1,N[1] 1
N1 + 1 w2,1 2
N1 + 2 w2,2 2

...
...

...
N1 +N2 w2,N[2] 2

N1 +N2 + 1 w3,1 3
...

...
...

N =
∑M
m=1Nm wM,N[M] M

134

The relevant variables for the program are N, the total number of words in all the
documents, the word array w, and the document identity array doc.

Estimation with Category-Labeled Training Data

The naive Bayes models along with R programs to simulate data for them and a
sample data set are available in the distribution in the directory src/models/misc/
clustering/naive-bayes.

A naive Bayes model for estimating the simplex parameters given training data
with documents of known categories can be coded in Stan as follows

data {

// training data

int<lower=1> K; // num topics

int<lower=1> V; // num words

int<lower=0> M; // num docs

int<lower=0> N; // total word instances

int<lower=1,upper=K> z[M]; // topic for doc m

int<lower=1,upper=V> w[N]; // word n

int<lower=1,upper=M> doc[N]; // doc ID for word n

// hyperparameters

vector<lower=0>[K] alpha; // topic prior

vector<lower=0>[V] beta; // word prior

}

parameters {

simplex[K] theta; // topic prevalence

simplex[V] phi[K]; // word dist for topic k

}

model {

theta ~ dirichlet(alpha);

for (k in 1:K)

phi[k] ~ dirichlet(beta);

for (m in 1:M)

z[m] ~ categorical(theta);

for (n in 1:N)

w[n] ~ categorical(phi[z[doc[n]]]);

}

Note that the topic identifiers zm are declared as data and the latent category assign-
ments are included as part of the likelihood function.

135

Estimation without Category-Labeled Training Data

Naive Bayes models can be used in an unsupervised fashion to cluster multinomial-
structured data into a fixed number K of categories. The data declaration includes
the same variables as the model in the previous section excluding the topic labels z.
Because z is discrete, it needs to be summed out of the model calculation. This is
done for naive Bayes as for other mixture models. The parameters are the same up to
the priors, but the likelihood is now computed as the marginal document probability

logp(wm,1, . . . , wm,Nm |θ,φ)
= log

∑K
k=1

(
Categorical(k|θ)×

∏Nm
n=1 Categorical(wm,n|φk)

)
= log

∑K
k=1 exp

(
log Categorical(k|θ)+

∑Nm
n=1 log Categorical(wm,n|φk)

)
.

The last step shows how the log_sum_exp function can be used to stabilize the nu-
merical calculation and return a result on the log scale.

model {

real gamma[M,K];

theta ~ dirichlet(alpha);

for (k in 1:K)

phi[k] ~ dirichlet(beta);

for (m in 1:M)

for (k in 1:K)

gamma[m,k] <- categorical_log(k,theta);

for (n in 1:N)

for (k in 1:K)

gamma[doc[n],k] <- gamma[doc[n],k]

+ categorical_log(w[n],phi[k]);

for (m in 1:M)

increment_log_prob(log_sum_exp(gamma[m]));

}

The local variable gamma[m,k] represents the value

γm,k = log Categorical(k|θ)+
Nm∑
n=1

log Categorical(wm,n|φk).

Given γ, the posterior probability that document m is assigned category k is

Pr[zm = k|w,α,β] = exp

γm,k − log
K∑
k=1

exp
(
γm,k

) .
If the variable gamma were declared and defined in the transformed parameter block,
its sampled values would be saved by Stan. The normalized posterior probabilities
could also be defined as generated quantities.

136

Full Bayesian Inference for Naive Bayes

Full Bayesian posterior predictive inference for the naive Bayes model can be im-
plemented in Stan by combining the models for labeled and unlabeled data. The
estimands include both the model parameters and the posterior distribution over
categories for the unlabeled data. The model is essentially a missing data model as-
suming the unknown category labels are missing completely at random; see (Gelman
et al., 2013; Gelman and Hill, 2007) for more information on missing data imputation.
The model is also an instance of semisupervised learning because the unlabeled data
contributes to the parameter estimations.

To specify a Stan model for performing full Bayesian inference, the model for
labeled data is combined with the model for unlabeled data. A second document
collection is declared as data, but without the category labels, leading to new variables
M2 N2, w2, doc2. The number of categories and number of words, as well as the
hyperparameters are shared and only declared once. Similarly, there is only one set
of parameters. Then the model contains a single set of statements for the prior, a set
of statements for the labeled data, and a set of statements for the unlabeled data.

Prediction without Model Updates

An alternative to full Bayesian inference involves estimating a model using labeled
data, then applying it to unlabeled data without updating the parameter estimates
based on the unlabeled data. This behavior can be implemented by moving the defini-
tion of gamma for the unlabeled documents to the generated quantities block. Because
the variables no longer contribute to the log probability, they no longer jointly con-
tribute to the estimation of the model parameters.

15.4. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a mixed-membership multinomial clustering
model (Blei et al., 2003) that generalized naive Bayes. Using the topic and document
terminology common in discussions of LDA, each document is modeled as having a
mixture of topics, with each word drawn from a topic based on the mixing propor-
tions.

The LDA Model

The basic model assumes each document is generated independently based on fixed
hyperparameters. For document m, the first step is to draw a topic distribution sim-
plex θm over the K topics,

θm ∼ Dirichlet(α).

137

The prior hyperparameter α is fixed to a K-vector of positive values. Each word in
the document is generated independently conditional on the distribution θm. First,
a topic zm,n ∈ 1:K is drawn for the word based on the document-specific topic-
distribution,

zm,n ∼ Categorical(θm).

Finally, the word wm,n is drawn according to the word distribution for topic zm,n,

wm,n ∼ Categorical(φz[m,n]).

The distributions φk over words for topic k are also given a Dirichlet prior,

φk ∼ Dirichlet(β)

where β is a fixed V -vector of positive values.

Summing out the Discrete Parameters

Although Stan does not (yet) support discrete sampling, it is possible to calculate the
marginal distribution over the continuous parameters by summing out the discrete
parameters as in other mixture models. The marginal posterior of the topic and word
variables is

p(θ,φ|w,α,β) ∝ p(θ|α)× p(φ|β)× p(w |θ,φ)

=
M∏
m=1

p(θm|α)×
K∏
k=1
p(φk|β)×

M∏
m=1

M[n]∏
n=1

p(wm,n|θm,φ).

The inner word-probability term is defined by summing out the topic assignments,

p(wm,n|θm,φ) =
K∑
z=1
p(z,wm,n|θm,φ).

=
K∑
z=1
p(z|θm)× p(wm,n|φz).

Plugging the distributions in and converting to the log scale provides a formula that
can be implemented directly in Stan,

logp(θ,φ|w,α,β)

=
∑M
m=1 log Dirichlet(θm|α) +

∑K
k=1 log Dirichlet(φk|β)

+
∑M
m=1

∑N[m]
n=1 log

(∑K
z=1 Categorical(z|θm)× Categorical(wm,n|φz)

)

138

Implementation of LDA

Applying the marginal derived in the last section to the data structure described in
this section leads to the following Stan program for LDA.

data {

int<lower=2> K; // num topics

int<lower=2> V; // num words

int<lower=1> M; // num docs

int<lower=1> N; // total word instances

int<lower=1,upper=V> w[N]; // word n

int<lower=1,upper=M> doc[N]; // doc ID for word n

vector<lower=0>[K] alpha; // topic prior

vector<lower=0>[V] beta; // word prior

}

parameters {

simplex[K] theta[M]; // topic dist for doc m

simplex[V] phi[K]; // word dist for topic k

}

model {

for (m in 1:M)

theta[m] ~ dirichlet(alpha); // prior

for (k in 1:K)

phi[k] ~ dirichlet(beta); // prior

for (n in 1:N) {

real gamma[K];

for (k in 1:K)

gamma[k] <- log(theta[doc[n],k]) + log(phi[k,w[n]]);

increment_log_prob(log_sum_exp(gamma)); // likelihood

}

}

As in the other mixture models, the log-sum-of-exponents function is used to stabilize
the numerical arithmetic.

Correlated Topic Model

To account for correlations in the distribution of topics for documents, (Blei and
Lafferty, 2007) introduced a variant of LDA in which the Dirichlet prior on the per-
document topic distribution is replaced with a multivariate logistic normal distribu-
tion.

The authors treat the prior as a fixed hyperparameter. They use an L1-regularized
estimate of covariance, which is equivalent to the maximum a posteriori estimate
given a double-exponential prior. Stan does not (yet) support maximum a posteriori

139

estimation, so the mean and covariance of the multivariate logistic normal must be
specified as data.

Fixed Hyperparameter Correlated Topic Model

The Stan model in the previous section can be modified to implement the correlated
topic model by replacing the Dirichlet topic prior alpha in the data declaration with
the mean and covariance of the multivariate logistic normal prior.

data {

... data as before without alpha ...

vector[K] mu; // topic mean

cov_matrix[K] Sigma; // topic covariance

}

Rather than drawing the simplex parameter theta from a Dirichlet, a parameter eta
is drawn from a multivariate normal distribution and then transformed using softmax
into a simplex.

parameters {

simplex[V] phi[K]; // word dist for topic k

vector[K] eta[M]; // topic dist for doc m

}

transformed parameters {

simplex[K] theta[M];

for (m in 1:M)

theta[m] <- softmax(eta[m]);

}

model {

for (m in 1:M)

eta[m] ~ multi_normal(mu,Sigma);

... model as before w/o prior for theta ...

}

Full Bayes Correlated Topic Model

By adding a prior for the mean and covariance, Stan supports full Bayesian inference
for the correlated topic model. This requires moving the declarations of topic mean
mu and covariance Sigma from the data block to the parameters block and providing
them with priors in the model. A relatively efficient and interpretable prior for the
covariance matrix Sigma may be encoded as follows.

... data block as before, but without alpha ...

parameters {

140

vector[K] mu; // topic mean

corr_matrix[K] Omega; // correlation matrix

vector<lower=0>[K] sigma; // scales

vector[K] eta[M]; // logit topic dist for doc m

simplex[V] phi[K]; // word dist for topic k

}

transformed parameters {

... eta as above ...

cov_matrix[K] Sigma; // covariance matrix

for (m in 1:K)

Sigma[m,m] <- sigma[m] * sigma[m] * Omega[m,m];

for (m in 1:(K-1)) {

for (n in (m+1):K) {

Sigma[m,n] <- sigma[m] * sigma[n] * Omega[m,n];

Sigma[n,m] <- Sigma[m,n];

}

}

}

model {

mu ~ normal(0,5); // vectorized, diffuse

Omega ~ lkj_corr(2.0); // regularize to unit correlation

sigma ~ cauchy(0,5); // half-Cauchy due to constraint

... words sampled as above ...

}

The LkjCorr distribution with shape α > 0 has support on correlation matrices (i.e.,
symmetric positive definite with unit diagonal). Its density is defined by

LkjCorr(Ω|α)∝ det(Ω)α−1

With a scale of α = 2, the weakly informative prior favors a unit correlation matrix.
Thus the compound effect of this prior on the covariance matrix Σ for the multivariate
logistic normal is a slight concentration around diagonal covariance matrices with
scales determined by the prior on sigma.

141

16. Gaussian Processes

Gaussian process are continuous stochastic processes and thus may be interpreted
as providing a probability distribution over functions. A probability distribution over
continuous functions may be viewed, roughly, as an uncountably infinite collection of
random variables, one for each valid input. The generality of the supported functions
makes Gaussian priors popular choices for priors in general multivariate (non-linear)
regression problems.

The defining feature of a Gaussian process is that the distribution of the function’s
value at a finite number of input points is a multivariate normal distribution. This
makes it tractable to both fit models from finite amounts of observed data and make
predictions for finitely many new data points.

Unlike a simple multivariate normal distribution, which is parameterized by a
mean vector and covariance matrix, a Gaussian process is parameterized by a mean
function and covariance function. The mean and covariance functions apply to vec-
tors of inputs and return a mean vector and covariance matrix which provide the
mean and covariance of the outputs corresponding to those input points in the func-
tions drawn from the process.

Gaussian processes can be encoded in Stan by implementing their mean and co-
variance functions and plugging the result into the Gaussian form of their sampling
distribution. This form of model is easy to understand and may be used for simula-
tion, model fitting, or posterior predictive inference. More efficient Stan implementa-
tion for the basic (non-logistic) regression applies a Cholesky-factor reparameteriza-
tion of the Gaussian and computes the posterior predictive distribution analytically.

After defining Gaussian processes, this chapter covers the basic implementations
for simulation, hyperparameter estimation, and posterior predictive inference for uni-
variate regressions, multivariate regressions, and multivariate logistic regressions.
Gaussian processes are very general, and by necessity this chapter only touches on
some basic models. For more information, see (Rasmussen and Williams, 2006).

16.1. Gaussian Process Regression

The data for a multivariate Gaussian process regression consists of a series of N
inputs x1, . . . , xN ∈ RD paired with outputs y1, . . . , yN ∈ R. The defining feature of
Gaussian processes is that the probability of a finite number of outputs y conditioned
on their inputs x is Gaussian,

y ∼ Normal(m(x), k(x)),

142

where m(x) is an N-vector and and k(x) is an N × N covariance matrix. The mean
function m : RN×D → RN can be anything, but the covariance function k : RN×D →
RN×N must produce a positive-definite matrix for any input x.1

A popular covariance function, which will be used in the implementations later in
this chapter, is a generalized, squared exponential function,

k(x)i,j = η2 exp

−ρ2 D∑
d=1
(xi,d − xj,d)2

+ δi,jσ 2,
where η, ρ, and σ are hyperparameters defining the covariance function and where
δi,j is the Kronecker delta function with value 1 if i = j and value 0 otherwise; note
that this test is between the indexes i and j , not between values xi and xj . The
addition of σ 2 on the diagonal is import to ensure the positive definiteness of the
resulting matrix in the case of two identical inputs xi = xj . In statistical terms, σ is
the scale of the noise term in the regression.

The only term in the squared exponential covariance function involving the inputs
xi and xj is their vector difference, xi − xj . This produces a process with stationary
covariance in the sense that if an input vector x is translated by a vector ε to x + ε,
the covariance at any pair of outputs is unchanged, because k(x) = k(x+ ε).

The summation involved is just the squared Euclidean distance between xi and
xj (i.e., the L2 norm of their difference, xi − xj). This results in support for smooth
functions in the process. The amount of variation in the function is controlled by the
free hyperparameters η, ρ, and σ .

Changing the notion of distance from Euclidean to taxicab distance (i.e., an L1
norm) changes the support to functions which are continuous but not smooth.

16.2. Simulating from a Gaussian Process

It is simplest to start with a Stan model that does nothing more than simulate draws
of functions f from a Gaussian process. In practical terms, the model will draw values
yn = f (xn) for finitely many input points xn.

The Stan model defines the mean and covariance functions in a transformed data
block and then samples outputs y in the model using a multivariate normal distri-
bution. To make the model concrete, the squared exponential covariance function
described in the previous section will be used with hyperparameters set to η2 = 1,
ρ2 = 1, and σ 2 = 0.1, and the mean function m is defined to always return the zero
vector, m(x) = 0. The following model is included in the Stan distribution in file
src/models/misc/gaussian-process/gp-sim.stan.

1Gaussian processes can be extended to covariance functions producing positive semi-definite matrices,
but Stan does not support inference in the resulting models because the resulting distribution does not
have unconstrained support.

143

data {

int<lower=1> N;

real x[N];

}

transformed data {

vector[N] mu;

cov_matrix[N] Sigma;

for (i in 1:N)

mu[i] <- 0;

for (i in 1:N)

for (j in 1:N)

Sigma[i,j] <- exp(-pow(x[i] - x[j],2))

+ if_else(i==j, 0.1, 0.0);

}

parameters {

vector[N] y;

}

model {

y ~ multi_normal(mu,Sigma);

}

The input data is just the vector of inputs x and its size N. Such a model can be
used with values of x evenly spaced over some interval in order to plot sample draws
of functions from a Gaussian process. The covariance matrix Sigma is not being
computed efficiently here; see Section Section 16.3 for a better approach.

Multivariate Inputs

Only the covariance function’s distance computation needs to change in moving
from a univariate model to a multivariate model. A multivariate sampling model
is available in the source distribution at src/models/misc/gaussian-process/
gp-multi-sim.stan. The only lines that change from the univariate model above
are as follows.

data {

int<lower=1> D;

int<lower=1> N;

vector[D] x[N];

}

transformed data {

...

Sigma[i,j] <- exp(-dot_self(x[i] - x[j]))

+ if_else(i==j, 0.1, 0.0);

...

144

The data is now declared as an array of vectors instead of an array of scalars; the
dimensionality D is also declared. The squared Euclidean distance calculation is done
using the dot_self function, which returns the dot product of its argument with
itself, here x[i] - x[j].

In the remainder of the chapter, univariate models will be used for simplicity, but
any of them could be changed to multivariate in the same way as the simple sampling
model. The only extra computational overhead from a multivariate model is in the
distance calculation, which is only done once when the transformed data block is run
after the data is read.

Cholesky Factored and Transformed Implementation

A much more efficient implementation of the simulation model can be coded in Stan
by relocating, rescaling and rotating an isotropic unit normal variate. Suppose z is an
an isotropic unit normal variate

z ∼ Normal(0,1),

where 0 is an N-vector of 0 values and 1 is the N × N unit matrix. Let L be the the
Cholesky decomposition of k(x), i.e., the lower-triangular matrix L such that LL> =
k(x). Then the transformed variable µ + Lz has the intended target distribution,

µ + Lz ∼ Normal(µ, k(x)).

This transform can be applied directly to Gaussian process simulation, as shown
in the model src/models/misc/gaussian-process/gp-sim-cholesky.stan in the
distribution. This model has the same data declarations for N and x, and the same
transformed data definitions of mu and Sigma as the previous model, with the addi-
tion of a transformed data variable for the Cholesky decomposition. The parameters
change to the raw parameters sampled from an isotropic unit normal, and the actual
samples are defined as generated quantities.

...

transformed data {

matrix[N,N] L;

...

L <- cholesky_decompose(Sigma);

}

parameters {

vector[N] z;

}

model {

z ~ normal(0,1);

145

}

generated quantities {

vector[N] y;

y <- mu + L * z;

}

The Cholesky decomposition is only computed once, after the data is loaded and
the covariance matrix Sigma computed. The isotropic normal distribution for z is
specified as a vectorized univariate distribution for efficiency; this specifies that each
z[n] has an independent unit normal distribution. The sampled vector y is then
defined as a generated quantity using a direct encoding of the transform described
above.

16.3. Fitting a Gaussian Process

The hyperparameters controlling the covariance function of a Gaussian process can
be fit by assigning them priors, then computing the posterior distribution of the hy-
perparameters given observed data. Because the hyperparameters are required to be
positive and expected to have reasonably small values, broad half-Cauchy distribu-
tions act as quite vague priors which could just as well be uniform over a constrained
range of values. The priors on the parameters should be defined based on prior
knowledge of the scale of the output values (η), the scale of the output noise (σ), and
the scale at which distances are measured among inputs (1/ρ).

A Stan model to fit the hyperparameters of the general squared exponen-
tial covariance function is provided in the distribution in src/models/misc/
gaussian-process/gp-fit.stan. The Stan code is very similar to the simulation
models in terms of the computations, but the blocks in which variables are declared
and statements are executed has changed to accommodate the hyperparameter esti-
mation problem.

data {

int<lower=1> N;

vector[N] x;

vector[N] y;

}

transformed data {

vector[N] mu;

for (i in 1:N) mu[i] <- 0;

}

parameters {

real<lower=0> eta_sq;

real<lower=0> rho_sq;

146

real<lower=0> sigma_sq;

}

model {

matrix[N,N] Sigma;

// off-diagonal elements

for (i in 1:(N-1)) {

for (j in i:N) {

Sigma[i,j] <- eta_sq * exp(-rho_sq * pow(x[i] - x[j],2));

Sigma[j,i] <- Sigma[i,j];

}

}

// diagonal elements

for (k in 1:N)

Sigma[k,k] <- eta_sq + sigma_sq; // + jitter

eta_sq ~ cauchy(0,5);

rho_sq ~ cauchy(0,5);

sigma_sq ~ cauchy(0,5);

y ~ multi_normal(mu,Sigma);

}

The data block now declares a vector y of observed values y[n] for inputs x[n].
The transformed data block now only defines the mean vector to be zero. The three
hyperparameters are defined as parameters constrained to be non-negative. The com-
putation of the covariance matrix Sigma is now in the model block because it involves
unknown parameters and thus can’t simply be precomputed as transformed data. The
rest of the model consists of the priors for the hyperparameters and the multivariate
normal likelihood, only now the value y is known and the covariance matrix Sigma is
an unknown dependent on the hyperparameters.

Hamiltonian Monte Carlo sampling is quite fast and effective for hyperparameter
inference in this model (Neal, 1997), and the Stan implementation will fit hyperpa-
rameters in models with hundreds of data points in seconds.

Automatic Relevance Determination

For multivariate inputs x ∈ RD , the squared exponential covariance function can be
further generalized by fitting a precision parameter ρ2d for each dimension d,

k(x)i,j = η2 exp

− D∑
d=1
ρ2d(xi,d − xj,d)2

+ δi,jσ 2.
The estimation of ρ was termed “automatic relevance determination” in (Neal, 1996a),
because the larger ρd is, the more dimension d is weighted in the distance calculation.

147

The implementation of automatic relevance determination in Stan is straightfor-
ward. A model like the one to fit the basic hyperparameters can be generalized by
declaring rho to be a vector of size D and defining the covariance function as in this
subsection.

The collection of ρd parameters can also be modeled hierarchically.

16.4. Predictive Inference with a Gaussian Process

Suppose for a given sequence of inputs x that the corresponding outputs y are ob-
served. Given a new sequence of inputs x̃, the posterior predictive distribution of
their labels is computed by sampling outputs ỹ according to

p(ỹ|x̃, x, y) = p(ỹ, y|x̃, x)
p(y|x) ∝ p(ỹ, y|x̃, x).

A direct implementation in Stan defines a model in terms of the the joint distribu-
tion of the observed y and unobserved ỹ . Although Stan does not support mixed vec-
tors of parameters and data directly, such a vector may be synthesized as a local vari-
able in the model block. The following model, which takes this approach, is available
in the distribution as src/models/misc/gaussian-process/gp-predict.stan.

data {

int<lower=1> N1;

vector[N1] x1;

vector[N1] y1;

int<lower=1> N2;

vector[N2] x2;

}

transformed data {

int<lower=1> N;

vector[N1+N2] x;

vector[N1+N2] mu;

cov_matrix[N1+N2] Sigma;

N <- N1 + N2;

for (n in 1:N1) x[n] <- x1[n];

for (n in 1:N2) x[N1 + n] <- x2[n];

for (i in 1:N) mu[i] <- 0;

for (i in 1:N)

for (j in 1:N)

Sigma[i,j] <- exp(-pow(x[i] - x[j],2))

+ if_else(i==j, 0.1, 0.0);

}

parameters {

148

vector[N2] y2;

}

model {

vector[N] y;

for (n in 1:N1) y[n] <- y1[n];

for (n in 1:N2) y[N1 + n] <- y2[n];

y ~ multi_normal(mu,Sigma);

}

The input vectors x1 and x2 are declared as data, as is the observed output vector y1.
The unknown output vector y2, which corresponds to input vector x2, is declared as
a parameter and will be sampled when the model is executed.

A transformed data block is used to combine the input vectors x1 and x2 into a
single vector x. The covariance function is then applied to this combined input vector
to produce the covariance matrix Sigma. The mean vector mu is also declared and set
to zero.

The model block declares and define a local variable for the combined output
vector y, which consists of the concatenation of the known outputs y1 and unknown
outputs y2. Thus the combined output vector y is aligned with the combined input
vector x. All that is left is to define the multivariate normal sampling statement for y.

Cholesky Factorization Speedup

This model could be sped up fairly substantially by computing the Cholesky factor of
Sigma in the transformed data block

transformed data {

matrix[N1+N2,N1+N2] L;

...

L <- cholesky_decompose(Sigma);

...

and then replacing multi_normal with the more efficient multi_normal_cholesky
in the model block.

...

model {

...

y ~ multi_normal_cholesky(mu,L);

}

At this point, Sigma could be declared as a local variable in the data block so that its
memory may be recovered after the data is loaded.

149

Analytical Form of Joint Predictive Inference

Bayesian predictive inference for Gaussian processes can be sped up by deriving the
posterior analytically, then directly sampling from it. This works for standard Gaus-
sian processes, but not generalizations such as logistic Gaussian process regression.

Jumping straight to the result,

p(ỹ|x̃, y, x) = Normal(K>Σ−1y, Ω −K>Σ−1K),

where Σ = k(x) is the result of applying the covariance function to the inputs x with
observed outputs y , Ω = k(x̃) is the result of applying the covariance function to the
inputs x̃ for which predictions are to be inferred, and K is the matrix of covariances
between inputs x and x̃, which in the case of the generalized squared exponential
covariance function would be

Ki,j = η2 exp(−ρ2
D∑
d=1
(xi,d − x̃j,d)2).

There is no noise term including σ 2 because the indexes of elements in x and x̃ are
never the same.

Because a Stan model is only required to be proportional to the posterior,
the posterior may be coded directly. An example that uses the analytic form of
the posterior and provides sampling of the resulting multivariate normal through
the Cholesky decomposition is provided in src/models/misc/gaussian-process/
gp-predict-analytic.stan. The data declaration is the same as for the standard
example. The calculation of the predictive mean mu and covariance Cholesky factor L
is done in the transformed data block.

transformed data {

vector[N2] mu;

matrix[N2,N2] L;

{

matrix[N1,N1] Sigma;

matrix[N2,N2] Omega;

matrix[N1,N2] K;

matrix[N2,N1] K_transpose_div_Sigma;

matrix[N2,N2] Tau;

for (i in 1:N1)

for (j in 1:N1)

Sigma[i,j] <- exp(-pow(x1[i] - x1[j],2))

+ if_else(i==j, 0.1, 0.0);

for (i in 1:N2)

150

for (j in 1:N2)

Omega[i,j] <- exp(-pow(x2[i] - x2[j],2))

+ if_else(i==j, 0.1, 0.0);

for (i in 1:N1)

for (j in 1:N2)

K[i,j] <- exp(-pow(x1[i] - x2[j],2));

K_transpose_div_Sigma <- K’ / Sigma;

mu <- K_transpose_div_Sigma * y1;

Tau <- Omega - K_transpose_div_Sigma * K;

for (i in 1:(N2-1))

for (j in (i+1):N2)

Tau[i,j] <- Tau[j,i];

L <- cholesky_decompose(Tau);

}

}

This block implements the definitions of Σ, Ω, and K directly. The posterior mean
vector K>Σ−1y is computed as mu. The covariance has a Cholesky factor L such that
LL> = Ω − K>Σ−1K. Given these two ingredients, sampling the predictive quantity ỹ
is carried out by translating, scaling and rotating an isotropic normal sample using
the posterior mean and the Cholesky factorization of the posterior covariance.

Joint Hyperparameter Fitting and Predictive Inference

Hyperparameter fitting may be carried out jointly with predictive inference in a single
model. This allows full Bayesian inference to account for the affect of the uncertainty
in the hyperparameter estimates on the predictive inferences.

To encode a joint hyperparameter fit and predictive inference model in Stan, de-
clare the hyperparameters as additional parameters, give them a prior in the model,
move the definition of Sigma to a local variable in the model defined using the hyper-
parameters.

16.5. Classification with Gaussian Processes

Gaussian processes can be generalized the same way as standard linear models by
introducing a link function. This allows them to be used as discrete data models,
and in particular to perform classification using posterior predictive inference. This
section focuses on binary classification problems implemented with logistic Gaussian
process regression.

151

Logistic Gaussian Process Regression

For binary classification problems, the observed outputs zn ∈ {0,1} are binary. These
outputs are modeled using a Gaussian process with (unobserved) outputs yn through
the logistic link,

zn ∼ Bernoulli(logit−1(yn)),

or in other words,
Pr[zn = 1] = logit−1(yn).

Simulation

Simulation from a Gaussian process logistic regression is straightforward; just simu-
late from a Gaussian process and then simulate the zn from the yn using the sampling
distribution above. This cannot be done directly in Stan because Stan does not (yet)
support discrete parameters or forward discrete sampling.

Hyperparameter Estimation and Predictive Inference

For hyperparameter estimation and predictive inference applications, the yn are typ-
ically latent parameters (i.e., not observed). Unfortunately, they cannot be easily
marginalized out analytically, so they must be estimated from the data through the
observed categorical outputs zn. Predictive inference will proceed not by sampling zn
values, but directly through their probabilities, given by logit−1(yn).

Stan Implementations

Hyperparameter estimation and predictive inference are easily accomplished in Stan
by declaring the vector y as a parameter, adding the sampling statements for ob-
served z, and then proceeding as for the previous regression models.

The following full model for prediction using logistic Gaussian process re-
gression is available in the distribution at src/models/misc/gaussian-process/
gp-logit-predict.stan.

data {

int<lower=1> N1;

vector[N1] x1;

int<lower=0,upper=1> z1[N1];

int<lower=1> N2;

vector[N2] x2;

}

transformed data {

... define mu as zero, compute Sigma from x1, x2 ...

152

}

parameters {

vector[N1] y1;

vector[N2] y2;

}

model {

vector[N] y;

for (n in 1:N1) y[n] <- y1[n];

for (n in 1:N2) y[N1 + n] <- y2[n];

y ~ multi_normal(mu,Sigma);

for (n in 1:N1)

z1[n] ~ bernoulli_logit(y1[n]);

}

The transformed data block in which mu and Sigma are defined is not shown because
it is identical to the model for prediction in the previous section. Now the observed
outcomes z1, declared as data, are binary. The variable y1 is still drawn from the
Gaussian process with values y1[n] being the values of the function for input x1[n],
only now y1[n] is interpreted as the logit-scaled probability that z1[n] is 1. The
variable y2 plays the same role for probabilistic predictions for inputs x2 and is also
declared as a parameter.

In the model, the full vector y is defined as before by concatenating y1 and y2,
only this time both y1 and y2 are parameters. The full vector y is defined as being
multivariate normal as before. Additionally, the z1[n] variables are given a Bernoulli
distribution with logit-scaled parameters. Only the z1[n] values are observed and
hence only they are sampled. There is no z2[n] vector because Stan does not sup-
port discrete sampling; instead, the predictions are in the form of the logit-scaled
probabilities y2.

Samples form this model do not mix as well as for the standard model. This is
largely because the z1 values are quantized forms of y1, and thus provide less precise
data for estimation.

The model could be sped up by applying a Cholesky decomposition to the
covariance matrix Sigma and then replacing the multi_normal distribution with
multi_normal_cholesky.

A pure logistic Gaussian process regression would not include a noise term in the
definition of the covariance matrix. This can be implemented by simply removing the
noise term(s) sigma_sq from the definition of Sigma. Probit regression can be coded
by subsituting the probit link for the logit.2

2Although it is possible to implement probit regression by including the noise term sigma_sq and then
quantizing y1[n] to produce z1[n], this is not feasible in Stan because it requires a complex constraint
on y to be enforced for multivariate normal distribution.

153

This simple prediction model could be extended in the same way as previous
models by declaring the hyperparameters as parameters and defining the covariance
matrix in the model block as a local variable.

154

17. Reparameterization & Change of Variables

As with BUGS, Stan supports a direct encoding of reparameterizations. Stan also sup-
ports changes of variables by directly incrementing the log probability accumulator
with the log Jacobian of the transform.

17.1. Reparameterizations

Reparameterizations may be implemented straightforwardly. For example, the Beta
distribution is parameterized by two positive count parameters α,β > 0. The follow-
ing example illustrates a hierarchical Stan model with a vector of parameters theta
are drawn i.i.d. for a Beta distribution whose parameters are themselves drawn from
a hyperprior distribution.

parameters {

real<lower = 0> alpha;

real<lower = 0> beta;

...

model {

alpha ~ ...

beta ~ ...

for (n in 1:N)

theta[n] ~ beta(alpha,beta);

...

It is often more natural to specify hyperpriors in terms of transformed parame-
ters. In the case of the Beta, the obvious choice for reparameterization is in terms of
a mean parameter

φ = α/(α+ β)

and total count parameter
λ = α+ β.

Following (Gelman et al., 2013, Chapter 5), the mean gets a uniform prior and the
count parameter a Pareto prior with p(λ)∝ λ−2.5.

parameters {

real<lower=0,upper=1> phi;

real<lower=0.1> lambda;

...

transformed parameters {

real<lower=0> alpha;

real<lower=0> beta;

155

...

alpha <- lambda * phi;

beta <- lambda * (1 - phi);

...

model {

phi ~ beta(1,1); // uniform on phi, could drop

lambda ~ pareto(0.1,1.5);

for (n in 1:N)

theta[n] ~ beta(alpha,beta);

...

The new parameters, phi and lambda, are declared in the parameters block and the
parameters for the Beta distribution, alpha and beta, are declared and defined in
the transformed parameters block. And If their values are not of interest, they could
instead be defined as local variables in the model as follows.

model {

real alpha;

real beta;

alpha <- lambda * phi;

beta <- lambda * (1 - phi);

...

for (n in 1:N)

theta[n] ~ beta(alpha,beta);

...

}

With vectorization, this could be expressed more compactly and efficiently as follows.

model {

theta ~ beta(lambda * phi, lambda * (1 - phi));

...

}

If the variables alpha and beta are of interest, they can be defined in the transformed
parameter block and then used in the model.

Jacobians not Necessary

Because the transformed parameters are being used, rather than given a distribution,
there is no need to apply a Jacobian adjustment for the transform. For example, in the
beta distribution example, alpha and beta have the correct posterior distribution.

156

17.2. Changes of Variables

Changes of variables are applied when the transformation of a parameter is character-
ized by a distribution. The standard textbook example is the lognormal distribution,
which is the distribution of a variable y > 0 whose logarithm logy has a normal
distribution. Note that the distribution is being assigned to logy .

The change of variables requires an adjustment to the probability to account for
the distortion caused by the transform. For this to work, univariate changes of vari-
ables must be monotonic and differentiable everywhere in their support.

For univariate changes of variables, the resulting probability must be scaled by
the absolute derivative of the transform (see Section 51.1 for more precise definitions
of univariate changes of variables).

In the case of log normals, if y ’s logarithm is normal with mean µ and deviation
σ , then the distribution of y is given by

p(y) = Normal(logy|µ,σ)
∣∣∣∣∣ ddy logy

∣∣∣∣∣ = Normal(logy|µ,σ)1
y
.

Stan works on the log scale to prevent underflow, where

logp(y) = log Normal(logy|µ,σ)− logy.

In Stan, the change of variables can be applied in the sampling statement. To
adjust for the curvature, the log probability accumulator is incremented with the
log absolute derivative of the transform. The lognormal distribution can thus be
implemented directly in Stan as follows.1

parameters {

real<lower=0> y;

...

model {

log(y) ~ normal(mu,sigma);

increment_log_prob(- log(y));

...

It is important, as always, to declare appropriate constraints on parameters; here y is
constrained to be positive.

It would be slightly more efficient to define a local variable for the logarithm, as
follows.

1This example is for illustrative purposes only; the recommended way to implement the lognormal
distribution in Stan is with the built-in lognormal probability function (see Section 38.1).

157

model {

real log_y;

log_y <- log(y);

log_y ~ normal(mu,sigma);

increment_log_prob(- log_y);

...

If y were declared as data instead of as a parameter, then the adjustment can be
ignored because the data will be constant and Stan only requires the log probability
up to a constant.

Change of Variables vs. Transformations

This section illustrates the difference between a change of variables and a simple
variable transformation. A transformation samples a parameter, then transforms it,
whereas a change of variables transforms a parameter, then samples it. Only the
latter requires a Jacobian adjustment.

Note that it does not matter whether the probability function is expressed using a
sampling statement, such as

log(y) ~ normal(mu,sigma);

or as an increment to the log probability function, as in

increment_log_prob(normal_log(log(y), mu, sigma));

Gamma and Inverse Gamma Distribution

Like the log normal, the inverse gamma distribution is a distribution of variables
whose inverse has a gamma distribution. This section contrasts two approaches, first
with a transform, then with a change of variables.

The transform based approach to sampling y_inv with an inverse gamma distri-
bution can be coded as follows.

parameters {
real<lower=0> y;

}
transformed parameters {
real<lower=0> y_inv;
y_inv <- 1 / y;

}
model {
y ~ gamma(2,4);

}

158

The change-of-variables approach to sampling y_inv with an inverse gamma distri-
bution can be coded as follows.

parameters {
real<lower=0> y_inv;

}
transformed parameters {
real<lower=0> y;
y <- 1 / y_inv; // change
increment_log_prob(-2 * log(y_inv)); // adjustment

}
model {
y ~ gamma(2,4);

}

The Jacobian adjustment is the log of the absolute derivative of the transform, which
in this case is

log
∣∣∣∣ ddu

(
1
u

)∣∣∣∣ = log | − u−2| = logu−2 = −2 logu.

Multivariate Changes of Variables

In the case of a multivariate transform, the log of the Jacobian of the transform must
be added to the log probability accumulator (see the subsection of Section 51.1 on
multivarate changes of variables for more precise definitions of multivariate trans-
forms and Jacobians). In Stan, this can be coded as follows in the general case where
the Jacobian is not a full matrix.

parameters {

vector[K] u; // multivariate parameter

...

transformed parameters {

vector[K] v; // transformed parameter

matrix[K,K] J; // Jacobian matrix of transform

... compute v as a function of u ...

... compute J[m,n] = d.v[m] / d.u[n] ...

increment_log_prob(log(fabs(determinant(J))));

...

model {

v ~ ...;

...

159

Of course, if the Jacobian is known analytically, it will be more efficient to apply it di-
rectly than to call the determinant function, which is neither efficient nor particularly
stable numerically.

In many cases, the Jacobian matrix will be triangular, so that only the diagonal
elements will be required for the determinant calculation. Triangular Jacobians arise
when each element v[k] of the transformed parameter vector only depends on ele-
ments u[1], . . . , u[k] of the parameter vector. For triangular matrices, the determi-
nant is the product of the diagonal elements, so the transformed parameters block of
the above model can be simplified and made more efficient by recoding as follows.

transformed parameters {

...

vector[K] J_diag; // diagonals of Jacobian matrix

...

... compute J[k,k] = d.v[k] / d.u[k] ...

incement_log_prob(sum(log(J_diag)));

...

160

18. Custom Probability Functions

Custom distributions may also be implemented directly within Stan’s programming
language. The only thing that is needed is to increment the total log probability. The
rest of the chapter provides two examples.

18.1. Examples

Triangle Distribution

A simple example is the triangle distribution, whose density is shaped like an isosce-
les triangle with corners at specified bounds and height determined by the constraint
that a density integrate to 1. If α ∈ R and β ∈ R are the bounds, with α < β, then
y ∈ (α,β) has a density defined as follows.

Triangle(y|α,β) = 2
β−α

(
1−

∣∣∣∣∣y − α+ ββ−α

∣∣∣∣∣
)

If α = −1, β = 1, and y ∈ (−1,1), this reduces to

Triangle(y| − 1,1) = 1− |y|.

The file src/models/basic_distributions/triangle.stan contains the following
Stan implementation of a sampler from Triangle(−1,1).

parameters {

real<lower=-1,upper=1> y;

}

model {

increment_log_prob(log1m(fabs(y)));

}

The single scalar parameter y is declared as lying in the interval (-1,1). The total
log probability is incremented with the joint log probability of all parameters, i.e.,
log Triangle(y| − 1,1). This value is coded in Stan as log1m(fabs(y)). The function
log1m is is defined so that log1m(x) has the same value as log(1.0-x), but the
computation is faster, more accurate, and more stable.

The constrained type real<lower=-1,upper=1> declared for y is critical for cor-
rect sampling behavior. If the constraint on y is removed from the program, say by
declaring y as having the unconstrained scalar type real, the program would compile,
but it would produce arithmetic exceptions at run time when the sampler explored
values of y outside of (−1,1).

161

src/models/basic_distributions/triangle.stan

Now suppose the log probability function were extended to all of R as follows by
defining the probability to be log(0.0), i.e., −∞, for values outside of (−1,1).

increment_log_prob(log(fmax(0.0,1 - fabs(y))));

With the constraint on y in place, this is just a less efficient, slower, and less arithmeti-
cally stable version of the original program. But if the constraint on y is removed, the
model will compile and run without arithmetic errors, but will not sample properly.1

Exponential Distribution

If Stan didn’t happen to include the exponential distribution, it could be coded di-
rectly using the following assignment statement, where lambda is the inverse scale
and y the sampled variate.

increment_log_prob(log(lambda) - y * lambda);

This encoding will work for any lambda and y; they can be parameters, data, or one
of each, or even local variables.

The assignment statement in the previous paragraph generates C++ code that is
very similar to that generated by the following sampling statement.

y ~ exponential(lambda);

There are two notable differences. First, the sampling statement will check the inputs
to make sure both lambda is positive and y is non-negative (which includes checking
that neither is the special not-a-number value).

The second difference is that if lambda is not a parameter, transformed param-
eter, or local model variable, the sampling statement is clever enough to drop the
log(lambda) term. This results in the same posterior because Stan only needs the
log probability up to an additive constant. If lambda and y are both constants, the
sampling statement will drop both terms (but still check for out-of-domain errors on
the inputs).

1The problem is the (extremely!) light tails of the triangle distribution. The standard HMC and NUTS
samplers can’t get into the corners of the triangle properly. Because the Stan code declares y to be of type
real<lower=-1,upper=1>, the inverse logit transform is applied to the unconstrained variable and its log
absolute derivative added to the log probability. The resulting distribution on the logit-transformed y is
well behaved. See Chapter 51 for more information on the transforms used by Stan.

162

19. Problematic Posteriors

Mathematically speaking, with a proper posterior, one can do Bayesian inference and
that’s that. There is not even a need to require a finite variance or even a finite
mean—all that’s needed is a finite integral. Nevertheless, modeling is a tricky business
and even experienced modelers sometimes code models that lead to improper priors.
Furthermore, some posteriors are mathematically sound, but ill-behaved in practice.
This chapter discusses issues in models that create problematic posterior inferences,
either in general for Bayesian inference or in practice for Stan.

19.1. Collinearity of Predictors in Regressions

This section discusses problems related to the classical notion of identifiability, which
lead to ridges in the posterior density and wreak havoc with both sampling and infer-
ence.

Examples of Collinearity

Redundant Intercepts

The first example of collinearity is an artificial example involving redundant intercept
parameters.1 Suppose there are observations yn for n ∈ 1:N, two intercept parame-
ters λ1 and λ2, a scale parameter σ > 0, and the sampling distribution

yn ∼ Normal(λ1 + λ2, σ).

For any constant q, the sampling density for y does not change if we add q to λ1 and
subtract it from λ2, i.e.,

p(y|λ1, λ2, σ) = p(y|λ1 + q, λ2 − q,σ).

The consequence is that an improper uniform prior p(µ,σ)∝ 1 leads to an improper
posterior. This impropriety arises because the neighborhoods around λ1 + q, λ1 − q
have the same mass no matter what q is. Therefore, a sampler would need to spend
as much time in the neighborhood of λ1 = 1000000000 and λ2 = −1000000000 as it
does in the neighborhood of λ1 = 0 and λ2 = 0, and so on for ever more far-ranging
values.

1This example was raised by Richard McElreath on the Stan users group in a query about the difference
in behavior between Gibbs sampling as used in BUGS and JAGS and the Hamiltonian Monte Carlo (HMC)
and no-U-turn samplers (NUTS) used by Stan.

163

The maringal posterior p(λ1, λ2|y) for this model is thus improper.2 The impro-
priety shows up visually as a ridge in the posterior density, as illustrated in the left-
hand figure of Figure 19.1. The ridge for this model is along the line where λ2 = λ1+c
for some constant c.

Contrast this model with a simple regression with a single intercept parameter µ
and sampling distribution

yn ∼ Normal(µ,σ).

Even with an improper prior, the posterior is proper as long as there are at least two
data points yn with distinct values.

Ability and Difficulty in IRT Models

Consider an item-response theory model for students j ∈ 1:J with abilities αj and
test items i ∈ 1:I with difficulties βi . The observed data is an I × J array with entries
yi,j ∈ {0,1} coded such that yi,j = 1 indicates that student j answered question i
correctly. The sampling distribution for the data is

yi,j ∼ Bernoulli(logit−1(αj − βi)).

For any constant c, the probability of y is unchanged by adding a constant c to all the
abilities and subtracting it from all the difficulties, i.e.,

p(y|α,β) = p(y|α+ c, β− c).

This leads to a multivariate version of the ridge displayed by the regression with two
intercepts discussed above.

General Collinear Regression Predictors

The general form of the collinearity problem arises when predictors for a regression
are collinear. For example, consider a linear regression sampling distribution

yn ∼ Normal(xnβ,σ)

for an N-dimensional observation vector y , an N × K predictor matrix x, and a K-
dimensional coefficient vector β.

Now suppose that column k of the predictor matrix is a multiple of column k′, i.e.,
there is some constant c such that xn,k = c xn,k′ for all n. In this case, the coefficients
βk and βk′ can covary without changing the predictions, so that for any d ≠ 0,

p(y| . . . , βk, . . . , βk′ , . . . , σ) = p(y| . . . , dβk, . . . ,
d
c
βk′ , . . . , σ).

Even if columns of the predictor matrix are not exactly collinear as discussed
above, they cause similar problems for inference if they are nearly collinear.

2The marginal posterior p(σ |y) for σ is proper here as long as there are at least two distinct data points.

164

Multiplicative Issues with Discrimination in IRT

Consider adding a discrimination parameter δi for each question in an IRT model,
with data sampling model

yi,j ∼ Bernoulli(logit−1(δi(αj − βi))).

For any constant c ≠ 0, multiplying δ by c and dividing α and β by c produces the
same likelihood,

p(y|δ,α,β) = p(y|cδ, 1
c
α,
1
c
β).

If c < 0, this switches the signs of every component in α, β, and δ without changing
the density.

Mitigating the Invariances

All of the examples discussed in the previous section allow translation or scaling of
parameters while leaving the data probability density invariant. These problems can
be mitigated in several ways.

Removing Redundant Parameters or Predictors

In the case of the multiple intercepts, λ1 and λ2, the simplest solution is to remove
the redundnat intecept, resulting in a model with a single intercept parameter µ and
sampling distribution yn ∼ Normal(µ,σ). The same solution works for solving the
problem with collinearity—just remove one of the columns of the predictor matrix x.

Pinning Parameters

The IRT model without a discrimination parameter can be fixed by pinning one of its
parameters to a fixed value, typically 0. For example, the first student ability α1 can
be fixed to 0. Now all other student ability parameters can be interpreted as being
relative to student 1. Similarly, the difficulty parameters are interpretable relative to
student 1’s ability to answer them.

This solution is not sufficient to deal with the multiplicative invariance introduced
by the question discrimination parameters δi . To solve this problem, one of the diffi-
culty parameters, say δ1, must also be constrained. Because it’s a multiplicative and
not an additive invariance, it must be constrained to a non-zero value, with 1 being
a convenient choice. Now all of the discrimination parameters may be interpreted
relative to item 1’s discrimination.

165

Figure 19.1: Posteriors for two intercept parameterization without prior, two intercept param-

eterization with unit normal prior, and one intercept reparameterization without prior. For all

three cases, the posterior is plotted for 100 data points drawn from a unit normal. Left) The

two intercept parameterization leads to an improper prior with a ridge extending infinitely to

the northwest and southeast. Middle) Adding a unit normal prior for the intercepts results in a

proper posterior. Right) The single intercept parameterization with no prior also has a proper

posterior.

Adding Priors

So far, the models have been discussed as if the priors on the parameters were im-
proper uniform priors.

A more general Bayesian solution to these invariance problems is to impose
proper priors on the parameters. This approach can be used to solve problems arising
from either additive or multiplicative invariance.

For example, normal priors on the multiple intercepts,

λ1, λ2 ∼ Normal(0, τ),

with a constant scale τ , ensure that the posterior mode is located at a point where
λ1 = λ2, because this minimizes log Normal(λ1|0, τ)+ log Normal(λ2|0, τ).3 The addi-
tion of a prior to the two intercepts model is shown in the middle plot in Figure 19.1.
The plot on the right of Figure 19.1 shows the result of reparameterizing to a single
intercept.

Vague, Strongly Informative, and Weakly Informative Priors

Care must be used when adding a prior to resolve invariances. If the prior is taken to
be too broad (i.e., too vague), the resolution is in theory only, and samplers will still
struggle.

3A Laplace prior (or an L1 regularizer for penalized maximum likelihood estimation) is not sufficient to
remove this additive invariance. It provides shrinkage, but does not in and of itself identify the parameters
because adding a constant to λ1 and subtracting it from λ2 results in the same value for the prior density.

166

Ideally, a realistic prior will be formulated based on substantive knowledge of the
problem being modeled. Such a prior can be chosen to have the appropriate strength
based on prior knowledge. A strongly informative prior makes sense if there is strong
prior information.

When there is not strong prior information, a weakly informative prior strikes the
proper balance between controlling computational inference without dominating the
data in the posterior. In most problems, the modeler will have at least some notion
of the expected scale of the estimates and be able to choose a prior for identifica-
tion purposes that does not dominate the data, but provides sufficient computational
control on the posterior.

Priors can also be used in the same way to control the additive invariance of the
IRT model. A typical approach is to place a strong prior on student ability parameters
α to control scale simply to control the additive invariance of the basic IRT model
and the multiplicative invariance of the model extended with a item discrimination
parameters; such a prior does not add any prior knowledge to the problem. Then a
prior on item difficulty can be chosen that is either informative or weakly informative
based on prior knowledge of the problem.

19.2. Label Switching in Mixture Models

Where collinearity in regression models can lead to infinitely many posterior maxima,
swapping components in a mixture model leads to finitely many posterior maxima.

Mixture Models

Consider a normal mixture model with two location parameters µ1 and µ2, a shared
scale σ > 0, a mixture ratio θ ∈ [0,1], and likelihood

p(y|θ,µ1, µ2, σ) =
N∏
n=1

(
θNormal(yn|µ1, σ)+ (1− θ)Normal(yn|µ2, σ)

)
.

The issue here is exchangeability of the mixture components, because

p(θ, µ1, µ2, σ |y) = p((1− θ), µ2, µ1, σ |y).

The problem is exacerbated as the number of mixture components K grows, as in
clustering models, leading to K! identical posterior maxima.

Convergence Monitoring and Effective Sample Size

The analysis of posterior convergence and effective sample size is also difficult for
mixture models. For example, the R̂ convergence statistic reported by Stan and the

167

computation of effective sample size are both compromised by label switching. The
problem is that the posterior mean, a key ingredient in these computations, is affected
by label switching, resulting in a posterior mean for µ1 that is equal to that of µ2, and
a posterior mean for θ that is always 1/2, no matter what the data is.

Some Inferences are Invariant

In some sense, the index (or label) of a mixture component is irrelevant. Posterior
predictive inferences can still be carried out without identifying mixture components.
For example, the log probability of a new observation does not depend on the identi-
ties of the mixture components. The only sound Bayesian inferences in such models
are those that are invariant to label switching. Posterior means for the parameters
are meaningless because they are not invariant to label switching; for example, the
posterior mean for θ in the two component mixture model will always be 1/2.

Highly Multimodal Posteriors

Theoretically, this should not present a problem for inference because all of the inte-
grals involved in posterior predictive inference will be well behaved. The problem in
practice is computation.

Being able to carry out such invariant inferences in practice is an altogether differ-
ent matter. It is almost always intractable to find even a single posterior mode, much
less balance the exploration of the neighborhoods of multiple local maxima according
to the probability masses. In Gibbs sampling, it is unlikely for µ1 to move to a new
mode when sampled conditioned on the current values of µ2 and θ. For HMC and
NUTS, the problem is that the sampler gets stuck in one of the two “bowls” arounds
the modes and cannot gather enough energy from random momentum assignment to
move from one mode to another.

Even with a proper posterior, all known sampling and inference techniques are
notoriously ineffective when the number of modes grows super-exponentially as it
does for mixture models with increasing numbers of components.

Hacks as Fixes

Several hacks (i.e., “tricks”) have been suggested and employed to deal with the prob-
lems posed by label switching in practice.

Parameter Ordering Constraints

One common strategy is to impose a constraint on the parameters that identifies
the components. For instance, we might consider constraining µ1 < µ2 in the two-

168

component normal mixture model discussed above. A problem that can arise from
such an approach is when there is substantial probabilty mass for the opposite or-
dering µ1 > µ2. In these cases, the the posteriors are affected by the constraint and
true posterior uncertainty in µ1 and µ2 is not captured by the model with the con-
straint. In addition, standard approaches to posterior inference for event probabili-
ties is compromised. For instance, attempting to useM posterior samples to estimate
Pr[µ1 > µ2], will fail, because the estimator

Pr[µ1 > µ2] ≈
M∑
m=1

I(µ(m)1 > µ(m)2)

will result in an estimate of 0 because the posterior respects the constraint in the
model.

Initialization around a Single Mode

Another common approach is to run a single chain or to initialize the parameters
near realistic values.4 This can work better than the hard constraint approach if
reasonable initial values can be found and the labels do not switch within a Markov
chain. The result is that all chains are glued to a neighborhood of a particular mode
in the posterior.

19.3. Posteriors with Unbounded Densities

In some cases, the posterior density grows without bounds as parameters approach
certain poles or boundaries. In such, there are no posterior modes and numerical
stability issues can arise as sampled parameters approach constraint boundaries.

Mixture Models with Varying Scales

One such example is a binary mixture model with scales varying by component, σ1
and σ2 for locations µ1 and µ2. In this situation, the density grows without bound as
σ1 → 0 and µ1 → yn for some n; that is, one of the mixture components concentrates
all of its mass around a single data item yn.

Beta-Binomial Models with Skewed Data and Weak Priors

Another example of unbounded densities arises with a posterior such as
Beta(φ|0.5,0.5), which can arise if very “weak” beta priors are used for groups that

4Tempering methods may be viewed as automated ways to carry out such a search for modes, though
most MCMC tempering methods continue to search for modes on an ongoing basis; see (Swendsen and
Wang, 1986; Neal, 1996b).

169

have no data. This density is unbounded as φ → 0 and φ → 1. Similarly, a Bernoulli
likelihood model coupled with a “weak” beta prior, leads to a posterior

p(φ|y) ∝ Beta(φ|0.5,0.5)×
∏N
n=1 Bernoulli(yn|φ)

= Beta(φ |0.5+
∑N
n=1 yn, 0.5+N −

∑N
n=1 yn).

If N = 9 and each yn = 1, the posterior is Beta(φ|9.5,0,5). This posterior is un-
bounded as φ → 1. Nevertheless, the posterior is proper, and although there is no
posterior mode, the posterior mean is well-defined with a value of exactly 0.95.

Constrained vs. Unconstrained Scales

Stan does not sample directly on the constrained (0,1) space for this problem, so it
doesn’t directly deal with unconstrained density values. Rather, the probability values
φ are logit-transformed to (−∞,∞). The boundaries at 0 and 1 are pushed out to −∞
and ∞ respectively. The Jacobian adjustment that Stan automatically applies ensures
the unconstrained density is proper. The adjustment for the particular case of (0,1)
is log logit−1(φ)+ log logit(1−φ); see Section 51.4 for the derivation.

There are two problems that still arise, though. The first is that if the posterior
mass for φ is near one of the boundaries, the logit-transformed parameter will have
to sweep out very long paths and thus can dominate the U-turn condition imposed
by the no-U-turn sampler (NUTS). The second issue is that the inverse transform from
the unconstrained space to the constrained space can underflow to 0 or overflow to
1, even when the unconstrained parameter is not infinite. Similar problems arise for
the expectation terms in logistic regression, which is why the logit-scale parameteri-
zations of the Bernoulli and binomial distributions are more stable.

19.4. Posteriors with Unbounded Parameters

In some cases, the posterior density will not grow without bound, but parameters
will grow without bound with gradually increasing density values. Like the models
discussed in the previous section that have densities that grow without bound, such
models also have no posterior modes.

Separability in Logistic Regression

Consider a logistic regression model with N observed outcomes yn ∈ {0,1}, an N ×K
matrix x of predictors, a K-dimensional coefficient vector β, and sampling distribution

yn ∼ Bernoulli(logit−1(xnβ)).

170

Now suppose that column k of the predictor matrix is such that xn,k > 0 if and only
if yn = 1, a condition known as “separability.” In this case, predictive accuracy on
the observed data continue to improve as βk → ∞, because for cases with yn = 1,
xnβ→∞ and hence logit−1(xnβ)→ 1.

With separability, there is no maximum to the likelihood and hence no maximum
likelihood estimate. From the Bayesian perspective, the posterior is improper and
therefor the marginal posterior mean for βk is also not defined. The usual solution
to this problem in Bayesian models is to include a proper prior for β, which ensures
a proper posterior.

19.5. Uniform Posteriors

Suppose your model includes a parameterψ that is defined on [0,1] and is given a flat
prior Uniform(ψ|0,1). Now if the data don’t tell us anything about ψ, the posterior is
also Uniform(ψ|0,1).

Although there is no maximum likelihood estimate for ψ, the posterior is uni-
form over a closed interval and hence proper. In the case of a uniform posterior on
[0,1], the posterior mean for ψ is well-defined with value 1/2. Although there is no
posterior mode, posterior predictive inference may nevertheless do the right thing by
simply integrating (i.e., averaging) over the predictions for ψ at all points in [0,1].

19.6. Sampling Difficulties with Problematic Priors

With an improper posterior, it is theoretically impossible to properly explore the pos-
terior. However, Gibbs sampling as performed by BUGS and JAGS, although still in-
eable to properly sample from such an improper posterior, behaves quite differently
in practice than the Hamiltonian Monte Carlo sampling performed by Stan when faced
with an example such as the two intercept model discussed in Section 19.1 and illus-
trated in Figure 19.1.

Gibbs Sampling

Gibbs sampling, as performed by BUGS and JAGS, may appear to be efficient and well
behaved for this unidentified model, but as discussed in the previous subsection, will
not actually explore the posterior properly.

Consider what happens with initial values λ(0)1 , λ
(0)
2 . Gibbs sampling proceeds in

171

iteration m by drawing

λ(m)1 ∼ p(λ1 |λ(m−1)2 , σ (m−1), y)

λ(m)2 ∼ p(λ2 |λ(m)1 , σ (m−1), y)

σ (m) ∼ p(σ |λ(m)1 , λ(m)2 , y).

Now consider the draw for λ1 (the draw for λ2 is symmetric), which is conjugate in this
model and thus can be done very efficiently. In this model, the range from which the
next λ1 can be drawn is highly constrained by the current values of λ2 and σ . Gibbs
will run very quickly and provide seemingly reasonable inferences for λ1 + λ2. But it
will not explore the full range of the posterior; it will merely take a slow random walk
from the initial values. This random walk behavior is typical of Gibbs sampling when
posteriors are highly correlated and the primary reason to prefer Hamiltonian Monte
Carlo to Gibbs sampling for models with parameters correlated in the posterior.

Hamiltonian Monte Carlo Sampling

Hamiltonian Monte Carlo (HMC), as performed by Stan, is much more efficient at
exploring posteriors in models where parameters are correlated in the posterior. In
this particular example, the Hamiltonian dynamics (i.e., the motion of a fictitioous
particle given random momentum in the field defined by the negative log posterior)
is going to run up and down along the valley defined by the potential energy (ridges
in log posteriors correspond to valleys in potential energy). In practice, even with a
random momentum for λ1 and λ2, the gradient of the log posterior is going to adjust
for the correlation and the simulation will run λ1 and λ2 in opposite directions along
the valley corresponding to the ridge in the posterior log density (see Figure 19.1.

No-U-Turn Sampling

Stan’s default no-U-turn sampler (NUTS), is even more efficient at exploring the pos-
terior (see (Hoffman and Gelman, 2011, 2013)). NUTS simulates the motion of the
fictitious particle representing the parameter values until it makes a U-turn, it will
be defeated in most cases, as it will just move down the potential energy valley in-
definitely without making a U-turn. What happens in practice is that the maximum
number of leapfrog steps in the simulation will be hit in many of the iterations, caus-
ing a very large number of log probability and gradient evaluations (1000 if the max
tree depth is set to 10, as in the default). Thus sampling will appear to be very slow.
This is indicative of an improper posterior, not a bug in the NUTS algorithm or its im-
plementation. It is simply not possible to sample from an improper posterior! Thus
the behavior of HMC in general and NUTS in particular should be reassuring in that

172

it will clearly fail in cases of improper posteriors, resulting in a clean diagnostic of
sweeping out very large paths in the posterior.

Examples: Fits in Stan

To illustrate the issues with sampling from non-identified and only weakly identified
models, we fit three models with increasing degrees of identification of their param-
eters. The posteriors for these models is illustrated in Figure 19.1. The first model
is the unidentified model with two location parameters and no priors discussed in
Section 19.1.

data {
int N;
real y[N];

}
parameters {
real lambda1;
real lambda2;
real<lower=0> sigma;

}
transformed parameters {
real mu;
mu <- lambda1 + lambda2;

}
model {
y ~ normal(mu, sigma);

}

The second adds priors to the model block for lambda1 and lambda2 to the previous
model.

lambda1 ~ normal(0,10);
lambda2 ~ normal(0,10);

The third involves a single location parameter, but no priors.

data {
int N;
real y[N];

}
parameters {
real mu;

173

Two Scale Parameters, Improper Prior

Inference for Stan model: improper_stan
Warmup took (2.7, 2.6, 2.9, 2.9) seconds, 11 seconds total
Sampling took (3.4, 3.7, 3.6, 3.4) seconds, 14 seconds total

Mean MCSE StdDev 5% 95% N_Eff N_Eff/s R_hat
lp__ -5.3e+01 7.0e-02 8.5e-01 -5.5e+01 -5.3e+01 150 11 1.0
n_leapfrog__ 1.4e+03 1.7e+01 9.2e+02 3.0e+00 2.0e+03 2987 212 1.0
lambda1 1.3e+03 1.9e+03 2.7e+03 -2.3e+03 6.0e+03 2.1 0.15 5.2
lambda2 -1.3e+03 1.9e+03 2.7e+03 -6.0e+03 2.3e+03 2.1 0.15 5.2
sigma 1.0e+00 8.5e-03 6.2e-02 9.5e-01 1.2e+00 54 3.9 1.1
mu 1.6e-01 1.9e-03 1.0e-01 -8.3e-03 3.3e-01 2966 211 1.0

Two Scale Parameters, Weak Prior

Warmup took (0.40, 0.44, 0.40, 0.36) seconds, 1.6 seconds total
Sampling took (0.47, 0.40, 0.47, 0.39) seconds, 1.7 seconds total

Mean MCSE StdDev 5% 95% N_Eff N_Eff/s R_hat
lp__ -54 4.9e-02 1.3e+00 -5.7e+01 -53 728 421 1.0
n_leapfrog__ 157 2.8e+00 1.5e+02 3.0e+00 511 3085 1784 1.0
lambda1 0.31 2.8e-01 7.1e+00 -1.2e+01 12 638 369 1.0
lambda2 -0.14 2.8e-01 7.1e+00 -1.2e+01 12 638 369 1.0
sigma 1.0 2.6e-03 8.0e-02 9.2e-01 1.2 939 543 1.0
mu 0.16 1.8e-03 1.0e-01 -8.1e-03 0.33 3289 1902 1.0

One Scale Parameter, Improper Prior

Warmup took (0.011, 0.012, 0.011, 0.011) seconds, 0.044 seconds total
Sampling took (0.017, 0.020, 0.020, 0.019) seconds, 0.077 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -54 2.5e-02 0.91 -5.5e+01 -53 -53 1318 17198 1.0
n_leapfrog__ 3.2 2.7e-01 1.7 1.0e+00 3.0 7.0 39 507 1.0
mu 0.17 2.1e-03 0.10 -3.8e-03 0.17 0.33 2408 31417 1.0
sigma 1.0 1.6e-03 0.071 9.3e-01 1.0 1.2 2094 27321 1.0

Figure 19.2: Results of Stan runs with default parameters fit to N = 100 data points generated

from yn ∼ Normal(0,1). On the top is the non-identified model with improper uniform priors

and likelihood yn ∼ Normal(λ1 + λ2, σ). In the middle is the same likelihood as the middle plus

priors λk ∼ Normal(0,10). On the bottom is an identified model with an improper prior, with

likelihood yn ∼ Normal(µ,σ). All models estimate µ at roughly 0.16 with very little Monte Carlo

standard error, but a high posterior standard deviation of 0.1; the true value µ = 0 is within the

90% posterior intervals in all three models.

174

real<lower=0> sigma;
}
model {
y ~ normal(mu, sigma);

}

All three of the example models were fit in Stan 2.1.0 with default parameters (1000
warmup iterations, 1000 sampling iterations, NUTS sampler with max tree depth of
10). The results are shown in Figure 19.2. The key statistics from these outputs are
the following.

• As indicated by R_hat column, all parameters have converged other than λ1
and λ2 in the non-identified model.

• The average number of leapfrog steps is roughly 3 in the identified model, 150
in the model identified by a weak prior, and 1400 in the non-identified model.

• The number of effective samples per second for µ is roughly 31,000 in the
identified model, 1900 in the model identified with weakly informative priors,
and 200 in the non-identified model; the results are similar for σ .

• In the non-identified model, the 95% interval for λ1 is (-2300,6000), whereas it
is only (-12,12) in the model identified with weakly informative priors.

• In all three models, the simulated value of µ = 0 and σ = 1 are well within the
posterior 90% intervals.

The first two points, lack of convergence and hitting the maximum number of
leapfrog steps (equivalently maximum tree depth) are indicative of improper posteri-
ors. Thus rather than covering up the problem with poor sampling as may be done
with Gibbs samplers, Hamiltonian Monte Carlo tries to explore the posterior and its
failure is a clear indication that something is amiss in the model.

175

20. Optimizing Stan Code

This chapter provides a grab bag of techniques for optimizing Stan code, including
vectorization, sufficient statistics, and conjugacy.

20.1. Reparameterization

Stan’s sampler can be slow in sampling from distributions with difficult posterior
geometries. One way to speed up such models is through reparameterization.

Example: Neal’s Funnel

In this section, we discuss a general transform from a centered to a non-centered
parameterization Papaspiliopoulos et al. (2007).1 This reparameterization is helpful
because it separates the hierarchical parameters and lower-level parameters in the
prior.

(Neal, 2003) defines a distribution that exemplifies the difficulties of sampling
from some hierarchical models. Neal’s example is fairly extreme, but can be trivially
reparameterized in such a way as to make sampling straightforward.

Neal’s example has support for y ∈ R and x ∈ R9 with density

p(y, x) = Normal(y|0,3)×
9∏
n=1

Normal(xn|0, exp(y/2)).

The probability contours are shaped like ten-dimensional funnels. The funnel’s neck
is particularly sharp because of the exponential function applied to y . A plot of the
log marginal density of y and the first dimension x1 is shown in Figure 20.1.

The funnel can be implemented directly in Stan as follows.

parameters {

real y;

vector[9] x;

}

model {

y ~ normal(0,3);

x ~ normal(0,exp(y/2));

}

1This parameterization came to be known on our mailing lists as the “Matt trick” after Matt Hoffman,
who independently came up with it while fitting hierarchical models in Stan.

176

Figure 20.1: Neal’s Funnel. (Left) The marginal density of Neal’s funnel for the upper-level

variable y and one lower-level variable x1 (see the text for the formula). The blue region has log

density greater than -8, the yellow region density greater than -16, and the gray background

a density less than -16. (Right) 4000 draws from a run of Stan’s sampler with default settings.

Both plots are restricted to the shown window of x1 and y values; some draws fell outside of

the displayed area as would be expected given the density. The samples are consistent with the

marginal density p(y) = Normal(y|0,3), which has mean 0 and standard deviation 3.

When the model is expressed this way, Stan has trouble sampling from the neck of
the funnel, where y is small and thus x is constrained to be near 0. This is due to the
fact that the density’s scale changes with y , so that a step size that works well in the
body will be too large for the neck and a step size that works in the neck will be very
inefficient in the body.

In this particular instance, because the analytic form of the density from which
samples are drawn is known, the model can be converted to the following more effi-
cient form.

parameters {

real y_raw;

vector[9] x_raw;

}

transformed parameters {

real y;

vector[9] x;

y <- 3.0 * y_raw;

x <- exp(y/2) * x_raw;

}

model {

y_raw ~ normal(0,1); // implies y ~ normal(0,3)

177

x_raw ~ normal(0,1); // implies x ~ normal(0,exp(y/2))

}

In this second model, the parameters x_raw and y_raw are sampled as independent
unit normals, which is easy for Stan. These are then transformed into samples from
the funnel. In this case, the same transform may be used to define Monte Carlo
samples directly based on independent unit normal samples; Markov chain Monte
Carlo methods are not necessary. If such a reparameterization were used in Stan code,
it is useful to provide a comment indicating what the distribution for the parameter
implies for the distribution of the transformed parameter.

Reparameterizing the Cauchy

Sampling from heavy tailed distributions such as the Cauchy is difficult for Hamilto-
nian Monte Carlo, which operates within a Euclidean geometry.2 The practical prob-
lem is that tail of the Cauchy requires a relatively large step size compared to the
trunk. With a small step size, the No-U-Turn sampler requires many steps when
starting in the tail of the distribution; with a large step size, there will be too much
rejection in the central portion of the distribution. This problem may be mitigated by
defining the Cauchy-distributed variable as the transform of a uniformly distributed
variable using the Cauchy inverse cumulative distribution function.

Suppose a random variable of interest X has a Cauchy distribution with location
µ and scale τ , so that X ∼ Cauchy(µ, τ). The variable X has a cumulative distribution
function FX : R→ (0,1) defined by

FX(x) =
1
π

arctan
(
x− µ
τ

)
+ 1
2
.

The inverse of the cumulative distribution function, F−1X : (0,1)→ R, is thus

F−1X (y) = µ + τ tan
(
π
(
x− 1

2

))
.

Thus if the random variable Y has a unit uniform distribution, Y ∼ Uniform(0,1),
then F−1X (Y) has a Cauchy distribution with location µ and scale τ , i.e., F−1X (Y) ∼
Cauchy(µ, τ).

Consider a Stan program involving a Cauchy-distributed parameter beta.

parameters {

real beta;

2Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) overcomes this difficulty by simulating the
Hamiltonian dynamics in a a space with a position-dependent metric; see (Girolami and Calderhead, 2011)
and (Betancourt, 2012).

178

...

}

model {

beta ~ cauchy(mu,tau);

...

}

This declaration of beta as a parameter may be replaced with a transformed param-
eter beta defined in terms of a uniform-distributed parameter beta_unif.

parameters {

real<lower=-pi()/2, upper=pi()/2> beta_unif;

...

}

transformed parameters {

real beta;

beta <- mu + tau * tan(beta_unif); // beta ~ cauchy(mu,tau)

}

model {

beta_unif ~ uniform(-pi()/2, pi()/2); // not necessary

...

}

It is more convenient in Stan to transform a uniform variable on (−π/2, π/2) than
one on (0,1). The Cauchy location and scale parameters, mu and tau, may be defined
as data or may themselves be parameters. The variable beta could also be defined as
a local variable if it does not need to be included in the sampler’s output.

The uniform distribution on beta_unif is defined explicitly in the model block,
but it could be safely removed from the program without changing sampling behavior.
This is because log Uniform(βunif| − π/2, π/2) = − logπ is a constant and Stan only
needs the total log probability up to an additive constant. Stan will spend some time
checking that that beta_unif is between -pi()/2 and pi()/2, but this condition is
guaranteed by the constraints in the declaration of beta_unif.

Reparameterizing a Student-t Distribution

One thing that sometimes works when you’re having trouble with the heavy-tailedness
of Student-t distributions is to use the gamma-mixture representation, which says
that you can generate a Student-t distributed variable β,

β ∼ Student-t(ν,0,1),

by first generating a gamma-distributed τ ,

τ ∼ Gamma(ν/2, ν/2),

179

and then generating β from the normal distribution with precision τ , which using our
parameterization of the normal in terms of scale, is

β ∼ Normal(0, τ−2).

That is, the marginal distribution of β when you integrate out τ is Student-t(ν,0,1),
i.e.,

Student-t(β|ν,0,1). =
∫∞
0

Normal(β|0,1/τ2)× Gamma(τ|ν/2, ν/2) dτ.

You can go a step further and instead of defining a β drawn from a normal with
precision τ , define α to be drawn from a unit normal,

α ∼ Normal(0,1)

and rescale by defining
β = α/τ2.

Now suppose µ = βx is the product of β with a regression predictor x. Then the
reparameterization µ = ατ−2x has the same distribution, but in the original, direct
parameterization, β has (potentially) heavy tails, whereas in the second, neither τ nor
α have heavy tails.

To translate into Stan notation, this reparameterization replaces

parameters {
real<lower=0> nu;
real beta;
...

model {
beta ~ student_t(nu,0,1);
...

with

parameters {
real<lower=0> nu;
real<lower=0> tau;
...

transformed parameters {
real beta;
beta <- alpha / pow(tau,2);
...

model {

180

real half_nu;
half_nu <- 0.5 * nu;
tau ~ gamma(half_nu, half_nu);
alpha ~ normal(0, 1);
...

In most cases, the lower bound for nu can be set to 1 or higher; when nu is 1, the result
is a Cauchy distribution with very fat tails and as nu approaches infinity, the distribu-
tion approaches a normal distribution. So the model for nu effectively parameterizes
the heaviness of the tails of the model.

Hierarchical Models

Unfortunately, the usual situation in applied Bayesian modeling involves complex ge-
ometries and interactions that are not known analytically. Nevertheless, reparameter-
ization can still be very effective for separating parameters. For example, a vectorized
hierarchical model might draw a vector of coefficients β with definitions as follows.

parameters {

real mu_beta;

real<lower=0> sigma_beta;

vector[K] beta;

...

model {

beta ~ normal(mu_beta,sigma_beta);

...

Although not shown, a full model will have priors on both mu_beta and sigma_beta
along with data modeled based on these coefficients. For instance, a standard binary
logistic regression with data matrix x and binary outcome vector y would include a
likelihood statement such as form y ~ bernoulli_logit(x * beta), leading to an
analytically intractable posterior.

A hierarchical model such as the above will suffer from the same kind of inef-
ficiencies as Neal’s funnel, though typically not so extreme, because the values of
beta, mu_beta and sigma_beta are highly correlated in the posterior. Such a hier-
archical model can be made much more efficient in terms of effective sample size by
reparameterizing in exactly the same way as the funnel example.

parameters {

vector[K] beta_raw;

...

transformed parameters {

vector[K] beta;

181

// implies: beta ~ normal(mu_beta,sigma_beta)

beta <- mu_beta + sigma_beta * beta_raw;

model {

beta_raw ~ normal(0,1);

...

Any priors defined for mu_beta and sigma_beta remain as defined in the original
model.

Reparameterization of hierarchical models is not limited to the normal distribu-
tion, although the normal distribution is the best candidate for doing so. In general,
any distribution of parameters in the location-scale family is a good candidate for
reparameterization. Let β = l + sα where l is a location parameter and s is a scale
parameter. Note that l need not be the mean, s need not be the standard deviation,
and neither the mean nor the standard deviation need to exist. If α and β are from
the same distributional family but α has location zero and unit scale, while β has
location l and scale s, then that distribution is a location-scale distribution. Thus, if
α were a parameter and β were a transformed parameter, then a prior distribution
from the location-scale family on α with location zero and unit scale implies a prior
distribution on β with location l and scale s. Doing so would reduce the dependence
between α, l, and s.

There are several univariate distributions in the location-scale family, such as the
Student t distribution, including its special cases of the Cauchy distribution (with one
degree of freedom) and the normal distribution (with infinite degrees of freedom). As
shown above, if α is distributed standard normal, then β is distributed normal with
mean µ = l and standard deviation σ = s. The logistic, the double exponential, the
generalized extreme value distributions, and the stable distribution are also in the
location-scale family.

Also, if z is distributed standard normal, then z2 is distributed chi-squared with
one degree of freedom. By summing the squares of K independent standard normal
variates, one can obtain a single variate that is distributed chi-squared with K degrees
of freedom. However, for large K, the computational gains of this reparameterization
may be overwhelmed by the computational cost of specifying K primitive parameters
just to obtain one transformed parameter to use in a model.

Multivariate Reparameterizations

The benefits of reparameterization are not limited to univariate distributions. A pa-
rameter with a multivariate normal prior distribution is also an excellent candidate
for reparameterization. Suppose you intend the prior for β to be multivariate normal
with mean vector µ and covariance matrix Σ. Such a belief is reflected by the following
code.

182

data {

int<lower=2> K;

vector[K] mu;

cov_matrix[K] Sigma;

...

parameters {

vector[K] beta;

...

model {

beta ~ multi_normal(mu,Sigma);

...

In this case mu and Sigma are fixed data, but they could be unknown parameters, in
which case their priors would be unaffected by a reparameterization of beta.

If α has the same dimensions as β but the elements of α are independently and
identically distributed standard normal such that β = µ + Lα, where LL> = Σ, then β
is distributed multivariate normal with mean vector µ and covariance matrix Σ. One
choice for L is the Cholesky factor of Σ. Thus, the model above could be reparame-
terized as follows.

data {

int<lower=2> K;

vector[K] mu;

cov_matrix[K] Sigma;

...

transformed data {

matrix[K,K] L;

L <- cholesky_decompose(Sigma);

}

parameters {

vector[K] alpha;

...

transformed parameters {

vector[K] beta;

beta <- mu + L * alpha;

}

model {

alpha ~ normal(0,1);

// implies: beta ~ multi_normal(mu, Sigma)

...

This reparameterization is more efficient for two reasons. First, it reduces depen-
dence among the elements of alpha and second, it avoids the need to invert Sigma
every time multi_normal is evaluated.

183

The Cholesky factor is also useful when a covariance matrix is decomposed into a
correlation matrix that is multiplied from both sides by a diagonal matrix of standard
deviations, where either the standard deviations or the correlations are unknown pa-
rameters. The Cholesky factor of the covariance matrix is equal to the product of
a diagonal matrix of standard deviations and the Cholesky factor of the correlation
matrix. Furthermore, the product of a diagonal matrix of standard deviations and a
vector is equal to the elementwise product between the standard deviations and that
vector. Thus, if for example the correlation matrix Tau were fixed data but the vector
of standard deviations sigma were unknown parameters, then a reparameterization
of beta in terms of alpha could be implemented as follows.

data {

int<lower=2> K;

vector[K] mu;

corr_matrix[K] Tau;

...

transformed data {

matrix[K,K] L;

L <- cholesky_decompose(Tau);

}

parameters {

vector[K] alpha;

vector<lower=0>[K] sigma;

...

transformed parameters {

vector[K] beta;

// This equals mu + diag_matrix(sigma) * L * alpha;

beta <- mu + sigma .* (L * alpha);

}

model {

sigma ~ cauchy(0,5);

alpha ~ normal(0,1);

// implies: beta ~ multi_normal(mu,

// diag_matrix(sigma) * L * L’ * diag_matrix(sigma)))

...

This reparameterization of a multivariate normal distribution in terms of standard
normal variates can be extended to other multivariate distributions that can be con-
ceptualized as contaminations of the multivariate normal, such as the multivariate
Student t and the skew multivariate normal distribution.

A Wishart distribution can also be reparameterized in terms of standard normal
variates and chi-squared variates. Let L be the Cholesky factor of a K × K positive

184

definite scale matrix S and let ν be the degrees of freedom. If

A =



√
c1 0 · · · 0

z21
√
c2

. . .
...

...
. . .

. . . 0
zK1 · · · zK(K−1)

√
cK

 ,

where each ci is distributed chi-squared with ν − i + 1 degrees of freedom and each
zij is distributed standard normal, then W = LAA>L> is distributed Wishart with
scale matrix S = LL> and degrees of freedom ν . Such a reparameterization can be
implemented by the following Stan code:

data {

int<lower=1> N;

int<lower=1> K;

int<lower=K+2> nu

matrix[K,K] L; // Cholesky factor of scale matrix

vector[K] mu;

matrix[N,K] y;

...

parameters {

vector<lower=0>[K] c;

vector[0.5 * K * (K - 1)] z;

...

model {

matrix[K,K] A;

int count;

count <- 1;

for (j in 1:(K-1)) {

for (i in (j+1):K) {

A[i,j] <- z[count];

count <- count + 1;

}

for (i in 1:(j - 1)) {

A[i,j] <- 0.0;

}

A[j,j] <- sqrt(c[j]);

}

for (i in 1:K) {

c[i] ~ chi_square(nu - i + 1);

}

z ~ normal(0,1);

185

// implies: L * A * A’ * L’ ~ wishart(nu, L * L’)

y ~ multi_normal_cholesky(mu, L * A);

...

This reparameterization is more efficient for three reasons. First, it reduces de-
pendence among the elements of z and second, it avoids the need to invert the
covariance matrix, W every time wishart is evaluated. Third, if W is to be used
with a multivariate normal distribution, you can pass LA to the more efficient
multi_normal_cholesky function, rather than passing W to multi_normal.

If W is distributed Wishart with scale matrix S and degrees of freedom ν , then
W−1 is distributed inverse Wishart with inverse scale matrix S−1 and degrees of free-
dom ν . Thus, the previous result can be used to reparameterize the inverse Wishart
distribution. Since W = L ∗ A ∗ A> ∗ L>, W−1 = L>−1A>−1A−1L−1, where all four in-
verses exist, but L−1

> = L>−1 and A−1
> = A>−1 . We can slightly modify the above Stan

code for this case:

data {

int<lower=1> K;

int<lower=K+2> nu

matrix[K,K] L; // Cholesky factor of scale matrix

...

transformed data {

matrix[K,K] eye;

matrix[K,K] L_inv;

for (j in 1:K) {

for (i in 1:K) {

eye[i,j] <- 0.0;

}

eye[j,j] <- 1.0;

}

L_inv <- mdivide_left_tri_low(L, eye);

}

parameters {

vector<lower=0>[K] c;

vector[0.5 * K * (K - 1)] z;

...

model {

matrix[K,K] A;

matrix[K,K] A_inv_L_inv;

int count;

count <- 1;

for (j in 1:(K-1)) {

for (i in (j+1):K) {

A[i,j] <- z[count];

186

count <- count + 1;

}

for (i in 1:(j - 1)) {

A[i,j] <- 0.0;

}

A[j,j] <- sqrt(c[j]);

}

A_inv_L_inv <- mdivide_left_tri_low(A, L_inv);

for (i in 1:K) {

c[i] ~ chi_square(nu - i + 1);

}

z ~ normal(0,1); // implies: crossprod(A_inv_L_inv) ~

// inv_wishart(nu, L_inv’ * L_inv)

...

Another candidate for reparameterization is the Dirichlet distribution with all K
shape parameters equal. Zyczkowski and Sommers (2001) shows that if θi is equal to
the sum of β independent squared standard normal variates and ρi = θi∑

θi , then the

K-vector ρ is distributed Dirichlet with all shape parameters equal to β
2 . In particular,

if β = 2, then ρ is distributed uniformally on the unit simplex. Thus, we can make ρ
be a transformed parameter to reduce dependence, as in:

data {

int<lower=1> beta;

...

parameters {

vector[beta] z[K];

...

transformed parameters {

simplex[K] rho;

for (k in 1:K)

rho[k] <- dot_self(z[k]); // sum-of-squares

rho <- rho / sum(rho);

}

model {

for (k in 1:K)

z[k] ~ normal(0,1);

// implies: rho ~ dirichlet(0.5 * beta * ones)

...

187

20.2. Vectorization

Gradient Bottleneck

Stan spends the vast majority of its time computing the gradient of the log proba-
bility function, making gradients the obvious target for optimization. Stan’s gradient
calculations with algorithmic differentiation require a template expression to be allo-
cated3 and constructed for each subexpression of a Stan program involving parame-
ters or transformed parameters. This section defines optimization strategies based
on vectorizing these subexpressions to reduce the work done during algorithmic dif-
ferentiation.

Vectorizing Summations

Because of the gradient bottleneck described in the previous section, it is more ef-
ficient to collect a sequence of summands into a vector or array and then apply the
sum() operation than it is to continually increment a variable by assignment and
addition. For example, consider the following code snippet, where foo() is some
operation that depends on n.

for (n in 1:N)

total <- total + foo(n,...);

This code has to create intermediate representations for each of the N summands.
A faster alternative is to copy the values into a vector, then apply the sum() oper-

ator, as in the following refactoring.

{

vector[N] summands;

for (n in 1:N)

summands[n] <- foo(n,...);

total <- sum(summands);

}

Syntactically, the replacement is a statement block delineated by curly brackets ({, }),
starting with the definition of the local variable summands.

Even though it involves extra work to allocate the summands vector and copy N
values into it, the savings in differentiation more than make up for it. Perhaps sur-
prisingly, it will also use substantially less memory overall than incrementing total
within the loop.

3Stan uses its own arena-based allocation, so allocation and deallocation are faster than with a raw call
to new.

188

Vectorization through Matrix Operations

The following program directly encodes a linear regression with fixed unit noise using
a two-dimensional array x of predictors, an array y of outcomes, and an array beta
of regression coefficients.

data {

int<lower=1> K;

int<lower=1> N;

real x[K,N];

real y[N];

}

parameters {

real beta[K];

}

model {

for (n in 1:N) {

real gamma;

gamma <- 0.0;

for (k in 1:K)

gamma <- gamma + x[n,k] * beta[k];

y[n] ~ normal(gamma,1);

}

}

The following model computes the same log probability function as the previous
model, even supporting the same input files for data and initialization.

data {

int<lower=1> K;

int<lower=1> N;

vector[K] x[N];

real y[N];

}

parameters {

vector[K] beta;

}

model {

for (n in 1:N)

y[n] ~ normal(dot_product(x[n],beta), 1);

}

Although it produces equivalent results, the dot product should not be replaced with
a transpose and multiply, as in

y[n] ~ normal(x[n]’ * beta, 1);

189

The relative inefficiency of the transpose and multiply approach is that the transpo-
sition operator allocates a new vector into which the result of the transposition is
copied. This consumes both time and memory4. The inefficiency of transposition
could itself be mitigated somewhat by reordering the product and pulling the trans-
position out of the loop, as follows.

...

transformed parameters {

row_vector[K] beta_t;

beta_t <- beta’;

}

model {

for (n in 1:N)

y[n] ~ normal(beta_t * x[n], 1);

}

The problem with transposition could be completely solved by directly encoding the
x as a row vector, as in the following example.

data {

...

row_vector[K] x[N];

...

}

parameters {

vector[K] beta;

}

model {

for (n in 1:N)

y[n] ~ normal(x[n] * beta, 1);

}

Declaring the data as a matrix and then computing all the predictors at once using
matrix multiplication is more efficient still, as in the example discussed in the next
section.

Vectorized Probability Functions

The final and most efficient version replaces the loops and transformed parameters
by using the vectorized form of the normal probability function, as in the following
example.

4Future versions of Stan may remove this inefficiency by more fully exploiting expression templates
inside the Eigen C++ matrix library. This will require enhancing Eigen to deal with mixed-type arguments,
such as the type double used for constants and the algorithmic differentiation type stan::agrad::var
used for variables.

190

data {

int<lower=1> K;

int<lower=1> N;

matrix[N,K] x;

vector[N] y;

}

parameters {

vector[K] beta;

}

model {

y ~ normal(x * beta, 1);

}

The variables are all declared as either matrix or vector types. The result of the
matrix-vector multiplication x * beta in the model block is a vector of the same
length as y.

The probability function documentation in Part V indicates which of Stan’s prob-
ability functions support vectorization; see Section 27.1 for more information. Vec-
torized probability functions accept either vector or scalar inputs for all arguments,
with the only restriction being that all vector arguments are the same dimensionality.
In the example above, y is a vector of size N, x * beta is a vector of size N, and 1 is
a scalar.

20.3. Exploiting Sufficient Statistics

In some cases, models can be recoded to exploit sufficient statistics in estimation.
This can lead to large efficiency gains compared to an expanded model. For example,
consider the following Bernoulli sampling model.

data {

int<lower=0> N;

int<lower=0,upper=1> y[N];

real<lower=0> alpha;

real<lower=0> beta;

}

parameters {

real<lower=0,upper=1> theta;

}

model {

theta ~ beta(alpha,beta);

for (n in 1:N)

y[n] ~ bernoulli(theta);

}

191

In this model, the sum of positive outcomes in y is a sufficient statistic for the chance
of success theta. The model may be recoded using the binomial distribution as
follows.

theta ~ beta(alpha,beta);

sum(y) ~ binomial(N,theta);

Because truth is represented as one and falsehood as zero, the sum sum(y) of a
binary vector y is equal to the number of positive outcomes out of a total of N trials.

20.4. Exploiting Conjugacy

Continuing the model from the previous section, the conjugacy of the beta prior and
binomial sampling distribution allow the model to be further optimized to the follow-
ing equivalent form.

theta ~ beta(alpha + sum(y), beta + N - sum(y));

To make the model even more efficient, a transformed data variable defined to be
sum(y) could be used in the place of sum(y).

20.5. Standardizing Predictors and Outputs

Stan programs will run faster if the input is standardized to have a zero sample mean
and unit sample variance. This section illustrates the principle with a simple linear
regression.

Suppose that y = (y1, . . . , yN) is a sequence of N outcomes and x = (x1, . . . , xN) a
parallel sequence of N predictors. A simple linear regression involving an intercept
coefficient α and slope coefficient β can be expressed as

yn = α+ βxn + εn,

where
εn ∼ Normal(0, σ).

If either vector x or y has very large or very small values or if the sample mean
of the values is far away from 0 (on the scale of the values), then it can be more
efficient to standardize the outputs yn and predictors xn. The data is first centered
by subtracting the sample mean, and then scaled by dividing by the sample deviation.
Thus a data point u is standardized is standardized with respect to a vector y by the
function zy , defined by

zy(u) =
u− ȳ
sd(y)

192

where the sample mean of y is

ȳ = 1
N

N∑
n=1
yn,

and the sample standard deviation of y is

sd(y) =
 1
N

N∑
n=1
(yn − ȳ)2

1/2 .
The inverse transform is defined by reversing the two normalization steps, first
rescaling by the same deviation and relocating by the sample mean,

z−1(v) = sd(y)v + ȳ .

To standardize a regression problem, the predictors and outcomes are standard-
ized. This changes the scale of the variables, and hence changes the scale of the
priors. Consider the following initial model.

data {

int<lower=0> N;

vector[N] y;

vector[N] x;

}

parameters {

real alpha;

real beta;

real<lower=0> sigma;

}

model {

// priors

alpha ~ normal(0,10);

beta ~ normal(0,10);

sigma ~ cauchy(0,5);

// likelihood

for (n in 1:N)

y[n] ~ normal(alpha + beta * x[n], sigma);

}

The data block for the standardized model is identical. The standardized predic-
tors and outputs are defined in the transformed data block.

data {

int<lower=0> N;

vector[N] y;

193

vector[N] x;

}

transformed data {

vector[N] x_std;

vector[N] y_std;

x_std <- (x - mean(x)) / sd(x);

y_std <- (y - mean(y)) / sd(y);

}

parameters {

real alpha_std;

real beta_std;

real<lower=0> sigma_std;

}

model {

alpha_std ~ normal(0,10);

beta_std ~ normal(0,10);

sigma_std ~ cauchy(0,5);

for (n in 1:N)

y_std[n] ~ normal(alpha_std + beta_std * x_std[n],

sigma_std);

}

The parameters are renamed to indicate that they aren’t the “natural” parameters,
but the model is otherwise identical. In particular, the fairly diffuse priors on the
coefficients and error scale are the same. These could have been transformed as well,
but here they are left as is, because the scales make sense as very diffuse priors for
standardized data; the priors could be made more informative. For instance, because
the outputs y have been standardized, the error σ should not be greater than 1,
because that’s the scale of the noise for predictors α = β = 0.

The original regression
yn = α+ βxn + εn

has been transformed to a regression on the standardized variables,

zy(yn) = α′ + β′zx(xn)+ ε′n.

194

The original parameters can be recovered with a little algebra,

yn = z−1y (zy(yn))

= z−1y
(
α′ + β′zx(xn)+ ε′n

)
= z−1y

(
α′ + β′

(
xn − x̄
sd(x)

)
+ ε′n

)

= sd(y)
(
α′ + β′

(
xn − x̄
sd(x)

)
+ ε′n

)
+ ȳ

=
(

sd(y)
(
α′ − β′ x̄

sd(x)

)
+ ȳ

)
+
(
β′

sd(y)
sd(x)

)
xn + sd(y)ε′n,

from which the original scale parameter values can be read off,

α = sd(y)
(
α′ − β′ x̄

sd(x)

)
+ ȳ ; β = β′ sd(y)

sd(x)
; σ = sd(y)σ ′.

These recovered parameter values on the original scales can be calculated within Stan
using a generated quantities block following the model block,

generated quantities {

real alpha;

real beta;

real<lower=0> sigma;

alpha <- sd(y) * (alpha_std - beta_std * mean(x) / sd(x))

+ mean(y);

beta <- beta_std * sd(y) / sd(x);

sigma <- sd(y) * sigma_std;

}

Of course, it is inefficient to compute all of the means and standard deviations every
iteration; for more efficiency, these can be calculated once and stored as transformed
data. Furthermore, the model sampling statement can be easily vectorized, for in-
stance, in the transformed model, to

y_std ~ normal(alpha_std + beta_std * x_std, sigma_std);

195

Part IV

Modeling Language Reference

196

21. Execution of a Stan Program

This chapter provides a sketch of how a compiled Stan model is executed using sam-
pling. Optimization shares the same data reading and initialization steps, but then
does optimization rather than sampling.

This sketch is elaborated in the following chapters of this part, which cover vari-
able declarations, expressions, statements, and blocks in more detail.

21.1. Reading and Transforming Data

The reading and transforming data steps are the same for sampling, optimization and
diagnostics.

Read Data

The first step of execution is to read data into memory. For the Stan model executable,
data is read from a file in the dump format (see Chapter 6).1 All of the variables
declared in the data block will be read. If a variable cannot be read, the program will
halt with a message indicating which data variable is missing.

After each variable is read, if it has a declared constraint, the constraint is vali-
dated. For example, if a variable N is declared as int<lower=0>, after N is read, it
will be tested to make sure it is greater than or equal to zero. If a variable violates its
declared constraint, the program will halt with a warning message indicating which
variable contains an illegal value, the value that was read, and the constraint that was
declared.

Define Transformed Data

After data is read into the model, the transformed data variable statements are exe-
cuted in order to define the transformed data variables. As the statements execute,
declared constraints on variables are not enforced.

After the statements are executed, all declared constraints on transformed data
variables are validated. If the validation fails, execution halts and the variable’s name,
value and constraints are displayed.

1The C++ code underlying Stan is flexible enough to allow data to be read from memory or file. Calls
from R, for instance, can be configured to read data from file or directly from R’s memory.

197

21.2. Initialization

Initialization is the same for sampling, optimization, and diagnosis

User-Supplied Initial Values

If there are user-supplied initial values for parameters, these are read using the same
input mechanism and same file format as data reads. Any constraints declared on
the parameters are validated for the initial values. If a variable’s value violates its
declared constraint, the program halts and a diagnostic message is printed.

After being read, initial values are transformed to unconstrained values that will
be used to initialize the sampler.

Boundary Values are Problematic

Because of the way Stan defines its transforms from the constrained to the uncon-
strained space, initializing parameters on the boundaries of their constraints is usu-
ally problematic. For instance, with a constraint

parameters {
real<lower=0,upper=1> theta;
...

}

an initial value of 0 for theta leads to an unconstrained value of −∞, whereas a value
of 1 leads to an unconstrained value of +∞. While this will be inverse transformed
back correctly given the behavior of floating point arithmetic, the Jacobian will be
infinite and the log probability function will faill and raise an exception.

Random Initial Values

If there are no user-supplied initial values, the default initialization strategy is to
initialize the unconstrained parameters directly with values drawn uniformly from
the interval (−2,2). The bounds of this initialization can be changed but it is always
symmetric around 0. The value of 0 is special in that it represents the median of the
initialization. An unconstrained value of 0 corresponds to different parameter values
depending on the constraints declared on the parameters.

An unconstrained real does not involve any transform, so an initial value of 0 for
the unconstrained parameters is also a value of 0 for the constrained parameters.

For parameters that are bounded below at 0, the initial value of 0 on the uncon-
strained scale corresponds to exp(0) = 1 on the constrained scale. A value of -2
corresponds to exp(−2) = .13 and a value of 2 corresponds to exp(2) = 7.4.

198

For parameters bounded above and below, the initial value of 0 on the uncon-
strained scale corresponds to a value at the midpoint of the constraint interval. For
probability parameters, bounded below by 0 and above by 1, the transform is the
inverse logit, so that an initial unconstrained value of 0 corresonds to a constrained
value of 0.5, -2 corresponds to 0.12 and 2 to 0.88. Bounds other than 0 and 1 are just
scaled and translated.

Simplexes with initial values of 0 on the unconstrained basis correspond to sym-
metric values on the constrained values (i.e., each value is 1/K in a K-simplex).

Cholesky factors for positive-definite matrices are initialized to 1 on the diago-
nal and 0 elsewhere; this is because the diagonal is log transformed and the below-
diagonal values are unconstrained.

The initial values for other parameters can be determined from the transfrom that
is applied. The transforms are all described in full detail in Chapter 51.

Zero Initial Values

The initial values may all be set to 0 on the unconstrained scale. This can be helpful
for diagnosis, and may also be a good starting point for sampling. Once a model is
running, multiple chains with more diffuse starting points can help diagnose prob-
lems with convergence; see Section 50.3 for more information on convergence moni-
toring.

21.3. Sampling

Sampling is based on simulating the Hamiltonian of a particle with a starting posi-
tion equal to the current parameter values and an initial momentum (kinetic energy)
generated randomly. The potential energy at work on the particle is taken to be the
negative log (unnormalized) total probability function defined by the model. In the
usual approach to implementing HMC, the Hamiltonian dynamics of the particle is
simulated using the leapfrog integrator, which discretizes the smooth path of the
particle into a number of small time steps called leapfrog steps.

Leapfrog Steps

For each leapfrog step, the negative log probability function and its gradient need to
be evaluated at the position corresponding to the current parameter values (a more
detailed sketch is provided in the next section). These are used to update the momen-
tum based on the gradient and the position based on the momentum.

For simple models, only a few leapfrog steps with large step sizes are needed. For
models with complex posterior geometries, many small leapfrog steps may be needed
to accurately model the path of the parameters.

199

If the user specifies the number of leapfrog steps (i.e., chooses to use standard
HMC), that number of leapfrog steps are simulated. If the user has not specified the
number of leapfrog steps, the No-U-Turn sampler (NUTS) will determine the number
of leapfrog steps adaptively (Hoffman and Gelman, 2011, 2013).

Log Probability and Gradient Calculation

During each leapfrog step, the log probability function and its gradient must be cal-
culated. This is where most of the time in the Stan algorithm is spent. This log
probability function, which is used by the sampling algorithm, is defined over the
unconstrained parameters.

The first step of the calculation requires the inverse transform of the uncon-
strained parameter values back to the constrained parameters in terms of which the
model is defined. There is no error checking required because the inverse transform
is a total function on every point in whose range satisfies the constraints.

Because the probability statements in the model are defined in terms of con-
strained parameters, the log Jacobian of the inverse transform must be added to
the accumulated log probability.

Next, the transformed parameter statements are executed. After they complete,
any constraints declared for the transformed parameters are checked. If the con-
straints are violated, the model will halt with a diagnostic error message.

The final step in the log probability function calculation is to execute the state-
ments defined in the model block.

As the log probability function executes, it accumulates an in-memory represen-
tation of the expression tree used to calculate the log probability. This includes all of
the transformed parameter operations and all of the Jacobian adjustments. This tree
is then used to evaluate the gradients by propagating partial derivatives backward
along the expression graph. The gradient calculations account for the majority of the
cycles consumed by a Stan program.

Metropolis Accept/Reject

A standard Metropolis accept/reject step is required to retain detailed balance and
ensure samples are marginally distributed according to the probability function de-
fined by the model. This Metropolis adjustment is based on comparing log proba-
bilities, here defined by the Hamiltonian, which is the sum of the potential (negative
log probability) and kinetic (squared momentum) energies. In theory, the Hamilto-
nian is invariant over the path of the particle and rejection should never occur. In
practice, the probability of rejection is determined by the accuracy of the leapfrog
approximation to the true trajectory of the parameters.

200

If step sizes are small, very few updates will be rejected, but many steps will be
required to move the same distance. If step sizes are large, more updates will be
rejected, but fewer steps will be required to move the same distance. Thus a balance
between effort and rejection rate is required. If the user has not specified a step size,
Stan will tune the step size during warmup sampling to achieve a desired rejection
rate (thus balancing rejection versus number of steps).

If the proposal is accepted, the parameters are updated to their new values. Oth-
erwise, the sample is the current set of parameter values.

21.4. Optimization

Optimization runs very much like sampling in that it starts by reading the data and
then initializing parameters. Unlike sampling, it produces a deterministic output
which requires no further analysis other than to verify that the optimizer itself con-
verged to a posterior mode. The output for optimization is also similar to that for
sampling.

21.5. Model Diagnostics

Model diagnostics are like sampling and optimization in that they depend on a
model’s data being read and its parameters being initialized. The output, at least
so far, is just to the command line. See Section 4.2 for information on the available
diagnostics (as of Stan 2.0, just gradients and log probabilities at the initialization
state).

21.6. Output

For each final sample (not counting samples during warmup or samples that are
thinned), there is an output stage of writing the samples.

Generated Quantities

Before generating any output, the statements in the generated quantities block are
executed. This can be used for any forward simulation based on parameters of the
model. Or it may be used to transform parameters to an appropriate form for output.

After the generated quantities statements execute, the constraints declared on
generated quantities variables are validated. If these constraints are violated, the
program will terminate with a diagnostic message.

201

Write

The final step is to write the actual values. The values of all variables declared as
parameters, transformed parameters, or generated quantities are written. Local vari-
ables are not written, nor is the data or transformed data. All values are written in
their constrained forms, that is the form that is used in the model definitions.

In the executable form of a Stan models, parameters, transformed parameters,
and generated quantities are written to a file in comma-separated value (csv) notation
with a header defining the names of the parameters (including indices for multivariate
parameters).2

2In the R version of Stan, the values may either be written to a csv file or directly back to R’s memory.

202

22. Data Types and Variable Declarations

This chapter covers the data types for expressions in Stan. Every variable used in
a Stan program must have a declared data type. Only values of that type will be
assignable to the variable (except for temporary states of transformed data and trans-
formed parameter values). This follows the convention of programming languages
like C++, not the conventions of scripting languages like Python or statistical lan-
guages such as R or BUGS.

The motivation for strong, static typing is threefold.

• Strong typing forces the programmer’s intent to be declared with the variable,
making programs easier to comprehend and hence easier to debug and main-
tain.

• Strong typing allows programming errors relative to the declared intent to be
caught sooner (at compile time) rather than later (at run time). The Stan com-
piler (see Section 3.3) will flag any type errors and indicate the offending ex-
pressions quickly when the program is compiled.

• Constrained types will catch runtime data, initialization, and intermediate value
errors as soon as they occur rather than allowing them to propagate and poten-
tially pollute final results.

Strong typing disallows assigning the same variable to objects of different types at
different points in the program or in different invocations of the program.

22.1. Overview of Data Types

Basic Data Types

The primitive Stan data types are real for continuous scalar quantities and int for
integer values. The compound data types include vector (of real values), row_vector
(of real values), and matrix (of real values).

Constrained Data Types

Integer or real types may be constrained with lower bounds, upper bounds, or
both. There are four constrained vector data types, simplex for unit simplexes,
unit_vector for unit-length vectors, ordered for ordered vectors of scalars and
positive_ordered for vectors of positive ordered scalars. There are specialized ma-
trix data types corr_matrix and cov_matrix for correlation matrices (symmetric,

203

positive definite, unit diagonal) and covariance matrices (symmetric, positive defi-
nite). The type cholesky_factor_cov is for Cholesky factors of covariance matrices
(lower triangular, positive diagonal, product with own transpose is a covariance ma-
trix).

Arrays

Stan supports arrays of arbitrary order of any of the basic data types or constrained
basic data types. This includes three-dimensional arrays of integers, one-dimensional
arrays of positive reals, four-dimensional arrays of simplexes, one-dimensional arrays
of row vectors, and so on.

22.2. Primitive Numerical Data Types

Unfortunately, the lovely mathematical abstraction of integers and real numbers is
only partially supported by finite-precision computer arithmetic.

Integers

Stan uses 32-bit (4-byte) integers for all of its integer representations. The maximum
value that can be represented as an integer is 231 − 1; the minimum value is −(231).

When integers overflow, their values wrap. Thus it is up to the Stan programmer
to make sure the integer values in their programs stay in range. In particular, every
intermediate expression must have an integer value that is in range.

Integer arithmetic works in the expected way for addition, subtraction, and multi-
plication, but rounds the result of division (see Section 29.1 for more information).

Reals

Stan uses 64-bit (8-byte) floating point representations of real numbers. Stan roughly1

follows the ieee 754 standard for floating-point computation. The range of a 64-bit
number is roughly ±21022, which is slightly larger than ±10307. It is a good idea to
stay well away from such extreme values in Stan models as they are prone to cause
overflow.

64-bit floating point representations have roughly 15 decimal digits of accuracy.
But when they are combined, the result often has less accuracy. In some cases, the
difference in accuracy between two operands and their result is large.

There are three special real values used to represent (1) error conditions, (2) posi-
tive infinity, and (3) negative infinity. The error value is referred to as “not a number.”

1Stan compiles integers to int and reals to double types in C++. Precise details of rounding will depend
on the compiler and hardware architecture on which the code is run.

204

Promoting Integers to Reals

Stan automatically promotes integer values to real values if necessary, but does not
automatically demote real values to integers. For very large integers, this will cause a
rounding error to fewer significant digits in the floating point representation than in
the integer representation.

Unlike in C++, real values are never demoted to integers. Therefore, real values
may only be assigned to real variables. Integer values may be assigned to either
integer variables or real variables. Internally, the integer representation is cast to
a floating-point representation. This operation is not without overhead and should
thus be avoided where possible.

22.3. Univariate Data Types and Variable Declarations

All variables used in a Stan program must have an explicitly declared data type. The
form of a declaration includes the type and the name of a variable. This section covers
univariate types, the next section vector and matrix types, and the following section
array types.

Unconstrained Integer

Unconstrained integers are declared using the int keyword. For example, the variable
N is declared to be an integer as follows.

int N;

Constrained Integer

Integer data types may be constrained to allow values only in a specified interval by
providing a lower bound, an upper bound, or both. For instance, to declare N to be a
positive integer, use the following.

int<lower=1> N;

This illustrates that the bounds are inclusive for integers.
To declare an integer variable cond to take only binary values, that is zero or one,

a lower and upper bound must be provided, as in the following example.

int<lower=0,upper=1> cond;

205

Unconstrained Real

Unconstrained real variables are declared using the keyword real, The following ex-
ample declares theta to be an unconstrained continuous value.

real theta;

Constrained Real

Real variables may be bounded using the same syntax as integers. In theory (that
is, with arbitrary-precision arithmetic), the bounds on real values would be exclusive.
Unfortunately, finite-precision arithmetic rounding errors will often lead to values on
the boundaries, so they are allowed in Stan.

The variable sigma may be declared to be non-negative as follows.

real<lower=0> sigma;

The following declares the variable x to be less than or equal to −1.

real<upper=-1> x;

To ensure rho takes on values between −1 and 1, use the following declaration.

real<lower=-1,upper=1> rho;

Infinite Constraints

Lower bounds that are negative infinity or upper bounds that are positive infinity are
ignored. Stan provides constants positive_infinity() and negative_infinity()
which may be used for this purpose, or they may be read as data in the dump format.

Expressions as Bounds

Bounds for integer or real variables may be arbitrary expressions. The only require-
ment is that they only include variables that have been defined before the declaration.
If the bounds themselves are parameters, the behind-the-scenes variable transform
accounts for them in the log Jacobian.

For example, it is acceptable to have the following declarations.

data {
real lb;

}
parameters {

real<lower=lb> phi;
}

206

This declares a real-valued parameter phi to take values greater than the value of
the real-valued data variable lb. Constraints may be complex expressions, but must
be of type int for integer variables and of type real for real variables (including
constraints on vectors, row vectors, and matrices). Variables used in constraints can
be any variable that has been defined at the point the constraint is used. For instance,

data {
int<lower=1> N;
real y[N];

}
parameters {

real<lower=min(y),upper=max(y)> phi;
}

This declares a positive integer data variable N, an array y of real-valued data of
length N, and then a parameter ranging between the minimum and maximum value
of y. The functions fmin() and fmax() are minimum and maximum functions for
floating point quantities.

22.4. Vector and Matrix Data Types

Values

Vectors, row vectors, and matrices contain real values. Arrays, on the other hand,
may contain any kind of value, including integers and structured values like vectors.

Indexing

Vectors and matrices, as well as arrays, are indexed starting from one in Stan. This
follows the convention in statistics and linear algebra as well as their implementations
in the statistical software packages R, MATLAB, BUGS, and JAGS. General computer
programming languages, on the other hand, such as C++ and Python, index arrays
starting from zero.

Vectors

Vectors in Stan are column vectors; see the next subsection for information on row
vectors. Vectors are declared with a size (i.e., a dimensionality). For example, a 3-
dimensional vector is declared with the keyword vector, as follows.

vector[3] u;

207

Vectors may also be declared with constraints, as in the following declaration of a
3-vector of non-negative values.

vector<lower=0>[3] u;

Unit Simplexes

A unit simplex is a vector with non-negative values whose entries sum to 1. For in-
stance, (0.2,0.3,0.4,0.1)> is a unit 4-simplex. Unit simplexes are most often used as
parameters in categorical or multinomial distributions, and they are also the sampled
variate in a Dirichlet distribution. Simplexes are declared with their full dimensional-
ity. For instance, theta is declared to be a unit 5-simplex by

simplex[5] theta;

Unit simplexes are implemented as vectors and may be assigned to other vectors
and vice-versa. Simplex variables, like other constrained variables, are validated to
ensure they contain simplex values; for simplexes, this is only done up to a stati-
cally specified accuracy threshold ε to account for errors arising from floating-point
imprecision.

Unit Vectors

A unit vector is a vector with a norm of one. For instance, (0.5,0.5,0.5,0.5)> is a unit
4-vector. Unit vectors are sometimes used in directional statistics. Unit vectors are
declared with their full dimensionality. For instance, theta is declared to be a unit
5-vector by

unit_vector[5] theta;

Unit vectors are implemented as vectors and may be assigned to other vectors and
vice-versa. Unit vector variables, like other constrained variables, are validated to
ensure that they are indeed unit length; for unit vectors, this is only done up to a
statically specified accuracy threshold ε to account for errors arising from floating-
point imprecision.

Ordered Vectors

An ordered vector type in Stan represents a vector whose entries are sorted in ascend-
ing order. For instance, (−1.3,2.7,2.71)> is an ordered 3-vector. Ordered vectors are
most often employed as cut points in ordered logistic regression models (see Sec-
tion 9.6).

The variable c is declared as an ordered 5-vector by

208

ordered[5] c;

After their declaration, ordered vectors, like unit simplexes, may be assigned to other
vectors and other vectors may be assigned to them. Constraints will be checked after
executing the block in which the variables were declared.

Positive, Ordered Vectors

There is also a positive, ordered vector type which operates similarly to ordered vec-
tors, but all entries are constrained to be positive. For instance, (2,3.7,4,12.9) is a
positive, ordered 4-vector.

The variable d is declared as a positive, ordered 5-vector by

positive_ordered[5] d;

Like ordered vectors, after their declaration positive ordered vectors assigned to other
vectors and other vectors may be assigned to them. Constraints will be checked after
executing the block in which the variables were declared.

Row Vectors

Row vectors are declared with the keyword row_vector. Like (column) vectors, they
are declared with a size. For example, a 1093-dimensional row vector u would be
declared as

row_vector[1093] u;

Constraints are declared as for vectors, as in the following example of a 10-vector
with values between -1 and 1.

row_vector<lower=-1,upper=1>[10] u;

Row vectors may not be assigned to column vectors, nor may column vectors be
assigned to row vectors. If assignments are required, they may be accommodated
through the transposition operator.

Matrices

Matrices are declared with the keyword matrix along with a number of rows and
number of columns. For example,

matrix[3,3] A;
matrix[M,N] B;

209

declares A to be a 3×3matrix and B to be a M ×N matrix. For the second declaration
to be well formed, the variables M and N must be declared as integers in either the
data or transformed data block and before the matrix declaration.

Matrices may also be declared with constraints, as in this (3×4) matrix of non-
positive values.

matrix<upper=0>[3,4] B;

Assigning to Rows of a Matrix

Rows of a matrix can be assigned by indexing the left-hand side of an assignment
statement. For example, this is possible.

matrix[M,N] a;
row_vector[N] b;
...
a[1] <- b;

This copies the values from row vector b to a[1], which is the first row of the matrix
a. If the number of columns in a is not the same as the size of b, a run-time error is
raised; the number of rows of a is N, which is also the size of b.

Assignment works by copying values in Stan. That means any subsequent assign-
ment to a[1] does not affect b, nor does an assignment to b affect a.

Correlation Matrices

Matrix variables may be constrained to represent correlation matrices. A matrix is
a correlation matrix if it is symmetric and positive definite, has entries between −1
and 1, and has a unit diagonal. Because correlation matrices are square, only one
dimension needs to be declared. For example,

corr_matrix[3] Sigma;

declares Sigma to be a 3× 3 correlation matrix.
Correlation matrices may be assigned to other matrices, including unconstrained

matrices, if their dimensions match, and vice-versa.

Covariance Matrices

Matrix variables may be constrained to represent covariance matrices. A matrix is a
covariance matrix if it is symmetric and positive definite. Like correlation matrices,
covariance matrices only need a single dimension in their declaration. For instance,

210

cov_matrix[K] Omega;

declares Omega to be a K × K covariance matrix, where K is the value of the data
variable K.

Cholesky Factors of Covariance Matrices

Matrix variables may be constrained to represent the Cholesky factors of a covariance
matrix. This is often more convenient or more efficient than representing covariance
matrices directly.

A Cholesky factor L is anM×N lower-triangular matrix (ifm < n then L[m,n] = 0)
with a positive diagonal (L[k, k] = 0) and M ≥ N. If L is a Cholesky factor, then
Σ = LL> is a covariance matrix. Furthermore, every covariance matrix has a Cholesky
factorization.

The typical case of a square Cholesky factor may be declared with a single dimen-
sion,

cholesky_factor_cov[4] L;

In general, two dimensions may be declared, with the above being equal to
cholesky_factor_cov[4,4]. The type cholesky_factor_cov[M,N] may be used
for the general M ×N.

Assigning Constrained Variables

Constrained variables of all types may be assigned to other variables of the
same unconstrained type and vice-versa. For instance, a variable declared to be
real<lower=0,upper=1> could be assigned to a variable declared as real and vice-
versa. Similarly, a variable declared as matrix[3,3] may be assigned to a variable
declared as cov_matrix[3] or cholesky_factor_cov[3], and vice-versa.

Checks are carried out at the end of each relevant block of statements to ensure
constraints are enforced. This includes run-time size checks. The Stan compiler
isn’t able to catch the fact that an attempt may be made to assign a matrix of one
dimensionality to a matrix of mismatching dimensionality.

Expressions as Size Declarations

Variables may be declared with sizes given by expressions. Such expressions are
constrained to only contain data or transformed data variables. This ensures that all
sizes are determined once the data is read in and transformed data variables defined
by their statements. For example, the following is legal.

211

data {
int<lower=0> N_observed; int<lower=0> N_missing;
...

transformed parameters {
vector[N_observed + N_missing] y;
...

Accessing Vector and Matrix Elements

If v is a column vector or row vector, then v[2] is the second element in the vector.
If m is a matrix, then m[2,3] is the value in the second row and third column.

Providing a matrix with a single index returns the specified row. For instance, if m
is a matrix, then m[2] is the second row. This allows Stan blocks such as

matrix[M,N] m;
row_vector[N] v;
real x;
...
v <- m[2];
x <- v[3]; // x == m[2][3] == m[2,3]

The type of m[2] is row_vector because it is the second row of m. Thus it is possible
to write m[2][3] instead of m[2,3] to access the third element in the second row.
When given a choice, the form m[2,3] is preferred.2

Size Declaration Restrictions

An integer expression is used to pick out the sizes of vectors, matrices, and arrays.
For instance, we can declare a vector of size M + N using

vector[M + N] y;

Any integer-denoting expression may be used for the size declaration, providing all
variables involved are either data, transformed data, or local variables. That is, ex-
pressions used for size declarations may not include parameters or transformed pa-
rameters or generated quantities.

2As of Stan version 1.0, the form m[2,3] is more efficient because it does not require the creation and
use of an intermediate expression template for m[2]. In later versions, explicit calls to m[2][3] may be
optimized to be as efficient as m[2,3] by the Stan compiler.

212

22.5. Array Data Types

Stan supports arrays of arbitrary dimension. An array’s elements may be any of the
basic data types, that is univariate integers, univariate reals, vectors, row vectors
matrices, including all of the constrained forms.

Declaring Array Variables

Arrays are declared by enclosing the dimensions in square brackets following the
name of the variable.

The variable n is declared as an array of five integers as follows.

int n[5];

A two-dimensional array of real values with three rows and four columns is declared
with the following.

real a[3,4];

A three-dimensional array z of positive reals with five rows, four columns, and two
shelves can be declared as follows.

real<lower=0> z[5,4,2];

Arrays may also be declared to contain vectors. For example,

vector[7] mu[3];

declares mu to be a 3-dimensional array of 7-vectors. Arrays may also contain matri-
ces. The example

matrix[7,2] mu[15,12];

declares a 15× 12-dimensional array of 7× 2 matrices. Any of the constrained types
may also be used in arrays, as in the declaration

cholesky_factor_cov[5,6] mu[2,3,4];

of a 2× 3× 4 array of 5× 6 Cholesky factors of covariance matrices.

213

Accessing Array Elements and Subarrays

If x is a 1-dimensional array of length 5, then x[1] is the first element in the array
and x[5] is the last. For a 3×4 array y of two dimensions, y[1,1] is the first element
and y[3,4] the last element. For a three-dimensional array z, the first element is
z[1,1,1], and so on.

Subarrays of arrays may be accessed by providing fewer than the full number
of indexes. For example, suppose y is a two-dimensional array with three rows and
four columns. Then y[3] is one-dimensional array of length four. This means that
y[3][1] may be used instead of y[3,1] to access the value of the first column of
the third row of y. The form y[3,1] is the preferred form (see Footnote 2 in this
chapter).

Subarrays may be manipulated and assigned just like any other variables. Similar
to the behavior of matrices, Stan allows blocks such as

real w[9,10,11];
real x[10,11];
real y[11];
real z;
...
x <- w[5];
y <- x[4]; // y == w[5][4] == w[5,4]
z <- y[3]; // z == w[5][4][3] == w[5,4,3]

Assigning

—fixme—

Arrays of Matrices and Vectors

Arrays of vectors and matrices are accessed in the same way as arrays of doubles.
Consider the following vector and scalar declarations.

vector[5] a[4,3];
vector[5] b[4];
vector[5] c;
real x;

With these declarations, the following assignments are legal.

b <- a[1]; // result is array of vectors
c <- a[1,3]; // result is vector
c <- b[3]; // same result as above

214

x <- a[1,3,5]; // result is scalar
x <- b[3,5]; // same result as above
x <- c[5]; // same result as above

Row vectors and other derived vector types (simplex and ordered) behave the same
way in terms of indexing.

Consider the following matrix, vector and scalar declarations.

matrix[6,5] d[3,4];
matrix[6,5] e[4];
matrix[6,5] f;
row_vector[5] g;
real x;

With these declarations, the following definitions are legal.

e <- d[1]; // result is array of matrices
f <- d[1,3]; // result is matrix
f <- e[3]; // same result as above
g <- d[1,3,2]; // result is row vector
g <- e[3,2]; // same result as above
g <- f[2]; // same result as above
x <- d[1,3,5,2]; // result is scalar
x <- e[3,5,2]; // same result as above
x <- f[5,2]; // same result as above
x <- g[2]; // same result as above

As shown, the result f[2] of supplying a single index to a matrix is the indexed row,
here row 2 of matrix f.

Partial Array Assignment

Subarrays of arrays may be assigned by indexing on the left-hand side of an assign-
ment statement. For example, the following is legal.

real x[I,J,K];
real y[J,K];
real z[K];
...
x[1] <- y;
x[1,1] <- z;

215

The sizes must match. Here, x[1] is a J by K array, as is is y.
Partial array assignment also works for arrays of matrices, vectors, and row vec-

tors.

Mixing Array, Vector, and Matrix Types

Arrays, row vectors, column vectors and matrices are not interchangeable in Stan.
Thus a variable of any one of these fundamental types is not assignable to any of
the others, nor may it be used as an argument where the other is required (use as
arguments follows the assignment rules).

Mixing Vectors and Arrays

For example, vectors cannot be assigned to arrays or vice-versa.

real a[4];
vector b[4];
row_vector c[4];
...
a <- b; // illegal assignment of vector to array
b <- a; // illegal assignment of array to vector
a <- c; // illegal assignment of row vector to array
c <- a; // illegal assignment of array to row vector

Mixing Row and Column Vectors

It is not even legal to assign row vectors to column vectors or vice versa.

vector b[4];
row_vector c[4];
...
b <- c; // illegal assignment of row vector to column vector
c <- b; // illegal assignment of column vector to row vector

Mixing Matrices and Arrays

The same holds for matrices, where 2-dimensional arrays may not be assigned to
matrices or vice-versa.

real a[3,4];
matrix[3,4] b;
...

216

a <- b; // illegal assignment of matrix to array
b <- a; // illegal assignment of array to matrix

Mixing Matrices and Vectors

A 1×N matrix cannot be assigned a row vector or vice versa.

matrix[1,4] a;
row_vector[4] b;
...
a <- b; // illegal assignment of row vector to matrix
b <- a; // illegal assignment of matrix to row vector

Similarly, an M × 1 matrix may not be assigned to a column vector.

matrix[4,1] a;
vector[4] b;
...
a <- b; // illegal assignment of column vector to matrix
b <- a; // illegal assignment of matrix to column vector

Size Declaration Restrictions

An integer expression is used to pick out the sizes of arrays. The same restrictions
as for vector and matrix sizes apply, namely that the size is declared with an integer-
denoting expression that does not contain any parameters, transformed parameters,
or generated quantities.

22.6. Variable Types vs. Constraints and Sizes

The type information associated with a variable only contains the underlying type and
dimensionality of the variable.

Type Information Excludes Sizes

The size associated with a given variable is not part of its data type. For example,
declaring a variable using

real a[3];

declares the variable a to be an array. The fact that it was declared to have size 3 is
part of its declaration, but not part of its underlying type.

217

When are Sizes Checked?

Sizes are determined dynamically (at run time) and thus cannot be type-checked stat-
ically when the program is compiled. As a result, any conformance error on size will
raise a run-time error. For example, trying to assign an array of size 5 to an array of
size 6 will cause a run-time error. Similarly, multiplying an N ×M by a J × K matrix
will raise a run-time error if M ≠ J.

Type Information Excludes Constraints

Like sizes, constraints are not treated as part of a variable’s type in Stan when it
comes to the compile-time check of operations it may participate in. Anywhere Stan
accepts a matrix as an argument, it will syntactically accept a correlation matrix or
covariance matrix or Cholesky factor. Thus a covariance matrix may be assigned to a
matrix and vice-versa.

Similarly, a bounded real may be assigned to an unconstrained real and vice-versa.

When are Function Argument Constraints Checked?

For arguments to functions, constraints are sometimes, but not always checked when
the function is called. Exclusions include C++ standard library functions. All proba-
biliy functions and cumulative distribution functions check that their arguments are
appropriate at run time as the function is called.

When are Declared Variable Constraints Checked?

For data variables, constraints are checked after the variable is read from a data file or
other source. For transformed data variables, the check is done after the statements
in the transformed data block have executed. Thus it is legal for intermediate values
of variables to not satisfy declared constraints.

For parameters, constraints are enforced by the transform applied and do not
need to be checked. For transformed parameters, the check is done after the state-
ments in the transformed parameter block have executed.

For generated quantities, constraints are enforced after the statements in the gen-
erated quantities block have executed.

Type Naming Notation

In order to refer to data types, it is convenient to have a way to refer to them. The
type naming notation outlined in this section is not part of the Stan programming
language, but rather a convention adopted in this document to enable a concise de-
scription of a type.

218

Because size information is not part of a data type, data types will be written
without size information. For instance, real[] is the type of one-dimensional array
of reals and matrix is the type of matrices. The three-dimensional integer array
type is written as int[, ,], indicating the number slots available for indexing.
Similarly, vector[,] is the type of a two-dimensional array of vectors.

219

23. Expressions

An expression is the basic syntactic unit in a Stan program that denotes a value. Every
expression in a well-formed Stan program has a type that is determined statically
(at compile time). If an expressions type cannot be determined statically, the Stan
compiler (see Section 3.3) will report the location of the problem.

This chapter covers the syntax, typing, and usage of the various forms of expres-
sions in Stan.

23.1. Numeric Literals

The simplest form of expression is a literal that denotes a primitive numerical value.

Integer Literals

Integer literals represent integers of type int. Integer literals are written in base
10 without any separators. Integer literals may contain a single negative sign. (The
expression --1 is interpreted as the negation of the literal -1.)

The following list contains well-formed integer literals.

0, 1, -1, 256, -127098, 24567898765

Integer literals must have values that fall within the bounds for integer values (see
Section 22.2).

Integer literals may not contain decimal points (.). Thus the expressions 1. and
1.0 are of type real and may not be used where a value of type int is required.

Real Literals

A number written with a period or with scientific notation is assigned to a the con-
tinuous numeric type real. Real literals are written in base 10 with a period (.) as a
separator. Examples of well-formed real literals include the following.

0.0, 1.0, 3.14, -217.9387, 2.7e3, -2E-5

The notation e or E followed by a positive or negative integer denotes a power of 10
to multiply. For instance, 2.7e3 denotes 2.7× 103 and -2E-5 denotes −2× 10−5.

220

23.2. Variables

A variable by itself is a well-formed expression of the same type as the variable.
Variables in Stan consist of ASCII strings containing only the basic lower-case and
upper-case Roman letters, digits, and the underscore (_) character. Variables must
start with a letter (a-z and A-Z) and may not end with two underscores (__).

Examples of legal variable identifiers are as follows.

a, a3, a_3, Sigma, my_cpp_style_variable, myCamelCaseVariable

Unlike in R and BUGS, variable identifiers in Stan may not contain a period character.

Reserved Names

Stan reserves many strings for internal use and these may not be used as the name
of a variable. An attempt to name a variable after an internal string results in the
stanc translator halting with an error message indicating which reserved name was
used and its location in the model code.

Model Name

The name of the model cannot be used as a variable within the model. This is usually
not a problem because the default in bin/stanc is to append _model to the name
of the file containing the model specification. For example, if the model is in file
foo.stan, it would not be legal to have a variable named foo_model when using the
default model name through bin/stanc. With user-specified model names, variables
cannot match the model.

Reserved Words from Stan Language

The following list contains reserved words for Stan’s programming language. Not all
of these features are implemented in Stan yet, but the tokens are reserved for future
use.

for, in, while, repeat, until, if, then, else, true, false

Variables should not be named after types, either, and thus may not be any of the
following.

int, real, vector, simplex, unit_vector, ordered,
positive_ordered, row_vector, matrix, cholesky_factor_cov,
corr_matrix, cov_matrix.

Variable names will not conflict with the following block identifiers,

model, data, parameters, quantities, transformed, generated,

221

Reserved Names from Stan Implementation

Some variable names are reserved because they are used within Stan’s C++ implemen-
tation. These are

var fvar

Reserved Function and Distribution Names

Variable names will conflict with the names of predefined functions other than con-
stants. Thus a variable may not be named logit or add, but it may be named pi or
e.

Variable names will also conflict with the names of distributions suffixed with
_log, _cdf, _cdf_log, and _ccdf_log, such as normal_cdf_log.

Using any of these variable names causes the stanc translator to halt and report
the name and location of the variable causing the conflict.

Reserved Names from C++

Finally, variable names, including the names of models, should not conflict with any
of the C++ keywords.

alignas, alignof, and, and_eq, asm, auto, bitand, bitor, bool,
break, case, catch, char, char16_t, char32_t, class, compl,
const, constexpr, const_cast, continue, decltype, default, delete,
do, double, dynamic_cast, else, enum, explicit, export, extern,
false, float, for, friend, goto, if, inline, int, long, mutable,
namespace, new, noexcept, not, not_eq, nullptr, operator, or, or_eq,
private, protected, public, register, reinterpret_cast, return,
short, signed, sizeof, static, static_assert, static_cast, struct,
switch, template, this, thread_local, throw, true, try, typedef,
typeid, typename, union, unsigned, using, virtual, void, volatile,
wchar_t, while, xor, xor_eq

Legal Characters

The legal variable characters have the same ASCII code points in the range 0–127 as
in Unicode.

Characters ASCII (Unicode) Code Points

a - z 97 - 122
A - Z 65 - 90
0 - 9 48 - 57

_ 95

222

Although not the most expressive character set, ASCII is the most portable and least
prone to corruption through improper character encodings or decodings.

Comments Allow ASCII-Compatible Encoding

Within comments, Stan can work with any ASCII-compatible character encoding, such
as ASCII itself, UTF-8, or Latin1. It is up to user shells and editors to display them
properly.

23.3. Parentheses for Grouping

Any expression wrapped in parentheses is also an expression. Like in C++, but unlike
in R, only the round parentheses, (and), are allowed. The square brackets [and]
are reserved for array indexing and the curly braces { and } for grouping statements.

With parentheses it is possible to explicitly group subexpressions with operators.
Without parentheses, the expression 1 + 2 * 3 has a subexpression 2 * 3 and eval-
uates to 7. With parentheses, this grouping may be made explicit with the expression
1 + (2 * 3). More importantly, the expression (1 + 2) * 3 has 1 + 2 as a subex-
pression and evaluates to 9.

23.4. Arithmetic and Matrix Expressions

For integer and real-valued expressions, Stan supports the basic binary arithmetic
operations of addition (+), subtraction (-), multiplication (*) and division (/) in the
usual ways. Stan also supports the unary operation of negation for integer and real-
valued expressions. For example, assuming n and m are integer variables and x and y
real variables, the following expressions are legal.

3.0 + 0.14, -15, 2 * 3 + 1, (x - y) / 2.0,
(n * (n + 1)) / 2, x / n

The negation, addition, subtraction, and multiplication operations are extended to
matrices, vectors, and row vectors. The transpose operation, written using an apos-
trophe (’) is also supported for vectors, row vectors, and matrices. Return types for
matrix operations are the smallest types that can be statically guaranteed to contain
the result. The full set of allowable input types and corresponding return types is
detailed in Chapter 32.

For example, if y and mu are variables of type vector and Sigma is a variable of
type matrix, then

(y - mu)’ * Sigma * (y - mu)

223

is a well-formed expression of type real. The type of the complete expression is
inferred working outward from the subexpressions. The subexpression(s) y - mu are
of type vector because the variables y and mu are of type vector. The transpose of
this expression, the subexpression (y - mu)’ is of type row_vector. Multiplication
is left associative and transpose has higher precedence than multiplication, so the
above expression is equivalent to the following well-formed, fully specified form.

(((y - mu)’) * Sigma) * (y - mu)

The type of subexpression (y - mu)’ * Sigma is inferred to be row_vector, being
the result of multiplying a row vector by a matrix. The whole expression’s type is
thus the type of a row vector multiplied by a (column) vector, which produces a real
value.

Operator Precedence and Associativity

The precedence and associativity of operators, as well as built-in syntax such as ar-
ray indexing and function application is given in tabular form in Figure 23.1. Other
expression-forming operations, such as function application and subscripting bind
more tightly than any of the arithmetic operations.

The precedence and associativity determine how expressions are interpreted. Be-
cause addition is left associative, the expression a+b+c is interpreted as (a+b)+c.
Similarly, a/b*c is interpreted as (a/b)*c.

Because multiplication has higher precedence than addition, the expression a*b+c
is interpreted as (a*b)+c and the expression a+b*c is interpreted as a+(b*c). Simi-
larly, 2*x+3*-y is interpreted as (2*x)+(3*(-y)).

Transposition binds tighter than all other operations, so that -u’ is interpreted
as -(u’), u*v’ as u*(v’), and u’*v as (u’)*v.

23.5. Subscripting

Stan arrays, matrices, vectors, and row vectors are all accessed using the same array-
like notation. For instance, if x is a variable of type real[] (a one-dimensional array
of reals) then x[1] is the value of the first element of the array.

Subscripting has higher precedence than any of the arithmetic operations. For
example, alpha*x[1] is equivalent to alpha*(x[1]).

Multiple subscripts may be provided within a single pair of square brackets. If x
is of type real[,], a two-dimensional array, then x[2,501] is of type real.

224

Op. Prec. Assoc. Placement Description

|| 9 left binary infix logical or

&& 8 left binary infix logical and

== 7 left binary infix equality
!= 7 left binary infix inequality

< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal

+ 5 left binary infix addition
- 5 left binary infix subtraction

* 4 left binary infix multiplication
/ 4 left binary infix (right) division

\ 3 left binary infix left division

.* 2 left binary infix elementwise multiplication

./ 2 left binary infix elementwise division

! 1 n/a unary prefix logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix promotion (no-op in Stan)

’ 0 n/a unary postfix transposition

() 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing

Figure 23.1: Stan’s unary and binary operators, with their precedences, associativities,
place in an expression, and a description. The last two lines list the precedence of func-
tion application and array, matrix, and vector indexing. The operators are listed in
order of precedence, from least tightly binding to most tightly binding. The full set of
legal arguments and corresponding result types are provided in the function documen-
tation in Part V prefaced with operator (i.e., operator*(int,int):int indicates the
application of the multiplication operator to two integers, which returns an integer).
Parentheses may be used to group expressions explicitly rather than relying on prece-
dence and associativity.

225

Accessing Subarrays

The subscripting operator also returns subarrays of arrays. For example, if x is of
type real[, ,], then x[2] is of type real[,], and x[2,3] is of type real[].
As a result, the expressions x[2,3] and x[2][3] have the same meaning.

Accessing Matrix Rows

If Sigma is a variable of type matrix, then Sigma[1] denotes the first row of Sigma
and has the type row_vector.

Mixing Array and Vector/Matrix Indexes

Stan supports mixed indexing of arrays and their vector, row vector or matrix values.
For example, if m is of type matrix[,], a two-dimensional array of matrices, then
m[1] refers to the first row of the array, which is a one-dimensional array of matrices.
More than one index may be used, so that m[1,2] is of type matrix and denotes the
matrix in the first row and second column of the array. Continuing to add indices,
m[1,2,3] is of type row_vector and denotes the third row of the matrix denoted by
m[1,2]. Finally, m[1,2,3,4] is of type real and denotes the value in the third row
and fourth column of the matrix that is found at the first row and second column of
the array m.

23.6. Function Application

Stan provides a broad-range of built in mathematical and statistical functions, which
are documented in Part V.

Expressions in Stan may consist of the name of function followed by a sequence
of zero or more argument expressions. For instance, log(2.0) is the expression of
type real denoting the result of applying the natural logarithm to the value of the
real literal 2.0.

Syntactically, function application has higher precedence than any of the other
operators, so that y + log(x) is interpreted as y + (log(x)).

Type Signatures and Result Type Inference

Each function has a type signature which determines the allowable type of its ar-
guments and its return type. For instance, the function signature for the logarithm
function can be expressed as

real log(real);

226

and the signature for the multiply_log function is

real multiply_log(real,real);

A function is uniquely determined by its name and its sequence of argument types.
For instance, the following two functions are different functions.

real mean(real[]);
real mean(vector);

The first applies to a one-dimensional array of real values and the second to a vector.
The identity conditions for functions explicitly forbids having two functions with

the same name and argument types but different return types. This restriction also
makes it possible to infer the type of a function expression compositionally by only
examining the type of its subexpressions.

Constants

Constants in Stan are nothing more than nullary (no-argument) functions. For in-
stance, the mathematical constants π and e are represented as nullary functions
named pi() and e(). See Section 30.1 for a list of built-in constants.

Type Promotion and Function Resolution

Because of integer to real type promotion, rules must be established for which func-
tion is called given a sequence of argument types. The scheme employed by Stan is
the same as that used by C++, which resolves a function call to the function requiring
the minimum number of type promotions.

For example, consider a situation in which the following two function signatures
have been registered for foo.

real foo(real,real);
int foo(int,int);

The use of foo in the expression foo(1.0,1.0) resolves to foo(real,real), and
thus the expression foo(1.0,1.0) itself is assigned a type of real.

Because integers may be promoted to real values, the expression foo(1,1) could
potentially match either foo(real,real) or foo(int,int). The former requires two
type promotions and the latter requires none, so foo(1,1) is resolved to function
foo(int,int) and is thus assigned the type int.

The expression foo(1,1.0) has argument types (int,real) and thus does not
explicitly match either function signature. By promoting the integer expression 1 to
type real, it is able to match foo(real,real), and hence the type of the function
expression foo(1,1.0) is real.

227

In some cases (though not for any built-in Stan functions), a situation may arise
in which the function referred to by an expression remains ambiguous. For example,
consider a situation in which there are exactly two functions named bar with the
following signatures.

real bar(real,int);
real bar(int,real);

With these signatures, the expression bar(1.0,1) and bar(1,1.0) resolve to the
first and second of the above functions, respectively. The expression bar(1.0,1.0)
is illegal because real values may not be demoted to integers. The expression
bar(1,1) is illegal for a different reason. If the first argument is promoted to a
real value, it matches the first signature, whereas if the second argument is promoted
to a real value, it matches the second signature. The problem is that these both re-
quire one promotion, so the function name bar is ambiguous. If there is not a unique
function requiring fewer promotions than all others, as with bar(1,1) given the two
declarations above, the Stan compiler will flag the expression as illegal.

Random-Number Generating Functions

For most of the distributions supported by Stan, there is a corresponding random-
number generating function. These random number generators are named by the
distribution with the suffix _rng. For example, a univariate normal random number
can be generated by normal_rng(0,1); only the parameters of the distribution, here
a location (0) and scale (1) are specified because the variate is generated.

Random-Number Generators Restricted to Generated Quantities Block

The use of random-number generating functions is restricted to the generated quan-
tities block; attempts to use them elsewhere will result in a parsing error with a
diagnostic message.

This allows the random number generating functions to be used for simulation in
general, and for Bayesian posterior predictive checking in particular.

Posterior Predictive Checking

Posterior predictive checks typically use the parameters of the model to generate
simulated data (at the individual and optionally at the group level for hierarchical
models), which can then be compared informally using plots and formally by means
of test statistics, to the actual data in order to assess the suitability of the model; see
(Gelman et al., 2013, Chapter 6) for more information on posterior predictive checks.

228

Type Primitive Type

int int
real real

matrix matrix
cov_matrix matrix
corr_matrix matrix

cholesky_factor_cov matrix

Type Primitive Type

vector vector
simplex vector

unit_vector vector
ordered vector

positive_ordered vector

row_vector row_vector

Figure 23.2: The table shows the variable declaration types of Stan and their cor-
responding primitive implementation type. Stan functions, operators and probability
functions have argument and result types declared in terms of primitive types.

23.7. Type Inference

Stan is strongly statically typed, meaning that the implementation type of an expres-
sion can be resolved at compile time.

Implementation Types

The primitive implementation types for Stan are int, real, vector, row_vector, and
matrix. Every basic declared type corresponds to a primitive type; see Figure 23.2 for
the mapping from types to their primitive types. A full implementation type consists
of a primitive implementation type and an integer array dimensionality greater than
or equal to zero. These will be written to emphasize their array-like nature. For
example, int[] has an array dimensionality of 1, int an array dimensionality of 0,
and int[„] an array dimensionality of 3. The implementation type matrix[„] has
a total of five dimensions and takes up to five indices, three from the array and two
from the matrix.

Recall that the array dimensions come before the matrix or vector dimensions
in an expression such as the following declaration of a three-dimensional array of
matrices.

229

matrix[M,N] a[I,J,K];

The matrix a is indexed as a[i,j,k,m,n] with the array indices first, followed by the
matrix indices, with a[i,j,k] being a matrix and a[i,j,k,m] being a row vector.

Type Inference Rules

Stan’s type inference rules define the implementation type of an expression based on
a background set of variable declarations. The rules work bottom up from primitive
literal and variable expressions to complex expressions.

Literals

An integer literal expression such as 42 is of type int. Real literals such as 42.0 are
of type real.

Variables

The type of a variable declared locally or in a previous block is determined by its
declaration. The type of a loop variable is int.

There is always a unique declaration for each variable because Stan prohibits the
redeclaration of an already-declared variables.1

Indexing

If x is an expression of total dimensionality greater than or equal to N, then the type
of expression e[i1,...,iN] is the same as that of e[i1]...[iN], so it suffices to
define the type of a singly-indexed function. Suppose e is an expression and i is an
expression of primitive type int. Then

• if e is an expression of array dimensionality K > 0, then e[i] has array dimen-
sionality K − 1 and the same primitive implementation type as e,

• if e has implementation type vector or row_vector of array dimensionality 0,
then e[i] has implementation type real, and

• if e has implementation type matrix, then e[i] has type row_vector.

1Languages such as C++ and R allow the declaration of a variable of a given name in a narrower scope
to hide (take precedence over for evaluation) a variable defined in a containing scope. Stan will have to
introduce this behavior eventually for user-defined functions written in Stan.

230

Function Application

If f is the name of a function and e1,...,eN are expressions for N ≥ 0, then
f(e1,...,eN) is an expression whose type is determined by the return type in the
function signature for f given e1 through eN. Recall that a function signature is a
declaration of the argument types and the result type.

In looking up functions, binary operators like real * real are defined as
operator*(real,real) in the documentation and index.

In matching a function definition, arguments of type int may be promoted to type
real if necessary (see the subsection on type promotion in Section 23.6 for an exact
specification of Stan’s integer-to-real type-promotion rule).

In general, matrix operations return the lowest inferrable type. For example,
row_vector * vector returns a value of type real, which is declared in the function
documentation and index as real operator*(row_vector,vector).

23.8. Chain Rule and Derivatives

Derivatives of the log probability function defined by a model are used in several ways
by Stan. The Hamiltonian Monte Carlo samplers, including NUTS, use gradients to
guide updates. The BFGS optimizers also use gradients to guide search for posterior
modes.

Errors Due to Chain Rule

Unlike evaluations in pure mathematics, evaluation of derivatives in Stan is done
by applying the chain rule on an expression-by-expression basis, evaluating using
floating-point arithmetic. As a result, models such as the following are problematic
for inference involving derivatives.

parameters {
real x;

}
model {
x ~ normal(sqrt(x - x), 1);

}

Algebraically, the sampling statement in the model could be reduced to

x ~ normal(0, 1);

and it would seem the model should produce unit normal samples for x. But rather
than cancelling, the expression sqrt(x - x) causes a problem for derivatives. The

231

cause is the mechanistic evaluation of the chain rule,

d
dx
√
x− x = 1

2
√
x− x ×

d
dx
(x− x)

= 1
0
× (1− 1)

= ∞× 0

= NaN.

Rather than the x− x cancelling out, it introduces a 0 into the numerator and denom-
inator of the chain-rule evaluation.

The only way to avoid this kind problem is to be careful to do the necessary
algebraic reductions as part of the model and not introduce expressions like sqrt(x
- x) for which the chain rule produces not-a-number values.

Diagnosing Problems with Derivatives

The best way to diagnose whether something is going wrong with the derivatives
is to use the test-gradient option to the sampler or optimizer inputs; this option is
available in both Stan and RStan (though it may be slow, because it relies on finite
differences to make a comparison to the built-in automatic differentiation).

For example, compiling the above model to an executable sqrt-x-minus-x, the
test can be run as

> ./sqrt-x-minus-x diagnose test=gradient

...

TEST GRADIENT MODE

Log probability=-0.393734

param idx value model finite diff error

0 -0.887393 nan 0 nan

Even though finite differences calculates the right gradient of 0, automatic differenti-
ation follows the chain rule and produces a not-a-number output.

232

24. Statements

The blocks of a Stan program (see Chapter 25) are made up of variable declarations
and statements. Unlike programs in BUGS, the declarations and statements making
up a Stan program are executed in the order in which they are written. Variables must
be defined to have some value (as well as declared to have some type) before they are
used — if they do not, the behavior is undefined.

Like BUGS, Stan has two kinds of atomic statements, assignment statements and
sampling statements. Also like BUGS, statements may be grouped into sequences and
into for-each loops. In addition, Stan allows local variables to be declared in blocks
and also allows an empty statement consisting only of a semicolon.

24.1. Assignment Statement

An assignment statement consists of a variable (possibly multivariate with indexing
information) and an expression. Executing an assignment statement evaluates the
expression on the right-hand side and assigns it to the (indexed) variable on the left-
hand side. An example of a simple assignment is

n <- 0;

Executing this statement assigns the value of the expression 0, which is the integer
zero, to the variable n. For an assignment to be well formed, the type of the expression
on the right-hand side should be compatible with the type of the (indexed) variable
on the left-hand side. For the above example, because 0 is an expression of type int,
the variable n must be declared as being of type int or of type real. If the variable
is of type real, the integer zero is promoted to a floating-point zero and assigned
to the variable. After the assignment statement executes, the variable n will have the
value zero (either as an integer or a floating-point value, depending on its type).

Syntactically, every assignment statement must be followed by a semicolon. Oth-
erwise, whitespace between the tokens does not matter (the tokens here being the left-
hand-side (indexed) variable, the assignment operator, the right-hand-side expression
and the semicolon).

Because the right-hand side is evaluated first, it is possible to increment a variable
in Stan just as in C++ and other programming languages by writing

n <- n + 1;

Such self assignments are not allowed in BUGS, because they induce a cycle into the
directed graphical model.

233

The left-hand side of an assignment may contain indices for array, matrix, or
vector data structures. For instance, if Sigma is of type matrix, then

Sigma[1,1] <- 1.0;

sets the value in the first column of the first row of Sigma to one.
Assignments can involve complex objects of any type. If Sigma and Omega are

matrices and sigma is a vector, then the following assignment statement, in which
the expression and variable are both of type matrix, is well formed.

Sigma
<- diag_matrix(sigma)

* Omega

* diag_matrix(sigma);

This example also illustrates the preferred form of splitting a complex assignment
statement and its expression across lines.

Assignments to slices of larger multi-variate data structures are supported by
Stan. For example, a is an array of type real[,] and b is an array of type real[],
then the following two statements are both well-formed.

a[3] <- b;
b <- a[4];

Similarly, if x is a variable declared to have type row_vector and Y is a variable
declared as type matrix, then the following sequence of statements to swap the first
two rows of Y is well formed.

x <- Y[1];
Y[1] <- Y[2];
Y[2] <- x;

In R, if x is a matrix or two-dimensional array, its first row is x[1,] and its first
column is x[,1]. As of version 2.0, this notation is not supported by Stan. There
are functions to access rows and columns of matrices, but general array slicing is not
supported. Similarly, Stan 2.0 does not support providing an array of indices as an
argument to create a piecemeal subarray of a larger array.

24.2. Log Probability Increment Statement

The basis of Stan’s execution is the evaluation of a log probability function for a
given set of parameters. Data and transformed data are fixed before log probability is

234

involved. Statements in the transformed parameter block and model block can have
an effect on the log probability function defined by a model.

The total log probability is initialized to zero. Then statements in the transformed
parameter block and model block may add to it. The most direct way this is done is
through the log probability increment statement, which is of the following form.

increment_log_prob(-0.5 * y * y);

In this example, the unnormalized log probability of a unit normal variable y is adeed
to the total log probability. In the general case, the argument can be any expression.1

An entire Stan model can be implemented this way. For instance, the following
model will draw a single variable according to a unit normal probability.

parameters {
real y;

}
model {
increment_log_prob(-0.5 * y * y);

}

This model defines a log probability function

logp(y) = − y
2

2
− logZ

where Z is a normalizing constant that does not depend on y . The constant Z is
conventionally written this way because on the linear scale,

p(y) = 1
Z

exp

(
−y

2

2

)
.

which is typically written without reference to Z as

p(y)∝ exp

(
−y

2

2

)
.

Stan only requires models to be defined up to a constant that does not depend
on the parameters. This is convenient because often the normalizing constant Z is
either time-consuming to compute or intractable to evaluate.

1Writing this model with the expression -0.5 * y * y is more efficient than with the equivalent expres-
sion y * y / -2 because multiplication is more efficient than division; in both cases, the negation is rolled
into the numeric literal (-0.5 and -2). Writing square(y) instead of y * y would be even more efficient
because the derivatives can be precomputed, reducing the memory and number of operations required for
automatic differentiation.

235

Vectorization

The increment_log_prob function accepts parameters of any expression type, in-
cluding integers, reals, vectors, row vectors, matrices, and arrays of any dimensional-
ity, including arrays of vectors and matrices.

Log Probability Variable lp__

Before version 2.0 of Stan, rather than writing

increment_log_prob(u);

it was necessary to manipulate a special variable lp__ as follows

lp__ <- lp__ + u;

The special variable lp__ refers to the log probability value that will be returned by
Stan’s log probability function.

Deprecation of lp__

As of Stan version 2.0, the use of lp__ is deprecated. It will be removed altogether
in a future release, but until that time, programs still work with lp__. A deprecation
warning is now printed every time lp__ is used.

24.3. Sampling Statements

Like BUGS and JAGS, Stan supports probability statements in sampling notation, such
as

y ~ normal(mu,sigma);

The name “sampling statement” is meant to be suggestive, not interpreted literally.
Conceptually, the variable y, which may be an unknown parameter or known, modeled
data, is being declared to have the distribution indicated by the right-hand side of the
sampling statement.

Executing such a statement does not perform any sampling. In Stan, a sampling
statement is merely a notational convenience. The above sampling statement could
be expressed as a direct increment on the total log probability as

increment_log_prob(normal_log(y,mu,sigma));

236

See the subsection of Section 24.3 discussing log probability increments for a full
explanation.

In general, a sampling statement of the form

ex0 ~ dist(ex1,...,exN);

involving subexpressions ex0 through exN (including the case where N is zero) will be
well formed if and only if the corresponding assignment statement is well-formed,

increment_log_prob(dist_log(ex0,ex1,...,exN));

This will be well formed if and only if dist_log(ex0,ex1,...,exN) is a well-formed
function expression of type real.

Log Probability Increment vs. Sampling Statement

Although both lead to the same sampling behavior in Stan, there is one critical differ-
ence between using the sampling statement, as in

y ~ normal(mu,sigma);

and explicitly incrementing the log probability function, as in

increment_log_prob(normal_log(y,mu,sigma));

The sampling statement drops all the terms in the log probability function that are
constant, whereas the explicit call to normal_log adds all of the terms in the defini-
tion of the log normal probability function, including all of the constant normalizing
terms. Therefore, the explicit increment form can be used to recreate the exact log
probability values for the model. Otherwise, the sampling statement form will be
faster if any of the input expressions, y, mu, or sigma, involve only constants, data
variables or transformed data variables.

User-Transformed Variables

The left-hand side of a sampling statement may be a complex expression. For in-
stance, it is legal syntactically to write

data {
real<lower=0> y;

}
...
model {
log(y) ~ normal(mu,sigma);

}

237

Unfortunately, this is not enough to properly model y as having a lognormal dis-
tribution. The log Jacobian of the transform must be added to the log probability
accumulator to account for the differential change in scale (see Section 51.1 for full
definitions). For the case above, the following adjustment will account for the log
transform.2

increment_log_prob(- log(fabs(y)));

Truncated Distributions

A density function p(x)may be truncated to an interval (a, b) to define a new density
p(a,b)(x) by setting

p(a,b)(x) =
p(x)∫ b

a p(x′) dx′
.

Given a probability function pX(x) for a random variable X, its cumulative distribu-
tion function (cdf) FX(x) is defined to be the probability that X ≤ a. For continuous
random variables, this is

FX(x) =
∫ x
−∞
pX(x′) dx′,

whereas for discrete variables, it’s

FX(x) =
∑
n≤x
pX(x).

The complementary cumulative distribution function (ccdf) is 1− FX(x).
Cumulative distribution functions are useful for defining truncated distributions,

because ∫ b
a
p(x′) dx′ = F(b)− F(a),

so that

p(a,b)(x) =
pX(x)

F(b)− F(a) .

On the log scale,

logp(a,b)(x) = logpX(x)− log (F(b)− F(a)) .

The denominator is more stably computed using Stan’s log_diff_exp operation as

log (F(b)− F(a)) = log
(
exp(logF(b))− exp(logF(a))

)
= log_diff_exp

(
logF(b), logF(a)

)
.

2Because log | ddy logy| = log |1/y| = − log |y|; see Section 51.1.

238

As in BUGS and JAGS, Stan allows probability functions to be truncated. For ex-
ample, a truncated unit normal distribution restricted to (−0.5,2.1) is encoded as
follows.

y ~ normal(0,1) T[-0.5, 2.1];

Truncated distributions are translated as an addition summation for the accumulated
log probability. For instance, this example has the same translation (up to arithmetic
precision issues; see below) as

increment_log_prob(normal_log(y,0,1));
increment_log_prob(-(log(normal_cdf(2.1,0,1)

- normal_cdf(-0.5,0,1))));

The function normal_cdf represents the cumulative normal distribution function.
For example, normal_cdf(2.1,0,1) evaluates to∫ 2.1

−∞
Normal(x|0,1) dx,

which is the probability a unit normal variable takes on values less than 2.1, or about
0.98.

Arithmetic precision is handled by working on the log scale and using Stan’s log
scale cdf implementations. The logarithm of the cdf for the normal distribution is
normal_cdf_log and the ccdf is normal_ccdf_log. Stan’s translation for the de-
nominator introduced by truncation is equivalent to

increment_log_prob(-log_diff_exp(normal_cdf_log(2.1,0,1),
normal_cdf_log(-0.5,0,1)));

As with constrained variable declarations, truncation can be one sided. The den-
sity p(x) can be truncated below by a to define a density p(a,)(x) with support (a,∞)
by setting

p(a,)(x) =
p(x)∫∞

a p(x′) dx′
.

For example, the unit normal distribution truncated below at -0.5 would be repre-
sented as

y ~ normal(0,1) T[-0.5,];

The truncation has the same effect as the following direct update to the accumulated
log probability (see the subsection of Section 24.3 contrasting log probability incre-
ment and sampling statements for more information).

239

increment_log_prob(normal_log(y, 0, 1));
increment_log_prob(-(1 - log(normal_cdf(-0.5, 0, 1))));

The denominator is actually implemented with the more efficient and stable version

increment_log_prob(-normal_ccdf_log(-0.5, 0, 1));

The density p(x) can be truncated above by b to define a density p(,b)(x) with
support (−∞, b) by setting

p(,b)(x) =
p(x)∫ b

−∞ p(x′) dx′
.

For example, the unit normal distribution truncated above at 2.1 would be repre-
sented as

y ~ normal(0,1) T[,2.1];

The truncation has the same effect as the following direct update to the accumulated
log probability.

increment_log_prob(normal_log(y, 0, 1));
increment_log_prob(-normal_cdf_log(2.1, 0, 1));

In all cases, the truncation is only well formed if the appropriate log cumulative
distribution functions are defined.3 Part VI and Part VII document the available dis-
crete and continuous cumulative distribution functions. Most distributions have cdf
and ccdf functions.

For continuous distributions, truncation points must be expressions of type int
or real. For discrete distributions, truncation points must be expressions of type
int.

For a truncated sampling statement, if the value sampled is not within the bounds
specified by the truncation expression, the result is zero probability and the entire
statement adds −∞ to the total log probability, which in turn results in the sample
being rejected; see the subsection of Section 12.2 discussing constraints and out-of-
bounds returns for programming strategies to keep all values within bounds.

Vectorizing Truncated Distributions

Stan does not (yet) support vectorization of distribution functions with truncation.

3Although most distributions have cdfs and ccdfs implemented, some cumulative distribution functions
and their gradients present computational challenges because they lack simple, analytic forms.

240

24.4. For Loops

Suppose N is a variable of type int, y is a one-dimensional array of type real[], and
mu and sigma are variables of type real. Furthermore, suppose that n has not been
defined as a variable. Then the following is a well-formed for-loop statement.

for (n in 1:N) {
y[n] ~ normal(mu,sigma);

}

The loop variable is n, the loop bounds are the values in the range 1:N, and the body
is the statement following the loop bounds.

Loop Variable Typing and Scope

The bounds in a for loop must be integers. Unlike in R, the loop is always interpreted
as an upward counting loop. The range L:H will cause the loop to execute the loop
with the loop variable taking on all integer values greater than or equal to L and less
than or equal to H. For example, the loop for (n in 2:5) will cause the body of the
for loop to be executed with n equal to 2, 3, 4, and 5, in order. The variable and bound
for (n in 5:2) will not execute anything because there are no integers greater than
or equal to 5 and less than or equal to 2.

Order Sensitivity and Repeated Variables

Unlike in BUGS, Stan allows variables to be reassigned. For example, the variable
theta in the following program is reassigned in each iteration of the loop.

for (n in 1:N) {
theta <- inv_logit(alpha + x[n] * beta);
y[n] ~ bernoulli(theta);

}

Such reassignment is not permitted in BUGS. In BUGS, for loops are declarative, defin-
ing plates in directed graphical model notation, which can be thought of as repeated
substructures in the graphical model. Therefore, it is illegal in BUGS or JAGS to have
a for loop that repeatedly reassigns a value to a variable.4

In Stan, assignments are executed in the order they are encountered. As a con-
sequence, the following Stan program has a very different interpretation than the
previous one.

4A programming idiom in BUGS code simulates a local variable by replacing theta in the above example
with theta[n], effectively creating N different variables, theta[1], . . . , theta[N]. Of course, this is not a
hack if the value of theta[n] is required for all n.

241

for (n in 1:N) {
y[n] ~ bernoulli(theta);
theta <- inv_logit(alpha + x[n] * beta);

}

In this program, theta is assigned after it is used in the probability statement. This
presupposes it was defined before the first loop iteration (otherwise behavior is un-
defined), and then each loop uses the assignment from the previous iteration.

Stan loops may be used to accumulate values. Thus it is possible to sum the values
of an array directly using code such as the following.

total <- 0.0;
for (n in 1:N)
total <- total + x[n];

After the for loop is executed, the variable total will hold the sum of the elements
in the array x. This example was purely pedagogical; it is easier and more efficient to
write

total <- sum(x);

A variable inside (or outside) a loop may even be reassigned multiple times, as in
the following legal code.

for (n in 1:100) {
y <- y + y * epsilon;
epsilon <- epsilon / 2.0;
y <- y + y * epsilon;

}

24.5. Conditional Statements

Stan supports full conditional statements using the same if-then-else syntax as C++.
The general format is

if (condition1)
statement1

else if (condition2)
statement2

...
else if (conditionN-1)
statementN-1

else
statementN

242

There must be a single leading if clause, which may be followed by any number of
else if clauses, all of which may be optionally followed by an else clause. Each
condition must be a real or integer value, with non-zero values interpreted as true
and the zero value as false.

The entire sequence of if-then-else clauses forms a single conditional statement
for evaluation. The conditions are evaluated in order until one of the conditions
evaluates to a non-zero value, at which point its corresponding statement is executed
and the conditional statement finishes execution. If none of the conditions evaluates
to a non-zero value and there is a final else clause, its statement is executed.

24.6. While Statements

Stan supports standard while loops using the same syntax as C++. The general format
is as follows.

while (condition)
body

The condition must be an integer or real expression and the body can be any state-
ment (or sequence of statements in curly braces).

Evaluation of a while loop starts by evaluating the condition. If the condition
evaluates to a false (zero) value, the execution of the loop terminates and control
moves to the position after the loop. If the loop’s condition evaluates to a true (non-
zero) value, the body statement is executed, then the whole loop is executed again.
Thus the loop is continually executed as long as the condition evaluates to a true
value.

24.7. Statement Blocks and Local Variable Declarations

Just as parentheses may be used to group expressions, curly brackets may be used to
group a sequence of zero or more statements into a statement block. At the beginning
of each block, local variables may be declared that are scoped over the rest of the
statements in the block.

Blocks in For Loops

Blocks are often used to group a sequence of statements together to be used in the
body of a for loop. Because the body of a for loop can be any statement, for loops
with bodies consisting of a single statement can be written as follows.

243

for (n in 1:N)
y[n] ~ normal(mu,sigma);

To put multiple statements inside the body of a for loop, a block is used, as in the
following example.

for (n in 1:N) {
lambda[n] ~ gamma(alpha,beta);
y[n] ~ poisson(lambda[n]);

}

The open curly bracket ({) is the first character of the block and the close curly bracket
(}) is the last character.

Because whitespace is ignored in Stan, the following program will not compile.

for (n in 1:N)
y[n] ~ normal(mu,sigma);
z[n] ~ normal(mu,sigma); // ERROR!

The problem is that the body of the for loop is taken to be the statement directly fol-
lowing it, which is y[n] ~ normal(mu,sigma). This leaves the probability statement
for z[n] hanging, as is clear from the following equivalent program.

for (n in 1:N) {
y[n] ~ normal(mu,sigma);

}
z[n] ~ normal(mu,sigma); // ERROR!

Neither of these programs will compile. If the loop variable n was defined before the
for loop, the for-loop declaration will raise an error. If the loop variable n was not
defined before the for loop, then the use of the expression z[n] will raise an error.

Local Variable Declarations

A for loop has a statement as a body. It is often convenient in writing programs to be
able to define a local variable that will be used temporarily and then forgotten. For
instance, the for loop example of repeated assignment should use a local variable for
maximum clarity and efficiency, as in the following example.

for (n in 1:N) {
real theta;
theta <- inv_logit(alpha + x[n] * beta);
y[n] ~ bernoulli(theta);

}

244

The local variable theta is declared here inside the for loop. The scope of a local
variable is just the block in which it is defined. Thus theta is available for use inside
the for loop, but not outside of it. As in other situations, Stan does not allow variable
hiding. So it is illegal to declare a local variable theta if the variable theta is already
defined in the scope of the for loop. For instance, the following is not legal.

for (m in 1:M) {
real theta;
for (n in 1:N) {

real theta; // ERROR!
theta <- inv_logit(alpha + x[m,n] * beta);
y[m,n] ~ bernoulli(theta);

...

The compiler will flag the second declaration of theta with a message that it is al-
ready defined.

No Constraints on Local Variables

Local variables may not have constraints on their declaration. The only types that
may be used are

int, real, vector[K], row_vector[K], and matrix[M,N].

Blocks within Blocks

A block is itself a statement, so anywhere a sequence of statements is allowed, one or
more of the statements may be a block. For instance, in a for loop, it is legal to have
the following

for (m in 1:M) {
{

int n;
n <- 2 * m;
sum <- sum + n

}
for (n in 1:N)

sum <- sum + x[m,n];
}

The variable declaration int n; is the first element of an embedded block and so
has scope within that block. The for loop defines its own local block implicitly over
the statement following it in which the loop variable is defined. As far as Stan is
concerned, these two uses of n are unrelated.

245

24.8. Print Statements

Stan provides print statements that can print literal strings and the values of expres-
sions. Print statements accept any number of arguments. Consider the following
for-each statement with a print statement in its body.

for (n in 1:N) { print("loop iteration: ", n); ... }

The print statement will execute every time the body of the loop does. Each time
the loop body is executed, it will print the string “loop iteration: ” (with the trailing
space), followed by the value of the expression n, followed by a new line.

Print Content

The text printed by a print statement varies based on its content. A literal (i.e., quoted)
string in a print statement always prints exactly that string (without the quotes).
Expressions in print statements result in the value of the expression being printed.
But how the value of the expression is formatted will depend on its type.

Printing a simple real or int typed variable always prints the variable’s value.5

For array, vector, and matrix variables, the print format uses brackets. For example,
a 3-vector will print as

[1,2,3]

and a 2× 3-matrix as

[[1,2,3],[4,5,6]]

Printing a more readable version of arrays or matrices can be done with loops. An
example is the print statement in the following transformed data block.

transformed data {
matrix[2,2] u;
u[1,1] <- 1.0; u[1,2] <- 4.0;
u[2,1] <- 9.0; u[2,2] <- 16.0;
for (n in 1:2)

print("u[", n, "] = ", u[n]);
}

This print statement executes twice, printing the following two lines of output.

u[1] = [1,4]
u[2] = [9,16]

5The adjoint component is always zero during execution for the algorithmic differentiation variables
used to implement parameters, transformed parameters, and local variables in the model.

246

Print Frequency

Printing for a print statement happens every time it is executed. The transformed
data block is executed once per chain, the transformed parameter and model
blocks once per leapfrog step, and the generated quantities block once per it-
eration.

String Literals

String literals begin and end with a double quote character ("). The characters be-
tween the double quote characters may be the space character or any visible ASCII
character, with the exception of the backslash character (\) and double quote charac-
ter ("). The full list of visible ASCII characters is as follows.

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 0 ~ @ # $ % ^ & * _ ’ ‘ - + = {
} [] () < > | / ! ? . , ; :

Debug by print

Because Stan is an imperative language, print statements can be very useful for de-
bugging. They can be used to display the values of variables or expressions at various
points in the execution of a program. They are particularly useful for spotting prob-
lematic not-a-number of infinite values, both of which will be printed.

247

25. Program Blocks

A Stan program is organized into a sequence of named blocks, the bodies of which
consist of variable declarations, followed in the case of some blocks with statements.

25.1. Comments

Stan supports C++-style line-based and bracketed comments. Comments may be used
anywhere whitespace is allowed in a Stan program.

Line-Based Comments

In line-based comments, any text on a line following two forward slashes (//) or the
pound sign (#) is ignored (along with the slashes or pound sign).

Bracketed Comments

For bracketed comments, any text between a forward-slash and asterisk pair (/*) and
an asterisk and forward-slash pair (*/) is ignored.

Character Encoding

Comments may be in ASCII, UTF-8, Latin1, or any other character encoding that is
byte-wise compatible with ASCII. This excludes encodings like UTF-16, Big5, etc.1

25.2. Overview of Stan’s Program Blocks

The full set of named program blocks is exemplified in the following skeletal Stan
program.

data {
... declarations ...

}
transformed data {

... declarations ... statements ...
}
parameters {

... declarations ...

1The issue is that they will separate the characters in */ and */.

248

}
transformed parameters {

... declarations ... statements ...
}
model {

... declarations ... statements ...
}
generated quantities {

... declarations ... statements ...
}

Optionality and Ordering

All of the blocks other than the model block are optional. The blocks that occur must
occur in the order presented in the skeletal program above. Within each block, both
declarations and statements are optional, subject to the restriction that the declara-
tions come before the statements.

Variable Scope

The variables declared in each block have scope over all subsequent statements. Thus
a variable declared in the transformed data block may be used in the model block. But
a variable declared in the generated quantities block may not be used in any earlier
block, including the model block.

However, variables declared in the model block are always local to the model
block.

Automatic Variable Definitions

The variables declared in the data and parameters block are treated differently than
other variables in that they are automatically defined by the context in which they are
used. This is why there are no statements allowed in the data or parameters block.

The variables in the data block are read from an external input source such as
a file or a designated R data structure. The variables in the parameters block are
read from the sampler’s current parameter values (either standard HMC or NUTS).
The initial values may be provided through an external input source, which is also
typically a file or a designated R data structure. In each case, the parameters are
instantiated to the values for which the model defines a log probability function.

249

Transformed Variables

The transformed data and transformed parameters block behave similarly to
each other. Both allow new variables to be declared and then defined through a
sequence of statements. Because variables scope over every statement that follows
them, transformed data variables may be defined in terms of the data variables.

Before generating any samples, data variables are read in, then the transformed
data variables are declared and the associated statements executed to define them.
This means the statements in the transformed data block are only ever evaluated
once.2 Transformed parameters work the same way, being defined in terms of the
parameters, transformed data, and data variables. The difference is the frequency of
evaluation. Parameters are read in and (inverse) transformed to constrained repre-
sentations on their natural scales once per log probability and gradient evaluation.
This means the inverse transforms and their log absolute Jacobian determinants are
evaluated once per leapfrog step. Transformed parameters are then declared and
their defining statements executed once per leapfrog step.

Generated Quantities

The generated quantity variables are defined once per sample after all the leapfrog
steps have been completed. These may be random quantities, so the block must be
rerun even if the Metropolis adjustment of HMC or NUTS rejects the update proposal.

Variable Read, Write, and Definition Summary

A table summarizing the point at which variables are read, written, and defined is
given in Figure 25.1. Another way to look at the variables is in terms of their function.
To decide which variable to use, consult the charts in Figure 25.2. The last line has
no corresponding location, as there is no need to print a variable every iteration that
does not depend on parameters.3 The rest of this chapter provides full details on
when and how the variables and statements in each block are executed.

25.3. Statistical Variable Taxonomy

(Gelman and Hill, 2007, p. 366) provides a taxonomy of the kinds of variables used
in Bayesian models. Figure 25.3 contains Gelman and Hill’s taxonomy along with a

2If the C++ code is configured for concurrent threads, the data and transformed data blocks can be
executed once and reused for multiple chains.

3It is possible to print a variable every iteration that does not depend on parameters — just define it (or
redefine it if it is transformed data) in the generated quantities block.

250

Block Stmt Action / Period

data no read / chain
transformed data yes evaluate / chain

parameters no inv. transform, Jacobian / leapfrog
inv. transform, write / sample

transformed parameters yes evaluate / leapfrog
write / sample

model yes evaluate / leapfrog step

generated quantities yes eval / sample
write / sample

(initialization) n/a read, transform / chain

Figure 25.1: The read, write, transform, and evaluate actions and periodicities listed
in the last column correspond to the Stan program blocks in the first column. The
middle column indicates whether the block allows statements. The last row indicates
that parameter initialization requires a read and transform operation applied once per
chain.

missing-data kind along with the corresponding locations of declarations and defini-
tions in Stan.

Constants can be built into a model as literals, data variables, or as transformed
data variables. If specified as variables, their definition must be included in data files.
If they are specified as transformed data variables, they cannot be used to specify the
sizes of elements in the data block.

The following program illustrates various variables kinds, listing the kind of each
variable next to its declaration.

data {

int<lower=0> N; // unmodeled data

real y[N]; // modeled data

real mu_mu; // config. unmodeled param

real<lower=0> sigma_mu; // config. unmodeled param

}

transformed data {

real<lower=0> alpha; // const. unmodeled param

real<lower=0> beta; // const. unmodeled param

alpha <- 0.1;

beta <- 0.1;

}

parameters {

251

Params Log Prob Print Declare In

+ + + transformed parameters
+ + − local in model
+ − − local in generated quantities
+ − + generated quantities
− − + generated quantities∗

− ± − local in transformed data
− + + transformed data and generated quantities∗

Figure 25.2: This table indicates where variables that are not basic data or parameters
should be declared, based on whether it is defined in terms of parameters, whether
it is used in the log probability function defined in the model block, and whether it is
printed. The two lines marked with asterisks (∗) should not be used as there is no need
to print a variable every iteration that does not depend on the value of any parameters
(for information on how to print these if necessary, see Footnote 3 in this chapter).

real mu_y; // modeled param

real<lower=0> tau_y; // modeled param

}

transformed parameters {

real<lower=0> sigma_y; // derived quantity (param)

sigma_y <- pow(tau_y,-0.5);

}

model {

tau_y ~ gamma(alpha,beta);

mu_y ~ normal(mu_mu,sigma_mu);

for (n in 1:N)

y[n] ~ normal(mu_y,sigma_y);

}

generated quantities {

real variance_y; // derived quantity (transform)

variance_y <- sigma_y * sigma_y;

}

In this example, y[N] is a modeled data vector. Although it is specified in the data
block, and thus must have a known value before the program may be run, it is mod-
eled as if it were generated randomly as described by the model.

The variable N is a typical example of unmodeled data. It is used to indicate a size
that is not part of the model itself.

The other variables declared in the data and transformed data block are examples
of unmodeled parameters, also known as hyperparameters. Unmodeled parameters

252

Variable Kind Declaration Block

unmodeled data data, transformed data
modeled data data, transformed data

missing data parameters, transformed parameters
modeled parameters parameters, transformed parameters
unmodeled parameters data, transformed data

generated quantities transformed data, transformed parameters,
generated quantities

loop indices loop statement

Figure 25.3: Variables of the kind indicated in the left column must be declared in one
of the blocks declared in the right column.

are parameters to probability densities that are not themselves modeled probabilisti-
cally. In Stan, unmodeled parameters that appear in the data block may be specified
on a per-model execution basis as part of the data read. In the above model, mu_mu
and sigma_mu are configurable unmodeled parameters.

Unmodeled parameters that are hard coded in the model must be declared in the
transformed data block. For example, the unmodeled parameters alpha and beta
are both hard coded to the value 0.1. To allow such variables to be configurable based
on data supplied to the program at run time, they must be declared in the data block,
like the variables mu_mu and sigma_mu.

This program declares two modeled parameters, mu and tau_y. These are the lo-
cation and precision used in the normal model of the values in y. The heart of the
model will be sampling the values of these parameters from their posterior distribu-
tion.

The modeled parameter tau_y is transformed from a precision to a scale param-
eter and assigned to the variable sigma_y in the transformed parameters block.
Thus the variable sigma_y is considered a derived quantity — its value is entirely
determined by the values of other variables.

The generated quantities block defines a value variance_y, which is defined
as a transform of the scale or deviation parameter sigma_y. It is defined in the gen-
erated quantities block because it is not used in the model. Making it a generated
quantity allows it to be monitored for convergence (being a non-linear transform, it
will have different autocorrelation and hence convergence properties than the devia-
tion itself).

In later versions of Stan which have random number generators for the distribu-
tions, the generated quantities block will be usable to generate replicated data
for model checking.

253

Finally, the variable n is used as a loop index in the model block.

25.4. Program Block: data

The rest of this chapter will lay out the details of each block in order, starting with
the data block in this section.

Variable Reads and Transformations

The data block is for the declaration of variables that are read in as data. With
the current model executable, each Markov chain of samples will be executed in a
different process, and each such process will read the data exactly once.4

Data variables are not transformed in any way. The format for data files is pro-
vided in Chapter 6.

Statements

The data block does not allow statements.

Variable Constraint Checking

Each variable’s value is validated against its declaration as it is read. For example, if a
variable sigma is declared as real<lower=0>, then trying to assign it a negative value
will raise an error. As a result, data type errors will be caught as early as possible.
Similarly, attempts to provide data of the wrong size for a compound data structure
will also raise an error.

25.5. Program Block: transformed data

The transformed data block is for declaring and defining variables that do not need
to be changed when running the program.

Variable Reads and Transformations

For the transformed data block, variables are all declared in the variable declara-
tions and defined in the statements. There is no reading from external sources and
no transformations performed.

4With multiple threads, or even running chains sequentially in a single thread, data could be read only
once per set of chains. Stan was designed to be thread safe and future versions will provide a multithread-
ing option for Markov chains.

254

Variables declared in the data block may be used to declare transformed vari-
ables.

Statements

The statements in a transformed data block are used to define (provide values for)
variables declared in the transformed data block. Assignments are only allowed to
variables declared in the transformed data block.

These statements are executed once, in order, right after the data is read into the
data variables. This means they are executed once per chain (though see Footnote 4
in this chapter).

Variables declared in the data block may be used in statements in the
transformed data block.

Restriction on Operations in transformed data

The statements in the transformed data block are designed to be executed once and
have a deterministic result. Therefore, log probability is not accumulated and sam-
pling statements may not be used. Random number generating functions are also
prohibited.

Variable Constraint Checking

Any constraints on variables declared in the transformed data block are checked
after the statements are executed. If any defined variable violates its constraints,
Stan will halt with a diagnostic error message.

25.6. Program Block: parameters

The variables declared in the parameters program block correspond directly to the
variables being sampled by Stan’s samplers (HMC and NUTS). From a user’s perspec-
tive, the parameters in the program block are the parameters being sampled by Stan.

Variables declared as parameters cannot be directly assigned values. So there is
no block of statements in the parameters program block. Variable quantities derived
from parameters may be declared in the transformed parameters or generated
quantities blocks, or may be defined as local variables in any statement blocks
following their declaration.

There is a substantial amount of computation involved for parameter variables
in a Stan program at each leapfrog step within the HMC or NUTS samplers, and a
bit more computation along with writes involved for saving the parameter values
corresponding to a sample.

255

Constraining Inverse Transform

Stan’s two samplers, standard Hamiltonian Monte Carlo (HMC) and the adaptive No-U-
Turn sampler (NUTS), are most easily (and often most effectively) implemented over a
multivariate probability density that has support on all of Rn. To do this, the parame-
ters defined in the parameters block must be transformed so they are unconstrained.

In practice, the samplers keep an unconstrained parameter vector in memory rep-
resenting the current state of the sampler. The model defined by the compiled Stan
program defines an (unnormalized) log probability function over the unconstrained
parameters. In order to do this, the log probability function must apply the inverse
transform to the unconstrained parameters to calculate the constrained parameters
defined in Stan’s parameters program block. The log Jacobian of the inverse trans-
form is then added to the accumulated log probability function. This then allows the
Stan model to be defined in terms of the constrained parameters.

In some cases, the number of parameters is reduced in the unconstrained space.
For instance, a K-simplex only requires K − 1 unconstrained parameters, and a K-
correlation matrix only requires

(
K
2

)
unconstrained parameters. This means that the

probability function defined by the compiled Stan program may have fewer parame-
ters than it would appear from looking at the declarations in the parameters program
block.

The probability function on the unconstrained parameters is defined in such a
way that the order of the parameters in the vector corresponds to the order of the
variables defined in the parameters program block. The details of the specific trans-
formations are provided in Chapter 51.

Gradient Calculation

Hamiltonian Monte Carlo requires the gradient of the (unnormalized) log probability
function with respect to the unconstrained parameters to be evaluated during every
leapfrog step. There may be one leapfrog step per sample or hundreds, with more
being required for models with complex posterior distribution geometries.

Gradients are calculated behind the scenes using Stan’s algorithmic differentiation
library. The time to compute the gradient does not depend directly on the number
of parameters, only on the number of subexpressions in the calculation of the log
probability. This includes the expressions added from the transforms’ Jacobians.

The amount of work done by the sampler does depend on the number of uncon-
strained parameters, but this is usually dwarfed by the gradient calculations.

256

Writing Samples

In the basic Stan compiled program, the values of variables are written to a file for
each sample. The constrained versions of the variables are written, again in the or-
der they are defined in the parameters block. In order to do this, the transformed
parameter, model, and generated quantities statements must be executed.

25.7. Program Block: transformed parameters

The transformed parameters program block consists of optional variable declara-
tions followed by statements. After the statements are executed, the constraints on
the transformed parameters are validated. Any variable declared as a transformed
parameter is part of the output produced for samples.

Any variable that is defined wholly in terms of data or transformed data should
be declared and defined in the transformed data block. Defining such quantities in
the transformed parameters block is legal, but much less efficient than defining them
as transformed data.

25.8. Program Block: model

The model program block consists of optional variable declarations followed by state-
ments. The variables in the model block are local variables and are not written as part
of the output.

Local variables may not be defined with constraints because there is no well-
defined way to have them be both flexible and easy to validate.

The statements in the model block typically define the model. This is the block
in which probability (sampling notation) statements are allowed. These are typically
used when programming in the BUGS idiom to define the probability model.

25.9. Program Block: generated quantities

The generated quantities program block is rather different than the other blocks.
Nothing in the generated quantities block affects the sampled parameter values. The
block is executed only after a sample has been generated.

Among the applications of posterior inference that can be coded in the generated
quantities block are

• forward sampling to generate simulated data for model testing,

• generating predictions for new data,

257

• calculating posterior event probabilities, including multiple comparisons, sign
tests, etc.,

• calculating posterior expectations,

• transforming parameters for reporting,

• applying full Bayesian decision theory,

• calculating log likelihoods, deviances, etc. for model comparison.

Forward samples, event probabilities and statistics may all be calculated directly us-
ing plug-in estimates. Stan automatically provides full Bayesian inference by pro-
ducing samples from the posterior distribution of any calculated event probabilities,
predictions, or statistics. See Chapter 49 for more information on Bayesian inference.

Within the generated quantities block, the values of all other variables declared in
earlier program blocks (other than local variables) are available for use in the gener-
ated quantities block.

It is more efficient to define a variable in the generated quantities block instead of
the transformed parameters block. Therefore, if a quantity does not play a role in the
model, it should be defined in the generated quantities block.

After the generated quantities statements are executed, the constraints on the
declared generated quantity variables are validated.

All variables declared as generated quantities are printed as part of the output.

258

26. Modeling Language Syntax

This chapter defines the basic syntax of the Stan modeling language using a Backus-
Naur form (BNF) grammar plus extra-grammatical constraints on function typing and
operator precedence and associativity.

26.1. BNF Grammars

Syntactic Conventions

In the following BNF grammars, literal strings are indicated in single quotes (’). Gram-
mar non-terminals are unquoted strings. A prefix question mark (?) indicates option-
ality. A postfixed Kleene star (*) indicates zero or more occurrences.

Programs

program ::= ?data ?tdata ?params ?tparams model ?generated

data ::= ’data’ var_decls

tdata ::= ’transformed data’ var_decls_statements

params ::= ’parameters’ var_decls

tparams ::= ’transformed parameters’ var_decls_statements

model ::= ’model’ statement

generated ::= ’generated quantities’ var_decls_statements

var_decls ::= ’{’ var_decl* ’}’

var_decls_statements ::= ’{’ var_decl* statement* ’}’

Variable Declarations

var_decl ::= var_type variable ?dims

var_type ::= ’int’ range_constraint

| ’real’ range_constraint

| ’vector’ range_constraint ’[’ expression ’]’

| ’ordered’ ’[’ expression ’]’

| ’positive_ordered’ ’[’ expression ’]’

| ’simplex’ ’[’ expression ’]’

| ’unit_vector’ ’[’ expression ’]’

| ’row_vector’ range_constraint ’[’ expression ’]’

| ’matrix’ range_constraint ’[’ expression ’,’ expression ’]’

| ’cholesky_factor_cov’ ’[’ expression ?(’,’ expression) ’]’

259

| ’corr_matrix’ ’[’ expression ’]’

| ’cov_matrix’ ’[’ expression ’]’

range_constraint ::= ?(’<’ range ’>’)

range ::= ’lower’ ’=’ expression ’,’ ’upper’ = expression

| ’lower’ ’=’ expression

| ’upper’ ’=’ expression

dims ::= ’[’ expression (’,’ expression)* ’]’

variable ::= identifier

identifier ::= [a-zA-Z] [a-zA-Z0-9_]*

Expressions

expression ::= numeric_literal

| variable

| expression infixOp expression

| prefixOp expression

| expression postfixOp

| expression ’[’ expressions ’]’

| function_literal ’(’ ?expressions ’)’

| ’(’ expression ’)’

expressions ::= expression

| expression ’,’ expressions

numeric_literal ::= int_literal | real_literal

integer_literal ::= [0-9]*

real_literal ::= [0-9]* ?(’.’ [0-9]*) ?exp_literal

exp_literal ::= (’e’ | ’E’) integer_literal

function_literal ::= identifier

Statements

statement

::= lhs ’<-’ expression ’;’

| expression ’~’ identifier ’(’ ?expressions ’)’ ?truncation ’;’

260

| ’if’ ’(’ expression ’)’ statement

(’else’ ’if’ ’(’ expression ’)’ statement)*
?(’else’ statement)

| ’while’ ’(’ expression ’)’ statement

| ’for’ ’(’ identifier ’in’ expression ’:’ expression ’)’ statement

| ’{’ var_decl* statement+ ’}’

| ’print’ ’(’ (expression | string_literal)* ’)’

| ’increment_log_prob ’(’ expression ’)’

| ’;’

string_literal ::= ’"’ char* ’"’

truncation ::= ’T’ ’[’ ?expression ’,’ ?expression ’]’

lhs ::= identifier

| identifier ’[’ expressions ’]’

26.2. Extra-Grammatical Constraints

Type Constraints

A well-formed Stan program must satisfy the type constraints imposed by functions
and distributions. For example, the binomial distribution requires an integer total
count parameter and integer variate and when truncated would require integer trun-
cation points. If these constraints are violated, the program will be rejected during
parsing with an error message indicating the location of the problem. For information
on argument types, see Part V.

Operator Precedence and Associativity

In the Stan grammar provided in this chapter, the expression 1 + 2 * 3 has two
parses. As described in Section 23.4, Stan disambiguates between the meaning 1 +
(2×3) and the meaning (1+2)×3 based on operator precedences and associativities.

Forms of Numbers

Integer literals longer than one digit may not start with 0 and real literals cannot
consist of only a period or only an exponent.

261

Conditional Arguments

Both the conditional if-then-else statement and while-loop statement require the ex-
pression denoting the condition to be a primitive type, integer or real.

262

Part V

Built-In Functions

263

27. Vectorization

Stan’s scalar log probability functions all support vectorized function application,
with results defined to be the sum of the elementwise application of the function.
In all cases, matrix operations are faster than loops and vectorized log probability
functions are faster than their equivalent form defined with loops.

Stan also overloads some scalar functions, such as log and exp, to apply to vec-
tors (arrays) and return vectors (arrays). These vectorizations are defined elementwise
and unlike the probability functions, provide only minimal efficiency speedups over
repeated application and assignment in a loop.

27.1. Vectorized Function Signatures

The normal probability function is specified with the signature

normal_log(reals,reals,reals);

The pseudo-type reals is used to indicate that an argument position may be vec-
torized. Argument positions declared as reals may be filled with a real, a one-
dimensional array, a vector, or a row-vector. If there is more than one array or vector
argument, their types can be anything but their size must match. For instance, it is
legal to use normal_log(row_vector,vector,real) as long as the vector and row
vector have the same size.

The pseudo-type ints is used for vectorized integer arguments.

27.2. Evaluating Vectorized Functions

The result of a vectorized log probability function is equivalent to the sum of the eval-
uations on each element. Any non-vector argument, namely real or int, is repeated.
For instance, if y is a vector of size N, mu is a vector of size N, and sigma is a scalar,
then

ll <- normal_log(y, mu, sigma);

is just a more efficient way to write

ll <- 0;
for (n in 1:N)
ll <- ll + normal_log(y[n], mu[n], sigma);

With the same arguments, the vectorized sampling statement

264

y ~ normal(mu, sigma);

has the same effect on the total log probability as

for (n in 1:N)
y[n] ~ normal(mu[n], sigma);

265

28. Void Functions

Stan does not technically support functions that do not return values. It does
support two types of statements that look like functions, one for incrementing log
probabilities and one for printing. Documentation on these functions is included
here for completeness.

Although it’s not part of Stan’s type language, in this chapter, void will be used
for the return type.

28.1. Increment Log Probability

There is a special function increment_log_prob takes a single argument of any ex-
pression type T.

void increment_log_prob(T lp)

Add lp (or elements of lp if T is a container type) to the total log probability
accumulator returned by the log probability function defined by a Stan model.

The expression lp can be of any expression type. Specifically, it can be an integer or
real primitive, a vector, row vector, or matrix, or an array of any type, including multi-
dimensional arrays and arrays of matrices, vectors, or row vectors. Vector arguments
are included for convenience and have no speed advantage over adding values in a
loop.

The full behavior of the increment_log_prob statement and its relation to sam-
pling statements is described in Section 24.2.

28.2. Print

The print statement is unique among Stan’s syntactic constructs in two ways. First,
it is the only function-like construct that allows a variable number of arguments.
Second, it is the only function-like construct to accept string literals (e.g., "hello
world") as arguments.

Printing has no effect on the model’s log probability function. Its sole purpose is
the side effect (i.e., an effect not represented in a return value) of arguments being
printed to whatever the standard output stream is connected to (e.g., the terminal in
command-line Stan or the R console in RStan).

void print(T1 x1,..., TN xN)

Print the values denoted by the arguments x1 through xN on the standard
output stream. There are no spaces between items in the print, but a line feed

266

(LF; Unicode U+000A; C++ literal ’\n’) is inserted at the end of the printed line.
The types T1 through TN can be any of Stan’s built-in numerical types or double
quoted strings of ASCII characters.

The full behavior of the print statement with examples is documented in Sec-
tion 24.8.

267

29. Integer-Valued Basic Functions

This chapter describes Stan’s built-in function that take various types of arguments
and return results of type integer.

29.1. Integer-Valued Arithmetic Operators

Stan’s arithmetic is based on standard double-precision C++ integer and floating-point
arithmetic. If the arguments to an arithmetic operator are both integers, as in 2 + 2,
integer arithmetic is used. If one argument is an integer and the other a floating-point
value, as in 2.0 + 2 and 2 + 2.0, then the integer is promoted to a floating point
value and floating-point arithmetic is used.

Integer arithmetic behaves slightly differently than floating point arithmetic. The
first difference is how overflow is treated. If the sum or product of two integers over-
flows the maximum integer representable, the result is an undesirable wraparound
behavior at the bit level. If the integers were first promoted to real numbers, they
would not overflow a floating-point representation. There are no extra checks in Stan
to flag overflows, so it is up to the user to make sure it does not occur.

Secondly, because the set of integers is not closed under division and there is no
special infinite value for integers, integer division implicitly rounds the result. If both
arguments are positive, the result is rounded down. For example, 1 / 2 evaluates to
0 and 5 / 3 evaluates to 1.

If one of the integer arguments to division is negative, the latest C++ specification
(C++11), requires rounding toward zero. This would have -1 / 2 evaluate to 0 and
-7 / 2 evaluate to 3. Before the C++11 specification, the behavior was platform de-
pendent, allowing rounding up or down. All compilers recent enough to be able to
deal with Stan’s templating should follow the C++11 specification, but it may be worth
testing if you are not sure and plan to use integer division with negative values.

Unlike floating point division, where 1.0 / 0.0 produces the special positive in-
finite value, integer division by zero, as in 1 / 0, has undefined behavior in the C++

standard. For example, the clang++ compiler on Mac OS X returns 3764, whereas the
g++ compiler throws an exception and aborts the program with a warning. As with
overflow, it is up to the user to make sure integer divide-by-zero does not occur.

Binary Infix Operators

Operators are described using the C++ syntax. For instance, the binary operator of
addition, written X + Y, would have the Stan signature int operator+(int,int)
indicating it takes two real arguments and returns a real value.

268

int operator+(int x, int y)

The sum of the addends x and y

int operator-(int x, int y)

The difference between the minuend x and subtrahend y

int operator*(int x, int y)

The product of the factors x and y

int operator/(int x, int y)

The integer quotient of the dividend x and divisor y

Unary Prefix Operators

int operator-(int x)

The negation of the subtrahend x

int operator+(int x)

This is a no-op.

29.2. Absolute Functions

int abs(int x)

The absolute value of x

int int_step(int x)

1 if x is strictly greater than 0, and 0 otherwise

int int_step(real x)

1 if x is strictly greater than 0, and 0 otherwise

29.3. Bound Functions

int min(int x, int y)

The minimum of x and y

int max(int x, int y)

The maximum of x and y

269

30. Real-Valued Basic Functions

This chapter describes built-in functions that take zero or more real or integer argu-
ments and return real values.

30.1. Mathematical Constants

Constants are represented as functions with no arguments and must be called as
such. For instance, the mathematical constant π must be written in a Stan program
as pi().

real pi()

π , the ratio of a circle’s circumference to its diameter

real e()

e, the base of the natural logarithm

real sqrt2()

The square root of 2

real log2()

The natural logarithm of 2

real log10()

The natural logarithm of 10

30.2. Special Values

real not_a_number()

Not-a-number, a special non-finite real value returned to signal an error

real positive_infinity()

Positive infinity, a special non-finite real value larger than all finite numbers

real negative_infinity()

Negative infinity, a special non-finite real value smaller than all finite numbers

real machine_precision()

The smallest number x such that (x+ 1) ≠ 1 in floating-point arithmetic on the
current hardware platform

270

30.3. Logical Functions

Like C++, BUGS, and R, Stan uses 0 to encode false, and 1 to encode true. Stan sup-
ports the usual boolean comparison operations and boolean operators. These all
have the same syntax and precedence as in C++; for the full list of operators and
precedences, see Figure 23.1.

Comparison Operators

All comparison operators return boolean values, either 0 or 1. Each operator has
two signatures, one for integer comparisons and one for floating-point comparisons.
Comparing an integer and real value is carried out by first promoting the integer
value.

int operator<(int x, int y)

1 if x is less than y and 0 otherwise

int operator<=(int x, int y)

1 if x is less than or equal to y and 0 otherwise

int operator>(int x, int y)

1 if x is greater than y and 0 otherwise

int operator>=(int x, int y)

1 if x is greater than or equal to y and 0 otherwise

int operator==(int x, int y)

1 if x is equal to y and 0 otherwise

int operator!=(int x, int y)

1 if x is not equal to y and 0 otherwise

The real-valued argument versions are identical other than for argument type.

int operator<(real x, real y)

1 if x is less than y and 0 otherwise

int operator<=(real x, real y)

1 if x is less than or equal to y and 0 otherwise

int operator>(real x, real y)

1 if x is greater than y and 0 otherwise

271

int operator>=(real x, real y)

1 if x is greater than or equal to y and 0 otherwise

int operator==(real x, real y)

1 if x is equal to y and 0 otherwise

int operator!=(real x, real y)

1 if x is not equal to y and 0 otherwise

Boolean Operators

Boolean operators return either 0 for false or 1 for true. Inputs may be any
real or integer values, with non-zero values being treated as true and zero val-
ues treated as false. These operators have the usual precedences, with negation
(not) binding the most tightly, conjunction the next and disjunction the weakest;
all of the operators bind more tightly than the comparisons. Thus an expression
such as !a~&&~b is interpreted as (!a)~&&~b, and a~<~b~||~c~>=~d~&&~e~!=~f as
(a~<~b)~||~(((c~>=~d)~&&~(e~!=~f))).

int operator!(int x)

1 if x is zero and 0 otherwise

int operator&&(int x, int y)

1 if x is unequal to 0 and y is unequal to 0

int operator||(int x, int y)

1 if x is unequal to 0 or y is unequal to 0

There are corresponding real-argument versions.

int operator!(real x)

1 if x is zero and 0 otherwise

int operator&&(real x, real y)

1 if x is unequal to 0 and y is unequal to 0

int operator||(real x, real y)

1 if x is unequal to 0 or y is unequal to 0

272

Boolean Operator Short Circuiting

Like in C++, the boolean operators are implemented to short circuit directly to a return
value after evaluating the first argument if it is sufficient to resolve the result. In
evaluating a || b, if a evaluates to a value other than zero, the expression returns
the value 1 without evaluating the expression b. Similarly, evaluating a && b first
evaluates a, and if the result is zero, returns 0 without evaluating b.

Logical Functions

The logical functions introduce conditional behavior functionally and are primarily
provided for compatibility with BUGS and JAGS.

real if_else(int cond, real x, real y)

x if cond is non-zero, and y otherwise; unlike the ternary operator in C++, Stan’s
if_else function always evaluates both arguments x and y

real step(real x)

1 if x is positive and 0 otherwise; equivalent to x > 0.0

The log probability function and gradient evaluations are more efficient in Stan
when implemented using conditional statements. If y is a real variable, and c, x1,
and x2 are scalar expressions (type real or int), then the assignment statements

y <- x1 * step(c) + x2 * (1 - step(c));

and

y <- if_else(c > 0, x1, x2);

are more efficiently written with the conditional statement

if (c > 0)
y <- x1;

else
y <- x2;

The reason the functional versions are slower is that they evaluate all of their argu-
ments; the step function approach is particularly slow as it also introduces arithmetic
operations. The overhead will be more noticeable if c, x1 or x2 are parameters (in-
cluding transformed parameters and local variables that depend on parameters) or if
x1 and x2 are complicated expressions rather than constants or simple variables.

Warning: If y is a parameter (including transformed parameters and local vari-
ables in model blocks) and any of c, x1, or x2 is a parameter, then all of the above
approaches introduce the same discontinuities into the derivative of y with respect
to the parameter arguments.

273

30.4. Real-Valued Arithmetic Operators

The arithmetic operators are presented using C++ notation. For instance
operator+(x,y) refers to the binary addition operator and operator-(x) to the
unary negation operator. In Stan programs, these are written using the usual infix
and prefix notations as x + y and -x, respectively.

Binary Infix Operators

real operator+(real x, real y)

The sum of the addends x and y

real operator-(real x, real y)

The difference between the minuend x and subtrahend y

real operator*(real x, real y)

The product of the factors x and y

real operator/(real x, real y)

The quotient of the dividend x and divisor y

Unary Prefix Operators

real operator-(real x)

The negation of the subtrahend x

real operator+(real x)

This is a no-op.

30.5. Step-like Functions

Warning: These functions can seriously hinder sampling and optimization efficiency
for gradient-based methods (e.g., NUTS, HMC, BFGS) if applied to parameters (includ-
ing transformed parameters and local variables in the transformed parameters or
model block). The problem is that they break gradients due to discontinuities coupled
with zero gradients elsewhere. They do not hinder sampling when used in the data,
transformed data, or generated quantities blocks.

274

Absolute Value Functions

real abs(real x)

The absolute value of x. This function is deprecated and will be removed in the
future; please use fabs instead.

real fabs(real x)

The absolute value of x; see warning at start of Section 30.5

real fdim(real x, real y)

The positive difference between x and y, which is x - y if x is greater than y and
0 otherwise; see warning at start of Section 30.5

Bounds Functions

real fmin(real x, real y)

The minimum of x and y ; see warning at start of Section 30.5

real fmax(real x, real y)

The maximum of x and y ; see warning at start of Section 30.5

Arithmetic Functions

real fmod(real x, real y)

The real value remainder after dividing x by y ; see warning at start of
Section 30.5

Rounding Functions

Warning: Rounding functions convert real values to integers. Because the output is
an integer, any gradient information resulting from functions applied to the integer is
not passed to the real value it was derived from. With MCMC sampling using HMC or
NUTS, the Metropolis/slice procedure will correct for any error due to poor gradient
calculations, but the result is likely to be reduced acceptance probabilities and less
efficient sampling.

One case where rounding is reasonable is linear interpolation of function values.
For example, consider

xm <- x[floor(c)];
xp <- x[ceil(c)];
x <- (c - floor(c))*xp + (ceil(c) - c)*xm;

275

In this example, the first derivative for x with respect to c will be reasonable, but the
second derivatives will all be zero.

real floor(real x)

The floor of x, which is the largest integer less than or equal to x, converted to
a real value; see warning at start of Section 30.5

real ceil(real x)

The ceiling of x, which is the smallest integer greater than or equal to x,
converted to a real value; see warning at start of Section 30.5

real round(real x)

The nearest integer to x, converted to a real value; see warning at start of
Section 30.5

real trunc(real x)

The integer nearest to but no larger in magnitude than x, converted to a double
value; see warning at start of Section 30.5

30.6. Power and Logarithm Functions

real sqrt(real x)

The square root of x

real cbrt(real x)

The cube root of x

real square(real x)

The square of x

real exp(real x)

The natural exponential of x

real exp2(real x)

The base-2 exponential of x

real log(real x)

The natural logarithm of x

real log2(real x)

The base-2 logarithm of x

276

real log10(real x)

The base-10 logarithm of x

real pow(real x, real y)

x raised to the power of y

real inv(real x)

The inverse of x

real inv_sqrt(real x)

The inverse of the square root of x

real inv_square(real x)

The inverse of the square of x

30.7. Trigonometric Functions

real hypot(real x, real y)

The length of the hypotenuse of a right triangle with sides of length x and y

real cos(real x)

The cosine of the angle x (in radians)

real sin(real x)

The sine of the angle x (in radians)

real tan(real x)

The tangent of the angle x (in radians)

real acos(real x)

The principal arc (inverse) cosine (in radians) of x

real asin(real x)

The principal arc (inverse) sine (in radians) of x

real atan(real x)

The principal arc (inverse) tangent (in radians) of x

real atan2(real x, real y)

The principal arc (inverse) tangent (in radians) of x divided by y

277

30.8. Hyperbolic Trigonometric Functions

real cosh(real x)

The hyperbolic cosine of x (in radians)

real sinh(real x)

The hyperbolic sine of x (in radians)

real tanh(real x)

The hyperbolic tangent of x (in radians)

real acosh(real x)

The inverse hyperbolic cosine (in radians) of x

real asinh(real x)

The inverse hyperbolic sine (in radians) of x

real atanh(real x)

The inverse hyperbolic tangent (in radians) of x

30.9. Link Functions

The following functions are commonly used as link functions in generalized linear
models (see Section 9.4). The function Φ is also commonly used as a link function
(see Section 30.10).

real logit(real x)

The log odds, or logit, function applied to x, defined by logit(x) = log
(
x
1−x

)
.

real inv_logit(real y)

The logistic sigmoid function applied to y, defined by logit−1(y) = 1
1+exp(−y) .

real inv_cloglog(real y)

The inverse of the complementary log-log function applied to y, defined by
cloglog−1(y) = 1− exp

(
− exp(y)

)
.

30.10. Probability-Related Functions

real erf(real x)

The error function of x

278

real erfc(real x)

The complementary error function of x

real Phi(real x)

The cumulative unit normal density function of x; Phi(x) will underflow to 0
for x below -37.5 and overflow to 1 for x above 8.25; derivatives will underflow
to 0 below -27.5 and overflow to 1 above 27.5.

real Phi_approx(real x)

Fast approximation of the cumulative unit normal density function of x, defined
by

Φapprox(x) = logit−1(0.07056x3 + 1.5976x).
This approximation has a maximum absolute error of 0.00014 and may be used
instead of Phi for probit regression. See (Bowling et al., 2009) for details.

real binary_log_loss(int y, real y_hat)

The log loss of predicting probability y_hat for binary outcome y ;

The log loss function for predicting ŷ ∈ [0,1] for boolean outcome y ∈ {0,1}
is defined by

binary_log_loss(y, ŷ) = y log ŷ + (1− y) log(1− ŷ).

real owens_t(real h, real a)

The Owen’s T function for the probability of the event X > a and 0 < Y < aX
where X and Y are independent standard normal random variables, defined by

owens_t(h, a) = 1
2π

∫ a
0

exp(− 12h2(1+ x2))
1+ x2 dx

30.11. Combinatorial Functions

real lbeta(real alpha, real beta)

The natural logarithm of the beta function applied to alpha and beta. The beta
function, B(α,β), computes the normalizing constant for the beta distribution,
and is defined for α > 0 and β > 0 by

B(α,β) =
∫ 1
0
uα−1(1− u)β−1 du.

279

real tgamma(real x)

The gamma function applied to x. The gamma function is the generalization of
the factorial function to continuous variables, defined so that Γ(n+1) = n!. The
function is defined for positive numbers and non-integral negative numbers by

Γ(x) =
∫∞
0
ux−1 exp(−u)du.

real lgamma(real x)

The natural logarithm of the gamma function applied to x

real digamma(real x)

The digamma function applied to x. The digamma function is the derivative
of the natural logarithm of the Gamma function. The function is defined for
positive numbers and non-integral negative numbers.

real trigamma(real x)

The trigamma function applied to x. The trigamma function is the second
derivative of the natural logarithm of the Gamma function.

real lmgamma(int n, real x)

The natural logarithm of the multinomial gamma function with n dimensions
applied to x.

real gamma_p(real a, real z)

The normalised lower incomplete gamma function of a and z defined for
positive a and nonnegative z by

P(a, z) = 1
Γ(a)

∫ z
0
ta−1e−tdt

real gamma_q(real a, real z)

The normalised upper incomplete gamma function of a and z defined for
positive a and nonnegative z by

Q(a, z) = 1
Γ(a)

∫∞
z
ta−1e−tdt

280

real binomial_coefficient_log(real x, real y)

The natural logarithm of the binomial coefficient of x and y. For non-negative
integer inputs, this is pronounced “x choose y,” written as

(
x
y

)
, and defined by(

x
y

)
= x!
(x− y)!y !

.

This Stan function extends the domain to continuous quantities through the Γ
function, defining

binomial_coefficient_log(x, y) = log
Γ(x+ 1)

Γ(x− y + 1) Γ(y + 1) .

real bessel_first_kind(int v, real z)

The Bessel function of the first kind with order v applied to z defined for all z
and v by

Jv(z) =
(
1
2
z
)v ∞∑

k=0

(
− 14z2

)k
k! Γ(v + k+ 1)

real bessel_second_kind(int v, real z)

The Bessel function of the second kind with order v applied to z defined for
positive z and v by

Yv(z) =
Jv(z) cos(vπ)− J−v(z)

sin(vπ)

real modified_bessel_first_kind(int v, real z)

The modified Bessel function of the first kind with order v applied to z defined
for all z and v by

Iv(z) =
(
1
2
z
)v ∞∑

k=0

(
1
4z
2
)k

k!Γ(v + k+ 1)

real modified_bessel_second_kind(int v, real z)

The modified Bessel function of the second kind with order v applied to z
defined for positive z and v by

Kv(z) =
π
2
· I−v(z)− Iv(z)

sin(vπ)

281

real falling_factorial(real x, real n)

The falling factorial of x with power n defined for positive x and real n by

falling_factorial(x, n) = x!
n!

real log_falling_factorial(real x, real n)

The log of the falling factorial of x with power n defined for positive x and real
n.

real rising_factorial(real x, real n)

The rising factorial of x with power n defined for positive x and real n by

rising_factorial(x, n) = (x+ n− 1)!
(x− 1)!

real log_rising_factorial(real x, real n)

The log of the rising factorial of x with power n defined for positive x and real
n.

30.12. Composed Functions

The functions in this section are equivalent in theory to combinations of other func-
tions. In practice, they are implemented to be more efficient and more numerically
stable than defining them directly using more basic Stan functions.

real expm1(real x)

The natural exponential of x minus 1

real fma(real x, real y, real z)

z plus the result of x multiplied by y

real multiply_log(real x, real y)

The product of x and the natural logarithm of y ; if both x and y are 0, the
return value is 0

real log1p(real x)

The natural logarithm of 1 plus x

real log1m(real x)

The natural logarithm of 1 minus x

282

real log1p_exp(real x)

The natural logarithm of one plus the natural exponentiation of x

real log1m_exp(real x)

The natural logarithm of one minus the natural exponentiation of x.

real log_diff_exp(real x, real y)

The natural logarithm of the difference of the natural exponentiation of x and
the natural exponentiation of y

real log_sum_exp(real x, real y)

The natural logarithm of the sum of the natural exponentiation of x and the
natural exponentiation of y

real log_inv_logit(real x)

The natural logarithm of the inverse logit function of x

real log1m_inv_logit(real x)

The natural logarithm of 1 minus the inverse logit function of x

283

31. Array Operations

31.1. Reductions

The following operations take arrays as input and produce single output values.

Minimum and Maximum

real min(real x[])

The minimum value in x, or +∞ if x is empty

int min(int x[])

The minimum value in x, or raise exception if x is empty

real max(real x[])

The maximum value in x, or −∞ if x is empty

int max(int x[])

The maximum value in x, or raise exception if x is empty

Sum, Product, and Log Sum of Exp

int sum(int x[])

The sum of the elements in x, or 0 if x is empty.

real sum(real x[])

The sum of the elements in x, or 0 if x is empty.

real prod(real x[])

The product of the elements in x, or 1 if x is empty.

real prod(int x[])

The product of the elements in x, or 1 if x is empty.

real log_sum_exp(real x[])

The natural logarithm of the sum of the exponentials of the elements in x

284

Moments

Moments are only defined for arrays x of size N ≥ 1; it is an error to call them with
arrays of size N = 0. The sample mean is defined by

mean(x) = 1
N

N∑
n=1
xn.

For N ≥ 2, sample variance is defined for N ≥ 1 by

variance(x) = 1
N − 1

N∑
n=1
(xn −mean(x))2

and sample standard deviation by

sd(x) =
√

variance(x),

For convenience, when N = 1, variance(x) and sd(x) are defined to be 0.

real mean(real x[])

The sample mean of the elements in x

real variance(real x[])

The sample variance of the elements in x

real sd(real x[])

The sample standard deviation of elements in x

Distance and Squared Distance

real distance(vector x, vector y)

The Euclidean distance between x and y, defined by

distance(x,y) =
√∑N

n=1(x[n]− y[n])2,

where N is the size of x and y.

real distance(vector x, row_vector y)

The Euclidean distance between x and y

real distance(row_vector x, vector y)

The Euclidean distance between x and y

285

real distance(row_vector x, row_vector y)

The Euclidean distance between x and y

real squared_distance(vector x, vector y[])

The Euclidean distance between x and y, defined by

squared_distance(x,y) =
∑N
n=1(x[n]− y[n])2,

where N is the size of x and y.

real squared_distance(vector x, row_vector y[])

The Euclidean distance between x and y

real squared_distance(row_vector x, vector y[])

The Euclidean distance between x and y

real squared_distance(row_vector x, row_vector y[])

The Euclidean distance between x and y

31.2. Array Size and Dimension Function

The size of an array or matrix can be obtained using the dims() function. The dims()
function is defined to take an argument consisting of any variable with up to 8 array
dimensions (and up to 2 additional matrix dimensions) and returns an array of inte-
gers with the dimensions. For example, if two variables are declared as follows,

real x[7,8,9];

matrix[8,9] y[7];

then calling dims(x) or dims(y) returns an integer array of size 3 containing the
elements 7, 8, and 9 in that order.

The size() function extracts the number of elements in an array. The function is
overloaded to apply to arrays of integers, reals, matrices, vectors, and row vectors.

int[] dims(T x)

Returns an integer array containing the dimensions of x; the type of the
argument T can be any Stan type with up to 8 array dimensions.

int size(T[] x)

Returns the number of elements in the array x; the type of the array T can be
anything type.

286

31.3. Array Broadcasting

The following operations create arrays by repeating elements to fill an array of a
specified size. These operations work for all input types T, including reals, integers,
vectors, row vectors, matrices, or arrays.

T[] rep_array(T x, int n)

Return the n array with every entry assigned to x.

T[,] rep_array(T x, int m, int n)

Return the m by n array with every entry assigned to x.

T[,,] rep_array(T x, int k, int m, int n)

Return the k by m by n array with every entry assigned to x.

For example, rep_array(1.0,5) produces a real array (type real[]) of size 5 with
all values set to 1.0. On the other hand, rep_array(1,5) produces an integer array
(type int[]) of size 5 with all values set to 1. This distinction is important because
it is not possible to assign an integer array to a real array. For example, the following
example contrasts legal with illegal array creation and assignment

real y[5];

int x[5];

x <- rep_array(1,5); // ok

y <- rep_array(1.0,5); // ok

x <- rep_array(1.0,5); // illegal

y <- rep_array(1,5); // illegal

x <- y; // illegal

y <- x; // illegal

If the value being repeated v is a vector (i.e., T is vector), then rep_array(v,27)
is a size 27 array consisting of 27 copies of the vector v.

vector[5] v;

vector[5] a[3];

...

a <- rep_array(v,3); // fill a with copies of v

a[2,4] <- 9.0; // v[4], a[1,4], a[2,4] unchanged

If the type T of x is itself an array type, then the result will be an array with one,
two, or three added dimensions, depending on which of the rep_array functions is
called. For instance, consider the following legal code snippet.

287

real a[5,6];

real b[3,4,5,6];

...

b <- rep_array(a,3,4); // make (3 x 4) copies of a

b[1,1,1,1] <- 27.9; // a[1,1] unchanged

After the assignment to b, the value for b[j,k,m,n] is equal to a[m,n] where it is
defined, for j in 1:3, k in 1:4, m in 1:5, and n in 1:6.

31.4. Other functions

real[] sort_asc(real[] v)

Sort the elements of v in ascending order

int[] sort_asc(int[] v)

Sort the elements of v in ascending order

real[] sort_desc(real[] v)

Sort the elements of v in descending order

int[] sort_desc(int[] v)

Sort the elements of v in descending order

int rank(real[] v, int s)

Number of components of v less than v[s]

int rank(int[] v, int s)

Number of components of v less than v[s]

288

32. Matrix Operations

32.1. Integer-Valued Matrix Size Functions

int rows(vector x)

The number of rows in the vector x

int rows(row_vector x)

The number of rows in the row vector x, namely 1

int rows(matrix x)

The number of rows in the matrix x

int cols(vector x)

The number of columns in the vector x, namely 1

int cols(row_vector x)

The number of columns in the row vector x

int cols(matrix x)

The number of columns in the matrix x

32.2. Matrix Arithmetic Operators

Stan supports the basic matrix operations using infix, prefix and postfix operations.
This section lists the operations supported by Stan along with their argument and
result types.

Negation Prefix Operators

vector operator-(vector x)

The negation of the vector x

row_vector operator-(row_vector x)

The negation of the row vector x

matrix operator-(matrix x)

The negation of the matrix x

289

Infix Matrix Operators

vector operator+(vector x, vector y)

The sum of the vectors x and y

row_vector operator+(row_vector x, row_vector y)

The sum of the row vectors x and y

matrix operator+(matrix x, matrix y)

The sum of the matrices x and y

vector operator-(vector x, vector y)

The difference between the vectors x and y

row_vector operator-(row_vector x, row_vector y)

The difference between the row vectors x and y

matrix operator-(matrix x, matrix y)

The difference between the matrices x and y

vector operator*(real x, vector y)

The product of the scalar x and vector y

row_vector operator*(real x, row_vector y)

The product of the scalar x and the row vector y

matrix operator*(real x, matrix y)

The product of the scalar x and the matrix y

vector operator*(vector x, real y)

The product of the scalar y and vector x

matrix operator*(vector x, row_vector y)

The product of the vector x and row vector y

row_vector operator*(row_vector x, real y)

The product of the scalar y and row vector x

real operator*(row_vector x, vector y)

The product of the row vector x and vector y

row_vector operator*(row_vector x, matrix y)

The product of the row vector x and matrix y

290

matrix operator*(matrix x, real y)

The product of the scalar y and matrix x

vector operator*(matrix x, vector y)

The product of the matrix x and vector y

matrix operator*(matrix x, matrix y)

The product of the matrices x and y

Broadcast Infix Operators

vector operator+(vector x, real y)

The result of adding y to every entry in the vector x

vector operator+(real x, vector y)

The result of adding x to every entry in the vector y

row_vector operator+(row_vector x, real y)

The result of adding y to every entry in the row vector x

row_vector operator+(real x, row_vector y)

The result of adding x to every entry in the row vector y

matrix operator+(matrix x, real y)

The result of adding y to every entry in the matrix x

matrix operator+(real x, matrix y)

The result of adding x to every entry in the matrix y

vector operator-(vector x, real y)

The result of subtracting y from every entry in the vector x

vector operator-(real x, vector y)

The result of adding x to every entry in the negation of the vector y

row_vector operator-(row_vector x, real y)

The result of subtracting y from every entry in the row vector x

row_vector operator-(real x, row_vector y)

The result of adding x to every entry in the negation of the row vector y

matrix operator-(matrix x, real y)

The result of subtracting y from every entry in the matrix x

291

matrix operator-(real x, matrix y)

The result of adding x to every entry in negation of the matrix y

vector operator/(vector x, real y)

The result of dividing each entry in the vector x by y

row_vector operator/(row_vector x, real y)

The result of dividing each entry in the row vector x by y

matrix operator/(matrix x, real y)

The result of dividing each entry in the matrix x by y

Elementwise Products

vector operator.*(vector x, vector y)

The elementwise product of y and x

row_vector operator.*(row_vector x, row_vector y)

The elementwise product of y and x

matrix operator.*(matrix x, matrix y)

The elementwise product of y and x

vector operator./(vector x, vector y)

The elementwise quotient of y and x

row_vector operator./(row_vector x, row_vector y)

The elementwise quotient of y and x

matrix operator./(matrix x, matrix y)

The elementwise quotient of y and x

Elementwise Logarithms

vector log(vector x)

The elementwise natural logarithm of x

row_vector log(row_vector x)

The elementwise natural logarithm of x

292

matrix log(matrix x)

The elementwise natural logarithm of x

vector exp(vector x)

The elementwise exponential of x

row_vector exp(row_vector x)

The elementwise exponential of x

matrix exp(matrix x)

The elementwise exponential of x

Cumulative Sums

The cumulative sum of a sequence x1, . . . , xN is the sequence y1, . . . , yN , where

yn =
n∑
m=1

xn.

real[] cumulative_sum(real[] x)

The cumulative sum of x

vector cumulative_sum(vector v)

The cumulative sum of v

row_vector cumulative_sum(row_vector rv)

The cumulative sum of rv

Dot Products

real dot_product(vector x, vector y)

The dot product of x and y

real dot_product(vector x, row_vector y)

The dot product of x and y

real dot_product(row_vector x, vector y)

The dot product of x and y

real dot_product(row_vector x, row_vector y)

The dot product of x and y

293

row_vector columns_dot_product(vector x, vector y)

The dot product of the columns of x and y

row_vector columns_dot_product(row_vector x, row_vector y)

The dot product of the columns of x and y

row_vector columns_dot_product(matrix x, matrix y)

The dot product of the columns of x and y

vector rows_dot_product(vector x, vector y)

The dot product of the rows of x and y

vector rows_dot_product(row_vector x, row_vector y)

The dot product of the rows of x and y

vector rows_dot_product(matrix x, matrix y)

The dot product of the rows of x and y

real dot_self(vector x)

The dot product of the vector x with itself

real dot_self(row_vector x)

The dot product of the row vector x with itself

row_vector columns_dot_self(vector x)

The dot product of the columns of x with themselves

row_vector columns_dot_self(row_vector x)

The dot product of the columns of x with themselves

row_vector columns_dot_self(matrix x)

The dot product of the columns of x with themselves

vector rows_dot_self(vector x)

The dot product of the rows of x with themselves

vector rows_dot_self(row_vector x)

The dot product of the rows of x with themselves

vector rows_dot_self(matrix x)

The dot product of the rows of x with themselves

294

Specialized Products

matrix tcrossprod(matrix x)

The product of x postmultiplied by its own transpose, similar to the
tcrossprod(x) function in R. The result is a symmetric matrix xx>.

matrix crossprod(matrix x)

The product of x premultiplied by its own transpose, similar to the crossprod(x)
function in R. The result is a symmetric matrix x> x.

The following functions all provide shorthand forms for common expressions,
which are also much more efficient.

matrix quad_form(matrix A, matrix B)

The quadratic form, i.e., B’ * A * B.

real quad_form(matrix A, vector B)

The quadratic form, i.e., B’ * A * B.

real trace_quad_form(matrix A, matrix B)

The trace of the quadratic form, i.e., trace(B’ * A * B).

real trace_gen_quad_form(matrix D,matrix A, matrix B)

The trace of a generalized quadratic form, i.e., trace(D * B’ * A * B).

matrix multiply_lower_tri_self_transpose(matrix x)

The product of the lower triangular portion of x (including the diagonal) times
its own transpose; that is, if L is a matrix of the same dimensions as x with
L(m,n) equal to x(m,n) for n ≤ m and L(m,n) equal to 0 if n > m, the result
is the symmetric matrix LL>. This is a specialization of tcrossprod(x) for
lower-triangular matrices.

matrix diag_pre_multiply(vector v, matrix m)

Return the product of the diagonal matrix formed from the vector v and the
matrix m, i.e., diag_matrix(v) * m.

matrix diag_pre_multiply(row_vector rv, matrix m)

Return the product of the diagonal matrix formed from the vector rv and the
matrix m, i.e., diag_matrix(rv) * m.

matrix diag_post_multiply(matrix m, vector v)

Return the product of the matrix m and the diagonal matrix formed from the
vector v, i.e., m * diag_matrix(v).

295

matrix diag_post_multiply(matrix m, row_vector rv)

Return the product of the matrix m and the diagonal matrix fromed from the
the row vector rv, i.e., m * diag_matrix(rv).

32.3. Reductions

Log Sum of Exponents

real log_sum_exp(vector x)

The natural logarithm of the sum of the exponentials of the elements in x

real log_sum_exp(row_vector x)

The natural logarithm of the sum of the exponentials of the elements in x

real log_sum_exp(matrix x)

The natural logarithm of the sum of the exponentials of the elements in x

Minimum and Maximum

real min(vector x)

The minimum value in x, or +∞ if x is empty

real min(row_vector x)

The minimum value in x, or +∞ if x is empty

real min(matrix x)

The minimum value in x, or +∞ if x is empty

real max(vector x)

The maximum value in x, or −∞ if x is empty

real max(row_vector x)

The maximum value in x, or −∞ if x is empty

real max(matrix x)

The maximum value in x, or −∞ if x is empty

Sums and Products

real sum(vector x)

The sum of the values in x, or 0 if x is empty

296

real sum(row_vector x)

The sum of the values in x, or 0 if x is empty

real sum(matrix x)

The sum of the values in x, or 0 if x is empty

real prod(vector x)

The product of the values in x, or 1 if x is empty

real prod(row_vector x)

The product of the values in x, or 1 if x is empty

real prod(matrix x)

The product of the values in x, or 1 if x is empty

Sample Moments

Full definitions are provided for sample moments in Section 31.1.

real mean(vector x)

The sample mean of the values in x; see Section 31.1 for details.

real mean(row_vector x)

The sample mean of the values in x; see Section 31.1 for details.

real mean(matrix x)

The sample mean of the values in x; see Section 31.1 for details.

real variance(vector x)

The sample variance of the values in x; see Section 31.1 for details.

real variance(row_vector x)

The sample variance of the values in x; see Section 31.1 for details.

real variance(matrix x)

The sample variance of the values in x; see Section 31.1 for details.

real sd(vector x)

The sample standard deviation of the values in x; see Section 31.1 for details.

real sd(row_vector x)

The sample standard deviation of the values in x; see Section 31.1 for details.

297

real sd(matrix x)

The sample standard deviation of the values in x; see Section 31.1 for details.

32.4. Broadcast Functions

The following broadcast functions allow vectors, row vectors and matrices to be cre-
ated by copying a single element into all of their cells. Matrices may also be created
by stacking copies of row vectors vertically or stacking copies of column vectors hor-
izontally.

vector rep_vector(real x, int m)

Return the size m (column) vector consisting of copies of x.

row_vector rep_row_vector(real x, int n)

Return the size n row vector consisting of copies of x.

matrix rep_matrix(real x, int m, int n)

Return the m by n matrix consisting of copies of x.

matrix rep_matrix(vector v, int n)

Return the m by n matrix consisting of n copies of the (column) vector v of size
m.

matrix rep_matrix(row_vector rv, int m)

Return the m by n matrix consisting of m copies of the row vector rv of size n.

Unlike the situation with array broadcasting (see Section 31.3), where there is a
distinction between integer and real arguments, the following two statements pro-
duce the same result for vector broadcasting; row vector and matrix broadcasting
behave similarly.

vector[3] x;

x <- rep_vector(1, 3);

x <- rep_vector(1.0, 3);

There are no integer vector or matrix types, so integer values are automatically pro-
moted.

vector to_vector(matrix m)

Return the matrix m as a vector in column-major order.

vector to_vector(row_vector m)

Return the row vector m as a vector in column-major order.

298

32.5. Slice and Package Functions

Diagonal Matrices

vector diagonal(matrix x)

The diagonal of the matrix x

matrix diag_matrix(vector x)

The diagonal matrix with diagonal x

Columns and Rows

vector col(matrix x, int n)

The n-th column of matrix x

row_vector row(matrix x, int m)

The m-th row of matrix x

Block Operations

Matrix Slicing Operations

Block operations may be used to extract a sub-block of a matrix.

matrix block(matrix x, int i, int j, int n_rows, int n_cols)

Return the submatrix of x that starts at row i and column j and extends
n_rows rows and n_cols columns.

The sub-row and sub-column operations may be used to extract a slice of row or
column from a matrix

vector sub_col(matrix x, int i, int j, int n_rows)

Return the sub-column of x that starts at row i and column j and extends
n_rows rows and 1 column.

row_vector sub_row(matrix x, int i, int j, int n_cols)

Return the sub-row of x that starts at row i and column j and extends 1 row
and n_cols columns.

299

Vector and Array Slicing Operations

The head operation extracts the first n elements of a vector and the tail operation the
last. The segment operation extracts an arbitrary subvector.

vector head(vector v, int n)

Return the vector consisting of the first n elements of v.

row_vector head(row_vector rv, int n)

Return the row vector consisting of the first n elements of rv.

T[] head(T[] sv, int n)

Return the standard vector consisting of the first n elements of sv; applies to
up to three-dimensional arrays containing any type of elements T.

vector tail(vector v, int n)

Return the vector consisting of the last n elements of v.

row_vector tail(row_vector rv, int n)

Return the row vector consisting of the last n elements of rv.

T[] tail(T[] sv, int n)

Return the standard vector consisting of the last n elements of sv; applies to
up to three-dimensional arrays containing any type of elements T.

vector segment(vector v, int i, int n)

Return the vector consisting of the n elements of v starting at i; i.e., elements
i through through i + n - 1.

row_vector segment(row_vector v, int i, int n)

Return the row vector consisting of the n elements of rv starting at i; i.e.,
elements i through through i + n - 1.

T[] segment(T[] sv, int i, int n)

Return the standard vector consisting of the n elements of sv starting at i;
i.e., elements i through through i + n - 1. Applies to up to three-dimensional
arrays containing any type of elements T.

Transposition Postfix Operator

matrix operator’(matrix x)

The transpose of the matrix x, written as x’

300

row_vector operator’(vector x)

The transpose of the vector x, written as x’

vector operator’(row_vector x)

The transpose of the vector x, written as x’

32.6. Special Matrix Functions

The softmax function maps y ∈ RK to the K-simplex by

softmax(y) = exp(y)∑K
k=1 exp(yk)

,

where exp(y) is the componentwise exponentiation of y . Softmax is usually calcu-
lated on the log scale,

log softmax(y) = y − log
K∑
k=1

exp(yk) = y − log_sum_exp(y).

The entries in the Jacobian of the softmax function are given by

∂
∂ym

softmax(y)[k]

=

 softmax(y)[k]− softmax(y)[k]× softmax(y)[m] if m = k, and

softmax(y)[k]∗ softmax(y)[m] if m ≠ k.

For the log softmax function, the entries are

∂
∂ym

softmax(y)[k] =

 1− softmax(y)[m] if m = k, and

softmax(y)[m] if m ≠ k.

Stan provides the following functions for softmax and its log.

vector softmax(vector x)

The softmax of x

vector log_softmax(vector x)

The natural logarithm of the softmax of x

301

32.7. Linear Algebra Functions and Solvers

Matrix Division Infix Operators

row_vector operator/(row_vector b, matrix A)

The right division of b by A; equivalently b * inverse(A)

matrix operator/(matrix b, matrix A)

The right division of b by A; equivalently b * inverse(A)

vector operator\(matrix A, vector b)

T he left division of b by A; equivalently inverse(A) * b

matrix operator\(matrix A, matrix b)

T he left division of b by A; equivalently inverse(A) * b

Lower-Triangular Matrix-Division Functions

There are four division functions which use lower triangular views of a matrix. The
lower triangular view of a matrix tri(A) is defined by

tri(A)[m,n] =

 A[m,n] if m ≥ n, and

0 otherwise.

row_vector mdivide_right_tri_low(row_vector b, matrix a)

The right division of b by tri(a), a lower triangular view of a; equivalently b

* inverse(tri(a))

matrix mdivide_right_tri_low(matrix b, matrix a)

The right division of b by tri(a), a lower triangular view of a; equivalently b

* inverse(tri(a))

vector mdivide_left_tri_low(matrix a, vector b)

T he left division of b by a triangular view of tri(a), a lower triangular view of
a; equivalently inverse(tri(a)) * b

matrix mdivide_left_tri_low(matrix a, matrix b)

T he left division of b by a triangular view of tri(a), a lower triangular view of
a; equivalently inverse(tri(a)) * b

302

Linear Algebra Functions

Trace

real trace(matrix A)

The trace of A, or 0 if A is empty; A is not required to be diagonal

Determinants

real determinant(matrix A)

The determinant of A

real log_determinant(matrix A)

The log of the absolute value of the determinant of A

Inverses

matrix inverse(matrix A)

The inverse of A

matrix inverse_spd(matrix A)

The inverse of A where A is symmetric, positive definite

Eigendecomposition

vector eigenvalues_sym(matrix A)

The vector of eigenvalues of a symmetric matrix A in asscending order

matrix eigenvectors_sym(matrix A)

The matrix with the (column) eigenvectors of symmetric matrix A in the same
order as returned by the function eigenvalues_sym

Because multiplying an eigenvector by −1 results in an eigenvector, eigenvectors re-
turned by a decomposition are only identified up to a sign change. In order to com-
pare the eigenvectors produced by Stan’s eigendecomposition to others, signs may
need to be normalized in some way, such as by fixing the sign of a component, or
doing comparisons allowig a multiplication by −1.

The condition number of a symmetric matrix is defined to be the ratio of the
largest eigenvalue to the smallest eigenvalue. Large condition numbers lead to dif-
ficulty in numerical algorithms such as computing inverses, and thus known as “ill
conditioned.” The ratio can even be infinite in the case of singular matrices (i.e., those
with eigenvalues of 0).

303

Cholesky Decomposition

Every symmetric, positive-definite matrix (such as a correlation or covariance ma-
trix) has a Cholesky decomposition. If Σ is a symmetric, positive-definite matrix, its
Cholesky decomposition is the lower-triangular vector L such that

Σ = LL>.

matrix cholesky_decompose(matrix A)

The lower-triangular Cholesky factor of the symmetric positive-definite matrix
A

Singular Value Decomposition

Stan only provides functions for the singular values, not for the singular vectors in-
volved in a singular value decomposition (SVD).

vector singular_values(matrix A)

The singular values of A in descending order

32.8. Other functions

vector sort_asc(vector v)

Sort the elements of v in ascending order

row_vector sort_asc(row_vector v)

Sort the elements of v in ascending order

vector sort_desc(vector v)

Sort the elements of v in descending order

row_vector sort_desc(row_vector v)

Sort the elements of v in descending order

int rank(vector v, int s)

Number of components of v less than v[s]

int rank(row_vector v, int s)

Number of components of v less than v[s]

304

Part VI

Discrete Distributions

305

33. Binary Distributions

Binary probability distributions have support on {0,1}, where 1 represents the value
true and 0 the value false.

33.1. Bernoulli Distribution

Probability Mass Function

If θ ∈ [0,1], then for y ∈ {0,1},

Bernoulli(y|θ) =
{
θ if y = 1, and
1− θ if y = 0.

Sampling Statement

y ~ bernoulli(theta);
Increment log probability with bernoulli_log(y,theta), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real bernoulli_log(ints y, reals theta)

The log Bernoulli probability mass of y given chance of success theta

real bernoulli_cdf(ints y, reals theta)

The Bernoulli cumulative distribution function of y given chance of success
theta

real bernoulli_cdf_log(ints y, reals theta)

The log of the Bernoulli cumulative distribution function of y given chance of
success theta

real bernoulli_ccdf_log(ints y, reals theta)

The log of the Bernoulli complementary cumulative distribution function of y
given chance of success theta

int bernoulli_rng(real theta)

Generate a Bernoulli variate with chance of success theta; may only be used in
generated quantities block

306

33.2. Bernoulli Distribution, Logit Parameterization

Stan also supplies a direct parameterization in terms of a logit-transformed chance-
of-success parameter. This parameterization is more numerically stable if the chance-
of-success parameter is on the logit scale, as with the linear predictor in a logistic
regression.

Probability Mass Function

If α ∈ R, then for c ∈ {0,1},

BernoulliLogit(c|α) = Bernoulli(c|logit−1(α)) =
{

logit−1(α) if y = 1, and

1− logit−1(α) if y = 0.

Sampling Statement

y ~ bernoulli_logit(alpha);
Increment log probability with bernoulli_logit_log(y,alpha), dropping
constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real bernoulli_logit_log(ints y, reals alpha)

The log Bernoulli probability mass of y given logit chance of success
exp(alpha)

307

34. Bounded Discrete Distributions

Bounded discrete probability functions have support on {0, . . . ,N} for some upper
bound N.

34.1. Binomial Distribution

Probability Mass Function

Suppose N ∈ N and θ ∈ [0,1], and n ∈ {0, . . . ,N}.

Binomial(n|N,θ) =
(
N
n

)
θn(1− θ)N−n.

Log Probability Mass Function

log Binomial(n|N,θ) = log Γ(N + 1)− log Γ(n+ 1)− log Γ(N − n+ 1)

+ n logθ + (N − n) log(1− θ),

Gradient of Log Probability Mass Function

∂
∂θ

log Binomial(n|N,θ) = n
θ
− N − n
1− θ

Sampling Statement

n ~ binomial(N,theta);
Increment log probability with binomial_log(n,N,theta), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real binomial_log(ints n, ints N, reals theta)

The log binomial probability mass of n successes in N trials given chance of
success theta

real binomial_cdf(ints n, ints N, reals theta)

The binomial cumulative distribution function of n successes in N trials given
chance of success theta

308

real binomial_cdf_log(ints n, ints N, reals theta)

The log of the binomial cumulative distribution function of n successes in N
trials given chance of success theta

real binomial_ccdf_log(ints n, ints N, reals theta)

The log of the binomial complementary cumulative distribution function of n
successes in N trials given chance of success theta

int binomial_rng(int N, real theta)

Generate a binomial variate with N trials and chance of success theta; may
only be used in generated quantities block

34.2. Binomial Distribution, Logit Parameterization

Stan also provides a version of the binomial probability mass function distribution
with the chance of success parameterized on the unconstrained logistic scale.

Probability Mass Function

Suppose N ∈ N, α ∈ R, and n ∈ {0, . . . ,N}.

BinomialLogit(n|N,α) = BinomialLogit(n|N, logit−1(α))

=
(
N
n

)(
logit−1(α)

)n (
1− logit−1(α)

)N−n
.

Log Probability Mass Function

log BinomialLogit(n|N,α) = log Γ(N + 1)− log Γ(n+ 1)− log Γ(N − n+ 1)

+ n log logit−1(α)+ (N − n) log
(
1− logit−1(α)

)
,

Gradient of Log Probability Mass Function

∂
∂α

log BinomialLogit(n|N,α) = n
logit−1(−α)

− N − n
logit−1(α)

309

Sampling Statement

n ~ binomial_logit(N,alpha);
Increment log probability with binomial_logit_log(n,N,alpha), dropping
constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real binomial_logit_log(ints n, ints N, reals alpha)

The log binomial probability mass of n successes in N trials given logit-scaled
chance of success alpha

34.3. Beta-Binomial Distribution

Probability Mass Function

If N ∈ N, α ∈ R+, and β ∈ R+, then for n ∈ {0, . . . ,N},

BetaBinomial(n|N,α,β) =
(
N
n

)
B(n+α,N − n+ β)

B(α,β)
,

where the beta function B(u, v) is defined for u ∈ R+ and v ∈ R+ by

B(u, v) = Γ(u) Γ(v)
Γ(u+ v) .

Sampling Statement

n ~ beta_binomial(N,alpha,beta);
Increment log probability with beta_binomial_log(n,N,alpha,beta), drop-
ping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real beta_binomial_log(ints n, ints N, reals alpha, reals beta)

The log beta-binomial probability mass of n successes in N trials given prior
success count (plus one) of alpha and prior failure count (plus one) of beta

real beta_binomial_cdf(ints n, ints N, reals alpha, reals beta)

The beta-binomial cumulative distribution function of n successes in N trials
given prior success count (plus one) of alpha and prior failure count (plus one)
of beta

310

real beta_binomial_cdf_log(ints n, ints N, reals alpha, reals beta)

The log of the beta-binomial cumulative distribution function of n successes in
N trials given prior success count (plus one) of alpha and prior failure count
(plus one) of beta

real beta_binomial_ccdf_log(ints n, ints N, reals alpha, reals
beta)

The log of the beta-binomial complementary cumulative distribution function
of n successes in N trials given prior success count (plus one) of alpha and
prior failure count (plus one) of beta

int beta_binomial_rng(int N, real alpha, real beta)

Generate a beta-binomial variate with N trials, prior success count (plus one)
of alpha, and prior failure count (plus one) of beta; may only be used in
generated quantities block

34.4. Hypergeometric Distribution

Probability Mass Function

If a ∈ N, b ∈ N, and N ∈ {0, . . . , a+ b}, then for n ∈ {max(0, N − b), . . . ,min(a,N)},

Hypergeometric(n|N,a, b) =

(
a
n

)(
b
N−n

)
(
a+b
N

) .

Sampling Statement

n ~ hypergeometric(N,a,b);
Increment log probability with hypergeometric_log(n,N,a,b), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real hypergeometric_log(int n, int N, int a, int b)

The log hypergeometric probability mass of n successes in N trials given total
success count of a and total failure count of b

int hypergeometric_rng(int N, real a, real b)

Generate a hypergeometric variate with N trials, total success count of a, and
total failure count of b; may only be used in generated quantities block

311

34.5. Categorical Distribution

Probability Mass Functions

If N ∈ N, N > 0, and θ ∈ N-simplex, then for y ∈ {1, . . . ,N},

Categorical(y|θ) = θy .

In addition, Stan provides a log-odds scaled categorical distribution,

CategoricalLogit(y|β) = Categorical(y|softmax(β)).

See Section 32.6 for the definition of the softmax function.

Sampling Statement

y ~ categorical(theta);
Increment log probability with categorical_log(y,theta), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

All of the categorical distributions are vectorized so that the outcome y can be a
single integer (type int) or an array of integers (type int[]).

real categorical_log(ints y, vector theta)

The log categorical probability mass function with outcome(s) y in 1 : N given
N-simplex distribution parameter theta.

real categorical_logit_log(ints y, vector beta)

The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta.

int categorical_rng(vector theta)

Generate a categorical variate with N-simplex distribution parameter theta;
may only be used in generated quantities block

312

34.6. Ordered Logistic Distribution

Probability Mass Function

If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . , K − 2}, and η ∈ R,
then for k ∈ {1, . . . , K},

OrderedLogistic(k|η, c) =


1− logit−1(η− c1) if k = 1,
logit−1(η− ck−1)− logit−1(η− ck) if 1 < k < K, and

logit−1(η− cK−1)− 0 if k = K.

The k = 1 and k = K edge cases can be subsumed into the general definition by
setting c0 = −∞ and cK = +∞ with logit−1(−∞) = 0 and logit−1(∞) = 1.

Sampling Statement

k ~ ordered_logistic(eta,c);
Increment log probability with ordered_logistic_log(k,eta,c), dropping
constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real ordered_logistic_log(int k, real eta, vector c)

The log ordered logistic probability mass of k given linear predictor eta and
cutpoints c.

int ordered_logistic_rng(real eta, vector c)

Generate an ordered logistic variate with linear predictor eta and cutpoints c;
may only be used in generated quantities block

313

35. Unbounded Discrete Distributions

The unbounded discrete distributions have support over the natural numbers (i.e.,
the non-negative integers).

35.1. Negative Binomial Distribution

Probability Mass Function

If α ∈ R+ and β ∈ R+, then for n ∈ N,

NegativeBinomial(n|α,β) =
(
n+α− 1
α− 1

) (
β

β+ 1

)α (
1

β+ 1

)n
.

log NegativeBinomial(n|α,β) = log Γ(n+α)− log Γ(n+ 1)− log Γ(α)

+α
(
logβ− log(β+ 1)

)
− n log(β+ 1)

∂
∂α

log NegativeBinomial(n|α,β) = Ψ(n+α)− Ψ(α)+ logβ− log(β+ 1)

∂
∂β

log NegativeBinomial(n|α,β) = α
β
− α+ n
β+ 1

where Ψ is the digamma function, defined as

Ψ(x) = ∂
∂x

log Γ(x).

Sampling Statement

n ~ neg_binomial(alpha,beta);
Increment log probability with neg_binomial_log(n,alpha,beta), dropping
constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real neg_binomial_log(ints n, reals alpha, reals beta)

The log negative binomial probability mass of n given shape alpha and inverse
scale beta

real neg_binomial_cdf(ints n, reals alpha, reals beta)

The negative binomial cumulative distribution function of n given shape alpha
and inverse scale beta

314

real neg_binomial_cdf_log(ints n, reals alpha, reals beta)

The log of the negative binomial cumulative distribution function of n given
shape alpha and inverse scale beta

real neg_binomial_ccdf_log(ints n, reals alpha, reals beta)

The log of the negative binomial complementary cumulative distribution
function of n given shape alpha and inverse scale beta

int neg_binomial_rng(real alpha, real beta)

Generate a negative binomial variate with shape alpha and inverse scale beta;
may only be used in generated quantities block

35.2. Poisson Distribution

Probability Mass Function

If λ ∈ R+, then for n ∈ N,

Poisson(n|λ) = 1
n!
λn exp(−λ).

Sampling Statement

n ~ poisson(lambda);
Increment log probability with poisson_log(n,lambda), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real poisson_log(ints n, reals lambda)

The log Poisson probability mass of n given rate lambda

real poisson_cdf(ints n, reals lambda)

The Poisson cumulative distribution function of n given rate lambda

real poisson_cdf_log(ints n, reals lambda)

The log of the Poisson cumulative distribution function of n given rate lambda

real poisson_ccdf_log(ints n, reals lambda)

The log of the Poisson complementary cumulative distribution function of n
given rate lambda

315

int poisson_rng(real lambda)

Generate a poisson variate with rate lambda; may only be used in generated
quantities block

35.3. Poisson Distribution, Log Parameterization

Stan also provides a parameterization of the Poisson using the log rate α = logλ as
a parameter. This is useful for log-linear Poisson regressions so that the predictor
does not need to be exponentiated and passed into the standard Poisson probability
function.

Probability Mass Function

If α ∈ R, then for n ∈ N,

PoissonLog(n|α) = 1
n!

exp
(
nα− exp(α)

)
.

Sampling Statement

n ~ poisson_log(alpha);
Increment log probability with poisson_log_log(n,alpha), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real poisson_log_log(ints n, reals alpha)

The log Poisson probability mass of n given log rate alpha

316

36. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are
expressed in Stan as arrays.

36.1. Multinomial Distribution

Probability Mass Function

If K ∈ N, N ∈ N, and θ ∈ K-simplex, then for y ∈ NK such that
∑K
k=1 yk = N,

Multinomial(y|θ,N) =
(

N
y1, . . . , yK

) K∏
k=1
θykk ,

where the multinomial coefficient is defined by(
N

y1, . . . , yk

)
= N!∏K

k=1 yk!
.

Sampling Statement

y ~ multinomial(theta,N);
Increment log probability with multinomial_log(y,theta,N), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real multinomial_log(int[] y, vector theta, int N)

The log multinomial probability mass function with outcome array y of size K
given the K-simplex distribution parameter theta and (implicit) total count N
= sum(y)

vector multinomial_rng(vector theta, int N)

Generate a multinomial variate with simplex distribution parameter theta and
(implicit) total count N; may only be used in generated quantities block

317

Part VII

Continuous Distributions

318

37. Unbounded Continuous Distributions

The unbounded univariate continuous probability distributions have support on all
real numbers.

37.1. Normal Distribution

Probability Density Function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Normal(y|µ,σ) = 1√
2π σ

exp

(
− 1
2

(
y − µ
σ

)2)
.

Sampling Statement

y ~ normal(mu,sigma);
Increment log probability with normal_log(y,mu,sigma), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real normal_log(reals y, reals mu, reals sigma)

The log of the normal density of y given location mu and scale sigma

real normal_cdf(reals y, reals mu, reals sigma)

The cumulative normal distribution of y given location mu and scale sigma

real normal_cdf_log(reals y, reals mu, reals sigma)

The log of the cumulative normal distribution of y given location mu and scale
sigma

real normal_ccdf_log(reals y, reals mu, reals sigma)

The log of the complementary cumulative normal distribution of y given
location mu and scale sigma

real normal_rng(real mu, real sigma)

Generate a normal variate with location mu and scale sigma; may only be used
in generated quantities block

319

37.2. Exponentially Modified Normal Distribution

Probability Density Function

If µ ∈ R, σ ∈ R+, and λ ∈ R+, then for y ∈ R,

ExpModNormal(y|µ,σ , λ) = λ√
π

exp
(
λ
2

(
2µ + λσ 2 − 2y

))
erfc

(
µ + λσ 2 − y√

2σ

)
.

Sampling Statement

y ~ exp_mod_normal(mu,sigma,lambda);
Increment log probability with exp_mod_normal_log(y,mu,sigma,lambda),
dropping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real exp_mod_normal_log(reals y, reals mu, reals sigma,
reals lambda)

The log of the exponentially modified normal density of y given location mu,
scale sigma, and shape lambda

real exp_mod_normal_cdf(reals y, reals mu, reals sigma,
reals lambda)

The exponentially modified normal cumulative distribution function of y given
location mu, scale sigma, and shape lambda

real exp_mod_normal_cdf_log(reals y, reals mu, reals sigma,
reals lambda)

The log of the exponentially modified normal cumulative distribution function
of y given location mu, scale sigma, and shape lambda

real exp_mod_normal_ccdf_log(reals y, reals mu, reals sigma,
reals lambda)

The log of the exponentially modified normal complementary cumulative
distribution function of y given location mu, scale sigma, and shape lambda

real exp_mod_normal_rng(real mu, real sigma, real lambda)

Generate a exponentially modified normal variate with location mu, scale sigma,
and shape lambda; may only be used in generated quantities block

320

37.3. Skew Normal Distribution

Probabilty Density Function

If µ ∈ R, σ ∈ R+, and α ∈ R, then for y ∈ R,

SkewNormal(y|µ,σ ,α) = 1
σ
√
2π

exp

(
− 1
2

(
y − µ
σ

)2) (
1+ erf

(
α
(
y − µ
σ
√
2

)))
.

Sampling Statement

y ~ skew_normal(mu,sigma,alpha);
Increment log probability with skew_normal_log(y,mu,sigma,alpha), drop-
ping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real skew_normal_log(reals y, reals mu, reals sigma, reals alpha)

The log of the skew normal density of y given location mu, scale sigma, and
shape alpha

real skew_normal_cdf(reals y, reals mu, reals sigma, reals alpha)

The skew normal distribution function of y given location mu, scale sigma, and
shape alpha

real skew_normal_cdf_log(reals y, reals mu, reals sigma,
reals alpha)

The log of the skew normal cumulative distribution function of y given location
mu, scale sigma, and shape alpha

real skew_normal_ccdf_log(reals y, reals mu, reals sigma,
reals alpha)

The log of the skew normal complementary cumulative distribution function
of y given location mu, scale sigma, and shape alpha

real skew_normal_rng(real mu, real sigma, real alpha)

Generate a skew normal variate with location mu, scale sigma, and shape alpha;
may only be used in generated quantities block

321

37.4. Student-t Distribution

Probability Density Function

If ν ∈ R+, µ ∈ R, and σ ∈ R+, then for y ∈ R,

StudentT(y|ν, µ,σ) = Γ ((ν + 1)/2)
Γ(ν/2)

1√
νπ σ

(
1+ 1

ν

(
y − µ
σ

)2)−(ν+1)/2
.

Sampling Statement

y ~ student_t(nu,mu,sigma);
Increment log probability with student_t_log(y,nu,mu,sigma), dropping
constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real student_t_log(reals y, reals nu, reals mu, reals sigma)

The log of the Student-t density of y given degrees of freedom nu, location mu,
and scale sigma

real student_t_cdf(reals y, reals nu, reals mu, reals sigma)

The Student-t cumulative distribution function of y given degrees of freedom
nu, location mu, and scale sigma

real student_t_cdf_log(reals y, reals nu, reals mu, reals sigma)

The log of the Student-t cumulative distribution function of y given degrees of
freedom nu, location mu, and scale sigma

real student_t_ccdf_log(reals y, reals nu, reals mu, reals sigma)

The log of the Student-t complementary cumulative distribution function of y
given degrees of freedom nu, location mu, and scale sigma

real student_t_rng(real nu, real mu, real sigma)

Generate a Student-t variate with degrees of freedom nu, location mu, and scale
sigma; may only be used in generated quantities block

322

37.5. Cauchy Distribution

Probability Density Function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Cauchy(y|µ,σ) = 1
πσ

1
1+ ((y − µ)/σ)2

.

Sampling Statement

y ~ cauchy(mu,sigma);
Increment log probability with cauchy_log(y,mu,sigma), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real cauchy_log(reals y, reals mu, reals sigma)

The log of the Cauchy density of y given location mu and scale sigma

real cauchy_cdf(reals y, reals mu, reals sigma)

The Cauchy cumulative distribution function of y given location mu and scale
sigma

real cauchy_cdf_log(reals y, reals mu, reals sigma)

The log of the Cauchy cumulative distribution function of y given location mu
and scale sigma

real cauchy_ccdf_log(reals y, reals mu, reals sigma)

The log of the Cauchy complementary cumulative distribution function of y
given location mu and scale sigma

real cauchy_rng(real mu, real sigma)

Generate a Cauchy variate with location mu and scale sigma; may only be used
in generated quantities block

37.6. Double Exponential (Laplace) Distribution

Probability Density Function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

DoubleExponential(y|µ,σ) = 1
2σ

exp
(
− |y − µ|

σ

)
.

323

Sampling Statement

y ~ double_exponential(mu,sigma);
Increment log probability with double_exponential_log(y,mu,sigma), drop-
ping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real double_exponential_log(reals y, reals mu, reals sigma)

The log of the double exponential density of y given location mu and scale
sigma

real double_exponential_cdf(reals y, reals mu, reals sigma)

The double exponential cumulative distribution function of y given location mu
and scale sigma

real double_exponential_cdf_log(reals y, reals mu, reals sigma)

The log of the double exponential cumulative distribution function of y given
location mu and scale sigma

real double_exponential_ccdf_log(reals y, reals mu, reals sigma)

The log of the double exponential complementary cumulative distribution
function of y given location mu and scale sigma

real double_exponential_rng(real mu, real sigma)

Generate a double exponential variate with location mu and scale sigma; may
only be used in generated quantities block

37.7. Logistic Distribution

Probability Density Function

If µ ∈ R and σ ∈ R+, then for y ∈ R,

Logistic(y|µ,σ) = 1
σ

exp
(
− y − µ

σ

) (
1+ exp

(
− y − µ

σ

))−2
.

Sampling Statement

y ~ logistic(mu,sigma);
Increment log probability with logistic_log(y,mu,sigma), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

324

Stan Functions

real logistic_log(reals y, reals mu, reals sigma)

The log of the logistic density of y given location mu and scale sigma

real logistic_cdf(reals y, reals mu, reals sigma)

The logistic cumulative distribution function of y given location mu and scale
sigma

real logistic_cdf_log(reals y, reals mu, reals sigma)

The log of the logistic cumulative distribution function of y given location mu
and scale sigma

real logistic_ccdf_log(reals y, reals mu, reals sigma)

The log of the logistic complementary cumulative distribution function of y
given location mu and scale sigma

real logistic_rng(real mu, real sigma)

Generate a logistic variate with location mu and scale sigma; may only be used
in generated quantities block

37.8. Gumbel Distribution

Probability Density Function

If µ ∈ R and β ∈ R+, then for y ∈ R,

Gumbel(y|µ,β) = 1
β

exp

(
−y − µ

β
− exp

(
−y − µ

β

))
.

Sampling Statement

y ~ gumbel(mu,beta);
Increment log probability with gumbel_log(y,mu,beta), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real gumbel_log(reals y, reals mu, reals beta)

The log of the gumbel density of y given location mu and scale beta

325

real gumbel_cdf(reals y, reals mu, reals beta)

The gumbel cumulative distribution function of y given location mu and scale
beta

real gumbel_cdf_log(reals y, reals mu, reals beta)

The log of the gumbel cumulative distribution function of y given location mu
and scale beta

real gumbel_ccdf_log(reals y, reals mu, reals beta)

The log of the gumbel complementary cumulative distribution function of y
given location mu and scale beta

real gumbel_rng(real mu, real beta)

Generate a gumbel variate with location mu and scale beta; may only be used in
generated quantities block

326

38. Positive Continuous Distributions

The positive continuous probability functions have support on the positive real num-
bers.

38.1. Lognormal Distribution

Probability Density Function

If µ ∈ R and σ ∈ R+, then for y ∈ R+,

LogNormal(y|µ,σ) = 1√
2π σ

1
y

exp

(
− 1
2

(
logy − µ
σ

)2)
.

Sampling Statement

y ~ lognormal(mu,sigma);
Increment log probability with lognormal_log(y,mu,sigma), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real lognormal_log(reals y, reals mu, reals sigma)

The log of the lognormal density of y given location mu and scale sigma

real lognormal_cdf(reals y, reals mu, reals sigma)

The cumulative lognormal distribution function of y given location mu and
scale sigma

real lognormal_cdf_log(reals y, reals mu, reals sigma)

The log of the lognormal cumulative distribution fucntion of y given location
mu and scale sigma

real lognormal_ccdf_log(reals y, reals mu, reals sigma)

The log of the lognormal complementary cumulative distribution function of y
given location mu and scale sigma

real lognormal_rng(real mu, real beta)

Generate a lognormal variate with location mu and scale sigma; may only be
used in generated quantities block

327

38.2. Chi-Square Distribution

Probability Density Function

If ν ∈ R+, then for y ∈ R+,

ChiSquare(y|ν) = 2−ν/2

Γ(ν/2)
yν/2−1 exp

(
− 1
2
y
)
.

Sampling Statement

y ~ chi_square(nu);
Increment log probability with chi_square_log(y,nu), dropping constant ad-
ditive terms; Section 24.3 explains sampling statements.

Stan Functions

real chi_square_log(reals y, reals nu)

The log of the Chi-square density of y given degrees of freedom nu

real chi_square_cdf(reals y, reals nu)

The Chi-square cumulative distribution function of y given degrees of freedom
nu

real chi_square_cdf_log(reals y, reals nu)

The log of the Chi-square cumulative distribution function of y given degrees
of freedom nu

real chi_square_ccdf_log(reals y, reals nu)

The log of the complementary Chi-square cumulative distribution function of y
given degrees of freedom nu

real chi_square_rng(real nu)

Generate a Chi-square variate with degrees of freedom nu; may only be used in
generated quantities block

38.3. Inverse Chi-Square Distribution

Probability Density Function

If ν ∈ R+, then for y ∈ R+,

InvChiSquare(y|ν) = 2−ν/2

Γ(ν/2)
y−(ν/2−1) exp

(
− 1
2
1
y

)
.

328

Sampling Statement

y ~ inv_chi_square(nu);
Increment log probability with inv_chi_square_log(y,nu), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real inv_chi_square_log(reals y, reals nu)

The log of the inverse Chi-square density of y given degrees of freedom nu

real inv_chi_square_cdf(reals y, reals nu)

The inverse Chi-squared cumulative distribution function of y given degrees of
freedom nu

real inv_chi_square_cdf_log(reals y, reals nu)

The log of the inverse Chi-squared cumulative distribution function of y given
degrees of freedom nu

real inv_chi_square_ccdf_log(reals y, reals nu)

The log of the inverse Chi-squared complementary cumulative distribution
function of y given degrees of freedom nu

real inv_chi_square_rng(real nu)

Generate an inverse Chi-squared variate with degrees of freedom nu; may only
be used in generated quantities block

38.4. Scaled Inverse Chi-Square Distribution

Probability Density Function

If ν ∈ R+ and σ ∈ R+, then for y ∈ R+,

ScaledInvChiSquare(y|ν,σ) = (ν/2)
ν/2

Γ(ν/2)
σ ν y−(ν/2+1) exp

(
− 1
2
ν σ 2

1
y

)
.

Sampling Statement

y ~ scaled_inv_chi_square(nu,sigma);
Increment log probability with scaled_inv_chi_square_log(y,nu,sigma),
dropping constant additive terms; Section 24.3 explains sampling statements.

329

Stan Functions

real scaled_inv_chi_square_log(reals y, reals nu, reals sigma)

The log of the scaled inverse Chi-square density of y given degrees of freedom
nu and scale sigma

real scaled_inv_chi_square_cdf(reals y, reals nu, reals sigma)

The scaled inverse Chi-square cumulative distribution function of y given
degrees of freedom nu and scale sigma

real scaled_inv_chi_square_cdf_log(reals y, reals nu, reals sigma)

The log of the scaled inverse Chi-square cumulative distribution function of y
given degrees of freedom nu and scale sigma

real scaled_inv_chi_square_ccdf_log(reals y, reals nu, reals sigma)

The log of the scaled inverse Chi-square complementary cumulative distribu-
tion function of y given degrees of freedom nu and scale sigma

real scaled_inv_chi_square_rng(real nu, real sigma)

Generate a scaled inverse Chi-squared variate with degrees of freedom nu and
scale sigma; may only be used in generated quantities block

38.5. Exponential Distribution

Probability Density Function

If β ∈ R+, then for y ∈ R+,

Exponential(y|β) = β exp(−βy).

Sampling Statement

y ~ exponential(beta);
Increment log probability with exponential_log(y,beta), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real exponential_log(reals y, reals beta)

The log of the exponential density of y given inverse scale beta

330

real exponential_cdf(reals y, reals beta)

The exponential cumulative distribution function of y given inverse scale beta

real exponential_cdf_log(reals y, reals beta)

The log of the exponential cumulative distribution function of y given inverse
scale beta

real exponential_ccdf_log(reals y, reals beta)

The log of the exponential complementary cumulative distribution function of
y given inverse scale beta

real exponential_rng(real beta)

Generate an exponential variate with inverse scale beta; may only be used in
generated quantities block

38.6. Gamma Distribution

Probability Density Function

If α ∈ R+ and β ∈ R+, then for y ∈ R+,

Gamma(y|α,β) = βα

Γ(α)
yα−1 exp(−βy).

Sampling Statement

y ~ gamma(alpha,beta);
Increment log probability with gamma_log(y,alpha,beta), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real gamma_log(reals y, reals alpha, reals beta)

The log of the gamma density of y given shape alpha and inverse scale beta

real gamma_cdf(reals y, reals alpha, reals beta)

The cumulative gamma distribution function of y given shape alpha and
inverse scale beta

real gamma_cdf_log(reals y, reals alpha, reals beta)

The log of the cumulative gamma distribution function of y given shape alpha
and inverse scale beta

331

real gamma_ccdf_log(reals y, reals alpha, reals beta)

The log of the complementary cumulative gamma distribution function of y
given shape alpha and inverse scale beta

real gamma_rng(real alpha, real beta)

Generate a gamma variate with shape alpha and inverse scale beta; may only
be used in generated quantities block

38.7. Inverse Gamma Distribution

Probability Density Function

If α ∈ R+ and β ∈ R+, then for y ∈ R+,

InvGamma(y|α,β) = βα

Γ(α)
y−(α+1) exp

(
−β 1
y

)
.

Sampling Statement

y ~ inv_gamma(alpha,beta);
Increment log probability with inv_gamma_log(y,alpha,beta), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real inv_gamma_log(reals y, reals alpha, reals beta)

The log of the inverse gamma density of y given shape alpha and scale beta

real inv_gamma_cdf(reals y, reals alpha, reals beta)

The inverse gamma cumulative distribution function of y given shape alpha
and scale beta

real inv_gamma_cdf_log(reals y, reals alpha, reals beta)

The log of the inverse gamma cumulative distribution function of y given shape
alpha and scale beta

real inv_gamma_ccdf_log(reals y, reals alpha, reals beta)

The log of the inverse gamma complementary cumulative distribution function
of y given shape alpha and scale beta

real inv_gamma_rng(real alpha, real beta)

Generate an inverse gamma variate with shape alpha and scale beta; may only
be used in generated quantities block

332

38.8. Weibull Distribution

Probability Density Function

If α ∈ R+ and σ ∈ [0,∞), then for y ∈ R+,

Weibull(y|α,σ) = α
σ

(
y
σ

)α−1
exp

(
−
(
y
σ

)α)
.

Sampling Statement

y ~ weibull(alpha,sigma);
Increment log probability with weibull_log(y,alpha,sigma), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real weibull_log(reals y, reals alpha, reals sigma)

The log of the Weibull density of y given shape alpha and scale sigma

real weibull_cdf(reals y, reals alpha, reals sigma)

The Weibull cumulative distribution function of y given shape alpha and scale
sigma

real weibull_cdf_log(reals y, reals alpha, reals sigma)

The log of the Weibull cumulative distribution function of y given shape alpha
and scale sigma

real weibull_ccdf_log(reals y, reals alpha, reals sigma)

The log of the Weibull complementary cumulative distribution function of y
given shape alpha and scale sigma

real weibull_rng(real alpha, real sigma)

Generate a weibull variate with shape alpha and scale sigma; may only be used
in generated quantities block

333

39. Non-negative Continuous Distributions

The non-negative continuous probability functions have support on the non-negative
real numbers.

39.1. Rayleigh Distribution

Probability Density Function

If σ ∈ R+, then for y ∈ [0,∞),

Rayleigh(y|σ) = y
σ 2

exp(−y2/2σ 2).

Sampling Statement

y ~ rayleigh(sigma);
Increment log probability with rayleigh_log(y,sigma), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real rayleigh_log(reals y, reals sigma)

The log of the Rayleigh ensity of y given scale sigma

real rayleigh_cdf(real y, real sigma)

The Rayleigh cumulative distribution of y given scale sigma

real rayleigh_cdf_log(real y, real sigma)

The log of the Rayleigh cumulative distribution of y given scale sigma

real rayleigh_ccdf_log(real y, real sigma)

The log of the Rayleigh complementary cumulative distribution of y given scale
sigma

real rayleigh_rng(real sigma)

Generate a Rayleigh variate with scale sigma; may only be used in generated
quantities block

334

40. Positive Lower-Bounded Probabilities

The positive lower-bounded probabilities have support on real values above some
positive minimum value.

40.1. Pareto Distribution

Probability Density Function

If y0 ∈ R+ and α ∈ R+, then for y ∈ R+,

Pareto(y|y0, α) = α y0
(
1
y

)α+1
.

Sampling Statement

y ~ pareto(y_min,alpha);
Increment log probability with pareto_log(y,y_min,alpha), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real pareto_log(reals y, reals y_min, reals alpha)

The log of the Pareto density of y given positive minimum value y_min and
shape alpha

real pareto_cdf(reals y, reals y_min, reals alpha)

The Pareto cumulative distribution function of y given positive minimum value
y_min and shape alpha

real pareto_cdf_log(reals y, reals y_min, reals alpha)

The log of the Pareto cumulative distribution function of y given positive
minimum value y_min and shape alpha

real pareto_ccdf_log(reals y, reals y_min, reals alpha)

The log of the Pareto complementary cumulative distribution function of y
given positive minimum value y_min and shape alpha

real pareto_rng(real y_min, real alpha)

Generate a Pareto variate with positive minimum value y_min and shape alpha;
may only be used in generated quantities block

335

41. Continuous Distributions on [0, 1]

The continuous distributions with outcomes in the interval [0,1] are used to charac-
terized bounded quantities, including probabilities.

41.1. Beta Distribution

Probability Density Function

If α ∈ R+ and β ∈ R+, then for θ ∈ (0,1),

Beta(θ|α,β) = 1
B(α,β)

θα−1 (1− θ)β−1,

where the beta function B() is as defined in Section 30.11. If θ = 0 or θ = 1, then the
log probability is −∞.

Sampling Statement

theta ~ beta(alpha,beta);
Increment log probability with beta_log(theta,alpha,beta), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real beta_log(reals theta, reals alpha, reals beta)

The log of the beta density of theta in [0,1] given positive prior successes
(plus one) alpha and prior failures (plus one) beta

real beta_cdf(reals theta, reals alpha, reals beta)

The beta cumulative distribution function of theta in [0,1] given positive
prior successes (plus one) alpha and prior failures (plus one) beta

real beta_cdf_log(reals theta, reals alpha, reals beta)

The log of the beta cumulative distribution function of theta in [0,1] given
positive prior successes (plus one) alpha and prior failures (plus one) beta

real beta_ccdf_log(reals theta, reals alpha, reals beta)

The log of the beta complementary cumulative distribution function of theta
in [0,1] given positive prior successes (plus one) alpha and prior failures (plus
one) beta

336

real beta_rng(real alpha, real beta)

Generate a beta variate with positive prior successes (plus one) alpha and prior
failures (plus one) beta; may only be used in generated quantities block

337

42. Circular Distributions

Circular distributions are defined for finite values y in any interval of length 2π .

42.1. Von Mises Distribution

Probability Density Function

If µ ∈ R and κ ∈ R+, then for y ∈ R,

VonMises(y|µ, κ) = exp(κ cos(y − µ))
2πI0(κ)

.

Sampling Statement

y ~ von_mises(mu,kappa);
Increment log probability with von_mises_log(y,mu,kappa), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real von_mises_log(reals y, reals mu, reals kappa)

The log of the von mises density of y given location mu and scale kappa

Numerical Stability

Evaluating the Von Mises distribution for κ > 100 is numerically unstable in the
current implementation. Nathanael I. Lichti suggested the following workaround on
the Stan users group, based on the fact that as κ →∞,

VonMises(y|µ, κ)→ Normal(µ,
√
1/κ).

The workaround is to replace y ~ von_mises(mu,kappa) with

if (kappa < 100)
y ~ von_mises(mu, kappa);

else
y ~ normal(mu, sqrt(1 / kappa));

338

43. Bounded Continuous Probabilities

The bounded continuous probabilities have support on a finite interval of real num-
bers.

43.1. Uniform Distribution

Probability Density Function

If α ∈ R and β ∈ (α,∞), then for y ∈ [α,β],

Uniform(y|α,β) = 1
β−α.

Sampling Statement

y ~ uniform(alpha,beta);
Increment log probability with uniform_log(y,alpha,beta), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real uniform_log(reals y, reals alpha, reals beta)

The log of the uniform density of y given lower bound alpha and upper bound
beta

real uniform_cdf(reals y, reals alpha, reals beta)

The uniform cumulative distribution function of y given lower bound alpha
and upper bound beta

real uniform_cdf_log(reals y, reals alpha, reals beta)

The log of the uniform cumulative distribution function of y given lower bound
alpha and upper bound beta

real uniform_ccdf_log(reals y, reals alpha, reals beta)

The log of the uniform complementary cumulative distribution function of y
given lower bound alpha and upper bound beta

real uniform_rng(real alpha, real beta)

Generate a uniform variate with lower bound alpha and upper bound beta;
may only be used in generated quantities block

339

44. Distributions over Unbounded Vectors

The unbounded vector probability distributions have support on all of RK for some
fixed K.

44.1. Multivariate Normal Distribution

Probability Density Function

If K ∈ N, µ ∈ RK , and Σ ∈ RK×K is symmetric and positive definite, then for y ∈ RK ,

MultiNormal(y|µ,Σ) = 1
(2π)K/2

1√
|Σ|

exp
(
−1
2
(y − µ)> Σ−1 (y − µ)

)
,

where |Σ| is the absolute determinant of Σ.

Sampling Statement

y ~ multi_normal(mu,Sigma);
Increment log probability with multi_normal_log(y,mu,Sigma), dropping
constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real multi_normal_log(vector y, vector mu, matrix Sigma)

The log of the multivariate normal density of vector y given location mu and
covariance matrix Sigma

vector multi_normal_rng(vector mu, matrix Sigma)

Generate a multivariate normal variate with location mu and covariance matrix
Sigma; may only be used in generated quantities block

44.2. Multivariate Normal Distribution, Precision Parameterization

Probability Density Function

If K ∈ N, µ ∈ RK , and Ω ∈ RK×K is symmetric and positive definite, then for y ∈ RK ,

MultiNormalPrecision(y|µ,Ω) = MultiNormal(y|µ,Σ−1)

340

Sampling Statement

y ~ multi_norm_prec(mu,Omega);
Increment log probability with multi_norm_prec_log(y,mu,Omega), drop-
ping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real multi_normal_prec_log(vector y, vector mu, matrix Omega)

The log of the multivariate normal density of vector y given location mu and
positive definite precision matrix Omega

44.3. Multivariate Normal Distribution, Cholesky Parameterization

Probability Density Function

If K ∈ N, µ ∈ RK , and L ∈ RK×K is lower triangular and such that LL> is positive
definite, then for y ∈ RK ,

MultiNormalCholesky(y|µ, L) = MultiNormal(y|µ, LL>).

Sampling Statement

y ~ multi_normal_cholesky(mu,L);
Increment log probability with multi_normal_cholesky_log(y,mu,L), drop-
ping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real multi_normal_cholesky_log(vector y, vector mu, matrix L)

The log of the multivariate normal density of vector y given location mu and
lower-triangular Cholesky factor of the covariance matrix L

341

44.4. Multivariate Student-t Distribution

Probability Density Function

If K ∈ N, ν ∈ R+, µ ∈ RK , and Σ ∈ RK×K is symmetric and positive definite, then for
y ∈ RK ,

MultiStudentT(y|ν, µ,Σ)

= 1
πK/2

1
νK/2

Γx ((ν +K)/2)
Γ(ν/2)

1√
|Σ|

(
1+ 1

ν
(y − µ)> Σ−1 (y − µ)

)−(ν+K)/2
.

Sampling Statement

y ~ multi_student_t(nu,mu,Sigma);
Increment log probability with multi_student_t_log(y,nu,mu,Sigma), drop-
ping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real multi_student_t_log(vector y, real nu, vector mu, matrix
Sigma)

The log of the multivariate Student-t density of vector y given degrees of
freedom nu, location mu, and scale matrix Sigma

vector multi_student_t_rng(real nu, vector mu, matrix Sigma)

Generate a multivariate Student-t variate with degrees of freedom nu, location
mu, and scale matrix Sigma; may only be used in generated quantities block

44.5. Gaussian Dynamic Linear Models

A Gaussian Dynamic Linear model is defined as follows, For t ∈ 1, . . . , T ,

yt ∼ N(F ′θt , V)
θt ∼ N(Gθt−1,W)
θ0 ∼ N(m0, C0)

where y is n×T matrix where rows are variables and columns are observations. These
functions calculate the log-likelihood of the observations marginalizing over the la-
tent states (p(y|F,G,V ,W,m0, C0)). This log-likelihood is system is calculated using

342

the the Kalman Filter. If V is diagonal, then a more efficient algorithm which sequen-
tially processes observations and avoids a matrix inversions can be used (Durbin and
Koopman, 2001, Sec 6.4).

Sampling Statement

y ~ gaussian_dlm_obs(F,G,V,W,m0,C0);
Increment log probability with gaussian_dlm_obs_log(y,F,G,V,W,m0,C0),
dropping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

The following two functions differ in the type of their V, the first taking a full ob-
servation covariance matrix V and the second a vector V representing the diagonal of
the observation covariance matrix. The sampling statement defined in the previous
section works with either type of observation V.

real gaussian_dlm_obs_log(vector y, matrix F, matrix G, matrix V,
matrix W, vector m0, matrix C0)

The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design
matrix F, transition matrix G, observation covariance matrix V, system covari-
ance matrix W, and the initial state is distributed normal with mean m0 and
covariance C0.

real gaussian_dlm_obs_log(vector y, matrix F, matrix G, vector V,
matrix W, vector m0, matrix C0)

The log of the density of the Gaussian Dynamic Linear model with observation
matrix y in which rows are variables and columns are observations, design
matrix F, transition matrix G, observation covariance matrix with diagonal V,
system covariance matrix W, and the initial state is distributed normal with
mean m0 and covariance C0.

343

45. Simplex Distributions

The simplex probabilities have support on the unit K-simplex for a specified K. A K-
dimensional vector θ is a unit K-simplex if θk ≥ 0 for k ∈ {1, . . . , K} and

∑K
k=1 θk = 1.

45.1. Dirichlet Distribution

Probability Density Function

If K ∈ N and α ∈ (R+)K , then for θ ∈ K-simplex,

Dirichlet(θ|α) =
Γ
(∑K

k=1αk
)

∏K
k=1 Γ(αk)

K∏
k=1
θαk−1k .

Sampling Statement

theta ~ dirichlet(alpha);
Increment log probability with dirichlet_log(theta,alpha), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real dirichlet_log(vector theta, vector alpha)

The log of the Dirichlet density for simplex theta given prior counts (plus one)
alpha

vector dirichlet_rng(vector alpha)

Generate a Dirichlet variate with prior counts (plus one) alpha; may only be
used in generated quantities block

344

46. Correlation Matrix Distributions

The correlation matrix distributions have support on the (Cholesky factors of) corre-
lation matrices. A Cholesky factor L for a K × K covariance matrix of dimensions K
has rows of unit length so that the diagonal of LL> is the unit K-vector.

46.1. LKJ Correlation Distribution

Probability Density Function

For η > 0, if Σ a positive-definite, symmetric matrix with unit diagonal (i.e., a correla-
tion matrix), then

LkjCorr(Σ|η)∝ det (Σ)(η−1) .

The shape parameter η can be interpreted like the shape parameter of a symmetric
beta distribution.

• if η = 1, then the density is uniform over all correlation matrices of a given
order;

• if η > 1, the identity matrix is the modal correlation matrix, with sharper peaks
in the density around the identity matrix for larger η; and

• for 0 < η < 1, the density has a trough at the identity matrix.

See (Lewandowski et al., 2009) for definitions.

Sampling Statement

y ~ lkj_corr_log(eta);
Increment log probability with lkj_corr_log_log(y,eta), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real lkj_corr_log(matrix y, real eta)

The log of the LKJ density for the correlation matrix y given nonnegative shape
eta.

matrix lkj_corr_rng(int K, real eta)

Generate a LKJ random correlation matrix of order K with shape eta; may only
be used in generated quantities block

345

47. Covariance Matrix Distributions

The covariance matrix distributions have support on symmetric, positive-definite K×
K matrices.

47.1. Wishart Distribution

Probability Density Function

If K ∈ N, ν ∈ (K − 1,∞), and S ∈ RK×K is symmetric and positive definite, then for
symmetric and positive-definite W ∈ RK×K ,

Wishart(W |ν, S) = 1
2νK/2

1
ΓK
(
ν
2

) |S|−ν/2 |W |(ν−K−1)/2 exp
(
1
2

tr
(
S−1W

))
,

where tr() is the matrix trace function, and ΓK() is the multivariate Gamma function,

ΓK(x) =
1

πK(K−1)/4

K∏
k=1
Γ
(
x+ 1− k

2

)
.

Sampling Statement

W ~ wishart(nu,Sigma);
Increment log probability with wishart_log(W,nu,Sigma), dropping constant
additive terms; Section 24.3 explains sampling statements.

Stan Functions

real wishart_log(matrix W, real nu, matrix Sigma)

The log of the Wishart density for positive-definite matrix W given degrees of
freedom nu and scale matrix Sigma

matrix wishart_rng(real nu, matrix Sigma)

Generate a Wishart variate with degrees of freedom nu and scale matrix Sigma;
may only be used in generated quantities block

346

47.2. Inverse Wishart Distribution

Probability Density Function

If K ∈ N, ν ∈ (K − 1,∞), and S ∈ RK×K is symmetric and positive definite, then for
symmetric and positive-definite W ∈ RK×K ,

InvWishart(W |ν, S) = 1
2νK/2

1
ΓK
(
ν
2

) |S|ν/2 |W |−(ν−K−1)/2 exp
(
−1
2

tr(SW−1)
)
.

Sampling Statement

W ~ inv_wishart(nu,Sigma);
Increment log probability with inv_wishart_log(W,nu,Sigma), dropping con-
stant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real inv_wishart_log(matrix W, real nu, matrix Sigma)

The log of the inverse Wishart density for positive-definite matrix W given
degrees of freedom nu and scale matrix Sigma

matrix inv_wishart_rng(real nu, matrix Sigma)

Generate an inverse Wishart variate with degrees of freedom nu and scale
matrix Sigma; may only be used in generated quantities block

47.3. LKJ Covariance Distribution

Sampling Statement

W ~ lkj_cov_log(mu,sigma,eta);
Increment log probability with lkj_cov_log_log(W,mu,sigma,eta), drop-
ping constant additive terms; Section 24.3 explains sampling statements.

Stan Functions

real lkj_cov_log(matrix W, vector mu, vector sigma, real eta)

The log of the LKJ density for covariance matrix W is the sum of log of the
lognormal density of the standard deviations given location vector mu and scale
vector sigma and the log of the lkj_corr density of the correlation matrix given
shape eta. See the next section for details on the lkj_corr density.

347

Part VIII

Additional Topics

348

48. Point Estimation

This chapter defines the workhorses of non-Bayesian estimation, maximum likelihood
and penalized maximum likelihood, and relates them to Bayesian point estimation
based on posterior means, medians, and modes. Such estimates are called “point
estimates” because they are composed of a single value for the model parameters θ
rather than a posterior distribution.

Stan’s optimizer can be used to implement (penalized) maximum likelihood esti-
mation for any likelihood function and penalty function that can be coded in Stan’s
modeling language. Stan’s optimizer can also be used for point estimation in Bayesian
settings based on posterior modes. Stan’s Markov chain Monte Carlo samplers can be
used to implement point inference in Bayesian models based on posterior means or
medians.

48.1. Maximum Likelihood Estimation

Given a likelihood function p(y|θ) and a fixed data vector y , the maximum likelihood
estimate (MLE) is the parameter vector θ̂ that maximizes the likelihood, i.e.,

θ̂ = argmaxθ p(y|θ).

It is usually more convenient to work on the log scale. An equivalent1 formulation of
the MLE is

θ̂ = argmaxθ logp(y|θ).

Existence of Maximum Likelihood Estimates

Because not all functions have unique maximum values, maximum likelihood esti-
mates are not guaranteed to exist. As discussed in Chapter 19, this situation can
arise when

• there is more than one point that maximizes the likelihood function,

• the likelihood function is unbounded, or

• the likelihood function is bounded by an asymptote that is never reached for
legal parameter values.

These problems persist with the penalized maximum likelihood estimates discussed
in the next section, and Bayesian posterior modes as discussed in the following sec-
tion.

1The equivalence follows from the fact that densities are positive and the log function is strictly mono-
tonic, i.e., p(y|θ) ≥ 0 and for all a, b > 0, loga > logb if and only if a > b.

349

Example: Linear Regression

Consider an ordinary linear regression problem with an N-dimensional vector of ob-
servations y , an (N × K)-dimensional data matrix x of predictors, a K-dimensional
parameter vector β of regression coefficients, and a real-valued noise scale σ > 0,
with log likelihood function

logp(y|β, x) =
N∑
n=1

log Normal(yn|xnβ,σ).

The maximum likelihood estimate for θ = (β,σ) is just

(β̂, σ̂) = argmaxβ,σ logp(y|β,σ , x) =
N∑
n=1

log Normal(yn|xnβ,σ).

Squared Error

A little algebra on the log likelihood function shows that the marginal maximum
likelihood estimate θ̂ = (β̂, σ̂) can be equivalently formulated for β̂ in terms of least
squares. That is, β̂ is the value for the coefficient vector that minimizes the sum of
squared prediction errors,

β̂ = argminβ

N∑
n=1
(yn − xnβ)2 = argminβ(y − xβ)>(y − xβ).

The residual error for data item n is the difference between the actual value and
predicted value, yn − xnβ̂. The maximum likelihood estimate for the noise scale, σ̂ is
just the square root of the average squared residual,

σ̂ 2 = 1
N

N∑
n=1

(
yn − xnβ̂

)2
= 1
N
(y − xβ̂)>(y − xβ̂).

Minimizing Squared Error in Stan

The squared error approach to linear regression can be directly coded in Stan with
the following model.

data {
int<lower=0> N;
int<lower=1> K;
vector[N] y;
matrix[N,K] x;

350

}
parameters {
vector[K] beta;

}
transformed parameters {
real<lower=0> squared_error;
squared_error <- dot_self(y - x * beta);

}
model {
increment_log_prob(-squared_error);

}
generated quantities {
real<lower=0> sigma_squared;
sigma_squared <- squared_error / N;

}

Running Stan’s optimizer on this model produces the MLE for the linear regression
by directly minimizing the sum of squared errors and using that to define the noise
scale as a generated quantity.

By replacing N with N-1 in the denominator of the definition of sigma_squared,
the more commonly supplied unbiased estimate of σ 2 can be calculated; see Sec-
tion 48.6 for a definition of estimation bias and a discussion of estimating variance.

48.2. Penalized Maximum Likelihood Estimation

There is nothing special about a likelihood function as far as the ability to perform
optimization is concerned. It is common among non-Bayesian statisticians to add
so-called “penalty” functions to log likelihoods and optimize the new function. The
penalized maximum likelihood estimator for a log likelihood function logp(y|θ) and
penalty function r(θ) is defined to be

θ̂ = argmaxθ logp(y|θ)− r(θ).

The penalty function r(θ) is negated in the maximization so that the estimate θ̂
balances maximizing the log likelihood and minimizing the penalty. Penalization is
sometimes called “regularization.”

351

Examples

Ridge Regression

Ridge regression (Hoerl and Kennard, 1970) is based on penalizing the Euclidean
length of the coefficient vector β. The ridge penalty function is

r(β) = λ
K∑
k=1
β2k = λβ>β,

where λ is a constant tuning parameter that determines the magnitude of the penalty.
Therefore, the penalized maximum likelihood estimate for ridge regression is just

(β̂, σ̂) = argmaxβ,σ

N∑
n=1

log Normal(yn|xnβ,σ)− λ
K∑
k=1
β2k

The ridge penalty is sometimes called L2 regularization or shrinkage, because of its
relation to the L2 norm.

Like the basic MLE for linear regression, the ridge regression estimate for the
coefficients β can also be formulated in terms of least squares,

β̂ = argminβ

N∑
n=1
(yn − xnβ)2 +

K∑
k=1
β2k = argminβ (y − xβ)>(y − xβ)+ λβ>β.

The effect of adding the ridge penalty function is that the ridge regression esti-
mate for β is a vector of shorter length, or in other words, β̂ is shrunk. The ridge
estimate does not necessarily have a smaller absolute βk for each k, nor does the
coefficient vector necessarily point in the same direction as the maximum likelihood
estimate.

In Stan, adding the ridge penalty involves adding its magnitude as a data variable
and the penalty itself to the model block,

data {
...
real<lower=0> lambda;

}
...
model {
...
increment_log_prob(lambda * dot_self(beta));

}

The noise term calculation remains the same.

352

The Lasso

The lasso (Tibshirani, 1996) is an alternative to ridge regression that applies a penalty
based on the sum of the absolute coefficients, rather than the sum of their squares,

r(β) = λ
K∑
k=1
|βk|.

The lasso is also called L1 shrinkage due to its relation to the L1 norm, which is also
known as taxicab distance or Manattan distance.

Because the derivative of the penalty does not depend on the value of the βk,

d
dβk

λ
K∑
k=1
|βk| = signum(βk),

it has the effect of shrinking parameters all the way to 0 in maximum likelihood
estimates. Thus it can be used for variable selection as well as just shrinkage.

The lasso can be implemented in Stan just as easily as ridge regression, with the
magnitude declared as data and the penalty added to the model block,

data {
...
real<lower=0> lambda;

}
...
model {
...
for (k in 1:K)

increment_log_prob(lambda * abs(beta[k]));
}

The Elastic Net

The naive elastic net (Zou and Hastie, 2005) involves a weighted average of ridge and
lasso penalties, with a penalty function

r(β) = λ1
K∑
k=1
β2k + λ2

K∑
k=1
|βk|.

The naive elastic net combines properties of both ridge regression and the lasso,
providing both identification and variable selection.

The naive elastic net can be implemented directly in Stan by combining implemen-
tations of ridge regression and the lasso, as

353

data {
real<lower=0> lambda1;
real<lower=0> lambda2;
...

}
...
model {
...
increment_log_prob(lambda2 * dot_self(beta));
for (k in 1:K)

increment_log_prob(lambda1 * abs(beta[k]));
}

The elastic net (Zou and Hastie, 2005) involves adjusting the final estimate for β
based on the fit β̂ produced by the naive elastic net. The elastic net estimate is

β̂ = (1+ λ2)β∗

where β∗ is the naive elastic net estimate.
To implement the elastic net in Stan, the data, parameter, and model blocks are

the same as for the naive elastic net. In addition, the elastic net estimate is calculated
in the generated quantities block.

generated quantities {
vector[K] beta_elastic_net;
...
beta_elastic_net <- (1 + lambda2) * beta;

}

The error scale also needs to be calculated in the generated quantities block based on
the elastic net coefficients beta_elastic_net.

Other Penalized Regressions

It is also common to use penalty functions that bias the coefficient estimates toward
values other than 0, as in the estimators of James and Stein (1961). Penalty func-
tions can also be used to bias estimates toward population means; see (Efron and
Morris, 1975; Efron, 2012). This latter approach is similar to the hierarchical models
commonly employed in Bayesian statistics.

354

48.3. Posterior Mode Estimation

There are three common approaches to Bayesian point estimation based on the pos-
terior p(θ|y) of parameters θ given observed data y : the mode (maximum), the mean,
and the median. This section covers estimates based on the parameters θ that max-
imize the posterior density, and the next sections continue with discussions of the
mean and median.

An estimate based on a model’s posterior mode can be defined by

θ̂ = argmaxθ p(θ|y).

When it exists, θ̂ maximizes the posterior density of the parameters given the data.
The posterior mode is sometimes called the “maximum a posteriori” (MAP) estimate.

As discussed in Chapter 19 and Section 48.1, a unique posterior mode might not
exist—there may be no value that maximizes the posterior mode or there may be
more than one. In these cases, the posterior mode estimate is undefined. Stan’s
optimizer, like most optimizers, will have problems in these situations. It may also
return a locally maximal value that is not the global maximum.

In cases where there is a posterior mode, it will correspond to a penalized max-
imum likelihood estimate with a penalty function equal to the negation of the log
prior. This is because Bayes’s rule,

p(θ|y) = p(y|θ)p(θ)
p(y)

,

ensures that

argmaxθ p(θ|y) = argmaxθ
p(y|θ)p(θ)
p(y)

= argmaxθ p(y|θ)p(θ),

and the positiveness of densities and the strict monotonicity of log ensure that

argmaxθ p(y|θ)p(θ) = argmaxθ logp(y|θ)+ logp(θ).

In the case where the prior (proper or improper) is uniform, the posterior mode is
equivalent to the maximum likelihood estimate.

For most commonly used penalty functions, there are probabilistic equivalents.
For example, the ridge penalty function corresponds to a normal prior on coefficients
and the lasso to a Laplace prior. The reverse is always true—a negative prior can
always be treated as a penalty function.

355

48.4. Posterior Mean Estimation

A standard Bayesian approach to point estimation is to use the posterior mean (as-
suming it exists), defined by

θ̂ =
∫
θ p(θ|y)dθ.

The posterior mean is often called the Bayesian estimator, because it’s the estimator
that minimizes the expected square error of the estimate.

An estimate of the posterior mean for each parameter is returned by Stan’s
bin/print command (see Chapter 5) under the column headed Mean.

Posterior means exist in many situations where posterior modes do not exist. For
example, in the Beta(0.1,0.1) case, there is no posterior mode, but posterior mean is
well defined with value 0.5.

A situation where posterior means fail to exist but posterior modes do exist is
with a posterior with a Cauchy distribution Cauchy(µ, τ). The posterior mode is µ,
but the integral expressing the posterior mean diverges. Such diffuse priors rarely
arise in practical modeling applications; even with a Cauchy Cauchy prior for some
parameters, data will provide enough constraints that the posterior is better behaved
and means exist.

Sometimes when posterior means exist, they are not meaningful, as in the case
of a multimodal posterior arising from a mixture model or in the case of a uniform
distribution on a closed interval.

48.5. Posterior Median Estimation

The posterior median (i.e., 50th percentile or 0.5 quantile) is another popular point
estimate reported for Bayesian models. The posterior median minimizes the expected
absolute error of estimates. These estimates are returned in the columns headed by
50% in bin/print (see Chapter 5).

Although posterior medians may fail to be meaningful, they often exist even where
posterior means do not, as in the Cauchy distribution.

48.6. Estimation Error, Bias, and Variance

An estimate θ̂ depends on the particular data y and either the log likelihood function,
logp(y|θ), penalized log likelihood function logp(y|θ)− r(θ), or log probability fun-
tion logp(y, θ) = logp(y, θ) + logp(θ). In this section, the notation θ̂ is overloaded
to indicate the estimator, which is an implicit function of the data and (penalized)
likelihood or probability function.

356

Estimation Error

For a particular observed data set y generated according to true parameters θ, the
estimation error is the difference between the estimated value and true value of the
parameter,

err(θ̂) = θ̂ − θ.

Estimation Bias

For a particular true parameter value θ and a likelihood function p(y|θ), the expected
estimation error averaged over possible data sets y according to their density under
the likelihood is

Ep(y|θ)[θ̂] =
∫ (

argmaxθ′p(y|θ′)
)
p(y|θ)dy.

An estimator’s bias is the expected estimation error,

Ep(y|θ)[θ̂ − θ] = Ep(y|θ)[θ̂]− θ

The bias is a multivariate quantity with the same dimensions as θ. An estimator is
unbiased if its expected estimation error is zero and biased otherwise.

Example: Estimating a Normal Distribution

Suppose a data set of observations yn for n ∈ 1:N drawn from a normal distribu-
tion. This presupposes a model yn ∼ Normal(µ,σ), where both µ and σ > 0 are
parameters. The log likelihood is just

logp(y|µ,σ) =
N∑
n=1

log Normal(yn|µ,σ).

The maximum likelihood estimator for µ is just the sample mean, i.e., the average of
the samples,

µ̂ = 1
N

N∑
n=1
yn.

The maximum likelihood estimate for the mean is unbiased.
The maximum likelihood estimator for the variance σ 2 is the average of the

squared difference from the mean,

σ̂ 2 = 1
N

N∑
n=1
(yn − µ̂)2.

357

The maximum likelihood for the variance is biased on the low side, i.e.,

Ep(y|µ,σ)[σ̂ 2] < σ.

The reason for this bias is that the maximum likelihood estimate is based on the
difference from the estimated mean µ̂. Plugging in the actual mean can lead to larger
sum of squared differences; if µ ≠ µ̂, then

1
N

N∑
n=1
(yn − µ)2 >

1
N

N∑
n=1
(yn − µ̂)2.

An alternative estimate for the variance is the sample variance, which is defined
by

µ̂ = 1
N − 1

N∑
n=1
(yn − µ̂)2.

This value is larger than the maximum likelihood estimate by a factor of N/(N − 1).

Estimation Variance

The variance of component k of an estimator θ̂ is computed like any other variance,
as the expected squared difference from its expectation,

varp(y|θ)[θ̂k] = Ep(y|θ)[(θ̂k − Ep(y|θ)[θ̂k])2].

The full K ×K covariance matrix for the estimator is thus defined, as usual, by

covarp(y|θ)[θ̂] = Ep(y|θ)[(θ̂ − E[θ̂]) (θ̂ − E[θ̂])>].

Continuing the example of estimating the mean and variance of a normal distribu-
tion based on sample data, the maximum likelihood estimator (i.e., the sample mean)
is the unbiased estimator for the mean µ with the lowest variance; the Gauss-Markov
theorem establishes this result in some generality for least-squares estimation, or
equivalently, maximum likelihood estimation under an assumption of normal noise;
see (Hastie et al., 2009, Section 3.2.2).

358

49. Bayesian Data Analysis

Gelman et al. (2013) provide the following characterization of Bayesian data analysis.

By Bayesian data analysis, we mean practical methods for making infer-
ences from data using probability models for quantities we observe and
about which we wish to learn.

They go on to describe how Bayesian statistics differs from frequentist approaches.

The essential characteristic of Bayesian methods is their explicit use of
probability for quantifying uncertainty in inferences based on statistical
analysis.

Because they view probability as the limit of relative frequencies of observations,
strict frequentists forbid probability statements about parameters. Parameters are
considered fixed, not random.

Bayesians also treat parameters as fixed but unknown. But unlike frequentists,
they make use of both prior distributions over parameters and posterior distributions
over parameters. These prior and posterior probabilities and posterior predictive
probabilities are intended to characterize knowledge about the parameters and future
observables. Posterior distributions form the basis of Bayesian inference, as described
below.

49.1. Bayesian Modeling

(Gelman et al., 2013) break applied Bayesian modeling into the following three steps.

1. Set up a full probability model for all observable and unobservable quantities.
This model should be consistent with existing knowledge of the data being
modeled and how it was collected.

2. Calculate the posterior probability of unknown quantities conditioned on ob-
served quantities. The unknowns may include unobservable quantities such as
parameters and potentially observable quantities such as predictions for future
observations.

3. Evaluate the model fit to the data. This includes evaluating the implications of
the posterior.

Typically, this cycle will be repeated until a sufficient fit is achieved in the third step.
Stan automates the calculations involved in the second and third steps.

359

49.2. Bayesian Inference

Basic Quantities

The mechanics of Bayesian inference follow directly from Bayes’s rule. To fix nota-
tion, let y represent observed quantities such as data and let θ represent unknown
quantities such as parameters and future observations. Both y and θ will be mod-
eled as random. Let x represent known, but unmodeled quantities such as constants,
hyperparameters, and predictors.

Probability Functions

The probability function p(y, θ) is the joint probability function of the data y and
parameters θ. The constants and predictors x are implicitly understood as being part
of the conditioning. The conditional probability function p(y|θ) of the data y given
parameters θ and constants x is called the sampling probability function; it is also
called the likelihood function when viewed as a function of θ for fixed y and x.

The probability function p(θ) over the parameters given the constants x is called
the prior because it characterizes the probability of the parameters before any data is
observed. The conditional probability function p(θ|y) is called the posterior because
it characterizes the probability of parameters given observed data y and constants x.

Bayes’s Rule

The technical apparatus of Bayesian inference hinges on the following chain of equa-
tions, known in various forms as Bayes’s rule (where again, the constants x are im-
plicit).

p(θ|y) = p(θ, y)
p(y)

[definition of conditional probability]

= p(y|θ)p(θ)
p(y)

[chain rule]

= p(y|θ)p(θ)∫
Θ p(y, θ)dθ

[law of total probability]

= p(y|θ)p(θ)∫
Θ p(y|θ)p(θ)dθ

[chain rule]

∝ p(y|θ)p(θ) [y is fixed]

Bayes’s rule “inverts” the probability of the posterior p(θ|y), expressing it solely in
terms of the likelihood p(y|θ) and prior p(θ) (again, with constants and predictors

360

x implicit). The last step is important for Stan, which only requires probability func-
tions to be characterized up to a constant multiplier.

Predictive Inference

The uncertainty in the estimation of parameters θ from the data y (given the model)
is characterized by the posterior p(θ|y). The posterior is thus crucial for Bayesian
predictive inference.

If ỹ is taken to represent new, perhaps as yet unknown, observations, along with
corresponding constants and predictors x̃, then the posterior predictive probability
function is given by

p(ỹ|y) =
∫
Θ
p(ỹ|θ)p(θ|y)dθ.

Here, both the original constants and predictors x and the new constants and pre-
dictors x̃ are implicit. Like the posterior itself, predictive inference is characterized
probabilistically. Rather than using a point estimate of the parameters θ, predictions
are made based on averaging the predictions over a range of θ weighted by the pos-
terior probability p(θ|y) of θ given data y (and constants x).

The posterior may also be used to estimate event probabilities. For instance, the
probability that a parameter θk is greater than zero is characterized probabilistically
by

Pr[θk > 0] =
∫
Θ

I(θk > 0)p(θ|y)dθ.

The indicator function, I(φ), evaluates to one if the proposition φ is true and evalu-
ates to zero otherwise.

Comparisons involving future observables may be carried out in the same way.
For example, the probability that ỹn > ỹn′ can be characterized using the posterior
predictive probability function as

Pr[ỹn > ỹn′] =
∫
Θ

∫
Y

I(ỹn > ỹn′)p(ỹ|θ)p(θ|y)dỹ dθ.

Posterior Predictive Checking

After the parameters are fit to data, they can be used to simulate a new data set by
running the model inferences in the forward direction. These replicated data sets can
then be compared to the original data either visually or statistically to assess model
fit (Gelman et al., 2013, Chapter 6).

In Stan, posterior simulations can be generated in two ways. The first approach is
to treat the predicted variables as parameters and then define their distributions in
the model block. The second approach, which also works for discrete variables, is to

361

generate replicated data using random-number generators in the generated quantities
block.

362

50. Markov Chain Monte Carlo Sampling

Like BUGS, Stan uses Markov chain Monte Carlo (MCMC) techniques to generate sam-
ples from the posterior distribution for inference.

50.1. Monte Carlo Sampling

Monte Carlo methods were developed to numerically approximate integrals that are
not tractable analytically but for which evaluation of the function being integrated is
tractable (Metropolis and Ulam, 1949).

For example, the mean µ of a probability density p(θ) is defined by the integral

µ =
∫
Θ
θ × p(θ)dθ.

For even a moderately complex Bayesian model, the posterior density p(θ|y) leads to
an integral that is impossible to evaluate analytically. The posterior also depends on
the constants and predictors x, but from here, they will just be elided and taken as
given.

Now suppose it is possible to draw independent samples from p(θ) and let
θ(1), θ(2), . . . , θ(N) be N such samples. A Monte Carlo estimate µ̂ of the mean µ of
p(θ) is given by the sample average,

µ̂ = 1
N

N∑
n=1
θ(n).

If the probability function p(θ) has a finite mean and variance, the law of large
numbers ensures the Monte Carlo estimate converges to the correct value as the num-
ber of samples increases,

lim
N→∞

µ̂ = µ.

Assuming finite mean and variance, estimation error is governed by the central limit
theorem, so that estimation error decreases as the square root of N,

|µ − µ̂| ∝ 1√
N
.

Therefore, estimating a mean to an extra decimal place of accuracy requires one hun-
dred times more samples; adding two decimal places means ten thousand times as
many samples. This makes Monte Carlo methods more useful for rough estimates to
within a few decimal places than highly precise estimates. In practical applications,
there is no point estimating a quantity beyond the uncertainty of the data sample on
which it is based, so this lack of many decimal places of accuracy is rarely a problem
in practice for statistical models.

363

50.2. Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) methods were developed for situations in which it
is not straightforward to draw independent samples (Metropolis et al., 1953).

A Markov chain is a sequence of random variables θ(1), θ(2), . . . where each variable
is conditionally independent of all other variables given the value of the previous
value. Thus if θ = θ(1), θ(2), . . . , θ(N), then

p(θ) = p(θ(1))
N∏
n=2
p(θ(n)|θ(n−1)).

Stan generates a next state in a manner described in Section 50.5.
The Markov chains Stan and other MCMC samplers generate are ergodic in the

sense required by the Markov chain central limit theorem, meaning roughly that there
is there is a reasonable chance of reaching one value of θ from another. The Markov
chains are also stationary, meaning that the transition probabilities do not change
at different positions in the chain, so that for n,n′ ≥ 0, the probability function
p(θ(n+1)|θ(n)) is the same as p(θ(n′+1)|θ(n′)) (following the convention of overloading
random and bound variables and picking out a probability function by its arguments).

Stationary Markov chains have an equilibrium distribution on states in which each
has the same marginal probability function, so that p(θ(n)) is the same probability
function as p(θ(n+1)). In Stan, this equilibrium distribution p(θ(n)) is the probability
function p(θ) being sampled, typically a Bayesian posterior density.

Using MCMC methods introduces two difficulties that are not faced by indepen-
dent sample Monte Carlo methods. The first problem is determining when a randomly
initialized Markov chain has converged to its equilibrium distribution. The second
problem is that the draws from a Markov chain are correlated, and thus the central
limit theorem’s bound on estimation error no longer applies. These problems are
addressed in the next two sections.

50.3. Initialization and Convergence Monitoring

A Markov chain generates samples from the target distribution only after it has con-
verged to equilibrium. Unfortunately, this is only guaranteed in the limit in theory.
In practice, diagnostics must be applied to monitor whether the Markov chain(s) have
converged.

Potential Scale Reduction

One way to monitor whether a chain has converged to the equilibrium distribution is
to compare its behavior to other randomly initialized chains. This is the motivation

364

for the Gelman and Rubin (1992) potential scale reduction statistic, R̂. The R̂ statis-
tic measures the ratio of the average variance of samples within each chain to the
variance of the pooled samples across chains; if all chains are at equilibrium, these
will be the same and R̂ will be one. If the chains have not converged to a common
distribution, the R̂ statistic will be greater than one.

Gelman and Rubin’s recommendation is that the independent Markov chains be
initialized with diffuse starting values for the parameters and sampled until all values
for R̂ are below 1.1. Stan allows users to specify initial values for parameters and it
is also able to draw diffuse random initializations itself.

The R̂ statistic is defined for a set of M Markov chains, θm, each of which has N
samples θ(n)m . The between-sample variance estimate is

B = N
M − 1

M∑
m=1
(θ̄(•)m − θ̄(•)•)2,

where

θ̄(•)m = 1
N

N∑
n=1
θ(n)m and θ̄(•)• = 1

M

M∑
m=1

θ̄(•)m .

The within-sample variance is

W = 1
M

M∑
m=1

s2m,

where

s2m =
1

N − 1

N∑
n=1
(θ(n)m − θ̄(•)m)2.

The variance estimator is

v̂ar
+(θ|y) = N − 1

N
W + 1

N
B.

Finally, the potential scale reduction statistic is defined by

R̂ =
√

v̂ar
+(θ|y)
W

.

Generalized R̂ for Ragged Chains

Now suppose that each chain may have a different number of samples. Let Nm be the
number of samples in chain m. Now the formula for the within-chain mean for chain
m uses the size of the chain, Nm,

θ̄(•)m = 1
Nm

N∑
n=1
θ(m)n ,

365

as does the within-chain variance estimate,

s2m =
1

Nm − 1

Nm∑
n=1
(θ(n)m − θ̄(•)m)2.

The terms that average over chains, such as θ̄(•)• , B, andW , have the same definition as
before to ensure that each chain has the same effect on the estimate. If the averages
were weighted by size, a single long chain would dominate the statistics and defeat
the purpose of monitoring convergence with multiple chains.

Because it contains the term N, the estimate Åvar+ must be generalized. By ex-
panding the first term,

N − 1
N

W = N − 1
N

1
M

M∑
m=1

1
N − 1

N∑
n=1
(θ(n)m − θ̄(•)m)2 =

1
M

M∑
m=1

1
N

N∑
n=1
(θ(n)m − θ̄(•)m)2,

and the second term,

1
N
B = 1

M − 1

M∑
m=1
(θ̄(•)m − θ̄(•)•)2.

the variance estimator naturally generalizes to

v̂ar
+(θ|y) = 1

M

M∑
m=1

1
Nm

Nm∑
n=1
(θ(n)m − θ̄(•)m)2 +

1
M − 1

M∑
m=1
(θ̄(•)m − θ̄(•)•)2.

If the chains are all the same length, this definition is equivalent to the one in the last
section. This generalized variance estimator and the within-chains variance estimates
may be plugged directly into the formula for R̂ from the previous section.

Split R̂ for Detecting Non-Stationarity

Before calculating the potential-scale-reduction statistic R̂, each chain may be split
into two halves. This provides an additional means to detect non-stationarity in the
chains. If one chain involves gradually increasing values and one involves gradually
decreasing values, they have not mixed well, but they can have R̂ values near unity.
In this case, splitting each chain into two parts leads to R̂ values substantially greater
than 1 because the first half of each chain has not mixed with the second half.

50.4. Effective Sample Size

The second technical difficulty posed by MCMC methods is that the samples will typ-
ically be autocorrelated within a chain. This increases the uncertainty of the estima-
tion of posterior quantities of interest, such as means, variances or quantiles.

366

Definition of Effective Sample Size

The amount by which autocorrelation within the chains increases uncertainty in esti-
mates can be measured by effective sample size (ess). Given independent samples, the
central limit theorem bounds uncertainty in estimates based on the number of sam-
ples N. Given dependent samples, the number of independent samples is replaced
with the effective sample size Neff, which is the number of independent samples with
the same estimation power as the N autocorrelated samples. For example, estimation
error is proportional to 1/

√
Neff rather than 1/

√
N.

The effective sample size of a sequence is defined in terms of the autocorrelations
within the sequence at different lags. The autocorrelation ρt at lag t ≥ 0 for a chain
with joint probability function p(θ) with mean µ and variance σ 2 is defined to be

ρt =
1
σ 2

∫
Θ
(θ(n) − µ)(θ(n+t) − µ)p(θ)dθ.

This is just the correlation between the two chains offset by t positions. Because
we know θ(n) and θ(n+t) have the same marginal distribution in an MCMC setting,
multiplying the two difference terms and reducing yields

ρt =
1
σ 2

∫
Θ
θ(n) θ(n+t) p(θ)dθ.

The effective sample size of N samples generated by a process with autocorrela-
tions ρt is defined by

Neff =
N∑∞

t=−∞ ρt
= N
1+ 2

∑∞
t=1 ρt

.

Estimation of Effective Sample Size

In practice, the probability function in question cannot be tractably integrated and
thus the autocorrelation cannot be calculated, nor the effective sample size. Instead,
these quantities must be estimated from the samples themselves. The rest of this sec-
tion describes a variogram-based estimator for autocorrelations, and hence effective
sample size, based on multiple chains. For simplicity, each chain θm will be assumed
to be of length N.

One way to estimate the effective sample size is based on the variograms Vt at
lag t ∈ {0,1 . . .}. The variograms are defined as follows for (univariate) samples θ(n)m ,
where m ∈ {1, . . . ,M} is the chain, and Nm is the number of samples in chain m.

Vt =
1
M

M∑
m=1

 1
Nm

Nm∑
n=t+1

(
θ(n)m − θ(n−t)m

)2 .

367

The variogram along with the multi-chain variance estimate v̂ar
+

introduced in the
previous section can be used to estimate the autocorrelation at lag t as

ρ̂t = 1−
Vt

2 v̂ar
+ .

If the chains have not converged, the variance estimator v̂ar
+

will overestimate vari-
ance, leading to an overestimate of autocorrelation and an underestimate effective
sample size.

Because of the noise in the correlation estimates ρ̂t as t increases, typically only
the initial estimates of ρ̂t where ρ̂t < 0 will be used. Setting T ′ to be the first lag such
that ρT ′+1 < 0,

T ′ = arg min
t
ρ̂t+1 < 0,

the effective sample size estimator is defined as

N̂eff =
MN

1+
∑T ′
t=1 ρ̂t

.

Thinning Samples

In the typical situation, the autocorrelation, ρt , decreases as the lag, t , increases.
When this happens, thinning the samples will reduce the autocorrelation. For in-
stance, consider generating one thousand samples in one of the following two ways.

1. Generate 1000 samples after convergence and save all of them.

2. Generate 10,000 samples after convergence and save every tenth sample.

Even though both produce one thousand samples, the second approach with thinning
will produce more effective samples. That’s because the autocorrelation ρt for the
thinned sequence is equivalent to ρ10t in the unthinned samples, so the sum of the
autocorrelations will be lower and thus the effective sample size higher.

On the other hand, if memory and data storage are no object, saving all ten thou-
sand samples will have a higher effective sample size than thinning to one thousand
samples.

50.5. Stan’s Hamiltonian Monte Carlo Samplers

For continuous variables, Stan uses Hamiltonian Monte Carlo (HMC) sampling. HMC
is a Markov chain Monte Carlo (MCMC) method based on simulating the Hamiltonian
dynamics of a fictional physical system in which the parameter vector θ represents
the position of a particle in K-dimensional space and potential energy is defined to

368

be the negative (unnormalized) log probability. Each sample in the Markov chain is
generated by starting at the last sample, applying a random momentum to determine
initial kinetic energy, then simulating the path of the particle in the field. Standard
HMC runs the simulation for a fixed number of discrete steps of a fixed step size,
whereas NUTS adjusts the number of steps on each iteration and allows varying step
sizes per parameter.

Step-Size Adaptation during Warmup

In addition to standard HMC, Stan implements an adaptive version of HMC, the No-
U-Turn Sampler (NUTS). By default, NUTS automatically tunes a step sizes during
warmup. A global step size is optimized for a target Metropolis-Hastings reject rate
using dual averaging; see (Nesterov, 2009) for details of dual averaging and (Hoffman
and Gelman, 2011, 2013) for details of its use in Stan. For information on run-time
configuration of step-size adaptation, see Section 4.3. Then step sizes per parameter
are estimated during warmup.

Number of Steps

During sampling, NUTS adapts the number of leapfrog steps (i.e., the simulation time),
using a geometric criterion that stops a trajectory when it begins to head back in the
direction of the initial state. Once a trajectory is stopped, NUTS uses slice sampling
to select a state along the trajectory as the next proposal.

Although Stan only samples continuous variables, its language is expressive
enough to allow most discrete variables to be marginalized out; see Chapter 13 for
examples.

Detailed Balance

HMC uses a Metropolis rejection step to ensure detailed balance of the resulting
Markovian system; for details, see (Neal, 2011). NUTS uses a form of slice sam-
pling which guarantees detailed balance; for details, see (Hoffman and Gelman, 2011,
2013).1 This adjustment treats the momentum term of the Hamiltonian as an auxil-
iary variable, and the only reason for rejecting a sample will be discretization error

1A transition density φ(ω′|ω) and density π(ω) over state space Ω satisfy detailed balance if and only
if for all ω,ω′ ∈ Ω,

π(ω)φ(ω′|ω) = π(ω′)φ(ω|ω′).
Detailed balance ensures stationarity of the transition density φ with respect to the equilibrium density π ,
so that

π(ω′) =
∫
Ω
π(ω)φ(ω′|ω)dω.

369

in computing the Hamiltonian. In practice, the possibility of rejecting a proposed up-
date means that one or more duplicate samples may appear in the chain; the resulting
loss in inferential power is accounted for with effective sample size calculations as
described in Section 50.4.

370

51. Transformations of Variables

To avoid having to deal with constraints while simulating the Hamiltonian dynamics
during sampling, every (multivariate) parameter in a Stan model is transformed to an
unconstrained variable behind the scenes by the model compiler. The transform is
based on the constraints, if any, in the parameter’s definition. Scalars or the scalar
values in vectors, row vectors or matrices may be constrained with lower and/or up-
per bounds. Vectors may alternatively be constrained to be ordered, positive ordered,
or simplexes. Matrices may be constrained to be correlation matrices or covariance
matrices. This chapter provides a definition of the transforms used for each type of
variable.

Stan converts models to C++ classes which define probability functions with sup-
port on all of RK , where K is the number of unconstrained parameters needed to
define the constrained parameters defined in the program. The C++ classes also in-
clude code to transform the parameters from unconstrained to constrained and apply
the appropriate Jacobians.

51.1. Changes of Variables

The support of a random variable X with density pX(x) is that subset of values for
which it has non-zero density,

supp(X) = {x|pX(x) > 0}.

If f is a total function defined on the support of X, then Y = f (X) is a new random
variable. This section shows how to compute the probability density function of Y
for well-behaved transforms f . The rest of the chapter details the transforms used by
Stan.

Univariate Changes of Variables

Suppose X is one dimensional and f : supp(X) → R is a one-to-one, monotonic func-
tion with a differentiable inverse f−1. Then the density of Y is given by

pY (y) = pX(f−1(y))
∣∣∣∣∣ ddy f−1(y)

∣∣∣∣∣ .
The absolute derivative of the inverse transform measures how the scale of the trans-
formed variable changes with respect to the underlying variable.

371

Multivariate Changes of Variables

The multivariate generalization of an absolute derivative is a Jacobian, or more fully
the absolute value of the determinant of the Jacobian matrix of the transform. The
Jacobian matrix measures the change of each output variable relative to every input
variable and the absolute determinant uses that to determine the differential change
in volume at a given point in the parameter space.

Suppose X is a K-dimensional random variable with probability density function
pX(x). A new random variable Y = f (X) may be defined by transforming X with
a suitably well-behaved function f . It suffices for what follows to note that if f is
one-to-one and its inverse f−1 has a well-defined Jacobian, then the density of Y is

pY (y) = pX(f−1(y))
∣∣det Jf−1(y)

∣∣ ,
where det is the matrix determinant operation and Jf−1(y) is the Jacobian matrix of
f−1 evaluated at y . Taking x = f−1(y), the Jacobian matrix is defined by

Jf−1(y) =



∂x1
∂y1

· · · ∂x1
∂yK

...
...

...
∂xK
∂y1

· · · ∂xK
∂yK

 .

If the Jacobian matrix is triangular, the determinant reduces to the product of the
diagonal entries,

det Jf−1(y) =
K∏
k=1

∂xk
∂yk
.

Triangular matrices naturally arise in situations where the variables are ordered, for
instance by dimension, and each variable’s transformed value depends on the pre-
vious variable’s transformed values. Diagonal matrices, a simple form of triangular
matrix, arise if each transformed variable only depends on a single untransformed
variable.

51.2. Lower Bounded Scalar

Stan uses a logarithmic transform for lower and upper bounds.

Lower Bound Transform

If a variable X is declared to have lower bound a, it is transformed to an unbounded
variable Y , where

Y = log(X − a).

372

Lower Bound Inverse Transform

The inverse of the lower-bound transform maps an unbounded variable Y to a variable
X that is bounded below by a by

X = exp(Y)+ a.

Absolute Derivative of the Lower Bound Inverse Transform

The absolute derivative of the inverse transform is∣∣∣∣∣ ddy (exp(y)+ a
) ∣∣∣∣∣ = exp(y).

Therefore, given the density pX of X, the density of Y is

pY (y) = pX
(
exp(y)+ a

)
· exp(y).

51.3. Upper Bounded Scalar

Stan uses a negated logarithmic transform for upper bounds.

Upper Bound Transform

If a variable X is declared to have an upper bound b, it is transformed to the un-
bounded variable Y by

Y = log(b −X).

Upper Bound Inverse Transform

The inverse of the upper bound transform converts the unbounded variable Y to the
variable X bounded above by b through

X = b − exp(Y).

Absolute Derivative of the Upper Bound Inverse Transform

The absolute derivative of the inverse of the upper bound transform is∣∣∣∣∣ ddy (b − exp(y)
) ∣∣∣∣∣ = exp(y).

Therefore, the density of the unconstrained variable Y is defined in terms of the
density of the variable X with an upper bound of b by

pY (y) = pX
(
b − exp(y)

)
· exp(y).

373

51.4. Lower and Upper Bounded Scalar

For lower and upper-bounded variables, Stan uses a scaled and translated log-odds
transform.

Log Odds and the Logistic Sigmoid

The log-odds function is defined for u ∈ (0,1) by

logit(u) = log
u

1− u .

The inverse of the log odds function is the logistic sigmoid, defined for v ∈ (−∞,∞)
by

logit−1(v) = 1
1+ exp(−v) .

The derivative of the logistic sigmoid is

d
dy

logit−1(y) = logit−1(y) ·
(
1− logit−1(y)

)
.

Lower and Upper Bounds Transform

For variables constrained to be in the open interval (a, b), Stan uses a scaled and
translated log-odds transform. If variable X is declared to have lower bound a and
upper bound b, then it is transformed to a new variable Y , where

Y = logit
(
X − a
b − a

)
.

Lower and Upper Bounds Inverse Transform

The inverse of this transform is

X = a+ (b − a) · logit−1(Y).

Absolute Derivative of the Lower and Upper Bounds Inverse Transform

The absolute derivative of the inverse transform is given by∣∣∣∣∣ ddy
(
a+ (b − a) · logit−1(y)

)∣∣∣∣∣ = (b − a) · logit−1(y) ·
(
1− logit−1(y)

)
.

Therefore, the density of the transformed variable Y is

pY (y) = pX
(
a+ (b − a) · logit−1(y)

)
· (b − a) · logit−1(y) ·

(
1− logit−1(y)

)
.

374

Despite the apparent complexity of this expression, most of the terms are repeated
and thus only need to be evaluated once. Most importantly, logit−1(y) only needs to
be evaluated once, so there is only one call to exp(−y).

51.5. Ordered Vector

For some modeling tasks, a vector-valued random variable X is required with sup-
port on ordered sequences. One example is the set of cut points in ordered logistic
regression (see Section 9.6).

In constraint terms, an ordered K-vector x ∈ RK satisfies

xk < xk+1

for k ∈ {1, . . . , K − 1}.

Ordered Transform

Stan’s transform follows the constraint directly. It maps an increasing vector x ∈ RK
to an unconstrained vector y ∈ RK by setting

yk =

 x1 if k = 1, and

log (xk − xk−1) if 1 < k ≤ K.

Ordered Inverse Transform

The inverse transform for an unconstrained y ∈ RK to an ordered sequence x ∈ RK
is defined by the recursion

xk =

 y1 if k = 1, and

xk−1 + exp(yk) if 1 < k ≤ K.

xk can also be expressed iteratively as

xk = y1 +
k∑
k′=2

exp(yk′).

Absolute Jacobian Determinant of the Ordered Inverse Transform

The Jacobian of the inverse transform f−1 is lower triangular, with diagonal elements
for 1 ≤ k ≤ K of

Jk,k =

 1 if k = 1, and

exp(yk) if 1 < k ≤ K.

375

Because J is triangular, the absolute Jacobian determinant is

|det J | =

∣∣∣∣∣∣
K∏
k=1
Jk,k

∣∣∣∣∣∣ =
K∏
k=2

exp(yk).

Putting this all together, if pX is the density of X, then the transformed variable Y
has density pY given by

pY (y) = pX(f−1(y))
K∏
k=2

exp(yk).

51.6. Unit Simplex

Variables constrained to the unit simplex show up in multivariate discrete models
as both parameters (categorical and multinomial) and as variates generated by their
priors (Dirichlet and multivariate logistic).

The unit K-simplex is the set of points x ∈ RK such that for 1 ≤ k ≤ K,

xk > 0,

and
K∑
k=1
xk = 1.

An alternative definition is to take the convex closure of the vertices. For instance, in
2-dimensions, the simplex vertices are the extreme values (0,1), and (1,0) and the
unit 2-simplex is the line connecting these two points; values such as (0.3,0.7) and
(0.99,0.01) lie on the line. In 3-dimensions, the basis is (0,0,1), (0,1,0) and (1,0,0)
and the unit 3-simplex is the boundary and interior of the triangle with these vertices.
Points in the 3-simplex include (0.5,0.5,0), (0.2,0.7,0.1) and all other triplets of non-
negative values summing to 1.

As these examples illustrate, the simplex always picks out a subspace of K − 1
dimensions from RK . Therefore a point x in the K-simplex is fully determined by its
first K − 1 elements x1, x2, . . . , xK−1, with

xK = 1−
K−1∑
k=1
xk.

Unit Simplex Inverse Transform

Stan’s unit simplex inverse transform may be understood using the following stick-
breaking metaphor.1

1For an alternative derivation of the same transform using hyperspherical coordinates, see (Betancourt,
2010).

376

Take a stick of unit length (i.e., length 1). Break a piece off and label it
as x1, and set it aside. Next, break a piece off what’s left, label it x2, and
set it aside. Continue doing this until you have broken off K − 1 pieces
labeled (x1, . . . , xK−1). Label what’s left of the original stick xK . The vector
x = (x1, . . . , xK) is obviously a unit simplex because each piece has non-
negative length and the sum of their lengths is 1.

This full inverse mapping requires the breaks to be represented as the fraction in
(0,1) of the original stick that is broken off. These break ratios are themselves derived
from unconstrained values in (−∞,∞) using the inverse logit transform as described
above for unidimensional variables with lower and upper bounds.

More formally, an intermediate vector z ∈ RK−1, whose coordinates zk represent
the proportion of the stick broken off in step k, is defined elementwise for 1 ≤ k < K
by

zk = logit−1
(
yk + log

(
1

K − k

))
.

The logit term log
(

1
K−k

)
(i.e., logit

(
1

K−k+1

)
) in the above definition adjusts the trans-

form so that a zero vector y is mapped to the simplex x = (1/K, . . . ,1/K). For in-
stance, if y1 = 0, then z1 = 1/K; if y2 = 0, then z2 = 1/(K − 1); and if yK−1 = 0, then
zK−1 = 1/2.

The break proportions z are applied to determine the stick sizes and resulting
value of xk for 1 ≤ k < K by

xk =
1− k−1∑

k′=1
xk′

zk.
The summation term represents the length of the original stick left at stage k. This is
multiplied by the break proportion zk to yield xk. Only K − 1 unconstrained parame-
ters are required, with the last dimension’s value xK set to the length of the remaining
piece of the original stick,

xK = 1−
K−1∑
k=1
xk.

Absolute Jacobian Determinant of the Unit-Simplex Inverse Transform

The Jacobian J of the inverse transform f−1 is lower-triangular, with diagonal entries

Jk,k =
∂xk
∂yk

= ∂xk
∂zk

∂zk
∂yk
,

where
∂zk
∂yk

= ∂
∂yk

logit−1
(
yk + log

(
1

K − k

))
= zk(1− zk),

377

and
∂xk
∂zk

=
1− k−1∑

k′=1
xk′

 .
This definition is recursive, defining xk in terms of x1, . . . , xk−1.

Because the Jacobian J of f−1 is lower triangular and positive, its absolute deter-
minant reduces to

|det J | =
K−1∏
k=1
Jk,k =

K−1∏
k=1
zk (1− zk)

1− k−1∑
k′=1

xk′

 .
Thus the transformed variable Y = f (X) has a density given by

pY (y) = pX(f−1(y))
K−1∏
k=1
zk (1− zk)

1− k−1∑
k′=1

xk′

 .
Even though it is expressed in terms of intermediate values zk, this expression still
looks more complex than it is. The exponential function need only be evaluated once
for each unconstrained parameter yk; everything else is just basic arithmetic that can
be computed incrementally along with the transform.

Unit Simplex Transform

The transform Y = f (X) can be derived by reversing the stages of the inverse trans-
form. Working backwards, given the break proportions z, y is defined elementwise
by

yk = logit(zk)− log
(

1
K − k

)
.

The break proportions zk are defined to be the ratio of xk to the length of stick left
after the first k− 1 pieces have been broken off,

zk =
xk

1−
∑k−1
k′=1 xk′

.

51.7. Unit Vector

Unit vectors show up in directional statistics.
The n-sphere is the set of points x ∈ Rn such that

‖x‖2 =
n∑
i=1
x2i = 1 .

378

Unit Vector Inverse Transform

To parametrize unit length vectors, we use hyperspherical coordinates. The uncon-
strained vector y ∈ Rn−1 is a set of angles which relates to the unit vector as follows:

x1 = cos(y1)

x2 = cos(y2) sin(y1)

x3 = cos(y3) sin(y1) sin(y2)
...

xi = cos(yi)
i−1∏
j=1

sin(yj)

...

xn =
n−1∏
j=1

sin(yj).

Note that, in practice, we use yi = ŷi + π
2 and use ŷi as the unconstrained parameters

to avoid a singularity at yi = 0.

Absolute Jacobian Determinant of the Unit Vector Inverse Transform

To derive the determinant of the Jacobian we first add a radius coordinate r = 1
which multiplies the vector x. The Jacobian, J, can be shown to be lower triangular,
so its determinant is just the product of diagonal entries and the absolute value of
the determinant is

|det J | =
∣∣∣rn−1 sinn−2(y1) sinn−3(y2)... sin(yn−2)

∣∣∣ .
51.8. Correlation Matrices

A K ×K correlation matrix x must be is a symmetric, so that

xk,k′ = xk′,k

for all k, k′ ∈ {1, . . . , K}, it must have a unit diagonal, so that

xk,k = 1

for all k ∈ {1, . . . , K}, and it must be positive definite, so that for every non-zero
K-vector a,

a>xa > 0.

379

To deal with this rather complicated constraint, Stan implements the transform of
Lewandowski et al. (2009). The number of free parameters required to specify a K×K
correlation matrix is

(
K
2

)
.

Correlation Matrix Inverse Transform

It is easiest to specify the inverse, going from its
(
K
2

)
parameter basis to a correlation

matrix. The basis will actually be broken down into two steps. To start, suppose y
is a vector containing

(
K
2

)
unconstrained values. These are first transformed via the

bijective function tanh : R→ (0,1)

tanhx = exp(2x)− 1
exp(2x)+ 1 .

Then, define a K × K matrix z, the upper triangular values of which are filled by row
with the transformed values. For example, in the 4 × 4 case, there are

(
4
2

)
values

arranged as

z =


0 tanhy1 tanhy2 tanhy4
0 0 tanhy3 tanhy5
0 0 0 tanhy6
0 0 0 0

 .
Lewandowski et al. show how to bijectively map the array z to a correlation matrix
x. The entry zi,j for i < j is interpreted as the canonical partial correlation (CPC)
between i and j , which is the correlation between i’s residuals and j ’s residuals when
both i and j are regressed on all variables i′ such that i′ < i. In the case of i = 1, there
are no earlier variables, so z1,j is just the Pearson correlation between i and j .

In Stan, the LKJ transform is reformulated in terms of a Cholesky factor w of the
final correlation matrix, defined for 1 ≤ i, j ≤ K by

wi,j =



0 if i > j,

1 if 1 = i = j,

∏i−1
i′=1

(
1− z2i′, j

)1/2
if 1 < i = j,

zi,j if 1 = i < j, and

zi,j
∏i−1
i′=1

(
1− z2i′, j

)1/2
if 1 < i < j.

This does not require as much computation per matrix entry as it may appear; calcu-

380

lating the rows in terms of earlier rows yields the more manageable expression

wi,j =



0 if i > j,

1 if 1 = i = j,

zi,j if 1 = i < j, and

zi,j wi−1,j
(
1− z2i−1,j

)1/2
if 1 < i ≤ j.

Given the upper-triangular Cholesky factor w , the final correlation matrix is

x = w>w.

Lewandowski et al. show that the determinant of the correlation matrix can be
defined in terms of the canonical partial correlations as

detx =
K−1∏
i=1

K∏
j=i+1

(1− z2i,j) =
∏

1≤i<j≤K
(1− z2i,j),

Absolute Jacobian Determinant of the Correlation Matrix Inverse Transform

The only description so far is in the Stan transform code.

Correlation Matrix Transform

The correlation transform is defined by reversing the steps of the inverse transform
defined in the previous section.

Starting with a correlation matrix x, the first step is to find the unique upper
triangular w such that x = ww>. Because x is positive definite, this can be done by
applying the Cholesky decomposition,

w = chol(x).

The next step from the Cholesky factor w back to the array z of CPCs is simplified
by the ordering of the elements in the definition of w , which when inverted yields

zi,j =



0 if i ≤ j,

wi,j if 1 = i < j, and

wi,j
∏i−1
i′=1

(
1− z2i′,j

)−2
if 1 < i < j.

The final stage of the transform reverses the hyperbolic tangent transform, which is
defined by

tanh−1 v = 1
2

log
(
1+ v
1− v

)
.

381

The inverse hyperbolic tangent function, tanh−1, is also called the Fisher transforma-
tion.

51.9. Covariance Matrices

A K × K matrix is a covariance matrix if it is symmetric and positive definite (see the
previous section for definitions). It requires K+

(
K
2

)
free parameters to specify a K×K

covariance matrix.

Covariance Matrix Transform

Stan’s covariance transform is based on a Cholesky decomposition composed with a
log transform of the positive-constrained diagonal elements.2

If x is a covariance matrix (i.e., a symmetric, positive definite matrix), then there
is a unique lower-triangular matrix z = chol(x) with positive diagonal entries, called
a Cholesky factor, such that

x = z z>.

The off-diagonal entries of the Cholesky factor z are unconstrained, but the diagonal
entries zk,k must be positive for 1 ≤ k ≤ K.

To complete the transform, the diagonal is log-transformed to produce a fully
unconstrained lower-triangular matrix y defined by

ym,n =


0 if m < n,

logzm,m if m = n, and

zm,n if m > n.

Covariance Matrix Inverse Transform

The inverse transform reverses the two steps of the transform. Given an uncon-
strained lower-triangular K × K matrix y , the first step is to recover the intermediate

2An alternative to the transform in this section, which can be coded directly in Stan, is to parameterize a
covariance matrix as a scaled correlation matrix. An arbitrary K ×K covariance matrix Σ can be expressed
in terms of a K-vector σ and correlation matrix Ω as

Σ = diag(σ)×Ω × diag(σ),

so that each entry is just a deviation-scaled correlation,

Σm,n = σm × σn ×Ωm,n.

382

matrix z by reversing the log transform,

zm,n =


0 if m < n,

exp(ym,m) if m = n, and

ym,n if m > n.

The covariance matrix x is recovered from its Cholesky factor z by taking

x = z z>.

Absolute Jacobian Determinant of the Covariance Matrix Inverse Transform

The Jacobian is the product of the Jacobians of the exponential transform from the
unconstrained lower-triangular matrix y to matrix z with positive diagonals and the
product transform from the Cholesky factor z to x.

The transform from unconstrained y to Cholesky factor z has a diagonal Jacobian
matrix, the absolute determinant of which is thus

K∏
k=1

∂
∂yk,k

exp(yk,k) =
K∏
k=1

exp(yk,k) =
K∏
k=1
zk,k.

The Jacobian matrix of the second transform from the Cholesky factor z to the
covariance matrix x is also triangular, with diagonal entries corresponding to pairs
(m,n) with m ≥ n, defined by

∂
∂zm,n

(
z z>

)
m,n =

∂
∂zm,n

 K∑
k=1
zm,k zn,k

 =
 2zn,n if m = n and

zn,n if m > n.

The absolute Jacobian determinant of the second transform is thus

2K
K∏
m=1

m∏
n=1
zn,n.

Finally, the full absolute Jacobian determinant of the inverse of the covariance matrix
transform from the unconstrained lower-triangular y to a symmetric, positive defi-
nite matrix x is the product of the Jacobian determinants of the exponentiation and
product transforms,

2K
 K∏
k=1
zk,k

 K∏
m=1

m∏
n=1
zn,n

 = 2K
K∏
k=1
zK−k+2k,k .

383

Let f−1 be the inverse transform from a K +
(
K
2

)
-vector y to the K × K covariance

matrix x. A density function pX(x) defined on K × K covariance matrices is trans-
formed to the density pY (y) over K +

(
K
2

)
vectors y by

pY (y) = pX(f−1(y)) 2K
K∏
k=1
zK−k+2k,k .

51.10. Cholesky Factors of Covariance Matrices

AnM×N matrix is a Cholesky factor of a covariance matrix if it is lower triangular, the
diagonal entries are positive, and M ≥ N. It requires N+

(
N
2

)
+ (M −N)N parameters.

Cholesky Factor of Covariance Matrix Transform

Stan’s Cholesky factor transform only requires the first step of the covariance matrix
transform, namely log transforming the positive diagonal elements. Suppose x is an
M ×N Cholesky factor. The above-diagonal entries are zero, the diagonal entries are
positive, and the below-diagonal entries are unconstrained. The transform required
is thus

ym,n =


0 if m < n,

logxm,m if m = n, and

xm,n if m > n.

Cholesky Factor of Covariance Matrix Inverse Transform

The inverse transform need only invert the logarithm with an exponentiation. If y is
the unconstrained matrix representation, then the elements of the constrained matrix
x is defined by

xm,n =


0 if m < n,

exp(ym,m) if m = n, and

ym,n if m > n.

Absolute Jacobian Determinant of Cholesky Factor Inverse Transform

The transform has a diagonal Jacobian matrix, the absolute determinant of which is

N∏
n=1

∂
∂yn,n

exp(yn,n) =
N∏
n=1

exp(yn,n) =
N∏
n=1
xn,n.

384

Let x = f−1(y) be the inverse transform from a N +
(
N
2

)
+ (M −N)N vector to an

M × N Cholesky factor for a covariance matrix x defined in the previous section. A
density function pX(x) defined on M × N Cholesky factors of covariance matrices is
transformed to the density pY (y) over N +

(
N
2

)
+ (M −N)N vectors y by

pY (y) = pX(f−1(y))
N∏
N=1
xn,n.

385

Part IX

Contributed Modules

386

52. Contributed Modules

Stan is an open-source project and welcomes user contributions.
In order to reduce maintenance on the main trunk of Stan development and to

allow developer-specified licenses, contributed Stan modules are not distributed as
part of Stan itself.

52.1. Contributing a Stan Module

Developers who have a Stan module to contribute should contact the Stan developers
either through one of the following.

• stan-users mailing list:
https://groups.google.com/forum/?fromgroups#!forum/stan-users

• Stan e-mail:
mailto:stan@mc-stan.org

52.2. GitHub-Hosted Modules

The stan-dev organization on GitHub hosts contributed projects on GitHub. This is
also where the Stan developers will host works in progress. The full list of contributed
projects on GitHub for stan-dev is available at the following location.

https://github.com/stan-dev

Each contributed module on stan-dev’s GitHub space comes with its own doc-
umentation, indexed by the README.md file displayed on GitHub. Each contributed
module has its own licensing the terms of which are controlled by its developers. The
license for a contributed package and its dependencies can be found in a top-level
directory licenses/.

Emacs Stan Mode

Emacs Stan mode allows syntax highlighting and automatic indentation of Stan mod-
els in the Emacs text editor.

Repository: https://github.com/stan-dev/stan-mode

License: GPLv3

Authors: Jeffrey Arnold, Daniel Lee

387

https://groups.google.com/forum/?fromgroups#!forum/stan-users
mailto:stan@mc-stan.org
https://github.com/stan-dev
https://github.com/stan-dev/stan-mode

Appendices

388

A. Licensing

Stan and its two dependent libraries, Boost and Eigen, are distributed under liberal
freedom-respecting1 licenses approved by the Open Source Initiative.2

In particular, the licenses for Stan and its dependent libraries have no “copyleft”
provisions requiring applications of Stan to be open source if they are redistributed.

This chapter describes the licenses for the tools that are distributed with Stan.
The next chapter explains some of the build tools that are not distributed with Stan,
but are required to build and run Stan models.

A.1. Stan’s License

Stan is distributed under the BSD 3-clause license (BSD New).

http://www.opensource.org/licenses/BSD-3-Clause

A.2. Boost License

Boost is distributed under the Boost Software License version 1.0.

http://www.opensource.org/licenses/BSL-1.0

A.3. Eigen License

Eigen is distributed under the Mozilla Public License, version 2.

http:/http://opensource.org/licenses/mpl-2.0

A.4. Google Test License

Stan uses Google Test for unit testing; it is not required to compile or execute models.
Google Test is distributed under the BSD 2-clause license.

http://www.opensource.org/licenses/BSD-License

1The link http://www.gnu.org/philosophy/open-source-misses-the-point.html leads to a dis-
cussion about terms “open source” and “freedom respecting.”

2See http://opensource.org.

389

http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSL-1.0
http:/http://opensource.org/licenses/mpl-2.0
http://www.opensource.org/licenses/BSD-License
http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://opensource.org

B. Installation and Compatibility

This appendix describes the hardware and software required to run Stan. The soft-
ware includes Stan and its libraries, as well as a contemporary C++ compiler. Stan
requires hardware powerful enough to build and execute the models. Ideally, that
will be a 64-bit computer with at least 4GB of memory and multiple processor cores.

B.1. Operating System

Stan is written in portable C++ without C++11 features, as are the libraries on which
it depends. Therefore, Stan should run on any machine for which a suitable C++

compiler is available. In practice, Stan, like the Boost and Eigen libraries on which it
depends, is very hard on the compiler and linker.

Stan has been tested on the following operating systems.

• Linux (Debian, Ubuntu, Red Hat),

• Mac OS X (Snow Leopard, Lion, Mountain Lion), and

• Windows (XP, 7, 8).

Stan should work on other versions of these operating systems if compatible C++

compilers can be found. The plan is to keep up with new versions of these operating
systems and gradually phase out testing on older versions.

B.2. Step-by-Step Mac Install Instructions

This section provides step-by-step install instructions for the Mac; Linux and Windows
sections follow. It repeats the step-by-step install instructions on Stan’s home page
at http://mc-stan.org/.

Stan has been tested on Mac OS X versions Snow Leopard, Lion, and Mountain
Lion.

Tips for Mac Users

Finding and Opening Mac Applications and Files

To open an application, use [Command-Space] (press both keys at once on the key-
board) to open Spotlight, enter the application’s name in the text field, then click
on the application in the pop-up menu or [Return] if the right file or application is
highlighted.

390

http://mc-stan.org/

Spotlight can be used in the same way to find files or folders, such as the default
Downloads folder for web downloads.

Open a Terminal for Shell Commands

To run shell commands, open the built-in Terminal application (see the previous sub-
section for details on how to find and open applications).

Install Xcode C++ Development Environment

The easiest (but not the only) way to install a C++ development environment on a Mac
is to use Apple’s Xcode development environment.

From the Xcode home page,

https://developer.apple.com/xcode/

click View in Mac App Store.
From the App Store, click Install, enter an Apple ID, and wait for Xcode to finish

installing.
Open the Xcode application, click top-level menu Preferences, click top-row but-

ton Downloads, click button for Components, click on the Install button to the right
of the Command Line Tools entry, then wait for it to finish installing.

Click the top-level menu item Xcode, then click item Quit Xcode to quit.
To test, open the Terminal application and enter

> make --version

> g++ --version

Verify that make is at version 3.81 or later and g++ is at 4.2.1 or later.

Download and Unpack Stan Source

Download the most recent version of stan-2.m.p.tar.gz (m is the minor version
and p the patch level) from the Stan downloads list,

https://github.com/stan-dev/stan/releases

Open the folder containing the download in the Finder (typically, the user’s top-
level Downloads folder).

If the Mac OS has not automatically unpacked the .tar.gz file into file
stan-2.m.p.tar, double-click the .tar.gz file to unpack.

Double click on the .tar file to unarchive directory stan-2.m.p.
Move the resulting directory to a location where it will not be deleted, henceforth

called <stan-home>.

391

https://developer.apple.com/xcode/
https://github.com/stan-dev/stan/releases

B.3. Step-by-Step Linux Install Instructions

Stan has been tested on various Linux installations, including Ubuntu, Debian, and
Red Hat.

Installing C++ Development Tools

On Linux, C++ compilers and make are often installed by default.
To see if the g++ compiler and make build system are already installed, use the

commands

> g++ --version

and

> make --version

If these are at least at g++ version 4.2.1 or later and make version 3.81 or later,
no additional installations are necessary. It may still be desirable to update the C++

compiler g++, because later versions are faster.
To install the latest version of these tools (or upgrade an older version), use the

commands

> sudo apt-get install g++

and

> sudo apt-get install make

A password will likely be required by the superuser command sudo.

Downloading and Unpacking Stan Source

Download the most recent stable version of Stan, stan-2.m.p.tar.gz, where m is the
minor version and p the patch level), from the Stan downloads page,

https://github.com/stan-dev/stan/releases

to the directory where Stan will reside.
In a command shell, change directories to where the tarball was downloaded, say

<download-dir>, with

> cd <download-dir>

where <download-dir> is replaced with the actual path to the directory.
Then, unpack the distribution into the subdirectory

392

https://github.com/stan-dev/stan/releases

<download-dir>/stan-2.m.p

with

> tar -xzf stan-2.m.p.tar.gz

B.4. Step-by-Step Windows Install Instructions

Stan has been tested on Windows XP, Windows 7, and Windows 8.
Stan also runs under Cygwin, which provides a unix-like shell on top of Windows.

Instructions for Cygwin installation are provided below in their own subsection.

Windows Tips

Opening a Command Shell

To open a Windows command shell, first open the Start Menu (usually in the lower
left of the screen), select option All Programs, then option Accessories, then pro-
gram Command Prompt.

Alternatively, enter [Windows+r] (both keys together on the keyboard), and enter
cmd into the text field that pops up in the Run window, then press [Return] on the
keyboard to run.

32-bit Builds

Stan defaults to a 64-bit build. On a 32-bit operating system, set the BIT variable
to 32. For example, to build the Bernoulli model in Section 2.4, replace the original
command with:

> make BIT=32 src/models/basic_estimators/bernoulli

Rtools C++ Development Environment

The simplest way to install a full C++ build environment that will work for Stan is to
use the Rtools package designed for R developers on Windows (even if you don’t plan
to use R).

First, download the latest frozen (i.e., stable) version of Rtools from the Rtools
home page, using

http://cran.r-project.org/bin/windows/Rtools/

Next, double click on the downloaded file to open the Rtools install wizard, then
proceed through its options.

393

http://cran.r-project.org/bin/windows/Rtools/

• Language: select language, click Next,

• Welcome: click Next,

• Information: click Next,

• Setup Location: accept default (c:\Rtools), click Next,

• Select Components: select default, Package Authoring, click Next,

• Select Additional Tasks: check Edit Path and Save Version in Registry,
click Next,

• System Path Report: click Next,

• Ready to Install: click Next, wait for the install to complete, then

• Finish: click Finish.

Downloading and Unpacking Stan

The Stan source code distributions are named stan-2.m.p.tar.gz, where m is the
minor version and p the patch level.

Download the latest Stan source from the Stan downloads page,

https://github.com/stan-dev/stan/releases

to any non-temporary folder. (If in doubt, select My Documents on Windows XP or
Documents on Windows 7.)

Change to the download directory (aka folder) using one of the following com-
mands, replacing <username> with a Windows user name.

• Windows XP : From the default starting directory, use the following commands
(quotes and all):

> cd "My Documents"

The full path (including quotes) will work from anywhere,

> cd "c:\Documents and Settings\<username>\My Documents"

• Windows 7 : From the default starting directory, use

> cd Documents

or use the full path, including quotes, from anywhere,

> cd "c:\Users\<username>\Documents"

394

https://github.com/stan-dev/stan/releases

To verify that the downloaded Stan .tar.gz file is there, list the directory contents
using:

> dir

Finally, unpack the distribution using the tar command (which is installed as part
of Rtools).

> tar --no-same-owner -xzf stan-2.m.p.tar.gz

The -no-same-owner flag is not strictly necessary, but it removes a bunch of irrele-
vant warnings.

64-bit Cygwin Install Instructions

Stan can be run under Cygwin, the Unix look-and-feel environment for Windows. Cyg-
win must have recent versions of make and g++ (part of gcc) installed. Within a Cygwin
shell, Stan will behave as under other Unixes.

Thanks to Kevin van Horn for mailing the following instructions into the Stan-
users mailing list. They only cover 64-bit R and 64-bit Cygwin, but that is what you
should be using for Stan anyway.

1. Kill all Cygwin bash shells and shut down R.

2. After installing R and Rtools, make sure that R and Rtools are
in the PATH environment variable. My R installation directory was
c:\Program Files\R\R-3.0.1 and my Rtools installation directory was
c:\Rtools, so I added the following to the end of my user PATH variable:

• C:\Program Files\R\R-3.0.1\bin\x64

• C:\Rtools\bin

• C:\Rtools\gcc-4.6.3\bin

3. Now there could be a conflict between Cygwin and Rtools when running a bash
shell under Cygwin, so I added the following lines to my .bash_profile file to
remove any PATH directory referencing Rtools:

> TMP=‘echo $PATH | /usr/bin/tr ’:’ ’\n’ \
| /usr/bin/egrep -iv ’^/cygdrive/c/Rtools/’ \
| tr ’\n’ ’:’‘

> PATH=${TMP%:}

(Note that the backslash characters signal that the line continues after a return.)
This was only necessary to allow me to continue using Cygwin.

395

4. Apparently there is something in Rcpp or inline or rstan that doesn’t like
UNC paths. My home directory was \\server\users\kevinv and apparently
this caused my local R library directory to be \server\users\kevinv\R as
verified by .libPaths() from the R command prompt.

I fixed this by copying the entire directory tree rooted at
\server\users\kevinv\R over to a local directory on my worksta-
tion, C:\Users\KevinV\R, then adding the user environment variable
R_LIBS_USER=C:\Users\KevinV\R. I shut down R and restarted it.

5. At this point the instructions given for installing Rstan finally worked.

MKL Compiler Instructions

Getting the MKL

To purchase a license, see

http://software.intel.com/en-us/intel-mkl

For non-commercial development, see

http://software.intel.com/non-commercial-software-development

Installing and Compiling with MKL

In order to use Intel’s math kernel library (MKL) for C++,

• Download and extract a fresh copy of Stan.

• In your makefile change CC=g++ to CC=icc; or you can do this by supplying the
argument CC=icc to each call to make (aliases are good for this).

• Add the MKL path to the makefile; for example

MKLROOT = /apps/intel/2013/mkl)

• Add the following to makefile’s CFLAGS:

-I $(MKLROOT)/include and -DEIGEN_USE_MKL_ALL

• Link to your MKL library by adding to your makefile’s LDLIBS. The exact imple-
mentation will depend on your system. Use the MKL link line advisor for help.
For example, you might add

-L$(MKLROOT)/lib/intel64 -lmkl_intel_lp64
-lmkl_core -lmkl_sequential -lpthread -lm

396

http://software.intel.com/en-us/intel-mkl
http://software.intel.com/non-commercial-software-development

• Compile your models as usual, for example

make src/models/speed/logistic/logistic

Note: Make sure to do the above changes before compiling for the first time - other-
wise Stan will be compiled with g++ and you won’t see any performance gains.

B.5. Required Software and Tools

The only two absolute requirements for running Stan are the Stan source code (and
dependent libraries) and a C++ compiler.

Stan Source

In order to compile Stan models, the Stan source code is required. The latest version
of Stan can be downloaded from the following link.

http://mc-stan.org/

The Stan source code distribution includes Stan’s source code, documentation, build
tools, unit tests, demo models, documentation and source for the required libraries
Boost and Eigen, and the source for an optional testing library, Google Test.

Boost C++ Library Source

Stan’s parser and some of its mathematical functions and template metaprogramming
facilities are implemented with the Boost C++ Library.

• Home: http://www.boost.org/users/license.html

• License: Boost Software License

• Tested Version: 1.54.0

The Boost source code is distributed with Stan.

Eigen Matrix and Linear Algebra Library Source

Stan’s matrix algebra depends on the Eigen C++ matrix and linear algebra library.

• Home: http://eigen.tuxfamily.org

• License: Mozilla Public License, version 2.0

• Tested Version: 3.2.0

The Eigen source code is distributed with Stan.

397

http://mc-stan.org/
http://eigen.tuxfamily.org

C++ Compiler

Compiling Stan models requires a C++ compiler. Stan has been primarily developed
with clang++ and g++ and no promises are made for other compilers. The full set of
compilers for which Stan has been tested is

• g++

Tested Versions: Mac 4.2.1, 4.6, Linux 4.4–4.7 (plus trunk 4.8, 4.9), Windows
4.6.3
Home: http://gcc.gnu.org/
License: GPL3+

• clang++, Mac 2.9–3.1, Linux 2.9–3.1
Home: http://clang.llvm.org/
License: BSD

• mingw-64, version 2.0 (Windows 7, cross-compiled from Debian Linux)

• Intel C++, Linux version 12.1.3

C++-11 Support

Stan 2.0 does not support C++-11. The remaining incompatibility with the parser will
be included soon after Stan 2.0 is released. This will include support for the latest
versions of g++ and clang++.

B.6. Optional Components for Developers

Stan is developed using the following set of tools. The various command examples
in this manual have assumed they can be found on the command path. The makefile
allows precise locations to be plugged in.

GNU Make Build Tool

Stan automates the build, test, documentation, and deployment tasks using scripts in
the form of makefiles to run with GNU Make.

• Home: http://www.gnu.org/software/make

• License: GPLv3+

• Tested Versions: 3.81 (Mac OS X), 3.79 (Windows 7)

398

http://gcc.gnu.org/
http://clang.llvm.org/
http://www.gnu.org/software/make

Doxygen Documentation Generator

Stan’s API documentation is generated using the Doxygen Tool.

• Home: http://www.stack.nl/~dimitri/doxygen/index.html

• License: GPL2

• Tested Version(s): Mac OS X 1.8.2, Windows 1.8.2

Git Version Control System

Stan uses the Git version control system for its software, libraries, and documenta-
tions. Git is required to interact with the most recent versions of code in the version
control repository.

• Home: http://git-scm.com/

• License: GPL2

• Tested Version(s): Mac version 1.7.8.4, Windows version 1.7.9

Google Test C++ Testing Framework

Stan’s unit testing is based on the Google’s googletest C++ testing framework.

• Home: http://code.google.com/p/googletest/

• License: BSD

• Tested Version(s): 1.6.0

The Google Test framework is distributed with Stan.

B.7. Tips for Mac OS X

Install Xcode

Apple’s Xcode contains both the clang++ and g++ compilers and make, all of the tools
needed to work with Stan as a user. The version of Xcode to install depends on the
version of Mac OS X.

399

http://www.stack.nl/~dimitri/doxygen/index.html
http://git-scm.com/
http://code.google.com/p/googletest/

Official Apple Xcode Distribution

Xcode 4 may be downloaded for free for Mac OS X 10.7 (“Lion”) or later directly from
Apple:

Xcode 4: https://developer.apple.com/xcode/

Once you’ve installed Xcode, you need to start it, then open menu option Xcode,
select Preferences, then click on the Downloads icon and then click on the Install
button next to the option labeled “Command Line Tools.”

At this point, you should have the make system make and the two C++ compil-
ers/linkers, g++ and clang++, installed. This is all you need to run Stan. Xcode will
also install the git version control system at this point.

Alternative, GCC-Only Installer

A stripped down installer for just the GCC package, including the C++ compilers g++
and clang++, available for Mac OS X 10.6 (“Snow Leopard”) or later,

https://github.com/kennethreitz/osx-gcc-installer/

The fill list of tools in this distribution is available at:

http://www.opensource.apple.com/release/
developer-tools-41/

More Recent Compilers

Alternative compilers to those distributed by Apple as part of Xcode are available at
the following locations.

Homebrew

One way to get pre-built binaries for Mac OS X is to use Homebrew, which is available
from the following link.

http://mxcl.github.com/homebrew/

MacPorts

MacPorts hosts recent versions of compilers for the Macintosh.

https://distfiles.macports.org/MacPorts/

400

https://developer.apple.com/xcode/
https://github.com/kennethreitz/osx-gcc-installer/
http://www.opensource.apple.com/release/developer-tools-41/
http://www.opensource.apple.com/release/developer-tools-41/
http://mxcl.github.com/homebrew/
https://distfiles.macports.org/MacPorts/

After finding the appropriate .dmg file, clicking on it, then double clicking on the
resulting .pkg file, and clicking through some more menus, the following will need
to be entered from a terminal window to install it.

> sudo port install gccVersion

In this command, gccVersion is the name of a compiler version, such as g++=mp-4.6,
for version 4.6. Errors may arise during the install such as the following.

Error: Target org.macports.activate returned: Image error:

/opt/local/include/gmp.h already exists and does not belong to

a registered port. Unable to activate port gmp. Use ’port -f

activate gmp’ to force the activation.

This issue can be resolved by running the following command.

> sudo port -f activate gmp

Git Installer

A standalone version of Git for Mac OS X is available from the following site.

http://code.google.com/p/git-osx-installer/

Although (at the time of this writing) there were only versions listed up to OS X version
“Snow Leopard,” they work on “Lion.”

LATEX Typesetting Package

Stan uses the LATEX typesetting package for generating manuals, talks, and other ma-
terials (Doxygen is used for API documentation; see below). The first step is to down-
load the MacTeX .mpkg file from the following URL [warning: the download is approx-
imately 2GB and the installation approximately 3.5GB].

http://www.tug.org/mactex/2011/

Once it is downloaded, just click on the .mpkg file and then follow the installer in-
structions. The installer will add the command to the PATH environment variable so
that the pdflatex used by Stan is available from the command line.

Lucida Console Font

A free TrueType version of Lucida Console for the Mac is available at the following
URL.

http://www.fontpalace.com/font-details/Lucida+Console/

Download the .ttf file, then click on it to install. It will then be available as a prefer-
ence in the Mac terminal application.

401

http://code.google.com/p/git-osx-installer/
http://www.tug.org/mactex/2011/
http://www.fontpalace.com/font-details/Lucida+Console/

Doxygen API Documentation

Stan’s API documentation is generated using the Doxygen tool. This tool is available
from

http://www.doxygen.org

Select the Download link from the second of the right-hand side navigation bars, then
select the binary distribution .dmg file for Mac OS X. Clicking on the .dmg file opens
the finder with a view of the unpacked Doxygen executable. Just drag the Doxygen
icon into the Applications folder (or wherever you want to keep it). Then add the path
to the Doxygen executable,

/Applications/Doxygen.app/Contents/Resources/doxygen

to the system PATH environment variable. You can do add to the PATH environment
by adding this line to the end of the top-level ~/.profile file.

export PATH=/Applications/Doxygen.app/Contents/Resources:$PATH

The next shell started will then be able to find the doxygen command.

B.8. Tips for Windows

Install Rtools

The easiest way to get a complete C++ build environment on Windows is to install the
most recent version of Rtools.

The latest version verified to work with Stan is Rtools 2.15. Rtools 2.15 includes
the g++ 4.6.3 (pre-release) compiler and many other useful command line tools includ-
ing many Unix commands, such as the following.

basename, cat, cmp, comm, cp, cut, date, diff, du, echo,
expr, gzip, ls, make, makeinfo, mkdir, mv, rm, rsync, sed,
sh, sort, tar, texindex, touch, uniq

Rtools can be downloaded from the following location.

http://cran.r-project.org/bin/windows/Rtools/

Install it using the Windows installer. Allow it to edit the PATH environment variable
so that commands are available from the command tool.

To verify the installation was successful, open a command window by selecting
the following menu items.

402

http://www.doxygen.org
/Applications/Doxygen.app/Contents/Resources/doxygen
http://cran.r-project.org/bin/windows/Rtools/

Start → Accessories → Command Prompt

To verify that g++ is installed, use the following command.

> g++ -v

This should report version information for g++. Next, verify that make is installed with
the following command.

> make -v

This should print version information for make.

GNU Make 3.81 or Higher for Tests

Although the version of make distributed with RTools suffices to run Stan, in order
to run the unit tests (see Section 2.4.8), a version of GNU make version 3.81 or higher
is required. To install such a version of make:

• Install Rtools according to instructions in the previous section.

• Download and install make 3.81 (or higher).

– we have tested the version installed through the Setup link at
http://gnuwin32.sourceforge.net/packages/make.htm

• Edit the PATH environment variable so the installation location of make appears
before RTools.

• Remove or move Windows’ find.exe from C:\Windows system32. For exam-
ple, move it to the top-level C: directory.

The reason for the last step is a bug in this version of make. Even though it should
pick out find.exe from Rtools, it picks out C:\Windows\system32 first.

Install Git

There are a number of Git clients for Windows that will work. The official Git installer
for Windows can be found at the following location.

http://code.google.com/p/msysgit/downloads

Select the latest full installer and install it.

403

http://gnuwin32.sourceforge.net/packages/make.htm
http://code.google.com/p/msysgit/downloads

C. Stan for Users of BUGS

From the outside, Stan and BUGS1 are similar — they use statistically-themed
modeling languages (which are similar but with some differences; see below), they can
be called from R, running some specified number of chains to some specified length,
producing posterior simulations that can be assessed using standard convergence
diagnostics. This is not a coincidence: in designing Stan, we wanted to keep many of
the useful features of Bugs.

To start, take a look at the files of translated BUGS models at http://mc-stan.
org/. These are 40 or so models from the BUGS example volumes, all translated and
tested (to provide the same answers as BUGS) in Stan. For any particular model you
want to fit, you can look for similar structures in these examples.

C.1. Some Differences in How BUGS and Stan Work

• BUGS is interpreted; Stan is compiled in two steps, first a model is is translated
to templated C++ and then to a platform-specific executable. Stan, unlike BUGS,
allows the user to directly program in C++, but we do not describe how to
do this in this Stan manual (see the getting started with C++ section of http:
//mc-stan.org for more information on using Stan directly from C++).

• BUGS performs MCMC updating one scalar parameter at a time (with some ex-
ceptions such as JAGS’s implementation of regression and generalized linear
models and some conjugate multivariate parameters), using conditional distri-
butions (Gibbs sampling) where possible and otherwise using adaptive rejection
sampling, slice sampling, and Metropolis jumping. BUGS figures out the depen-
dence structure of the joint distribution as specified in its modeling language
and uses this information to compute only what it needs at each step. Stan
moves in the entire space of all the parameters using Hamiltonian Monte Carlo
(more precisely, the no-U-turn sampler), thus avoiding some difficulties that oc-
cur with one-dimension-at-a-time sampling in high dimensions but at the cost
of requiring the computation of the entire log density at each step.

• BUGS tunes its adaptive jumping (if necessary) during its warmup phase (tra-
ditionally referred to as "burn-in"). Stan uses its warmup phase to tune the
no-U-turn sampler (NUTS).

1Except where otherwise noted, we use “BUGS” to refer to WinBUGS, OpenBUGS, and JAGS, indiscrimi-
nately.

404

http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org
http://mc-stan.org

• The BUGS modeling language is not directly executable. Rather, BUGS parses
its model to determine the posterior density and then decides on a sampling
scheme. In contrast, the statements in a Stan model are directly executable:
they translate exactly into C++ code that is used to compute the log posterior
density (which in turn is used to compute the gradient).

• In BUGS, the order in which statements are written does not matter. They are
executed according to the directed graphical model so that variables are always
defined when needed. A side effect of the direct execution of Stan’s modeling
language is that statements execute in the order in which they are written. For
instance, the following Stan program, which sets mu before using it to sample y.

mu <- a + b * x;

y ~ normal(mu,sigma);

It translates to the following C++ code.

mu = a + b * x;
lp += normal_log(mu,sigma);

Contrast this with the Stan program

y ~ normal(mu,sigma)

mu <- a + b * x

This program is well formed, but is almost certainly a coding error, because it
attempts to use mu before it is set. It translates to the following C++ code.

lp += normal_log(mu,sigma);

mu = a + b * x;

The direct translation to the imperative language of C++ code highlights the po-
tential error of using mu in the first statement.

To trap these kinds of errors, variables are initialized to the special not-a-
number (NaN) value. If NaN is passed to a log probability function, it will raise a
domain exception, which will in turn be reported by the sampler. The sampler
will reject the sample out of hand as if it had zero probability.

• Stan uses its own C++ algorithmic differentiation packages to compute the gra-
dient of the log density (up to a proportion). Gradients are required during the
Hamiltonian dynamics simulations within the leapfrog algorithm of the Hamil-
tonian Monte Carlo and NUTS samplers. BUGS computes the log density but not
its gradient.

405

• Both BUGS and Stan are semi-automatic in that they run by themselves with
no outside tuning required. Nevertheless, the user needs to pick the number
of chains and number of iterations per chain. We usually pick 4 chains and
start with 10 iterations per chain (to make sure there are no major bugs and
to approximately check the timing), then go to 100, 1000, or more iterations
as necessary. Compared to Gibbs or Metropolis, Hamiltonian Monte Carlo can
take longer per iteration (as it typically takes many "leapfrog steps" within each
iteration), but the iterations typically have lower autocorrelation. So Stan might
work fine with 1000 iterations in an example where BUGS would require 100,000
for good mixing. We recommend monitoring potential scale reduction statistics
(R̂) and the effective sample size to judge when to stop (stopping when R̂ values
do not counter-indicate convergence and when enough effective samples have
been collected).

• WinBUGS is closed source. OpenBUGS and JAGS are both licensed under the
Gnu Public License (GPL), otherwise known as copyleft due to the restrictions it
places on derivative works. Stan is licensed under the much more liberal new
BSD license.

• Like WinBUGS, OpenBUGS and JAGS, Stan can be run directly from the command
line or through R (Python and MATLAB interfaces are in the works)

• Like OpenBUGS and JAGS, Stan can be run on Linux, Mac, and Windows plat-
forms.

C.2. Some Differences in the Modeling Languages

• The BUGS modeling language follows an R-like syntax in which line breaks are
meaningful. Stan follows the rules of C, in which line breaks are equivalent to
spaces, and each statement ends in a semicolon. For example:

y ~ normal(mu, sigma);

and

for (i in 1:n) y[i] ~ normal(mu, sigma);

Or, equivalently (recall that a line break is just another form of whitespace),

for (i in 1:n)

y[i] ~ normal(mu, sigma);

and also equivalently,

406

for (i in 1:n) {

y[i] ~ normal(mu, sigma);

}

There’s a semicolon after the model statement but not after the brackets indi-
cating the body of the for loop.

• Another C thing: In Stan, variables can have names constructed using letters,
numbers, and the underscore (_) symbol, but nothing else (and a variable name
cannot begin with a number). BUGS variables can also include the dot, or period
(.) symbol.

• In Stan, the second argument to the "normal" function is the standard devia-
tion (i.e., the scale), not the variance (as in Bayesian Data Analysis) and not the
inverse-variance (i.e., precision) (as in BUGS). Thus a normal with mean 1 and
standard deviation 2 is normal(1,2), not normal(1,4) or normal(1,0.25).

• Similarly, the second argument to the "multivariate normal" function is the co-
variance matrix and not the inverse covariance matrix (i.e., the precision matrix)
(as in BUGS). The same is true for the "multivariate student" distribution.

• The distributions have slightly different names:

BUGS Stan

dnorm normal
dbinom binomial
dpois poisson
...

...

• Stan, unlike BUGS, allows intermediate quantities, in the form of local variables,
to be reassigned. For example, the following is legal and meaningful (if possibly
inefficient) Stan code.

{

total <- 0;

for (i in 1:n){

theta[i] ~ normal(total, sigma);

total <- total + theta[i];

}

}

In BUGS, the above model would not be legal because the variable total is
defined more than once. But in Stan, the loop is executed in order, so total is
overwritten in each step.

407

• Stan uses explicit declarations. Variables are declared with base type integer or
real, and vectors, matrices, and arrays have specified dimensions. When vari-
ables are bounded, we give that information also. For data and transformed
parameters, the bounds are used for error checking. For parameters, the con-
straints are critical to sampling as they determine the geometry over which the
Hamiltonian is simulated.

Variables can be declared as data, transformed data, parameters, transformed
parameters, or generated quantities. They can also be declared as local vari-
ables within blocks. For more information, see the part of this manual devoted
to the Stan programming language and examine at the example models.

• Stan allows all sorts of tricks with vector and matrix operations which can make
Stan models more compact. For example, arguments to probability functions
may be vectorized,2 allowing

for (i in 1:n)

y[i] ~ normal(mu[i], sigma[i]);

to be expressed more compactly as

y ~ normal(mu,sigma);

The vectorized form is also more efficient because Stan can unfold the compu-
tation of the chain rule during algorithmic differentiation.

• Stan also allows for arrays of vectors and matrices. For example, in a hierarchi-
cal model might have a vector of K parameters for each of J groups; this can be
declared using

vector[K] theta[J];

Then theta[j] is an expression denoting a K-vector and may be used in the
code just like any other vector variable.

An alternative encoding would be with a two-dimensional array, as in

real theta[J,K];

The vector version can have some advantages, both in convenience and in com-
putational speed for some operations.

A third encoding would use a matrix:

2Most distributions have been vectorized, but currently the truncated versions may not exist and may
not be vectorized.

408

matrix[J,K] theta;

but in this case, theta[j] is a row vector, not a vector, and accessing it as a
vector is less efficient than with an array of vectors. The transposition operator,
as in theta[j]’, may be used to convert the row vector theta[j] to a (column)
vector. Column vector and row vector types are not interchangeable everywhere
in Stan; see the function signature declarations in the programming language
section of this manual.

• Stan supports general conditional statements using a standard if-else syntax.
For example, a zero-inflated (or -deflated) Poisson mixture model of the form
defined by Lambert (1992) may be defined as follows, where there is a proba-
bility θ of drawing a zero, and a probability 1− θ of drawing from Poisson(λ).
The probability function is thus

p(yn|θ,λ) =

 θ + (1− θ)× Poisson(0|λ) if yn = 0, and

(1− θ)× Poisson(yn|λ) if yn > 0.

The log probability function can be implemented directly in Stan as follows.

data {

int<lower=0> N;

int<lower=0> y[N];

...

}

model {

for (n in 1:N) {

if (y[n] == 0)

increment_log_prob(log_sum_exp(bernoulli_log(1,theta),

bernoulli_log(0,theta)

+ poisson_log(y[n],lambda)));

else

increment_log_prob(bernoulli_Log(0,theta)

+ poisson_log(y[n],lambda));

}

...

}

The log_sum_exp(lp1,lp2) function adds the log probabilities on the linear
scale; it is defined to be equal to log(exp(lp1) + exp(lp2)), but is more
arithmetically stable.

• Stan supports general while loops using a standard syntax. While loops give
Stan full Turing equivalent computational power. They are useful for defining

409

iterative functions with complex termination conditions. As an illustration of
their syntax, the for-loop

model {

....

for (n in 1:N) {

... do something with n

}

}

may be recoded using the following while loop.

model {

int n;

...

n <- 1;

while (n <= N) {

... do something with n ...

n <- n + 1;

}

}

C.3. Some Differences in the Statistical Models that are Allowed

• Stan does not yet support sampling discrete parameters (discrete data is sup-
ported). We plan to implement discrete sampling using a combination of Gibbs
and slice sampling but we haven’t done so yet.

• Stan has some distributions on covariance matrices that do not exist in BUGS, in-
cluding a uniform distribution over correlation matrices which may be rescaled,
and the priors based on C-vines defined in (Lewandowski et al., 2009). In par-
ticular, the Lewandowski et al. prior allows the correlation matrix to be shrunk
toward the unit matrix while the scales are given independent priors.

• In BUGS you need to define all variables. In Stan, if you declare but don’t define
a parameter it implicitly has a flat prior (on the scale in which the parameter is
defined). For example, if you have a parameter p declared as

real<lower=0,upper=1> p;

and then have no sampling statement for p in the model block, then you are
implicitly assigning a uniform [0,1] prior on p. On the other hand, if you have
a parameter theta declared with

real theta;

410

and have no sampling statement for theta in the model block, then you are
implicitly assigning an improper uniform prior on (−∞,∞) to theta.

• BUGS models are always proper (being constructed as a product of proper
marginal and conditional densities). Stan models can be improper. Here is
the simplest improper Stan model:

parameters {

real theta;

}

model { }

• Although parameters in Stan models may have improper priors, we do not want
improper posterior distributions, as we are trying to use these distributions for
Bayesian inference. There is no general way to check if a posterior distribution
is improper. But if all the priors are proper, the posterior will be proper also.

• As noted earlier, each statement in a Stan model is directly translated into the
C++ code for computing the log posterior. Thus, for example, the following pair
of statements is legal in a Stan model:

y ~ normal(0,1);

y ~ normal(2,3);

The second line here does not simply overwrite the first; rather, both statements
contribute to the density function that is evaluated. The above two lines have
the effect of including the product, Norm(y|0,1)×Norm(y|2,3), into the density
function.

For a perhaps more confusing example, consider the following two lines in a
Stan model:

x ~ normal(0.8*y, sigma);

y ~ normal(0.8*x, sigma);

At first, this might look like a joint normal distribution with a correlation of
0.8. But it is not. The above are not interpreted as conditional entities; rather,
they are factors in the joint density. Multiplying them gives, Norm(x|0.8y,σ)×
Norm(y|0.8x,σ), which is what it is (you can work out the algebra) but it is not
the joint distribution where the conditionals have regressions with slope 0.8.

• With censoring and truncation, Stan uses the censored-data or truncated-data
likelihood—this is not always done in BUGS. All of the approaches to censoring
and truncation discussed in (Gelman et al., 2013) and (Gelman and Hill, 2007)
may be implemented in Stan directly as written.

411

• Stan, like BUGS, can benefit from human intervention in the form of reparame-
terization. More on this topic to come.

C.4. Some Differences when Running from R

• Stan can be set up from within R using two lines of code. Follow the instruc-
tions for running Stan from R on http://mc-stan.org/. You don’t need to
separately download Stan and RStan. Installing RStan will automatically set up
Stan. When RStan moves to CRAN, it will get even easier.

• In practice we typically run the same Stan model repeatedly. If you pass RStan
the result of a previously fitted model the model will not need be recom-
piled. An example is given on the running Stan from R pages available from
http://mc-stan.org/.

• When you run Stan, it saves various conditions including starting values, some
control variables for the tuning and running of the no-U-turn sampler, and the
initial random seed. You can specify these values in the Stan call and thus
achieve exact replication if desired. (This can be useful for debugging.)

• When running BUGS from R, you need to send exactly the data that the model
needs. When running RStan, you can include extra data, which can be helpful
when playing around with models. For example, if you remove a variable x from
the model, you can keep it in the data sent from R, thus allowing you to quickly
alter the Stan model without having to also change the calling information in
your R script.

• As in R2WinBUGS and R2jags, after running the Stan model, you can quickly
summarize using plot() and print(). You can access the simulations them-
selves using various extractor functions, as described in the RStan documenta-
tion.

• Various information about the sampler, such as number of leapfrog steps, log
probability, and step size, is available through extractor functions. These can
be useful for understanding what is going wrong when the algorithm is slow to
converge.

C.5. The Stan Community

• Stan, like WinBUGS, OpenBUGS, and JAGS, has an active community, which
you can access via the user’s mailing list and the developer’s mailing list; see

412

http://mc-stan.org/

http://mc-stan.org/ for information on subscribing and posting and to look
at archives.

413

D. Stan Program Style Guide

This appendix describes the preferred style for laying out Stan models. These are
not rules of the language, but simply recommendations for laying out programs in
a text editor. Although these recommendations may seem arbitrary, they are similar
to those of many teams for many programming languages. Like rules for typesetting
text, the goal is to achieve readability without wasting white space either vertically or
horizontally.

D.1. Choose a Consistent Style

The most important point of style is consistency. Consistent coding style makes it
easier to read not only a single program, but multiple programs. So when departing
from this style guide, the number one recommendation is to do so consistently.

D.2. Line Length

Line lengths should not exceed 80 characters.1 This is a typical recommendation for
many programming language style guides because it makes it easier to lay out text
edit windows side by side and to view the code on the web without wrapping, easier
to view diffs from version control, etc. About the only thing that is sacrificed is laying
out expressions on a single line.

D.3. File Extensions

The recommended file extension for Stan model files is .stan. For Stan data dump
files, the recommended extension is .R, or more informatively, .data.R.

D.4. Variable Naming

The recommended variable naming is to follow C/C++ naming conventions, in which
variables are lowercase, with the underscore character (_) used as a separator. Thus it
is preferred to use sigma_y, rather than the run together sigmay, camel-case sigmaY,
or capitalized camel-case SigmaY. Even matrix variables should be lowercased.

1Even 80 characters may be too many for rendering in print; for instance, in this manual, the number of
code characters that fit on a line is about 65.

414

The exception to the lowercasing recommendation, which also follows the C/C++

conventions, is for size constants, for which the recommended form is a single up-
percase letter. The reason for this is that it allows the loop variables to match. So
loops over the indices of an M ×N matrix a would look as follows.

for (m in 1:M)

for (n in 1:N)

a[m,n] = ...

D.5. Local Variable Scope

Declaring local variables in the block in which they are used aids in understanding
programs because it cuts down on the amount of text scanning or memory required
to reunite the declaration and definition.

The following Stan program corresponds to a direct translation of a BUGS model,
which uses a different element of mu in each iteration.

model {

real mu[N];

for (n in 1:N) {

mu[n] <- alpha * x[n] + beta;

y[n] ~ normal(mu[n],sigma);

}

}

Because variables can be reused in Stan and because they should be declared locally
for clarity, this model should be recoded as follows.

model {
for (n in 1:N) {

real mu;
mu <- alpha * x[n] + beta;
y[n] ~ normal(mu,sigma);

}
}

The local variable can be eliminated altogether, as follows.

model {

for (n in 1:N)

y[n] ~ normal(alpha * x[n] + beta, sigma);

}

There is unlikely to be any measurable efficiency difference between the last two
implementations, but both should be a bit more efficient than the BUGS translation.

415

Scope of Compound Structures with Componentwise Assignment

In the case of local variables for compound structures, such as arrays, vectors, or
matrices, if they are built up component by component rather than in large chunks, it
can be more efficient to declare a local variable for the structure outside of the block
in which it is used. This allows it to be allocated once and then reused.

model {

vector[K] mu;

for (n in 1:N) {

for (k in 1:K)

mu[k] <- ...;

y[n] ~ multi_normal(mu,Sigma);

}

In this case, the vector mu will be allocated outside of both loops, and used a total of
N times.

D.6. Parentheses and Brackets

Optional Parentheses for Single-Statement Blocks

Single-statement blocks can be rendered in one of two ways. The fully explicit brack-
eted way is as follows.

for (n in 1:N) {

y[n] ~ normal(mu,1);

}

The following statement without brackets has the same effect.

for (n in 1:N)
y[n] ~ normal(mu,1);

Single-statement blocks can also be written on a single line, as in the following exam-
ple.

for (n in 1:N) y[n] ~ normal(mu,1);

These can be much harder to read than the first example. Only use this style if the
statement is very simple, as in this example. Unless there are many similar cases, it’s
almost always clearer to put each sampling statement on its own line.

Conditional and looping statements may also be written without brackets.
The use of for loops without brackets can be dangerous. For instance, consider

this program.

416

for (n in 1:N)
z[n] ~ normal(nu,1);
y[n] ~ normal(mu,1);

Because Stan ignores whitespace and the parser completes a statement as eagerly as
possible (just as in C++), the previous program is equivalent to the following program.

for (n in 1:N) {
z[n] ~ normal(nu,1);

}
y[n] ~ normal(mu,1);

Parentheses in Nested Operator Expressions

The preferred style for operators minimizes parentheses. This reduces clutter in
code that can actually make it harder to read expressions. For example, the expres-
sion a + b * c is preferred to the equivalent a + (b * c) or (a + (b * c)). The
operator precedences and associativities are given in Figure 23.1.

Similarly, comparison operators can usually be written with minimal bracketing,
with the form y[n] > 0 || x[n] != 0 preferred to the bracketed form (y[n] > 0)
|| (x[n] != 0).

No Open Brackets on Own Line

Vertical space is valuable as it controls how much of a program you can see. The
preferred Stan style is as shown in the previous section, not as follows.

for (n in 1:N)

{

y[n] ~ normal(mu,1);

}

This also goes for parameters blocks, transformed data blocks, which should look as
follows.

transformed parameters {

real sigma;

...

}

D.7. Conditionals

Stan supports the full C++-style conditional syntax, allowing real or integer values to
act as conditions, as follows.

417

real x;

...

if (x) {

// executes if x not equal to 0

...

}

Explicit Comparisons of Non-Boolean Conditions

The preferred form is to write the condition out explicitly for integer or real values
that are not produced as the result of a comparison or boolean operation, as follows.

if (x != 0) ...

D.8. White Space

Stan allows spaces between elements of a program. The white space characters al-
lowed in Stan programs include the space (ASCII 0x20), line feed (ASCII 0x0A), carriage
return (0x0D), and tab (0x09). Stan treats all whitespace characters interchangeably,
with any sequence of whitespace characters being syntactically equivalent to a single
space character. Nevertheless, effective use of whitespace is the key to good program
layout.

Line Breaks Between Statements and Declarations

It is dispreferred to have multiple statements or declarations on the same line, as in
the following example.

transformed parameters {

real mu_centered; real sigma;

mu <- (mu_raw - mean_mu_raw); sigma <- pow(tau,-2);

}

These should be broken into four separate lines.

No Tabs

Stan programs should not contain tab characters. They are legal and may be used any-
where other whitespace occurs. Using tabs to layout a program is highly unportable
because the number of spaces represented by a single tab character varies depending
on which program is doing the rendering and how it is configured.

418

Two-Character Indents

Stan has standardized on two space characters of indentation, which is the standard
convention for C/C++ code. Another sensible choice is four spaces, which is the
convention for Java and Python. Just be consistent.

Space Between if and Condition

Use a space after ifs. For instance, use if (x < y) ..., not if(x < y)

No Space For Function Calls

There is no space between a function name and the function it applies to. For in-
stance, use normal(0,1), not normal (0,1).

Spaces Around Operators

There should be spaces around binary operators. For instance, use y[1] <- x, not
y[1]<-x, use (x + y) * z not (x+y)*z.

Breaking Expressions across Lines

Sometimes expressions are too long to fit on a single line. In that case, the recom-
mended form is to break before an operator,2 aligning the operator to indicate scop-
ing. For example, use the following form (though not the content; inverting matrices
is almost always a bad idea).

increment_log_prob((y - mu)’ * inv(Sigma) * (y - mu));

Here, the multiplication operator (*) is aligned to clearly signal the multiplicands in
the product.

For function arguments, break after a comma and line the next argument up un-
derneath as follows.

y[n] ~ normal(alpha + beta * x + gamma * y,

pow(tau,-0.5));

2This is the usual convention in both typesetting and other programming languages. Neither R nor
BUGS allows breaks before an operator because they allow newlines to signal the end of an expression or
statement.

419

Optional Spaces after Commas

Optionally use spaces after commas in function arguments for clarity. For
example, normal(alpha * x[n] + beta,sigma) can also be written as
normal(alpha * x[n] + beta, sigma).

Unix Newlines

Wherever possible, Stan programs should use a single line feed character to separate
lines. All of the Stan developers (so far, at least) work on Unix-like operating systems
and using a standard newline makes the programs easier for us to read and share.

Platform Specificity of Newlines

Newlines are signaled in Unix-like operating systems such as Linux and Mac OS X
with a single line-feed (LF) character (ASCII code point 0x0A). Newlines are signaled
in Windows using two characters, a carriage return (CR) character (ASCII code point
0x0D) followed by a line-feed (LF) character.

420

Bibliography

Betancourt, M. (2010). Cruising the simplex: Hamiltonian Monte Carlo and the Dirich-
let distribution. arXiv, 1010(3436):1–5. 376

Betancourt, M. (2012). A general metric for Riemannian manifold Hamiltonian Monte
Carlo. arXiv, 1212(4693). 43, 178

Betancourt, M. and Stein, L. C. (2011). The geometry of Hamiltonian Monte Carlo.
arXiv, 1112(4118):1–9. 42

Blei, D. M. and Lafferty, J. D. (2007). A correlated topic model of Science. The Annals
of Applied Statistics, 1(1):17–37. 139

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022. 137

Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S., and Cho, B. R. (2009). A logistic
approximation to the cumulative normal distribution. Journal of Industrial Engi-
neering and Management, 2(1):114–127. 279

Clayton, D. G. (1992). Models for the analysis of cohort and case-control studies
with inaccurately measured exposures. In Dwyer, J. H., Feinleib, M., Lippert, P., and
Hoffmeister, H., editors, Statistical Models for Longitudinal Studies of Exposure and
Health, pages 301–331. Oxford University Press. 125, 126

Cook, S. R., Gelman, A., and Rubin, D. B. (2006). Validation of software for Bayesian
models using posterior quantiles. Journal of Computational and Graphical Statistics,
15(3):675–692. 72

Curtis, S. M. (2010). BUGS code for item response theory. Journal of Statistical Soft-
ware, 31. 89

Daumé, III, H. (2007). HBC: Hierarchical Bayes compiler. Technical report, University
of Utah. vi

Duane, A., Kennedy, A., Pendleton, B., and Roweth, D. (1987). Hybrid Monte Carlo.
Physics Letters B, 195(2):216–222. 3

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods.
Oxford University Press, New York. 343

Efron, B. (2012). Large-Scale Inference: Empirical Bayes Methods for Estimation, Test-
ing, and Prediction. Institute of Mathematical Statistics Monographs. Cambridge
Univesity Press. 6, 354

421

Efron, B. and Morris, C. (1975). Data analysis using stein’s estimator and its general-
izations. Journal of the American Statistical Association, 70:311–319. 354

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of
variance of United Kingdom inflation. Econometrica, 50:987–1008. 99

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley. ix

Gay, D. (2005). Semiautomatic differentiation for efficient gradient computations.
In Bücker, H. M., Corliss, G. F., Hovland, P., Naumann, U., and Norris, B., editors,
Automatic Differentiation: Applications, Theory, and Implementations, volume 50 of
Lecture Notes in Computational Science and Engineering. Springer, New York. vii

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).
Bayesian Data Analysis. Chapman &Hall/CRC Press, London, third edition. 6, 127,
129, 137, 155, 228, 359, 361, 411

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel-
Hierarchical Models. Cambridge University Press, Cambridge, United Kingdom. vi,
89, 90, 91, 93, 137, 250, 411

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7(4):457–472. 5, 365

Giesler, G. C. (2000). MCNP software quality: Then and now. Technical Report LA-UR-
00-2532, Los Alamos National Laboratory. xii

Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214. 43, 178

Google (2011). Google Test: Google C++ testing framework.
http://code.google.com/p/googletest/.

Guennebaud, G. and Jacob, B. (2012). Eigen C++ library, version 3.2.
http://eigen.tuxfamily.org/.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer-Verlag, New York, second edition.
358

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109. 4

422

http://code.google.com/p/googletest/
http://eigen.tuxfamily.org/

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67. 352

Hoffman, M. D. and Gelman, A. (2011). The no-U-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. arXiv, 1111(4246). viii, 4, 39, 42, 106,
172, 200, 369

Hoffman, M. D. and Gelman, A. (2013). The no-U-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, in
press. viii, 4, 39, 42, 106, 172, 200, 369

Hunt, A. and Thomas, D. (1999). The Pragmatic Programmer. Addison-Wesley. 70

James, W. and Stein, C. (1961). Estimation with quadratic loss. In Neyman, J., edi-
tor, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 361–379. University of California Press. 354

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatility: Likelihood inference
and comparison with ARCH models. Review of Economic Studies, 65:361–393. 105

Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in
manufacturing. Technometrics, 34(1). 409

Lewandowski, D., Kurowicka, D., and Joe, H. (2009). Generating random correlation
matrices based on vines and extended onion method. Journal of Multivariate Anal-
ysis, 100:1989–2001. 345, 380, 410

McConnell, S. (2004). Code Complete: A Practical Handbook of Software Construction.
Microsoft Press, second edition. 70

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, M., and Teller, E. (1953). Equa-
tions of state calculations by fast computing machines. Journal of Chemical Physics,
21:1087–1092. 4, 364

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335–341. xii, 363

Neal, R. (2011). MCMC using Hamiltonian dynamics. In Brooks, S., Gelman, A., Jones,
G. L., and Meng, X.-L., editors, Handbook of Markov Chain Monte Carlo, pages 116–
162. Chapman and Hall/CRC. 3, 4, 43, 56, 369

Neal, R. M. (1994). An improved acceptance procedure for the hybrid monte carlo
algorithm. Journal of Computational Physics, 111:194–203. 3

Neal, R. M. (1996a). Bayesian Learning for Neural Networks. Number 118 in Lecture
Notes in Statistics. Springer. 147

423

Neal, R. M. (1996b). Sampling from multimodal distributions using tempered transi-
tions. Statistics and Computing, 6(4):353–366. 169

Neal, R. M. (1997). Monte Carlo implementation of Gaussian process models for
Bayesian regression and classification. Technical Report 9702, University of
Toronto, Department of Statistics. 147

Neal, R. M. (2003). Slice sampling. Annals of Statistics, 31(3):705–767. 176

Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathe-
matical Programming, 120(1):221–259. 4, 56, 369

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer-Verlag, Berlin,
second edition. 56

Papaspiliopoulos, O., Roberts, G. O., and SkoÌ́Lld, M. (2007). A general framework for
the parametrization of hierarchical models. Statistical Science, 22(1):59–73. 176

Pinheiro, J. C. and Bates, D. M. (1996). Unconstrained parameterizations for variance-
covariance matrices. Statistics and Computing, 6:289–296.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: Convergence diagnosis
and output analysis for MCMC. R News, 6(1):7–11.

R Development Core Team (2012). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-
0.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learn-
ing. MIT Press. 142

Richardson, S. and Gilks, W. R. (1993). A Bayesian approach to measurement error
problems in epidemiology using conditional independence models. American Jour-
nal of Epidemiology, 138(6):430–442. 125

Rubin, D. B. (1981). Estimation in parallel randomized experiments. Journal of Edu-
cational Statistics, 6:377–401. 129

Schäling, B. (2011). The Boost C++ libraries.
http://www.boost.org/.

Smith, T. C., Spiegelhalter, D. J., and Thomas, A. (1995). Bayesian approaches
to random-effects meta-analysis: a comparative study. Statistics in Medicine,
14(24):2685–2699. 129

424

http://www.boost.org/

Swendsen, R. H. and Wang, J.-S. (1986). Replica monte carlo simulation of spin glasses.
Physical Review Letters, 57:2607–2609. 169

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B, 58(1):267–288. 353

Tokuda, T., Goodrich, B., Mechelen, I. V., Gelman, A., and Tuerlinckx, F. (2010). Visu-
alizing distributions of covariance matrices. Technical report, Columbia University,
Department of Statistics.

van Heesch, D. (2011). Doxygen: Generate documentation from source code.
http://www.stack.nl/~dimitri/doxygen/index.html.

Warn, D. E., Thompson, S. G., and Spiegelhalter, D. J. (2002). Bayesian random ef-
fects meta-analysis of trials with binary outcomes: methods for the absolute risk
difference and relative risk scales. Statistics in Medicine, 21:1601–1623. 127, 129

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B, 67(2):301–320. 353, 354

Zyczkowski, K. and Sommers, H. (2001). Induced measures in the space of mixed
quantum states. Journal of Physics A: Mathematical and General, 34(35):7111. 187

425

http://www.stack.nl/~dimitri/doxygen/index.html

426

Index

abs
(int x):int, 269
(real x):real, 275

acos
(real x):real, 277

acosh
(real x):real, 278

asin
(real x):real, 277

asinh
(real x):real, 278

atan
(real x):real, 277

atan2
(real x, real y):real, 277

atanh
(real x):real, 278

bernoulli
sampling statement, 306

bernoulli_ccdf_log
(ints y, reals theta):real, 306

bernoulli_cdf
(ints y, reals theta):real, 306

bernoulli_cdf_log
(ints y, reals theta):real, 306

bernoulli_log
(ints y, reals theta):real, 306

bernoulli_logit
sampling statement, 307

bernoulli_logit_log
(ints y, reals alpha):real, 307

bernoulli_rng
(real theta):int, 306

bessel_first_kind

(int v, real z):real, 281

bessel_second_kind
(int v, real z):real, 281

beta
sampling statement, 336

beta_binomial
sampling statement, 310

beta_binomial_ccdf_log
(ints n, ints N, reals alpha, reals

beta):real, 311

beta_binomial_cdf
(ints n, ints N, reals alpha, reals

beta):real, 310

beta_binomial_cdf_log
(ints n, ints N, reals alpha, reals

beta):real, 311

beta_binomial_log
(ints n, ints N, reals alpha, reals

beta):real, 310

beta_binomial_rng
(int N, real alpha, real beta):int,

311

beta_ccdf_log
(reals theta, reals alpha, reals

beta):real, 336

beta_cdf
(reals theta, reals alpha, reals

beta):real, 336

beta_cdf_log
(reals theta, reals alpha, reals

beta):real, 336

beta_log
(reals theta, reals alpha, reals

beta):real, 336

beta_rng
(real alpha, real beta):real, 337

binary_log_loss

427

(int y, real y_hat):real, 279

binomial
sampling statement, 308

binomial_ccdf_log
(ints n, ints N, reals theta):real,

309

binomial_cdf
(ints n, ints N, reals theta):real,

308

binomial_cdf_log
(ints n, ints N, reals theta):real,

309

binomial_coefficient_log
(real x, real y):real, 281

binomial_log
(ints n, ints N, reals theta):real,

308

binomial_logit
sampling statement, 310

binomial_logit_log
(ints n, ints N, reals alpha):real,

310

binomial_rng
(int N, real theta):int, 309

block
(matrix x, int i, int j, int n_rows,

int n_cols):matrix, 299

categorical
sampling statement, 312

categorical_log
(ints y, vector theta):real, 312

categorical_logit_log
(ints y, vector beta):real, 312

categorical_rng
(vector theta):int, 312

cauchy
sampling statement, 323

cauchy_ccdf_log

(reals y, reals mu, reals
sigma):real, 323

cauchy_cdf
(reals y, reals mu, reals

sigma):real, 323

cauchy_cdf_log
(reals y, reals mu, reals

sigma):real, 323

cauchy_log
(reals y, reals mu, reals

sigma):real, 323

cauchy_rng
(real mu, real sigma):real, 323

cbrt
(real x):real, 276

ceil
(real x):real, 276

chi_square
sampling statement, 328

chi_square_ccdf_log
(reals y, reals nu):real, 328

chi_square_cdf
(reals y, reals nu):real, 328

chi_square_cdf_log
(reals y, reals nu):real, 328

chi_square_log
(reals y, reals nu):real, 328

chi_square_rng
(real nu):real, 328

cholesky_decompose
(matrix A):matrix, 304

col
(matrix x, int n):vector, 299

cols
(matrix x):int, 289
(row_vector x):int, 289
(vector x):int, 289

columns_dot_product
(matrix x, matrix y):row_vector, 294
(row_vector x, row_vector

y):row_vector, 294

428

(vector x, vector y):row_vector, 294

columns_dot_self
(matrix x):row_vector, 294
(row_vector x):row_vector, 294
(vector x):row_vector, 294

cos
(real x):real, 277

cosh
(real x):real, 278

crossprod
(matrix x):matrix, 295

cumulative_sum
(real[] x):real[], 293
(row_vector rv):row_vector, 293
(vector v):vector, 293

determinant
(matrix A):real, 303

diag_matrix
(vector x):matrix, 299

diag_post_multiply
(matrix m, row_vector rv):matrix, 296
(matrix m, vector v):matrix, 295

diag_pre_multiply
(row_vector rv, matrix m):matrix, 295
(vector v, matrix m):matrix, 295

diagonal
(matrix x):vector, 299

digamma
(real x):real, 280

dims
(T x):int[], 286

dirichlet
sampling statement, 344

dirichlet_log
(vector theta, vector alpha):real,

344

dirichlet_rng
(vector alpha):vector, 344

distance
(row_vector x, row_vector y):real,

286

(row_vector x, vector y):real, 285
(vector x, row_vector y):real, 285
(vector x, vector y):real, 285

dot_product
(row_vector x, row_vector y):real,

293
(row_vector x, vector y):real, 293
(vector x, row_vector y):real, 293
(vector x, vector y):real, 293

dot_self
(row_vector x):real, 294
(vector x):real, 294

double_exponential
sampling statement, 324

double_exponential_ccdf_log
(reals y, reals mu, reals

sigma):real, 324

double_exponential_cdf
(reals y, reals mu, reals

sigma):real, 324

double_exponential_cdf_log
(reals y, reals mu, reals

sigma):real, 324

double_exponential_log
(reals y, reals mu, reals

sigma):real, 324

double_exponential_rng
(real mu, real sigma):real, 324

e
():real, 270

eigenvalues_sym
(matrix A):vector, 303

eigenvectors_sym
(matrix A):matrix, 303

erf
(real x):real, 278

erfc
(real x):real, 279

exp
(matrix x):matrix, 293
(real x):real, 276
(row_vector x):row_vector, 293

429

(vector x):vector, 293

exp2
(real x):real, 276

exp_mod_normal
sampling statement, 320

exp_mod_normal_ccdf_log
(reals y, reals mu, reals sigma

reals lambda):real, 320

exp_mod_normal_cdf
(reals y, reals mu, reals sigma

reals lambda):real, 320

exp_mod_normal_cdf_log
(reals y, reals mu, reals sigma

reals lambda):real, 320

exp_mod_normal_log
(reals y, reals mu, reals sigma

reals lambda):real, 320

exp_mod_normal_rng
(real mu, real sigma, real

lambda):real, 320

expm1
(real x):real, 282

exponential
sampling statement, 330

exponential_ccdf_log
(reals y, reals beta):real, 331

exponential_cdf
(reals y, reals beta):real, 331

exponential_cdf_log
(reals y, reals beta):real, 331

exponential_log
(reals y, reals beta):real, 330

exponential_rng
(real beta):real, 331

fabs
(real x):real, 275

falling_factorial
(real x, real n):real, 282

fdim

(real x, real y):real, 275

floor
(real x):real, 276

fma
(real x, real y, real z):real, 282

fmax
(real x, real y):real, 275

fmin
(real x, real y):real, 275

fmod
(real x, real y):real, 275

gamma
sampling statement, 331

gamma_ccdf_log
(reals y, reals alpha, reals

beta):real, 332

gamma_cdf
(reals y, reals alpha, reals

beta):real, 331

gamma_cdf_log
(reals y, reals alpha, reals

beta):real, 331

gamma_log
(reals y, reals alpha, reals

beta):real, 331

gamma_p
(real a, real z):real, 280

gamma_q
(real a, real z):real, 280

gamma_rng
(real alpha, real beta):real, 332

gaussian_dlm_obs
sampling statement, 343

gaussian_dlm_obs_log
(vector y, matrix F, matrix G,

matrix V matrix W, vector m0,
matrix C0):real, 343

(vector y, matrix F, matrix G,
vector V matrix W, vector m0,
matrix C0):real, 343

gumbel

430

sampling statement, 325

gumbel_ccdf_log
(reals y, reals mu, reals beta):real,

326

gumbel_cdf
(reals y, reals mu, reals beta):real,

326

gumbel_cdf_log
(reals y, reals mu, reals beta):real,

326

gumbel_log
(reals y, reals mu, reals beta):real,

325

gumbel_rng
(real mu, real beta):real, 326

head
(T[] sv, int n):T[], 300
(row_vector rv, int n):row_vector,

300
(vector v, int n):vector, 300

hypergeometric
sampling statement, 311

hypergeometric_log
(int n, int N, int a, int b):real,

311

hypergeometric_rng
(int N, real a, real b):int, 311

hypot
(real x, real y):real, 277

if_else
(int cond, real x, real y):real, 273

increment_log_prob
(T lp):void, 266

int_step
(int x):int, 269
(real x):int, 269

inv
(real x):real, 277

inv_chi_square
sampling statement, 329

inv_chi_square_ccdf_log

(reals y, reals nu):real, 329

inv_chi_square_cdf
(reals y, reals nu):real, 329

inv_chi_square_cdf_log
(reals y, reals nu):real, 329

inv_chi_square_log
(reals y, reals nu):real, 329

inv_chi_square_rng
(real nu):real, 329

inv_cloglog
(real y):real, 278

inv_gamma
sampling statement, 332

inv_gamma_ccdf_log
(reals y, reals alpha, reals

beta):real, 332

inv_gamma_cdf
(reals y, reals alpha, reals

beta):real, 332

inv_gamma_cdf_log
(reals y, reals alpha, reals

beta):real, 332

inv_gamma_log
(reals y, reals alpha, reals

beta):real, 332

inv_gamma_rng
(real alpha, real beta):real, 332

inv_logit
(real y):real, 278

inv_sqrt
(real x):real, 277

inv_square
(real x):real, 277

inv_wishart
sampling statement, 347

inv_wishart_log
(matrix W, real nu, matrix

Sigma):real, 347

inv_wishart_rng

431

(real nu, matrix Sigma):matrix, 347

inverse
(matrix A):matrix, 303

inverse_spd
(matrix A):matrix, 303

lbeta
(real alpha, real beta):real, 279

lgamma
(real x):real, 280

lkj_corr_log
(matrix y, real eta):real, 345
sampling statement, 345

lkj_corr_rng
(int K, real eta):matrix, 345

lkj_cov_log
(matrix W, vector mu, vector sigma,

real eta):real, 347
sampling statement, 347

lmgamma
(int n, real x):real, 280

log
(matrix x):matrix, 293
(real x):real, 276
(row_vector x):row_vector, 292
(vector x):vector, 292

log10
():real, 270
(real x):real, 276

log1m
(real x):real, 282

log1m_exp
(real x):real, 283

log1m_inv_logit
(real x):real, 283

log1p
(real x):real, 282

log1p_exp
(real x):real, 283

log2
():real, 270

(real x):real, 276

log_determinant
(matrix A):real, 303

log_diff_exp
(real x, real y):real, 283

log_falling_factorial
(real x, real n):real, 282

log_inv_logit
(real x):real, 283

log_rising_factorial
(real x, real n):real, 282

log_softmax
(vector x):vector, 301

log_sum_exp
(matrix x):real, 296
(real x, real y):real, 283
(real x[]):real, 284
(row_vector x):real, 296
(vector x):real, 296

logistic
sampling statement, 324

logistic_ccdf_log
(reals y, reals mu, reals

sigma):real, 325

logistic_cdf
(reals y, reals mu, reals

sigma):real, 325

logistic_cdf_log
(reals y, reals mu, reals

sigma):real, 325

logistic_log
(reals y, reals mu, reals

sigma):real, 325

logistic_rng
(real mu, real sigma):real, 325

logit
(real x):real, 278

lognormal
sampling statement, 327

lognormal_ccdf_log

432

(reals y, reals mu, reals
sigma):real, 327

lognormal_cdf
(reals y, reals mu, reals

sigma):real, 327

lognormal_cdf_log
(reals y, reals mu, reals

sigma):real, 327

lognormal_log
(reals y, reals mu, reals

sigma):real, 327

lognormal_rng
(real mu, real beta):real, 327

machine_precision
():real, 270

max
(int x, int y):int, 269
(int x[]):int, 284
(matrix x):real, 296
(real x[]):real, 284
(row_vector x):real, 296
(vector x):real, 296

mdivide_left_tri_low
(matrix a, matrix b):matrix, 302
(matrix a, vector b):vector, 302

mdivide_right_tri_low
(matrix b, matrix a):matrix, 302
(row_vector b, matrix a):row_vector,

302

mean
(matrix x):real, 297
(real x[]):real, 285
(row_vector x):real, 297
(vector x):real, 297

min
(int x, int y):int, 269
(int x[]):int, 284
(matrix x):real, 296
(real x[]):real, 284
(row_vector x):real, 296
(vector x):real, 296

modified_bessel_first_kind

(int v, real z):real, 281

modified_bessel_second_kind
(int v, real z):real, 281

multi_norm_prec
sampling statement, 341

multi_normal
sampling statement, 340

multi_normal_cholesky
sampling statement, 341

multi_normal_cholesky_log
(vector y, vector mu, matrix L):real,

341

multi_normal_log
(vector y, vector mu, matrix

Sigma):real, 340

multi_normal_prec_log
(vector y, vector mu, matrix

Omega):real, 341

multi_normal_rng
(vector mu, matrix Sigma):vector, 340

multi_student_t
sampling statement, 342

multi_student_t_log
(vector y, real nu, vector mu,

matrix Sigma):real, 342

multi_student_t_rng
(real nu, vector mu, matrix

Sigma):vector, 342

multinomial
sampling statement, 317

multinomial_log
(int[] y, vector theta, int N):real,

317

multinomial_rng
(vector theta, int N):vector, 317

multiply_log
(real x, real y):real, 282

multiply_lower_tri_self_transpose
(matrix x):matrix, 295

neg_binomial

433

sampling statement, 314

neg_binomial_ccdf_log
(ints n, reals alpha, reals

beta):real, 315

neg_binomial_cdf
(ints n, reals alpha, reals

beta):real, 314

neg_binomial_cdf_log
(ints n, reals alpha, reals

beta):real, 315

neg_binomial_log
(ints n, reals alpha, reals

beta):real, 314

neg_binomial_rng
(real alpha, real beta):int, 315

negative_infinity
():real, 270

normal
sampling statement, 319

normal_ccdf_log
(reals y, reals mu, reals

sigma):real, 319

normal_cdf
(reals y, reals mu, reals

sigma):real, 319

normal_cdf_log
(reals y, reals mu, reals

sigma):real, 319

normal_log
(reals y, reals mu, reals

sigma):real, 319

normal_rng
(real mu, real sigma):real, 319

not_a_number
():real, 270

operator!
(int x):int, 272
(real x):int, 272

operator!=
(int x, int y):int, 271

(real x, real y):int, 272

operator’
(matrix x):matrix, 300
(row_vector x):vector, 301
(vector x):row_vector, 301

operator*
(int x, int y):int, 269
(matrix x, matrix y):matrix, 291
(matrix x, real y):matrix, 291
(matrix x, vector y):vector, 291
(real x, matrix y):matrix, 290
(real x, real y):real, 274
(real x, row_vector y):row_vector,

290
(real x, vector y):vector, 290
(row_vector x, matrix y):row_vector,

290
(row_vector x, real y):row_vector,

290
(row_vector x, vector y):real, 290
(vector x, real y):vector, 290
(vector x, row_vector y):matrix, 290

operator+
(int x):int, 269
(int x, int y):int, 269
(matrix x, matrix y):matrix, 290
(matrix x, real y):matrix, 291
(real x):real, 274
(real x, matrix y):matrix, 291
(real x, real y):real, 274
(real x, row_vector y):row_vector,

291
(real x, vector y):vector, 291
(row_vector x, real y):row_vector,

291
(row_vector x, row_vector

y):row_vector, 290
(vector x, real y):vector, 291
(vector x, vector y):vector, 290

operator-
(int x):int, 269
(int x, int y):int, 269
(matrix x):matrix, 289
(matrix x, matrix y):matrix, 290
(matrix x, real y):matrix, 291
(real x):real, 274
(real x, matrix y):matrix, 292
(real x, real y):real, 274

434

(real x, row_vector y):row_vector,
291

(real x, vector y):vector, 291
(row_vector x):row_vector, 289
(row_vector x, real y):row_vector,

291
(row_vector x, row_vector

y):row_vector, 290
(vector x):vector, 289
(vector x, real y):vector, 291
(vector x, vector y):vector, 290

operator.*
(matrix x, matrix y):matrix, 292
(row_vector x, row_vector

y):row_vector, 292
(vector x, vector y):vector, 292

operator./
(matrix x, matrix y):matrix, 292
(row_vector x, row_vector

y):row_vector, 292
(vector x, vector y):vector, 292

operator/
(int x, int y):int, 269
(matrix b, matrix A):matrix, 302
(matrix x, real y):matrix, 292
(real x, real y):real, 274
(row_vector b, matrix A):row_vector,

302
(row_vector x, real y):row_vector,

292
(vector x, real y):vector, 292

operator<
(int x, int y):int, 271
(real x, real y):int, 271

operator<=
(int x, int y):int, 271
(real x, real y):int, 271

operator>
(int x, int y):int, 271
(real x, real y):int, 271

operator>=
(int x, int y):int, 271
(real x, real y):int, 272

operator\
(matrix A, matrix b):matrix, 302

(matrix A, vector b):vector, 302

operator==
(int x, int y):int, 271
(real x, real y):int, 272

operator&&
(int x, int y):int, 272
(real x, real y):int, 272

operator||
(int x, int y):int, 272
(real x, real y):int, 272

ordered_logistic
sampling statement, 313

ordered_logistic_log
(int k, real eta, vector c):real, 313

ordered_logistic_rng
(real eta, vector c):int, 313

owens_t
(real h, real a):real, 279

pareto
sampling statement, 335

pareto_ccdf_log
(reals y, reals y_min, reals

alpha):real, 335

pareto_cdf
(reals y, reals y_min, reals

alpha):real, 335

pareto_cdf_log
(reals y, reals y_min, reals

alpha):real, 335

pareto_log
(reals y, reals y_min, reals

alpha):real, 335

pareto_rng
(real y_min, real alpha):real, 335

Phi
(real x):real, 279

Phi_approx
(real x):real, 279

pi

435

():real, 270

poisson
sampling statement, 315

poisson_ccdf_log
(ints n, reals lambda):real, 315

poisson_cdf
(ints n, reals lambda):real, 315

poisson_cdf_log
(ints n, reals lambda):real, 315

poisson_log
(ints n, reals lambda):real, 315
sampling statement, 316

poisson_log_log
(ints n, reals alpha):real, 316

poisson_rng
(real lambda):int, 316

positive_infinity
():real, 270

pow
(real x, real y):real, 277

print
(T1 x1,..., TN xN):void, 267

prod
(int x[]):real, 284
(matrix x):real, 297
(real x[]):real, 284
(row_vector x):real, 297
(vector x):real, 297

quad_form
(matrix A, matrix B):matrix, 295
(matrix A, vector B):real, 295

rank
(int[] v, int s):int, 288
(real[] v, int s):int, 288
(row_vector v, int s):int, 304
(vector v, int s):int, 304

rayleigh
sampling statement, 334

rayleigh_ccdf_log
(real y, real sigma):real, 334

rayleigh_cdf

(real y, real sigma):real, 334

rayleigh_cdf_log
(real y, real sigma):real, 334

rayleigh_log
(reals y, reals sigma):real, 334

rayleigh_rng
(real sigma):real, 334

rep_array
(T x, int k, int m, int n):T[,,],

287
(T x, int m, int n):T[,], 287
(T x, int n):T[], 287

rep_matrix
(real x, int m, int n):matrix, 298
(row_vector rv, int m):matrix, 298
(vector v, int n):matrix, 298

rep_row_vector
(real x, int n):row_vector, 298

rep_vector
(real x, int m):vector, 298

rising_factorial
(real x, real n):real, 282

round
(real x):real, 276

row
(matrix x, int m):row_vector, 299

rows
(matrix x):int, 289
(row_vector x):int, 289
(vector x):int, 289

rows_dot_product
(matrix x, matrix y):vector, 294
(row_vector x, row_vector y):vector,

294
(vector x, vector y):vector, 294

rows_dot_self
(matrix x):vector, 294
(row_vector x):vector, 294
(vector x):vector, 294

scaled_inv_chi_square

436

sampling statement, 329

scaled_inv_chi_square_ccdf_log
(reals y, reals nu, reals

sigma):real, 330

scaled_inv_chi_square_cdf
(reals y, reals nu, reals

sigma):real, 330

scaled_inv_chi_square_cdf_log
(reals y, reals nu, reals

sigma):real, 330

scaled_inv_chi_square_log
(reals y, reals nu, reals

sigma):real, 330

scaled_inv_chi_square_rng
(real nu, real sigma):real, 330

sd
(matrix x):real, 298
(real x[]):real, 285
(row_vector x):real, 297
(vector x):real, 297

segment
(T[] sv, int i, int n):T[], 300
(row_vector v, int i, int

n):row_vector, 300
(vector v, int i, int n):vector, 300

sin
(real x):real, 277

singular_values
(matrix A):vector, 304

sinh
(real x):real, 278

size
(T[] x):int, 286

skew_normal
sampling statement, 321

skew_normal_ccdf_log
(reals y, reals mu, reals sigma

reals alpha):real, 321

skew_normal_cdf

(reals y, reals mu, reals sigma,
reals alpha):real, 321

skew_normal_cdf_log
(reals y, reals mu, reals sigma

reals alpha):real, 321

skew_normal_log
(reals y, reals mu, reals sigma,

reals alpha):real, 321

skew_normal_rng
(real mu, real sigma, real

alpha):real, 321

softmax
(vector x):vector, 301

sort_asc
(int[] v):int[], 288
(real[] v):real[], 288
(row_vector v):row_vector, 304
(vector v):vector, 304

sort_desc
(int[] v):int[], 288
(real[] v):real[], 288
(row_vector v):row_vector, 304
(vector v):vector, 304

sqrt
(real x):real, 276

sqrt2
():real, 270

square
(real x):real, 276

squared_distance
(row_vector x, row_vector y[]):real,

286
(row_vector x, vector y[]):real, 286
(vector x, row_vector y[]):real, 286
(vector x, vector y[]):real, 286

step
(real x):real, 273

student_t
sampling statement, 322

student_t_ccdf_log

437

(reals y, reals nu, reals mu, reals
sigma):real, 322

student_t_cdf
(reals y, reals nu, reals mu, reals

sigma):real, 322

student_t_cdf_log
(reals y, reals nu, reals mu, reals

sigma):real, 322

student_t_log
(reals y, reals nu, reals mu, reals

sigma):real, 322

student_t_rng
(real nu, real mu, real sigma):real,

322

sub_col
(matrix x, int i, int j, int

n_rows):vector, 299

sub_row
(matrix x, int i, int j, int

n_cols):row_vector, 299

sum
(int x[]):int, 284
(matrix x):real, 297
(real x[]):real, 284
(row_vector x):real, 297
(vector x):real, 296

tail
(T[] sv, int n):T[], 300
(row_vector rv, int n):row_vector,

300
(vector v, int n):vector, 300

tan
(real x):real, 277

tanh
(real x):real, 278

tcrossprod
(matrix x):matrix, 295

tgamma
(real x):real, 280

to_vector
(matrix m):vector, 298

(row_vector m):vector, 298

trace
(matrix A):real, 303

trace_gen_quad_form
(matrix D,matrix A, matrix B):real,

295

trace_quad_form
(matrix A, matrix B):real, 295

trigamma
(real x):real, 280

trunc
(real x):real, 276

uniform
sampling statement, 339

uniform_ccdf_log
(reals y, reals alpha, reals

beta):real, 339

uniform_cdf
(reals y, reals alpha, reals

beta):real, 339

uniform_cdf_log
(reals y, reals alpha, reals

beta):real, 339

uniform_log
(reals y, reals alpha, reals

beta):real, 339

uniform_rng
(real alpha, real beta):real, 339

variance
(matrix x):real, 297
(real x[]):real, 285
(row_vector x):real, 297
(vector x):real, 297

von_mises
sampling statement, 338

von_mises_log
(reals y, reals mu, reals

kappa):real, 338

weibull
sampling statement, 333

weibull_ccdf_log

438

(reals y, reals alpha, reals
sigma):real, 333

weibull_cdf
(reals y, reals alpha, reals

sigma):real, 333

weibull_cdf_log
(reals y, reals alpha, reals

sigma):real, 333

weibull_log
(reals y, reals alpha, reals

sigma):real, 333

weibull_rng
(real alpha, real sigma):real, 333

wishart
sampling statement, 346

wishart_log
(matrix W, real nu, matrix

Sigma):real, 346

wishart_rng
(real nu, matrix Sigma):matrix, 346

439

	Preface
	Acknowledgements
	I Introduction
	Overview
	Getting Started

	II Commands and Data Formats
	Compiling Stan Programs
	Running a Stan Program
	Print Command for Output Analysis
	Dump Data Format

	III Programming Techniques
	Model Building as Software Development
	Containers: Arrays, Vectors, and Matrices
	Regression Models
	Time-Series Models
	Missing Data & Partially Known Parameters
	Truncated or Censored Data
	Mixture Modeling
	Measurement Error and Meta-Analysis
	Clustering Models
	Gaussian Processes
	Reparameterization & Change of Variables
	Custom Probability Functions
	Problematic Posteriors
	Optimizing Stan Code

	IV Modeling Language Reference
	Execution of a Stan Program
	Data Types and Variable Declarations
	Expressions
	Statements
	Program Blocks
	Modeling Language Syntax

	V Built-In Functions
	Vectorization
	Void Functions
	Integer-Valued Basic Functions
	Real-Valued Basic Functions
	Array Operations
	Matrix Operations

	VI Discrete Distributions
	Binary Distributions
	Bounded Discrete Distributions
	Unbounded Discrete Distributions
	Multivariate Discrete Distributions

	VII Continuous Distributions
	Unbounded Continuous Distributions
	Positive Continuous Distributions
	Non-negative Continuous Distributions
	Positive Lower-Bounded Probabilities
	Continuous Distributions on [0, 1]
	Circular Distributions
	Bounded Continuous Probabilities
	Distributions over Unbounded Vectors
	Simplex Distributions
	Correlation Matrix Distributions
	Covariance Matrix Distributions

	VIII Additional Topics
	Point Estimation
	Bayesian Data Analysis
	Markov Chain Monte Carlo Sampling
	Transformations of Variables

	IX Contributed Modules
	Contributed Modules

	Appendices
	Licensing
	Installation and Compatibility
	Stan for Users of BUGS
	Stan Program Style Guide
	Bibliography
	Index

