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Yellow	  balls	  are	  flat!!	  

Observa$on	  	  
Feature	  	  

Color	  	  

N1 	  N2 	  N3 	  N4 	  N5 	  N6 	  N7 	  N8 	  	  N9 	  	  

Roundness	  	  

yellow	   yellow	   yellow	   yellow	  green	   green	  

flat	   round	   flat	   flat	  round	   round	  

Nice	  problem:	  
•  Features	  are	  interpretable.	  	  
	  	  	  	  	  We	  understand	  color	  and	  roundness	  
•  More	  observa-ons	  than	  features.	  
•  No	  inherent	  correla-on	  btw	  features	  	  	  

green	  

flat	  



Observa$on	  	  
Feature	  	  

zz1	  	  

N1 	  N2 	  N3 	  N4 	  N5 	  N6 	  N7 	  N8 	  	  N9 	  	  

zz2	  

zz20000	  

.	  

.	  

.	  

.	  

Not	  so	  nice	  problem:	  
•  Features	  are	  uninterpretable.	  	  
	  	  	  	  	  No	  idea	  zz8	  means	  to	  zz93	  
•  More	  features	  than	  observa$ons.	  
•  And	  what	  if	  there	  are	  deep	  rela$onships	  
within	  this	  feature	  set	  



What	  rela$onships	  could	  be	  
underlying	  the	  data?	  

	  Image	  Ref	  www.wisegeek.com	  

	  Human	  Embryonic	  Stem	  Cells	  





Feature	  	  

p53	  	  

Met	  

zz20000	  

.	  

.	  

.	  

.	  

Take	  this	  to	  research	  oncologist	  or	  
immunologist..	  	  
Response	  this	  makes	  no	  sense	  
	  
	  
	  
	  
	  
	  
The	  data	  scien$st	  is	  an	  ar$st	  and	  must	  
provide	  interpretable	  context	  for	  the	  data	  

When	  the	  experts	  don’t	  know?	  

NFkB	  	  



Pathway	  analysis	  methods	  

Khatri	  et	  al.	  PLoS	  Comp	  Bio	  2012	  



Over-‐Representa$on	  Analysis	  (ORA)	  
	  
What	  does	  it	  do?	  Evaluates	  the	  frac$on	  
of	  genes	  in	  a	  par$cular	  pathway	  
	  
What	  measurements	  are	  used?:	  
Hypergeometric,	  chi-‐square,	  or	  binomial	  
distribu$on	  
	  

	  

	  Input	  list	  w/	  
threshold	  

Overlap	  genes	  in	  
pathway	  and	  gene	  set	  	   Background	  

	  (all	  genes)	  

‘Measurement’	  
of	  sta$s$cal	  
significance	  

What	  are	  the	  limita-ons?	  
1.  The	  ‘measurement’	  of	  significance	  is	  independent	  of	  the	  measured	  

changes.	  	  Ignores	  probe	  intensi$es.	  
	  
2.  Uses	  only	  the	  most	  significant	  genes	  and	  discards	  all	  others.	  Marginally	  

less	  significant	  genes	  	  fold	  change	  =	  1.999	  or	  p-‐value	  =	  0.51	  disregarded.	  



Few	  “Mountains”	  many	  “hills”	  	  
1st	  to	  2nd	  genera$on	  pathway	  analysis	  

Volgelstein	  et	  al.	  Science	  2013	  

Hypothesis:	  Although	  large	  changes	  in	  individual	  genes	  can	  have	  significant	  
effects	   on	   pathways,	   weaker	   but	   coordinated	   changes	   in	   sets	   of	  
func$onally	  related	  genes	  (i.e.	  ,	  pathways)	  can	  also	  have	  significant	  effects	  

CHRM3	  
GRIA2	  
NRGN	  
SLC1A2	  
HOMER1	  
EPHA4	  

Over-‐Representa-on	  
Analysis	  (ORA)	  

Khatri	  et	  al.	  PLoS	  Comp	  Bio	  2012	  

CHRM3	  
GRIA2	  

SLC1A2	  

GPR51	  

HOMER1	  

EPHA4	  
HTR2A	  

THY1	  

Func-onal	  Class	  
Scoring	  (FCS)	  



Gene	  Set	  Enrichment	  Analysis	  
1.   Calculate	  an	  Enrichment	  Score	  
	  	  Increasing	  a	  running-‐sum	  sta$s$c	  
when	  encounter	  a	  gene	  in	  S	  and	  
decreasing	  it	  otherwise	  

Null	  distribu$on:	  
Randomly	  shuffle	  
phenotype	  labels	  

3.	  Adjustment	  for	  Mul-ple	  
Hypothesis	  Tes-ng	  Compute	  

normalized	  ES	  (NES)	  for	  each	  gene	  set	  
then	  determine	  FDR	  for	  NES.	  

2.	  Es-mate	  the	  significance	  
Level	  of	  ES.	  Pathway	  
distribu$on	  vs.	  Null	  distribu$on	  
(self-‐contained)	  

Subramanian	  et	  al.	  PNAS	  2005	  

Mootha	  et	  al.	  Nat	  Genet	  2003	  

Ranked	  list	  

g1	  
g2	  
g3	  
g4	  
.	  
.	  
.	  
.	  
.	  
gn	  

Pathway	  A	  

g2	  
g4	  
g9	  
g12	  

Pathway	  B	  
g6	  
g25	  
g32	  
g59	  

GSEA	  

Running	  sum:	  
	  	  when	  gene	  is	  in	  set	  

otherwise	  

Novelty	  of	  GSEA	  method	  comes	  from	  thinking	  of	  
genes	  in	  terms	  of	  sets	  or	  distribu$on	  instead	  of	  
lists.	  

Kolmogorov–Smirnov-‐
like	  sta$s$c	  



Func$onal	  Class	  Scoring	  (FCS)	  

	  
What	  does	  it	  do?	  Evaluates	  the	  distribu$on	  of	  genes	  in	  a	  
pathway	  that	  are	  differen$ally	  expressed	  
	  
What	  measurements	  are	  used?:	  
Gene	  Level	  sta$s$c:	  1)	  Univariate:	  ANOVA,	  Q-‐sta$s$c,	  
signal-‐to-‐noise	  ra$o,	  t-‐test,	  and	  Z-‐score.	  2)	  Mul$variate:	  
GlobalANOVA,	  and	  Hotelling	  T2.	  
Pathway	  Level	  sta$s$c:	  Kolmogorov-‐Smirnov	  sta$s$c,	  sum,	  
mean,	  or	  median	  of	  gene	  level	  sta$s$c,	  the	  Wilcoxon	  rank	  
sum,	  and	  the	  maxmean	  sta$s$c.	  
	  
	  

	  

	  Input	  list	  w/	  
values	  

Compute	  gene-‐level	  
sta$s$c	  from	  
measurement	  

Background	  
	  permuta$ons	  

Use	  gene	  level	  
sta$s$c	  to	  

compute	  pathway-‐
level	  sta$s$c	  

‘Measurement’	  	  of	  
pathway	  level	  sta$s$c	  	  

How	  is	  sta-s-cal	  significance	  determined?	  Compute	  the	  null	  distribu$on:	  	  
1)  Compe$$ve	  null	  hypothesis	  permutes	  gene	  labels	  for	  each	  pathway,	  and	  compares	  the	  

set	  of	  genes	  in	  the	  pathway	  with	  a	  set	  of	  genes	  not	  in	  the	  pathway.	  
	  
2)	  	  	  Self-‐contained	  null	  hypothesis	  permutes	  class	  labels	  for	  each	  sample	  and	  compares	  the	  set	  	  	  	  	  	  	  	  	  	  	  	  	  
of	  genes	  in	  a	  given	  pathway	  with	  itself.	  	  	  

Khatri	  et	  al.	  PLoS	  Comp	  Bio	  2012	  



Univariate	  vs.	  Mul$variate	  FCS	  

Ranked	  list	  

g1	  
g2	  
g3	  
g4	  
.	  
.	  
.	  
.	  
.	  
gn	  

Pathway	  A	  

g2	  
g4	  
g9	  
g12	  

GSEA	  

Running	  sum:	  
	  	  when	  gene	  is	  in	  
set	  otherwise	  

Doesn’t	  consider	  gene	  
set	  correla$ons	  

Hotelling’s	  T2	  sta$s$c	  
PCOT2	  

w/	  pooled	  covariance	  matrix	  	  S	  

Sampling	  distribu$on	  of	  T2	  will	  follow	  	  

Subramanian	  et	  al.	  PNAS	  2005	  

Kong	  et	  al.	  Bioinforma-cs	  2006	  

Gene	  list	  

g1	  
g2	  
g3	  
g4	  
.	  
.	  
.	  
.	  
gn	  

Pathway	  A	  

g2	  
g4	  
g9	  
g12	  

Mul-variate	  

Univariate	  



Benefits	  and	  Limita$ons	  of	  FCS	  
•  What	  are	  the	  benefits	  over	  ORA?	  

1.  They	  do	  not	  require	  an	  arbitrary	  threshold	  for	  dividing	  expression	  
data	  into	  significant	  and	  non-‐significant	  pools.	  

2.  ORA	  completely	  ignores	  measurements	  when	  iden$fying	  significant	  
pathways.	  

3.  Considering	  the	  coordinated	  changes	  in	  gene	  expression,	  FCS	  methods	  
account	  for	  dependence	  between	  genes	  in	  a	  pathway.	  ORA	  does	  not	  

•  What	  are	  the	  limita-ons?	  
1.  FCS	  analyzes	  each	  pathway	  independently.	  
2.  Many	  FCS	  methods	  use	  changes	  in	  gene	  expression	  to	  rank	  genes	  in	  a	  

given	  pathway	  and	  discard	  changes	  from	  further	  analysis.	  

	  

	   Khatri	  et	  al.	  PLoS	  Comp	  Bio	  2012	  



Leveraging	  Pathway	  Structure	  	  

Type	  and	  Localiza-on	  	  
Interac-on	  

Pathway	  Topology	  
(PT)	  

Hypothesis:	  Knowledge	  bases	  providing	  informa$on	  about	  gene	  product	  
interac-ons,	  type	  of	  interac-on	  (e.g.,	  ac$va$on,	  inhibi$on),	  and	  where	  they	  
interact	  (e.g.,	  cytoplasm,	  nucleus)	  could	  be	  leveraged	  in	  pathway	  analysis.	  

CHRM3	  
GRIA2	  

SLC1A2	  

GPR51	  

HOMER1	  

EPHA4	  
HTR2A	  

THY1	  

Coordinated	  Gene	  Interac-ons	  

Func-onal	  Class	  Scoring	  
(FCS)	  

CHRM3	  
GRIA2	  

SLC1A2	  

GPR51	  
HOMER1	  

EPHA4	  
HTR2A	  

THY1	  

plasma	  
membrane	  

nucleus	  

Khatri	  et	  al.	  PLoS	  Comp	  Bio	  2012	  



Pathway	  Topology	  (PT)	  

What	  does	  it	  do?	  Measures	  significance	  of	  gene	  level	  
interac$ons	  with	  respect	  to	  pathway	  topology	  
	  
What	  measurements	  are	  used?:	  
Gene	  Level	  sta$s$c:	  1)	  ANOVA,	  Q-‐sta$$c,	  signal-‐to-‐noise	  
ra$o,	  t-‐test,	  Z-‐score,	  	  
Pathway	  Level	  sta$s$c:	  Univariate/Mul$variate,	  disregards/
considers	  gene	  dependences	  Univariate:	  sum,	  mean,	  or	  
median	  of	  gene	  level	  Mul$variate:	  Global	  ANOVA,	  Hotelling	  
T2,	  Kolmorgorov-‐Smirnov	  sta$s$c	  
	  
	  

	  Input	  list	  w/	  
values	  

Use	  pathway	  topology	  
to	  compute	  gene-‐level	  

sta$s$c	  

Background	  
	  permuta$ons	  

Use	  gene	  level	  
sta$s$c	  to	  

compute	  pathway-‐
level	  sta$s$c	  

‘Measurement’	  	  of	  
pathway	  level	  sta$s$c	  	  

How	  is	  sta-s-cal	  significance	  determined?	  Compute	  the	  null	  distribu$on:	  	  
1)  Compe$$ve	  null	  hypothesis	  permutes	  gene	  labels.	  
	  
2)	  	  	  Self-‐contained	  null	  hypothesis	  permutes	  class	  labels.	  	  	  

Khatri	  et	  al.	  PLoS	  Comp	  Bio	  2012	  



Combines	  two	  metrics:	  
1)  Overpresenta$on	  of	  DE	  features	  in	  

pathway	  
2)  Abnormal	  perturba$on	  of	  pathway	  	  

Signaling	  pathway	  impact	  analysis	  (SPIA)	  	  

A.L.Tarca et al.

junction pathway as one of the many receptor protein tyrosine
kinases. However, if the expression of INSR changes, this pathway is
not likely to be heavily perturbed because INSR is just one of many
receptors on this pathway. All these aspects are not considered by
any of the existing approaches aiming at assessing the impact of
a condition on a given signaling pathway. There is a very recent
technique (Efroni et al., 2007), however, which takes into account
some topological information but this technique aims at phenotype
prediction rather than the assessment of given condition which is our
primary goal here. Third, and probably the most important current
limitation is that the knowledge embedded in these pathways about
how various genes interact with each other is largely unexploited.
The very purpose of these pathway diagrams is to capture our current
knowledge of how genes interact and regulate each other on various
pathways. However, the existing analysis approaches consider only
the sets of genes involved on these pathways, without taking into
consideration their topology. Our understanding of various pathways
is expected to improve as more data are gathered. Pathways will be
modified by adding, removing or redirecting links on the pathway
diagrams. Most existing techniques are completely unable to even
sense such changes. Thus, these techniques will provide identical
results as long as the pathway diagram involves the same genes, even
if the interactions between them are completely redefined over time.
Finally, until now, the expression changes measured in these high-
throughput experiments have been used only to identify pathways
with unexpectedly high number of DE genes (ORA approaches)
or pathways whose genes are clustered in the ranked list of DE
genes (FCS methods), but not to directly estimate the impact of such
changes on specific pathways. This is also an important limitation.
For instance, ORA techniques will see no difference between a
situation in which a subset of genes is DE just above the detection
threshold (e.g. 2-fold) and the situation in which the same genes are
changing by many orders of magnitude (e.g. 100-fold). Similarly,
FCS techniques can provide the same rankings for entire ranges
of expression values, if the correlations between the genes and
the phenotypes remain similar. Even though analyzing this type of
information in a pathway and system context would be extremely
meaningful from a biological perspective, currently there is no
technique or tool able to do this.

This article describes a radically different approach that attempts
to capture all aspects above. A global probability value, PG, is
calculated for each pathway, incorporating parameters, such as
the log fold-change of the DE genes, the statistical significance
of the set of pathway genes and the topology of the signaling
pathway. We recently proposed a technique that combines the
pathway topology with the over-representation evidence with very
good results (Draghici et al., 2007). However, in this analysis, the
evidence measure captured from the pathway topology was not
completely independent from the over-representation evidence. In
turn, this made the statistic used to rank the pathways more sensitive
to noise in the expression data putting too much emphasis on the
magnitude of changes. Also, the false positive rates of this method
was higher than expected by chance for short lists of DE genes. The
approach described here remedies these weaknesses, while retaining
the very novel capability of incorporating the pathway topology.
The capabilities of the proposed impact analysis are illustrated on
a number of real datasets and simulations. We also show that in
this technique, the two types of evidence considered are indeed
completely independent.

2 SYSTEM AND METHODS
The impact analysis combines two types of evidence: (i) the over-
representation of DE genes in a given pathway and (ii) the abnormal
perturbation of that pathway, as measured by propagating measured
expression changes across the pathway topology. These two aspects are
captured by two independent probability values, PNDE and PPERT .

The first probability, PNDE =P(X ≥Nde |H0), captures the significance of
the given pathway Pi as provided by an over-representation analysis of the
number of DE genes (NDE ) observed on the pathway. In the equation above,
H0 stands for the null hypothesis, that the genes that appear as DE on a given
pathway are completely random. From a biological perspective this would
mean that the pathway is not relevant to the condition under study. The PNDE

value represents the probability of obtaining a number of DE genes on the
given pathway at least as large as the observed one, NDE. These PNDE values
were obtained assuming that NDE (the number of DE genes on the pathway
analyzed) follows a hypergeometric distribution with three parameters: m—
the number of all pathway genes present on the array, n—the number of
genes on the array not belonging to the pathway, k—total number of DE
genes. Any of the existing ORA or FCS approaches can be used to calculate
PNDE , as long as this probability remains independent of the magnitudes of
the fold-changes.

The second probability, PPERT , is calculated based on the amount of
perturbation measured in each pathway. We define a gene perturbation
factor as:

PF(gi)=!E(gi)+
n∑

j=1

βij ·
PF(gj)
Nds(gj)

(1)

In Equation (1), the term !E(gi) represents the signed normalized measured
expression change of the gene gi (log fold-change if two conditions are
compared). The second term in Equation (1) is the sum of perturbation factors
of the genes gj directly upstream of the target gene gi, normalized by the
number of downstream genes of each such gene Nds(gj). The absolute value
of βij quantifies the strength of the interaction between genes gj and gi.
These weights have been introduced in order to allow the model to capture
the properties of various types of relationships. The results presented in this
article are obtained using all |β|=1 in order to minimize the number of model
parameters. The sign of β reflects the type of interaction: +1 for induction
(activation), −1 for repression and inhibition, as described by each pathway.
Note that β will have non-zero value only for the genes that directly interact
with the gene gi according to the pathway description. The work described
here used human signaling pathways from KEGG (Ogata et al., 1999). These
pathways contain nodes, representing genes/proteins, and directed edges,
representing gene signals or interactions such as activation or repression.
Given an edge directed from gene/protein A to gene/protein B, we say A is
upstream of B, or B is downstream of A.

Equation (1) essentially describes the perturbation factor PF for a gene
gi as a linear function of the perturbation factors of all genes in a given
pathway. In the stable state of the system, all relationships must hold, so the
set of all equations defining the impact factors for all genes form a system
of simultaneous equations whose solution will provide the values for the
gene perturbation factors PFgi (details are provided in the Supplementary
Material). Subsequently, we calculate the net perturbation accumulation at
the level of each gene, Accg, as the difference between the perturbation factor
PF of a gene and its observed log fold-change:

Acc(gi)=PF(gi)−!E(gi) (2)

This subtraction is needed to ensure that DE genes not connected with any
other genes will not contribute to the second type of evidence since such
genes are already taken into consideration in the ORA and captured by PNDE .
In can be shown (see Supplementary Material) that the vector of perturbation
accumulations Acc can be obtained using the matrix equation:

Acc=B ·
(
I −B

)−1 ·!E (3)
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junction pathway as one of the many receptor protein tyrosine
kinases. However, if the expression of INSR changes, this pathway is
not likely to be heavily perturbed because INSR is just one of many
receptors on this pathway. All these aspects are not considered by
any of the existing approaches aiming at assessing the impact of
a condition on a given signaling pathway. There is a very recent
technique (Efroni et al., 2007), however, which takes into account
some topological information but this technique aims at phenotype
prediction rather than the assessment of given condition which is our
primary goal here. Third, and probably the most important current
limitation is that the knowledge embedded in these pathways about
how various genes interact with each other is largely unexploited.
The very purpose of these pathway diagrams is to capture our current
knowledge of how genes interact and regulate each other on various
pathways. However, the existing analysis approaches consider only
the sets of genes involved on these pathways, without taking into
consideration their topology. Our understanding of various pathways
is expected to improve as more data are gathered. Pathways will be
modified by adding, removing or redirecting links on the pathway
diagrams. Most existing techniques are completely unable to even
sense such changes. Thus, these techniques will provide identical
results as long as the pathway diagram involves the same genes, even
if the interactions between them are completely redefined over time.
Finally, until now, the expression changes measured in these high-
throughput experiments have been used only to identify pathways
with unexpectedly high number of DE genes (ORA approaches)
or pathways whose genes are clustered in the ranked list of DE
genes (FCS methods), but not to directly estimate the impact of such
changes on specific pathways. This is also an important limitation.
For instance, ORA techniques will see no difference between a
situation in which a subset of genes is DE just above the detection
threshold (e.g. 2-fold) and the situation in which the same genes are
changing by many orders of magnitude (e.g. 100-fold). Similarly,
FCS techniques can provide the same rankings for entire ranges
of expression values, if the correlations between the genes and
the phenotypes remain similar. Even though analyzing this type of
information in a pathway and system context would be extremely
meaningful from a biological perspective, currently there is no
technique or tool able to do this.

This article describes a radically different approach that attempts
to capture all aspects above. A global probability value, PG, is
calculated for each pathway, incorporating parameters, such as
the log fold-change of the DE genes, the statistical significance
of the set of pathway genes and the topology of the signaling
pathway. We recently proposed a technique that combines the
pathway topology with the over-representation evidence with very
good results (Draghici et al., 2007). However, in this analysis, the
evidence measure captured from the pathway topology was not
completely independent from the over-representation evidence. In
turn, this made the statistic used to rank the pathways more sensitive
to noise in the expression data putting too much emphasis on the
magnitude of changes. Also, the false positive rates of this method
was higher than expected by chance for short lists of DE genes. The
approach described here remedies these weaknesses, while retaining
the very novel capability of incorporating the pathway topology.
The capabilities of the proposed impact analysis are illustrated on
a number of real datasets and simulations. We also show that in
this technique, the two types of evidence considered are indeed
completely independent.

2 SYSTEM AND METHODS
The impact analysis combines two types of evidence: (i) the over-
representation of DE genes in a given pathway and (ii) the abnormal
perturbation of that pathway, as measured by propagating measured
expression changes across the pathway topology. These two aspects are
captured by two independent probability values, PNDE and PPERT .

The first probability, PNDE =P(X ≥Nde |H0), captures the significance of
the given pathway Pi as provided by an over-representation analysis of the
number of DE genes (NDE ) observed on the pathway. In the equation above,
H0 stands for the null hypothesis, that the genes that appear as DE on a given
pathway are completely random. From a biological perspective this would
mean that the pathway is not relevant to the condition under study. The PNDE

value represents the probability of obtaining a number of DE genes on the
given pathway at least as large as the observed one, NDE. These PNDE values
were obtained assuming that NDE (the number of DE genes on the pathway
analyzed) follows a hypergeometric distribution with three parameters: m—
the number of all pathway genes present on the array, n—the number of
genes on the array not belonging to the pathway, k—total number of DE
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Nds(gj)

(1)
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gene perturbation factors PFgi (details are provided in the Supplementary
Material). Subsequently, we calculate the net perturbation accumulation at
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(
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where B represents the normalized weighted directed adjacency matrix of
the graph describing the gene signaling network:
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Nds(g2)

··· βnn
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I is the identity matrix, and

"E =





"E(g1)
"E(g2)

···
"E(gn)



 (5)

Only the pathways with non-null determinant of I −B matrix were
considered for analysis, even though simple, yet reasonable, transformations
of B can be performed to avoid such singularities. Out of the 64 human gene
signaling pathways available in KEGG, the majority (52 pathways) satisfy
this requirement without any other transformations. The situations in which
pathways yield a singular matrix and how these situations can be addressed
will be described elsewhere. The total net accumulated perturbation in the
pathway is computed as tA =∑

i Acc(gi). The second probability, PPERT , will
be the probability to observe a total accumulated perturbation of the pathway,
TA, more extreme than tA just by chance:

PPERT =P(TA ≥ tA |H0) (6)

This probability can be calculated using a bootstrap approach. In this
procedure, the same number of DE genes as the one observed on the pathway
are allowed to occupy any position in the pathway (random gene IDs) and
have any possible log fold-change in the range of those considered by the
experimenter to be DE. This allows empirical determination of the null
distribution of TA values (details of the bootstrap procedure are given in
the Supplementary Materials). Figure 1 illustrates the computation of PPERT

for a simple 6 gene pathway containing two DE genes. Unlike the classical
over-representation approach, the perturbation evidence is shown to be able

Fig. 1. Capturing the topology of the pathways and the position of the gene
through the perturbation analysis. The figure shows a six-gene pathway with
two DE genes (shown in gray) in two different situations. One of the two DE
genes is in common (gene B) while the second gene is either a leaf node (a), or
the entry point in the pathway (b). In (a), gene (F) cannot perturb the activity
of other genes; in (b) gene (A) has the ability to influence the activity of all
the remaining genes in the pathway, as the topology of the pathway indicates.
An ORA would find the two situations equally (in)significant (PNDE =0.48
for a set of 20 monitored genes, out of which five are found to be DE). The
perturbation evidence extracted by SPIA will give more significance to the
situation in (b) (PPERT =0.24), even though fold-changes in (b) are almost
twice as small as those in (a) (PPERT =0.57).

to capture the importance of the position of the DE genes in the pathway as
well as their fold-changes.

The two types of evidence, PNDE and PPERT , are finally combined into
one global probability value, PG, that is used to rank the pathways and test
the research hypothesis that the pathway is significantly perturbed in the
condition under the study. When the null hypothesis is true, the probability
of observing a pair of P-values whose product is at least as extreme (low)
as the one observed for a given pathway i, ci =PNDE (i)·PPERT (i), can be
shown to be (see Supplementary Materials):

PG =ci −ci ·ln(ci) (7)

Both components combined within PG, PNDE and PPERT , are independent
of the size of the pathways. PNDE is the probability of observing the given
number of DE genes or higher, just by chance. The number of genes expected
by chance will increase with the size of the pathway, much like the number
of black balls extracted from an urn containing black and white balls will
increase with the number of balls extracted in a given trial. Hence, PNDE will
be independent of the size of the pathway, much like the hypergeometric
probability of extracting a given number of black balls from the urn will
automatically take into consideration the number of balls extracted in that
particular trial. The second component, PPERT is calculated in a bootstrapping
process in which both the pathway and the number of DE genes per pathway
are fixed. PPERT will become significant only if the observed fold-changes in
the observed pathway nodes yield a significantly different impact compared
with what is observed on the same pathway when the same number of fake DE
genes are thrown in random locations throughout the same pathway. Again,
this bootstrap is calculated for each pathway and hence will be independent
of the pathway size.

Since PG is a combined probability value, it can be used not only to rank
the pathways, but also to choose a desired level of type I error. When several
tens of pathways are tested simultaneously, as is the case throughout this
study, small PG values can occur also by chance. Therefore, we suggest
controlling the false discovery rate (FDR) of the pathway analysis at 5% by
applying the popular FDR algorithm (Benjamini and Yekutieli, 2001).

3 RESULTS AND DISCUSSION

3.1 Absence of false positives under the null hypothesis
From the specificity perspective, an ideal pathway analysis method
should not find any significant pathway when a set of randomly
selected genes from the reference array are assigned random log
fold-changes, regardless of what type of distribution they are
drawn from. However, even if the data are completely random
(i.e. the null hypothesis is true), any statistical test will reject the
null hypothesis for a number of cases directly controlled by the
significance threshold, α. It is important, however, to verify that
a proposed test does not provide any false positives beyond this
expected proportion. In order to verify that signaling pathway impact
analysis (SPIA) does not provide a number of false positives above
the significance threshold, we performed a number of simulations
of the null hypothesis that can be divided into three scenarios.
A reasonable scenario in which one should not find significant
pathways is when the DE genes have random normal log fold-
changes, and the genes are selected at random. In this setup (further
referred to as scenario I), we select Nde random genes as DE from
a reference array of size 20 000. The reference array includes all
genes from all 52 pathways analyzed. The genes were assigned log
fold-changes from a random normal distribution, N(0,1). This is
illustrated in top left panel of Figure 2. An alternative model for the
null hypothesis is an experiment in which one compares two groups
of samples among which there are no real biological differences.
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This probability can be calculated using a bootstrap approach. In this
procedure, the same number of DE genes as the one observed on the pathway
are allowed to occupy any position in the pathway (random gene IDs) and
have any possible log fold-change in the range of those considered by the
experimenter to be DE. This allows empirical determination of the null
distribution of TA values (details of the bootstrap procedure are given in
the Supplementary Materials). Figure 1 illustrates the computation of PPERT

for a simple 6 gene pathway containing two DE genes. Unlike the classical
over-representation approach, the perturbation evidence is shown to be able
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through the perturbation analysis. The figure shows a six-gene pathway with
two DE genes (shown in gray) in two different situations. One of the two DE
genes is in common (gene B) while the second gene is either a leaf node (a), or
the entry point in the pathway (b). In (a), gene (F) cannot perturb the activity
of other genes; in (b) gene (A) has the ability to influence the activity of all
the remaining genes in the pathway, as the topology of the pathway indicates.
An ORA would find the two situations equally (in)significant (PNDE =0.48
for a set of 20 monitored genes, out of which five are found to be DE). The
perturbation evidence extracted by SPIA will give more significance to the
situation in (b) (PPERT =0.24), even though fold-changes in (b) are almost
twice as small as those in (a) (PPERT =0.57).

to capture the importance of the position of the DE genes in the pathway as
well as their fold-changes.

The two types of evidence, PNDE and PPERT , are finally combined into
one global probability value, PG, that is used to rank the pathways and test
the research hypothesis that the pathway is significantly perturbed in the
condition under the study. When the null hypothesis is true, the probability
of observing a pair of P-values whose product is at least as extreme (low)
as the one observed for a given pathway i, ci =PNDE (i)·PPERT (i), can be
shown to be (see Supplementary Materials):

PG =ci −ci ·ln(ci) (7)

Both components combined within PG, PNDE and PPERT , are independent
of the size of the pathways. PNDE is the probability of observing the given
number of DE genes or higher, just by chance. The number of genes expected
by chance will increase with the size of the pathway, much like the number
of black balls extracted from an urn containing black and white balls will
increase with the number of balls extracted in a given trial. Hence, PNDE will
be independent of the size of the pathway, much like the hypergeometric
probability of extracting a given number of black balls from the urn will
automatically take into consideration the number of balls extracted in that
particular trial. The second component, PPERT is calculated in a bootstrapping
process in which both the pathway and the number of DE genes per pathway
are fixed. PPERT will become significant only if the observed fold-changes in
the observed pathway nodes yield a significantly different impact compared
with what is observed on the same pathway when the same number of fake DE
genes are thrown in random locations throughout the same pathway. Again,
this bootstrap is calculated for each pathway and hence will be independent
of the pathway size.

Since PG is a combined probability value, it can be used not only to rank
the pathways, but also to choose a desired level of type I error. When several
tens of pathways are tested simultaneously, as is the case throughout this
study, small PG values can occur also by chance. Therefore, we suggest
controlling the false discovery rate (FDR) of the pathway analysis at 5% by
applying the popular FDR algorithm (Benjamini and Yekutieli, 2001).

3 RESULTS AND DISCUSSION

3.1 Absence of false positives under the null hypothesis
From the specificity perspective, an ideal pathway analysis method
should not find any significant pathway when a set of randomly
selected genes from the reference array are assigned random log
fold-changes, regardless of what type of distribution they are
drawn from. However, even if the data are completely random
(i.e. the null hypothesis is true), any statistical test will reject the
null hypothesis for a number of cases directly controlled by the
significance threshold, α. It is important, however, to verify that
a proposed test does not provide any false positives beyond this
expected proportion. In order to verify that signaling pathway impact
analysis (SPIA) does not provide a number of false positives above
the significance threshold, we performed a number of simulations
of the null hypothesis that can be divided into three scenarios.
A reasonable scenario in which one should not find significant
pathways is when the DE genes have random normal log fold-
changes, and the genes are selected at random. In this setup (further
referred to as scenario I), we select Nde random genes as DE from
a reference array of size 20 000. The reference array includes all
genes from all 52 pathways analyzed. The genes were assigned log
fold-changes from a random normal distribution, N(0,1). This is
illustrated in top left panel of Figure 2. An alternative model for the
null hypothesis is an experiment in which one compares two groups
of samples among which there are no real biological differences.
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for a set of 20 monitored genes, out of which five are found to be DE). The
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of observing a pair of P-values whose product is at least as extreme (low)
as the one observed for a given pathway i, ci =PNDE (i)·PPERT (i), can be
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with what is observed on the same pathway when the same number of fake DE
genes are thrown in random locations throughout the same pathway. Again,
this bootstrap is calculated for each pathway and hence will be independent
of the pathway size.

Since PG is a combined probability value, it can be used not only to rank
the pathways, but also to choose a desired level of type I error. When several
tens of pathways are tested simultaneously, as is the case throughout this
study, small PG values can occur also by chance. Therefore, we suggest
controlling the false discovery rate (FDR) of the pathway analysis at 5% by
applying the popular FDR algorithm (Benjamini and Yekutieli, 2001).

3 RESULTS AND DISCUSSION

3.1 Absence of false positives under the null hypothesis
From the specificity perspective, an ideal pathway analysis method
should not find any significant pathway when a set of randomly
selected genes from the reference array are assigned random log
fold-changes, regardless of what type of distribution they are
drawn from. However, even if the data are completely random
(i.e. the null hypothesis is true), any statistical test will reject the
null hypothesis for a number of cases directly controlled by the
significance threshold, α. It is important, however, to verify that
a proposed test does not provide any false positives beyond this
expected proportion. In order to verify that signaling pathway impact
analysis (SPIA) does not provide a number of false positives above
the significance threshold, we performed a number of simulations
of the null hypothesis that can be divided into three scenarios.
A reasonable scenario in which one should not find significant
pathways is when the DE genes have random normal log fold-
changes, and the genes are selected at random. In this setup (further
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Probability:	  bootstraping	  same	  
number	  of	  features	  are	  allowed	  to	  
occupy	  any	  posi$on	  in	  pathway	  



Benefits	  &	  Limita$ons	  of	  PT	  

•  What	  are	  the	  benefits	  over	  FCS?	  
1.  The	  structure	  of	  the	  network	  and	  types	  of	  interac-ons	  in	  the	  

network	  are	  included	  in	  the	  pathway	  analysis.	  
–  FCS	  methods	  only	  consider	  the	  number	  of	  genes	  in	  a	  pathway	  

and	  ignore	  addi$onal	  informa$on.	  

	  
•  What	  are	  the	  limita$ons	  of	  PT?	  	  

1.  True	  pathway	  topology	  is	  dependent	  on	  the	  type	  of	  cell.	  	  	  
–  Knowledge	  with	  regard	  to	  cell	  type	  and	  condi$ons	  being	  

studied	  are	  typically	  unavailable.	  
2.   Inability	  to	  model	  dynamic	  states	  of	  the	  system	  and	  inability	  to	  

consider	  the	  interac$ons	  between	  pathways.	  

	  



Outstanding	  Challenges	  in	  Pathway	  Analysis	  

•  Annota$on	  Challenges	  
1.  Low	  resolu$on	  knowledge	  bases	  
2.  Incomplete	  and	  inaccurate	  annota$ons	  
3. Missing	  condi$on	  and	  cell-‐specific	  informa$on	  
	  

•  Methodological	  Challenges	  
1.   Benchmark	  data	  sets	  for	  comparing	  different	  

methods	  
2.  Inability	  to	  model	  and	  analyze	  dynamic	  response.	  
3.  Inability	  to	  model	  effects	  of	  an	  external	  s$muli	  



Visualiza$ons	  of	  pathway	  analysis	  

Bioconductor	  pkg	  Igraph	  	  



Galaxy	  of	  Differen$al	  Expression	  
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