
1

Tensor Networks Meet Neural Networks:
A Survey

Maolin Wang*, Yu Pan*, Xiangli Yang, Guangxi Li, and Zenglin Xu

Abstract—Tensor networks (TNs) and neural networks (NNs) are two fundamental types of data modeling approaches. TNs have been
proposed as a solution to the curse of dimensionality faced by large-scale tensors by converting an exponential number of dimensions to
polynomial complexity. Thus, they have attracted many studies in the fields of quantum physics and machine learning. On the other hand,
NNs are computing systems inspired by the biological NNs that constitute human brains. Recently, NNs and their variants have achieved
outstanding performance in various applications, e.g., computer vision, natural language processing, and robotics research. Interestingly,
although these two types of networks come from different observations, they are inextricably linked via the common intrinsic multilinearity
structure underlying both TNs and NNs. Consequently, a significant number of intellectual sparks regarding combinations of TNs and NNs
have burst out. The combinations described as “tensor networks meet neural networks” are termed tensorial neural networks (TNNs) in
this paper. This survey introduces TNNs based on three aspects. 1) Network Compression. TNs can greatly reduce parameters in NNs
and satisfy the idea of constructing effective NNs. 2) Information Fusion. TNs can naturally and effectively enhance NNs with their ability
to model the interactions among multiple modalities, views, or sources of various data. 3) Quantum Circuit Simulation. TNs can assist in
designing and simulating quantum neural networks (QNNs). This survey also investigates methods for improving TNNs, examines useful
toolboxes for implementing TNNs, and attempts to document TNN development and highlight its potential future directions. To the best of
our knowledge, this is the first comprehensive survey to bridge the connections among NNs, TNs, and quantum circuits. We provide a
curated list of TNNs at https://github.com/tnbar/awesome-tensorial-neural-networks.

Index Terms—Tensor Networks, Neural Networks, Network Compression, Information Fusion, Quantum Circuit Simulation

F

1 INTRODUCTION

T ENSORS are high-order arrays that represent the multiway in-
teractions among multiple modal sources. In contrast, vectors

(i.e., first-order tensors) and matrices (i.e., second-order tensors)
are accessed in only one or two modes, respectively. As a common
data type, tensors have been widely observed in several scenarios
[1], [2], [3], [4]. For instance, functional magnetic resonance
imaging (fMRI) samples are inherently fourth-order tensors that are
composed of three-dimensional voxels that change over time [5],
[6], [7]. In quantum physics, variational wave functions used to
study many-body quantum systems are also high-order tensors [8],
[9]. For spatiotemporal traffic analysis, road flow/speed information,
which is collected from multiple roads over several weeks, can
also be structured as a third-order tensor (road segment×day×time
of day) [10]. However, for higher-order tensors, when the number
of modes increases, the total number of elements in the tensors
increases exponentially, resulting in a catastrophe when storing and
processing tensors. Such a phenomenon is also recognized as the
“curse of dimensionality” [11].

Tensor Networks (TNs). TNs [8], [11], [12] are generally

* Equal Contribution

• M. Wang was with the City University of Hong Kong, HKSAR, China.
E-mail: morin.w98@gmail.com

• Y. Pan was with the Harbin Institute of Technology Shenzhen, Shenzhen,
China.
E-mail: iperryuu@gmail.com

• X. Yang was with the University of Electronic Science and Technology of
China, Chengdu, China.
E-mail: xlyang@std.uestc.edu.cn

• G. Li was with the University of Technology Sydney, NSW, Australia.
E-mail: gxli2017@gmail.com

• Z. Xu was with the Harbin Institute of Technology Shenzhen, Shenzhen,
China and the Pengcheng Laboratory, Shenzhen, China.
E-mail: zenglin@gmail.com

countable collections of small-scale tensors that are interconnected
by tensor contractions. These small-scale tensors are referred to as
“components”, “blocks”, “factors”, or “cores”. Very large-scale ten-
sors can be approximately represented in extremely compressed and
distributed formats through TNs. Thus, it is feasible to implement
distributed storage and efficient processing for high-order tensors
that could not be dealt with before. By using TN methods, the curse
of dimensionality can be alleviated or completely overcome [11].
Commonly used TN formats include CANDECOMP/PARAFAC
(CP) [13], [14], [15], Tucker decomposition [16], [17], Block-
term Tucker (BTT) decomposition [18], [19], [20], Matrix Product
State (MPS)/Tensor Train (TT) decomposition [21], [22], [23],
[24], Matrix Product Operators (MPO)/matrix Tensor Train (mTT)
decomposition [21], [22], [23], [24], Tensor Ring (TR) decomposi-
tion [25], Tree TN/Hierarchical Tucker (HT) decomposition [26],
Projected Entangled Pair State (PEPS)/Tensor Grid decomposition
[8], [27], [28], Multiscale Entanglement Renormalization [29], etc.
For the purpose of understanding the interconnected structures of
TNs, a TN diagram was developed as a straightforward graphical
diagram (which is discussed in Section 2.2). A TN can provide
a theoretical and computational framework for the analysis of
some computationally unacceptable tasks. For example, based
on the low-rank structures of TNs, Pan et al. [30] were able
to solve the quantum random circuit sampling problem in 15
hours using 512 graphics processing units (GPUs); this problem
was previously believed to require over 10,000 years on the
most powerful classic electronic supercomputer and effectively
challenge the quantum supremacy of Google’s quantum computer
called “Sycamore”. Other applications include brain analysis [31],
quantum chemistry calculation [32], human face clustering [33],
dimensionality reduction [34], missing value estimation [35], latent
factor analysis [36], subspace learning [37], etc.

ar
X

iv
:2

30
2.

09
01

9v
1

 [
cs

.L
G

]
 2

2
Ja

n
20

23

https://github.com/tnbar/awesome-tensorial-neural-networks

2

TABLE 1: An overview of TNNs and their utility. We first introduce the building of compact TNNs in different basic NN structures
including CNNs, RNNs, Transformers, graph neural networks (GNNs) and RBMs in Section 3. Next, we explore the use of TNs in
efficient information fusion methods based on tensor fusion and multimodal fusion in Section 4. Then, we discuss some applications
involving TNs in quantum circuits and quantum TNNs in Section 5. Furthermore, we explain some training and implementation
techniques for TNNs in Section 6. Finally, we introduce some general and powerful toolboxes for processing TNNs in Section 7.

Category Subcategory Detailed Models/Techniques Section

TNNs

Network
Compression

Convolutional Neural Networks
CP-CNN [61], [62], [63], Tucker-CNN [64], [65], TT-CNN [66], [67],
TR-CNN [68], BTT-CNN [69], TC-CNN [70], [71], HT-TT-CNN [72],
T-Net [73], TTMT/TMT [74], PMT [75], CP-HOConv [76]

3.1

Recurrent Neural Networks

TT-RNN [77], BTT-RNN [69], [78], TR-RNN [79], HT-RNN [80],
CP/Tucker-RNN [64], TC-RNN [70], [71] Kronecker-RNN [81],
Tucker/CP/TT-RNN [82], HT-TT-RNN [72], KCP-RNN [83],
Conv-TT-LSTM [84]

3.2

Transformer BTT-Transformer [85], MPO-Transformer [86],
Tuformer [87], Tucker-Bert [88], Hypoformer [89] 3.3

Graph Neural Networks TGNNs [90], TGCN [91], DSTGNN [92] 3.4

Restricted Boltzmann Machines TT-RBM [93], TR-RBM [94], Tv-RBM [95], Mv-RBM [96] 3.5

Information
Fusion

Tensor Fusion Layers TFL [90], [97], [98], LMF [99], PFN [100] 4.1

Multimodal Pooling Layers MUTAN [101], MCB [102], MLB [103] CIT [104] 4.2

Quantum
Circuit

Simulation

Quantum Embedding Image-Emb [105], Language-Emb [106], [107], [108] 5.1

Quantum Data Processing Supervised MPS [105], Tree-TN [109], Uniform-MPS [108], LPS [110] 5.2

Quantum TNNs ConvAC [107], [111], TLSM [112] 5.3

Utility
of

TNNs

Training
Strategy

Stable Training Mixed Precision [113], Yu Initialization [114] 6.1

Rank Selection PSTRN [115], TR-RL [116], CP-Bayes [117],
TT-Bayes [118], TT-ADMM [119], BMF [120], [121] 6.2

Hardware Speedup TIE [122], LTNN [123], TT-Engine [124], Fast CP-CNN [125] 6.3

Toolboxes

Basic Tensor Operations

Tensorly [126], TensorTools [127],Tensor Toolbox [128],
TenDeC++ [129], OSTD [130], TensorD [131], TT-Toolbox [132],
Tntorch [133], TorchMPS [134], ITensor [135],T3F [136],
TensorNetwork [137], Scikit-TT [138]

7.1

Deep Model Implementations Tensorly-Torch [126], TedNet [64] 7.2

Quantum Tensor Simulations Yao [139], TensorNetwork [137], lambeq [140], ITensor [135], TeD-Q [141] 7.3

Neural Networks (NNs). NNs are biologically inspired learn-
ing paradigms that enable a machine to learn knowledge from
observational data through backpropagation [38], [39]. NNs that
are stacked with multiple layers, i.e., deep NNs (DNNs) [40],
[41], are widely used in the field of artificial intelligence due to
their powerful ability to capture abundant information from deep
structures. Typical types of DNNs include restricted Boltzmann
machines (RBMs) [42], convolutional NNs (CNNs) [41], [43],
recurrent NNs (RNNs) [44], [45], and Transformers [46], [47].
DNNs currently reach state-of-the-art performance in a wide range
of applications in computer vision [48] and natural language
processing [49]. For example, a number of CNN architectures such
as AlexNet [50], VGGNet [51], GoogLeNet [52] and ResNet [53]
won championships on the ImageNet dataset [54], demonstrating
good potential for solving image classification tasks. Particularly,
Alphafold [55], [56], which is a kind of Transformer architecture,
can identify the structure of a protein in days, which previously
took researchers years. Recently, Alphafold2 [55], [56] predicted
the structures of nearly all known proteins with average atomic pre-
cision. Deep learning techniques are still pushing forward advances
in a number of disciplines, including speech recognition [57],
DNA mutations detection [58], structural biology [55], [56], drug
discovery [59], food security [60], etc.

Tensor Networks Meet Neural Networks. TNs and NNs
are two types of networks that come from different origins and
have achieved success from different aspects, as mentioned above.
Interestingly, they are closely bonded through their multilinear
mathematical property rather than being orthogonal to each
other [11]. Therefore, a promising approach is to integrate them
via multilinearity to attain the objective that “the whole is greater
than the sum of the parts.” The main advantages of TNs are their
compact structures, multiple entries, and close relationships with
quantum mechanics, while NNs are well known for their wide
applications [8], [12]. Based on these observations, it is feasible to
combine TNs and NNs in three ways.

(1) Network Compression. NNs have achieved many successes
in various tasks [40], [41], [41]. However, NNs still suffer
from excess linear product calculations with massive numbers
of dimensions and the curse of dimensionality [78]. A promising
solution for addressing this issue is to utilize the lightweight and
multilinear characteristics of TNs [68], [78], [79]. In detail, TNs
can decompose any tensor of NNs into smaller blocks, thereby
reducing the dimensionality to linear complexity [61], [62]. For
example, in comparison to utilizing naive long short-term memory
(LSTM) for action recognition tasks, TR-LSTM [79] models,
which leverage TN technology to decompose weight tensors, can

3

compress the number of parameters by approximately 34,000 times
while simultaneously outperforming naive LSTM.

(2) Information Fusion. In real-world data analysis cases,
it is important to model higher-order interactions in data from
multimodal sources to achieve better performance [8]. However,
NNs are typically used to handle the inputs of one-mode vectors,
so they lack sufficient expressive power to model such higher-
order interactions [101]. To solve this problem, a promising
approach is to embed TNs into NNs as efficient fusion units
to process multimodal data with the help of the multiple-entry
property [97], [98], [100]. Taking a visual question answering
(VQA) task [142] as an example, multimodal Tucker fusion
(MUTAN) [101] can learn high-level interactions between textual
representations and visual representations via a Tucker-format
framework. As a result, MUTAN has achieved state-of-the-art
performance with an efficiently parameterized low-rank structure.

(3) Quantum Circuit Simulation. TNs can act as simulators and
be bridges between classic NNs and quantum circuits. First, many
studies have suggested implementing NNs on quantum circuits
to accelerate their running speeds through the ultra-parallelism
properties of quantum computation schemes [143], [144]. However,
currently quantum computers are not sufficiently powerful for
deploying NNs directly, which causes difficulty when verifying the
possible performance of quantum neural networks (QNNs) [143].
Fortunately, TNs can be effective quantum simulators in electronic
computers because of the equivalences between TNs and quantum
circuits [8], [145]. In detail, the input qubits and unitary operation
gates in quantum circuits can be viewed as tensors. Gate connec-
tions can also be viewed as tensor contractions in TN schemes [145].
By utilizing TNs to achieve quantum circuit simulation for NNs,
a new era of QNNs exploration can be started before realistically
powerful quantum computers are manufactured.

We call this family of approaches that connect TNs with NNs
tensorial neural networks (TNNs). To the best of our knowledge,
this is the first comprehensive survey to bridge the connections
among NNs, TNs, and Quantum Circuits. An overview of TNNs
and their utility is shown in Table 1.

The remaining sections of this survey are organized as follows.
Section 2 provides the fundamentals of tensor notations, tensor
diagrams, and TN formats. Section 3 discusses the use of TNs for
building compact TNNs. Section 4 explores efficient information
fusion processes using TNNs. Section 5 discusses some basic
applications of TNs in quantum circuits and TNNs. Section 6
explains some training and implementation techniques for TNNs.
Section 7 introduces general and powerful toolboxes that can be
used to process TNNs.

2 TENSOR BASIS

2.1 Tensor Notations
A tensor [146], [147], also known as a multiway array, can be
viewed as a higher-order extension of a vector (i.e., a first-order
tensor) or a matrix (i.e., a second-order tensor). Like the rows
and columns in a matrix, an N th-order tensor X ∈ RI1×I2...×IN
has N modes (i.e., ways, orders, or indices) whose lengths (i.e.,
dimensions) are represented by I1 to IN , respectively. As shown
in Table 2, lowercase letters denote scalars, e.g., a, boldface
lowercase letters denote vectors, e.g., a, boldface capital letters
denote matrices, e.g., A and boldface Euler script letters denote
higher-order tensors, e.g., A. In this paper, we define a “tensor”
with a wider range that includes scalars, vectors, and matrices.

Tensor

Dummy Tensor

Hyper-Edge

Unfolding

Tensor Contraction

Fig. 1: Basic symbols for TN diagrams. For more basic knowledge
about TNs, refer to [8] and [11].

TABLE 2: Tensor notations.

Symbol Explanation
a scalar
a vector
A matrix
A tensor
A dimensionality
~ convolution operation
◦ outer product operation

< ·, · > inner product of two tensors
|·〉 quantum state bra vector(unit column complex vector)
〈·| quantum state ket vector(unit row complex vector)
〈·|·〉 inner product of two quantum state vectors

2.2 Tensor Diagrams

In this subsection, we introduce TN diagrams and their correspond-
ing mathematical operations. TN diagrams were first developed
by Roger Penrose [148] in the early 1970s and is now commonly
used to describe quantum algorithms [8], [9] and machine learning
algorithms [12], [61], [105]. In these diagrams, tensors are denoted
graphically by nodes with edges [22]. TN diagrams are practical
tools for the intuitive presentation and convenient representation
of complex tensors. Therefore, tensor diagrams are widely used
in the tensor field. As the data and weights in the deep learning
field are all tensors, tensor diagrams are also promising for use
as general network analysis tools in this area. An overview of the
basic symbols of tensors is shown in Fig. 1.

2.2.1 Tensor Nodes
A tensor is denoted as a node with edges, as illustrated in Fig. 1.
The number of edges denotes the modes of a tensor, and a value on
an edge represents the dimension of the corresponding mode. For
example, a one-edge node denotes a vector a ∈ RI , a two-edge
node denotes a matrix A ∈ RI×J and a three-edge node denotes a
tensor A ∈ RI1×I2×I3 .

2.2.2 Tensor Contraction
Tensor contraction means that two tensors are contracted into one
tensor along their associated pairs of indices. As a result, the
corresponding connected edges disappear while the dangling edges
persist. Tensor contraction can be formulated as a tensor product:

C = A×1,2,...N
M+1,M+2,...M+N B (1)

=
∑

i1,i2,···iN

Ai1,i2,···iN ,∗ B∗,i1,i2,···iN , (2)

where A ∈ RI1×...IN×P1×...PK , B ∈ RPK+1×...PK+M×I1×...IN ,
and C ∈ RP1×...PK×PK+1...PK+M . Fig. 1 also shows a diagram

4

+

Summation on components

CP on 5th-order Tensor

Factor Vectors

+

Fig. 2: Implementation of CP on a 5th-order tensor T ∈ RI1×I2×I3×I4×I5 . We show the higher-order tensor in a matrix representation
of size I1 × I2, whose elements are 3rd-order tensors of size I2 × I3 × I4. The main idea of CP is to decompose T into five factor
vectors that encode the modes of T. Then, it is feasible to apply outer production on these factor vectors to recover T. Moreover, by
regarding such an outer production as a component, CP with a rank of R implements summation on R components to further improve
the expressive power of the tensor.

of the matrix multiplication operation, which is the most classic
tensor contraction situation. The equation representation is:

C = A×1
2 B. (3)

Tensor contractions among multiple tensors (e.g., TNs) can be com-
puted by sequentially performing tensor contractions between each
pair of tensors. It is worth mentioning that the contracting sequence
must be determined to achieve better calculation efficiency [149].

2.2.3 Dummy Tensor
Recently, a newly designed dummy tensor was proposed by
Hayashi et al. to represent convolution operations [61]. As depicted
in Fig. 1, a node with star and arrow symbols denotes a dummy
tensor. This operation is formulated as

yj′ =
α−1∑
j=0

β−1∑
k=0

Pj,j′ ,kajbk, (4)

where a ∈ Rα denotes a vector that will be processed by a
convolutional weight b ∈ Rβ , and y ∈ Rα

′
is an output.

P ∈ {0, 1}α×α
′×β is a binary tensor with elements defined as

Pj,j′ ,k = 1 if j = sj′ + k − p and 0 otherwise, where s and p
represent the stride and padding size, respectively. Thus, P can be
applied to any two tensors to form a convolutional relationship.

2.2.4 Hyperedge
As shown in Fig. 1, we illustrate the hyperedge that was also
introduced by Hayashi et al. [61]. An example of a hyperedge with
a size of R can be formulated as

Yijk =
R∑
l=1

AilBjlCkl, (5)

where A ∈ RI×R,B ∈ RJ×R and C ∈ RK×R are three matrices.
Y ∈ RI×J×K denotes the results of applying a hyperedge on A,
B, and C. A hyperedge node is simply equal to a tensor whose

diagonal elements are 1. This tensor indicates the addition operation
performed over several substructures (e.g., the matrices in Fig. 1).
Hayashi et al. [61] showed that a tensor diagram can represent an
arbitrary tensorial CNN (TCNN) by introducing dummy tensors
and hyperedges.

2.2.5 Tensor Unfolding
Tensor unfolding is an operation that virtually flattens a tensor
into a high-dimensional but low-order tensor. Matricization is
a special case of tensor unfolding. To be more specific, given
an N th-order tensor A ∈ RI1×I2...×IN , its mode-n unfolding
process yields a matrix A(n) ∈ RIn×I1I2...In−1In+1...IN . Such an
operation can also be regarded as performing tensor contraction
with a specifically designed tensor. A fourth-order tensor unfolding
diagram is illustrated in Fig. 1.

2.3 Tensor Decomposition Formats
The commonly used terminology “tensor decomposition” (TD)
is equivalent to “tensor network” to some extent. Previously, TD
was employed primarily in signal processing fields [150], [151].
TNs were originally utilized largely in the physics and quantum
circuit fields [8], [148]. Traditional TD models, such as CP [13],
[14], [15] and Tucker decomposition [16], [17], can be viewed
as basic kinds of TNs. In the realm of signal processing, several
powerful TNs architectures for quantum analysis have also been
introduced. For instance, MPS decomposition [152] was defined
as TT decomposition [21] and has tremendous success in several
applications [12]. After years of collaboration and progress across
different research fields, there is no significant distinction between
these two terminologies. Therefore, TD and TNs are treated in a
unified way in this paper. We briefly introduce some basic TDs by
employing TN diagrams.

2.3.1 CANDECOMP/PARAFAC
CP [13], [14], [15] factorizes a higher-order tensor into a sum of
several rank-1 tensor components. For instance, given an N th-order

5

(c) Block-Term Tucker Decomposition

(e) Tensor Ring Decomposition

(b) Tucker Decomposition(a) CP Decomposition

(g) Tensor Grid Decomposition (a.k.a. PEPS)

(d) Tensor Train Decomposition

(f) Hierarchical Tucker Decomposition

Fig. 3: TN diagrams of some popular decompositions. (a) Diagrams of the CP format. It decomposes a tensor X into a sum of several
rank-1 tensors a(1)

:,r ◦a(2)
:,r ◦ · · · ◦a(N)

:,r . (b) Diagrams of Tucker decomposition. It decomposes a tensor X into a core tensor G multiplied
by a matrix A(n) along the nth mode. (c) Diagram of block term decomposition. It decomposes a tensor X into a sum of several
Tucker decompositions (on the right) with low Tucker ranks. (d) Diagram of TT decomposition. It decomposes a tensor X into a linear
multiplication of a set of 3rd-order core tensors G(2) · · ·G(N−1) and two matrices G(1), G(N). (e) Diagram of TR decomposition. It
decomposes a tensor X into a set of 3rd-order core tensors and contracts them into a ring structure. (f) Diagram of HT Decomposition. It
represents a tensor X as a tree-like diagram. For more basic knowledge about TNs, refer to [8] and [11].

tensor X ∈ RI1×I2...IN , each of its elements in the CP format
form can be formulated as

Xi1,i2,...,iN ≈
R∑
r=1

Gr

N∏
n=1

A
(n)
in,r

, (6)

where R denotes the CP rank (defined as the smallest possible
number of rank-1 tensors [150]), G denotes the diagonal core tensor
(only the R nonzero elements on the superdiagonal) and A(n) ∈
RIn×R denotes a series of factor matrices. The TN diagram for CP
is illustrated in Fig. 3 (a). We also provide a detailed visualization
of CP in Fig. 2 as an illustrative case of a TN.

When calculating a CP format, the first issue that arises is how
to determine the number of rank-1 tensor components, i.e., the
CP rank R. Actually, this is an NP-hard problem [153]. Hence,
in practice, a numerical value is usually assumed in advance (i.e.,
as a hyperparameter), to fit various CP-based models [150]. After
that, the diagonal core tensor G and the factor matrices A(n)

can be directly solved by employing algorithmic iteration, which
usually involves the alternating least-squares (ALS) method that
was originally proposed in [13], [14].

2.3.2 Tucker Decomposition

Tucker decomposition [16], [17] factorizes a higher-order tensor
into a core tensor multiplied by a corresponding factor matrix
along each mode. To be more specific, given an N th-order tensor

X ∈ RI1×I2...IN , the Tucker decomposition can be formulated in
an elementwise manner as

Xi1,i2,...,iN ≈
R1,...,RN∑
r1,...,rN=1

Gr1,r2,...,rN

N∏
n=1

A
(n)
in,rn

, (7)

where {R1, R2, . . . , RN} denotes a series of Tucker ranks,
G ∈ RR1×R2...RN denotes the core tensor and A(n) ∈ RIn×Rn

denotes a factor matrix. The TN diagram for Tucker decomposition
is illustrated in Fig. 3 (b). Here, please note that compared with the
CP rank, R1, R2, . . . , RN can take different numerical values.

Tucker decomposition is commonly used and can be degraded
to CP by setting the core tensor G as a superdiagonal tensor
whose diagonal elements are 1. In addition, Tucker decomposition
lacks constraints on its factors, leading to the nonuniqueness of its
decomposition results, which is typically undesirable for practical
applications due to the lack of explainability. Consequently, orthog-
onal limitations are always imposed on the component matrices,
yielding the well-known and classical higher-order singular value
decomposition (HOSVD) algorithm [154].

2.3.3 BTT Decomposition

CP and Tucker decomposition both decompose a tensor into a
core tensor multiplied by a matrix along each mode, while CP
imposes an additional superdiagonal constraint on the core tensor
for the sake of simplifying the structural information of the core
tensor. A more generalized decomposition method called BTT
decomposition [18] has been proposed to make a tradeoff between
the CP and Tucker methods by imposing a block diagonal constraint

6

on Tucker’s core tensor. The TN diagram for BTT decomposition
is illustrated in Fig. 3 (c).

BTT decomposition aims to decompose a tensor into a sum of
several Tucker decompositions with low Tucker ranks. Specifically,
the BTT decomposition of a 4th-order tensor X ∈ RI1×I2×I3×I4
can be represented by 6 nodes with special contractions. Here,
G ∈ RRC×RT×RT×RT×RT denotes the RC core tensors of
the Tucker decompositions, and each A(n) ∈ RRC×In×RT

denotes the RC corresponding factor matrices of the Tucker
decompositions. Moreover, each element of X is computed as

Xi1,i2,i3,i4 ≈
RC∑
rC=1

RT ,RT ,RT ,RT∑
r1,r2,r3,r4=1

GrC ,r1,r2,r3,r4A
(1)
rC ,i1,r1

A
(2)
rC ,i2,r2

A
(3)
rC ,i3,r3

A
(4)
rC ,i4,r4

, (8)

where RT denotes the Tucker rank (which means that the Tucker
rank equals {RT , RT , RT , RT }) and RC represents the CP rank.
Together, they are called BT ranks.

The advantages of BTT decomposition mainly depend on its
compatibility with the benefits of the both CP and Tucker methods.
The reason for this is that when the Tucker rank is equal to 1, BTT
decomposition degenerates to CP; when the CP rank equals 1, it
degenerates to Tucker decomposition.

2.3.4 TT Decomposition

TT decomposition [21], [22], also called MPS decomposition
in quantum physics [152], [155], is derived purely from TNs.
TT decomposition factorizes a higher-order tensor into a linear
multiplication of a series of 3rd-order core tensors. For example,
given an N th-order tensor X ∈ RI1×I2...IN , the TT decomposition
can be formulated in an elementwise manner as

Xi1,i2,...,iN ≈
R1,R2,...,RN−1∑
r1,r2,...,rN−1=1

G
(1)
1,i1,r1

G
(2)
r1,i2,r2

G
(3)
r2,i3,r3

· · ·G(N)
rN−1,iN ,1

, (9)

where {R1, R2, . . . , RN−1} denote the TT ranks, G(n) ∈
RRn−1×In×Rn denotes a 3rd-order core tensor and R0 = RN =
1, which means that G(1) and G(N) are actually two matrices. The
TN diagram for TT decomposition is illustrated in Fig. 3 (d).

TT decomposition can be computed easily by employing
SVD recursively. In addition, as the simplest model among the
available TN, TT decomposition is widely applied in the theory
and practice of TNs [9]. Notably, Eq. (9) and Fig. 3 (d) have
an MPS format. Some papers [77], [89], [93] have also used TT
decomposition with an MPO [156] format. Given a 2N -order
tensor X ∈ RI1×J1×I2×J2...IN×JN , its MPO decomposition can
be mathematically expressed as

Xi1,j1,i2,j2...,iN ,jN ≈
R1,R2,...,RN−1∑
r1,r2,...,rN−1=1

G
(1)
1,i1,j1,r1

G
(2)
r1,i2,j2,r2

G
(3)
r2,i3,j3,r3

· · ·G(N)
rN−1,iN ,jN ,1

, (10)

where {R1, R2, . . . , RN−1} denote the ranks, G(n) ∈
RRn−1×In×In×Rn denotes a 4th-order core tensor and R0 =
RN = 1, which means that G(1) and G(N) are actually two 3rd-
order core tensors.

2.3.5 TR Decomposition
TT benefits from fast convergence. However, it suffers from its two
endpoints, which hinder the representation ability and flexibility of
TT-based models. Thus, to release the power of a linear architecture,
researchers link its endpoints to produce a ring format named a
TR [25]. The TR decomposition of a tensor X ∈ RI1×I2...IN can
be formulated as

Xi1,i2,...,iN ≈
R0,R1,...,RN−1∑
r0,r1,...,rN−1

G
(1)
r0,i1,r1

G
(2)
r1,i2,r2

G
(3)
r2,i3,r3

· · ·G(N)
rN−1,iN ,r0

, (11)

where {R0, R1, . . . , RN} denote the TR ranks, each node G(n) ∈
RRn−1×In×Rn is a 3rd-order tensor and R0 = RN . Compared
with TT decomposition, it is not necessary for TR decomposition to
follow a strict order when multiplying its nodes. The TN diagram
for TR decomposition is illustrated in Fig. 3 (e).

2.3.6 HT Decomposition
HT decomposition [26] possesses a tree-like structure. In general,
it is feasible to transfer a tensor X ∈ RI1×···×IN to a binary tree
with a root node associated with Sset = {1, I2, · · · , N} and X =
USset as the root frame. Sset1, Sset2 ⊆ Sset is defined as the index
set, which is associated with the left child node USset1 and right
child node USset2

. USset1
∈ RR1×Imin(Sset1)×···×Imax(Sset1) can

also be recursively decomposed into its left child node UDset1
and

right child node UDset1
. The first three steps are as

USset
≈ Gs ×2

1 USset1
×2

1 USset2
, (12)

USset1
≈ Gs1 ×2

1 UDset1
×2

1 UDset2
, (13)

USset2 ≈ Gs2 ×2
1 UDset3 ×2

1 UDset4 , (14)

where Gs ∈ RR1×R2 , Gs1 ∈ RR1×R3×R4 and Gs1 ∈
RR2×R5×R6 . This procedure can be performed recursively to
obtain a tree-like structure. The TN diagram for HT decomposition
is illustrated in Fig. 3 (f).

2.3.7 PEPS Decomposition
A TN structure with different typologies and higher-dimensional
connections can also be considered. PEPS decomposition [8],
[27], [28], also known as tensor grid decomposition [157], is
a high-dimensional TN that generalizes a TT. PEPS decompo-
sition provides a natural structure that can capture more high-
dimensional information. PEPS cores can be characterized as
G(m,n) ∈ RImn×Rlmn×Rrmn×Rumn×Rdmn . The mathematical
formula [75] is

Xi1,i2,...,iMN
=

∑
h(R),h(C)

∑
m,n

G
(m,n)

imn;h
(R)
lmn

,h
(R)
rmn ,h

(C)
umn ,h

(C)
dmn

.

(15)
The indices are defined as

lmn = (n− 2)M +m,
rmn = (n− 1)M +m,
umn = (m− 2)N + n,
dmn = (m− 1)N + n,

R
(R)
i = 1, while i < 0 or i > M(N − 1),

R
(C)
i = 1, while i < 0 or i > N(M − 1),

(16)

where M and N are the numbers of rows and columns in the tensor
cores, respectively, and h(R)

i and h(C)
j are ranks in the row direction

and column direction, respectively. The TN diagram for PEPS

7

(b) Low-rank CNN

(c) CP CNN

(a) Vanilla CNN

Fig. 4: Correspondence between TN diagrams and convolutional procedures. In each subfigure, the left part is a TN diagram, and the
right part is the associated commonly used feature representation.

decomposition is illustrated in Fig. 3 (g). PEPS decomposition has
a polynomial correlation decay with the separation distance. In
contrast, MPS decomposition has an exponential correlation decay.
This indicates that PEPS decomposition has a more powerful
representation ability [8] because it strengthens the interactions
between different tensor modes.

3 NETWORK COMPRESSION WITH TNNS

DNNs have extraordinarily high spatial and temporal complexity
levels, as deeply stacked layers contain large-scale matrix mul-
tiplications. As a result, DNNs usually require several days for
training while occupying a large amount of memory for inference
purposes. In addition, large weight redundancy has been proven
to exist in DNNs [158], indicating the possibility of compressing
DNNs while maintaining performance. Motivated by this, a wide
range of compression techniques have been developed, including
pruning [159], [160], quantization [161], [162], distillation [163],
[164] and low-rank decomposition [79], [165], [166]. Among them,
applying TNs to DNNs to construct TNNs can be a good choice
since TNNs have excellent abilities to approximate the original
weights with many fewer parameters [113]. In this direction,
researchers have completed many studies, especially concerning the
reconstruction of convolutional and fully connected layers through
a variety of TD formats [61], [67], [69], [79]. With compact
architectures, these TNNs can achieve improved performance with
less redundancy. In this section, we introduce five common kinds
of TNNs, i.e., TCNNs in Section 3.1, tensorial RNNs (TRNNs) in
Section 3.2, tensorial Transformers in Section 3.3, tensorial GNN
(TGNN) in Section 3.4, and tensorial RBMs in Section 3.5.

3.1 TCNNs
CNNs have recently achieved much success. However, CNNs’ enor-
mous sizes cause weight redundancy and superfluous computations,
affecting both their performance and efficiency. TD methods can be
effective solutions to this problem. Commonly, CNNs represented
with tensor formats are called TCNNs. Prior to introducing TCNNs,
we formulate a vanilla CNN, shown in Fig. 4 (a), as

Y = X~ C + b, (17)

where C ∈ RK×K×I×O denotes a convolutional weight, X ∈
RI×H×W denotes an input, Y ∈ RO×H

′×W ′ denotes an output,

b ∈ RO represents a bias, and ~ denotes a convolutional
operator. K represents the kernel window size, I is an input
channel, H and W denote the height and width of X, O
is an output channel, and H ′ and W ′ denote the height and
width of Y, respectively. TCNNs mainly focus on decomposing
channels I and O. In detail, the weight C is first reshaped to
C̃ ∈ RK×K×I1×I2×...IM×O1×O2×...ON , where

∏M
k=1 Ik = I

and
∏N
k=1 Jk = J . Then, TCNNs can be derived by tensorizing

the reshaped convolutional kernel C̃.

To accelerate the CNN training and inference process, CP-
CNN [61], [62], [63] is constructed by decomposing the con-
volutional weight into the CP format, as shown in Fig. 4 (d).
CP-CNN only contains vectors as subcomponents, leading to an
extremely compact structure and the highest compression ratio. As
with CP-CNN, it is possible to implement additional TCNNs by
applying tensor formats (as seen in the examples in Fig. 3) to the
convolutional weight. Tucker decomposition, a widely used tensor
format, is often applied to CNNs to form Tucker-CNNs [64], [65].
Different from simple Tucker formats, a BTT-CNN has a hyperedge
Rc, which can denote the summation of Tucker decompositions.
Other BTT-CNNs [69] have also been proposed. Compared to
Tucker CNNs, BTT-CNNs are much more powerful and usually
derive better results [69]. Highly compact TT formats have also
been introduced to CNNs to implement TT-CNNs [66]. Compared
to TTs, TR formats are usually much more compact [68], and
TR-CNNs [68] are much more powerful than TT-CNNs.

There are also some tensorial convolutional neural networks that
decompose more than just the convolution cores. The tensorized
network (T-Net) [73] treats the whole network as a one-layer
architecture and then decomposes it. As a result, the T-Net achieves
better results with a lighter structure. CP-higher-order convolution
(CP-HOConv) [76] utilizes the CP format to handle tasks with
higher-order data, e.g., spatiotemporal emotion estimation. For
multitask missions, Yang et al. [74] proposed the Tensor Train
multitask (TTMT) and Tucker multitask (TMT) models using TT
and Tucker formats, respectively, to alleviate the negative transfer
problem in a hard sharing architecture and reduce the parameter
volume in a soft structure. A PEPS-like concatenated TN layer [75]
for multitask missions was also proposed. Unlike the TTMT and
TMT models, which suffer from the negative transfer problem due
to their hard sharing architectures, the PEPS structure only contains
a soft sharing layer, thereby achieving better performance.

8

3.2 TRNNs

RNNs, such as the vanilla RNN and LSTM, have achieved
promising performance on sequential data. However, when dealing
with high-dimensional input data (e.g., video and text data), the
input-to-hidden and hidden-to-hidden transformations in RNNs
will result in high memory usage rates and computational costs. To
solve this problem, low-rank TD is efficient for compressing the
transformation process in practice. First, we formulate an RNN as

h(t+1) = φ(Wx(t) + Uh(t) + b), (18)

where h(t) ∈ RO and x(t) ∈ RI denote the hidden state and
input feature at time t, respectively, W ∈ RO×I is the input-to-
hidden matrix, U ∈ RO×O represents the hidden-to-hidden matrix,
and b ∈ RO is a bias. φ(·) indicates a series of operations that
form RNN variants, including the vanilla RNN and LSTM [167].
Eq. (18) can also be reformulated in a concatenation form that is
widely used in TD:

h(t+1) = φ([W,U][x(t),h(t)] + b), (19)

where [W,U] ∈ RO×(I+O) and [x(t),h(t)] ∈ R(I+O) denote
the concatenation of W,U and x(t),h(t), respectively. As shown
in Fig. 5, there are usually two ways to decompose RNNs: (a)
only tensorizing W, which is often the largest component in an
RNN, and (b) tensorizing [W,U] for extreme compression. Note
that since U is usually smaller than W, no works decompose U
only. The process of implementing a TRNN is the same as that
used to implement a TCNN, namely, reshaping the weights into
higher-order formulations and replacing them with tensor formats.

The most direct and simple compression method is to solely
decompose the enormous input-to-hidden matrix W. The CP-
RNN and Tucker-RNN [64] can be directly constructed with
the CP and Tucker formats, respectively. With an extremely
compact low-rank structure, the CP-RNN can always derive the
smallest size in comparison with other tensor formats. The TT-
RNN [77] implements the TT format on an RNN to obtain a high
parameter compression ratio. However, the TT-RNN suffers from
a linear structure with two smaller endpoints, which hinders the
representation ability and flexibility of TT-based models. To release
the power of a linear architecture, TRs were proposed to link the
endpoints to create a ring format [25]. TR-An RNN [79] with
a TR was formed to achieve a much more compact network.
BTT-RNN [69], [78] was constructed on the generalized TD
approach: BTT decomposition [19]. BTT-RNN can automatically
learn interparameter correlations to implicitly prune redundant
dense connections and simultaneously achieve better performance.

Moreover, studies are utilizing TD to compress an RNN’s
two transformation layers, and some have even developed de-
composition methods that are suitable for both RNNs and CNNs.
TT-GRU [82] and the HT-RNN [80] decompose [W,U] to attain a
higher compression ratio. Specifically, TT-GRU [82] applies a TT
for decomposition, and the HT-RNN [80] adopts HT decomposition.
Unlike prior works that decomposed hidden matrices, Conv-TT-
LSTM [84] utilizes the idea of a TT to represent convolutional
operations. As shown in Fig. 5, through a TT-like convolution,
Conv-TT-LSTM can replace convolutional LSTM with fewer
parameters while achieving good results on action benchmarks.
For the adaptation of both CNNs and RNNs, a hybrid TD (termed
HT-TT) method that combines HT and TT decomposition [72] was
adopted to compress both the CNN and RNN [W,U] matrices. In
addition, the tensor contraction layer (TC-Layer) [71] was designed

Decomposition

Tensorization

Vectorization

Concatenation

Elment-wise Product

Elment-wise Sum

Sigmoid Activation

Tanh Activation

C

C

Fig. 5: TR LSTM. It is effective at reducing the parameters of
an LSTM model by replacing the input-to-hidden transformation
weights with TR decomposition.

to replace the fully connected layer and therefore can be utilized as
the last layer of a CNN and the hidden layers in RNNs. Interestingly,
TC-Layer is a special case of a TT-based layer obtained by setting
the ranks to 1.

3.3 Tensorial Transformers
Transformers [46], [168] are well known for processing se-
quence data. Compared with CNNs and RNNs, Transformers
can be stacked into large-scale sizes to achieve significant per-
formance [47]. However, Transformers are still redundant, similar
to classic DNNs, which can be made smaller and more efficient [88].
Therefore, TD, as a flexible compression tool, can be explored to
reduce the numbers of parameters in Transformers [85], [86], [87].

Classic Transformers mainly consist of self-attention (SA)
and feedforward Networks (FFNs). SA processes the given query
matrix Q, key matrix K and value matrix V with parameters
WQ,WK ,WV ,WO. More generally, SA is separated into n
heads: {WQ

i }n, {WK
i }n, {WV

i }n, {WO
i }n. Each head can be

calculated as

Atti(Q,K,V) = softmax

(
QWQ

i WKT

i KT

√
d

)
VWV

i WOT

i .

(20)

Then, SA((Q,K,V)) =
∑n
i=1 Atti(Q,K,V). Another impor-

tant component, the FFN, is formulated as

FFN(X) = ReLU(XWin + bin)Wout + bout, (21)

where X is the input, bin and bout are biases, and Win and
Wout are weights. Apparently, the number of parameters in a
Transformer is mainly based on its linear transformation matrices,
i.e., WQ,WK ,WV ,WO , Win and Wout.

Therefore, most compression studies focus on eliminating the
parameters of these matrices. For instance, the MPO structure
was proposed to decompose each matrix in a Transformer [86],
generating central tensors (containing the core information) and
small auxiliary tensors. A tuning strategy was further adopted to
continue training the auxiliary tensors to achieve a performance

9

(a) Multi-Head Self-Attention (MHSA). (b) Tunable-Head Self-Attention (THSA). (c) The design space of .

Fig. 6: Tensor diagrams for SA modules [86]. (a) It is feasible to represent a classic multihead SA (MHSA) mechanism in a tensor
diagram. MHSA can be treated as a special case of tunable-head self-attention (THSA) by setting C = IH ⊗ (1>D1D). (b) The THSA)
of the Tuformer can be a more generalized version of SA through a trainable matrix C. (c) THSA has a design space formulated as
C = C1 ⊗ (C>2 C3), which is the direct generalized form of MHSA.

improvement while freezing the weight of the central tensor to
retain the main information of the original matrix. Moreover,
observing that a low-rank MPO structure can cause a severe
performance drop, Hypoformer [89] was proposed based on hybrid
TT decomposition; this approach concatenates a dense matrix
part with a low-rank MPO part. Hypoformer retains the full-
rank property while reducing the required numbers of operations
and parameters to compress and accelerate the base Transformer.
In addition, by concatenating all matrices into one larger tensor,
Tucker-Bert [88] decomposes the concatenated tensor with Tucker
decomposition to greatly reduce the number of parameters, leading
to extreme compression and maintaining comparably good results.
Interestingly, Tuformer [87] generalizes MHSA into the Tucker
form, thus containing more expressive power and achieving better
results, as shown in Fig. 6.

3.4 TGNNs
GNNs have achieved groundbreaking performances across a range
of applications and domains [169]. One classic GNN layer consists
of an aggregation function for aggregating the neighbor node
information and an update function for updating the current node
information. For example, the processing step for node v in the
k-th layer of a GNN can be formulated as

a(k)
v ← Aggregate(k)

({
h(k−1)
u ,∀u ∈ N(v)

})
,

h(k)
v ← Update(k)

(
h(k−1)
v ,a(k)

v

)
,

(22)

where a
(k)
v is an aggregated embedding vector, h

(k−1)
v is a

node embedding vector, and N(v) is a neighbor node set. A
typical choice for the update function is a simple-layer percep-
tron, and simple summation/maximization is always chosen as
the aggregation function. Classic GNNs suffer from low model
expressivity since high-order nonlinear information among nodes
is missed [90]. Because of the merits of the tradeoff between
expressivity and computing efficiency, the usage of TGNNs for
graph data processing is quite beneficial.

To efficiently parameterize permutation-invariant multilinear
maps for modeling the interactions among neighbors in an
undirected graph structure, a TGNN [90] makes use of a sym-
metric CP layer as its node aggregation function. It has been
demonstrated that a TGNN has a strong capacity to represent any
multilinear polynomial that is permutation-invariant, including the
sum and mean pooling functions. Compared to undirected graph
processing, TGNNs are more naturally suited for high-order graph
structures, such as knowledge graphs. Traditional relational graph

convolutional networks neglect the trilinear interaction relations
in knowledge graphs and additively combine the information
possessed by entities. The TGCN [91] was proposed by using
a low-rank Tucker layer as the aggregation function to improve
the efficiency and computational space requirement of multilinear
modeling. TGNNs are also appropriate for high-order correlation
modeling in dynamic spatial-temporal graph processing situations.
For example, The DSTGNN [92] applies learnable TTG and
STG modules to find dynamic time relations and spatial relations,
respectively. Then, the DSTGNN explores the dynamic entangled
correlations between the STG and TTG modules via a PEPS layer,
which reduces the number of DSTGNN parameters.

3.5 Tensorial RBMs

RBMs [42] are generative stochastic NNs that can learn a
probability distribution from an input set. A standard RBM consists
of one visible factor v ∈ RM and one hidden factor h ∈ RN and
assigns the following energy function for a joint vector {v,u} as

E(v,h) = −vTwh− vTb− cTh, (23)

where b ∈ RM and c ∈ RN are the biases of the visible layer and
hidden layer, respectively, and W ∈ RM×N is the mapping weight
matrix. The probability distribution of the joint vector {v,u} can
be defined as

P (v, h) =
1

Z
e−E(v,h), (24)

where Z is a partition function. Then, some loss function can be
defined via the learnable distribution formulation to optimize the
parameters. The RBM parameters appear to be based mostly on
the mapping weight matrix.

As a result, the majority of compression research concentrates
on reducing the number of weight matrix variables. For instance,
Tv-RBM [95] explores the use of an RBM for higher-order inputs.
In this model, the weight matrix is transformed into a CP layer
structure, where each visible layer is represented as a tensor
while each hidden layer is still a vector. In another higher-order
RBM, namely, Mv-RBM [96], its visible and hidden layers are
all represented as matrices, and its weights are represented as a
TC layer [71]. MPO-RBM [170] and TT-RBM [93] represent the
weight matrix with a TT layer to greatly compress the number
of required parameters. Moreover, TR-RBM [94] performs TR
decomposition on its RBM, where the visible and hidden layers of
TR-RBM are all generalized to tensors.

Remark. Compact TNNs have demonstrated the potential to
achieve extremely high compression ratios while preserving their

10

model performance. However, their computational acceleration
rates are not very significant compared with their compression
ratios, which is mainly due to the contraction operations. This
therefore calls for further research to improve the employed
contraction strategies, since unoptimized contraction strategies
can result in unsatisfactory running memory consumption.

4 INFORMATION FUSION VIA TNNS

In real-world data analyses, the collected data can be derived
from multiple sources; e.g., vision, sound, and text sources can
be contained in video data [142]. For example, in the VQA
task, the key point lies in effectively modeling the interactions
between the two modalities, i.e., text and image information. When
processing such data, it is infeasible to consider diverse sources in
the same form. Therefore, it is desirable to mix this information
through multiple entrances to address multimodal sources in
special building structures. Such methods with entrances are called
information fusion approaches. Feature-level fusion [171] and
decision-level fusion [172] are popular methods that are used in the
early stage. However, these methods are simple linear methods and
do not allow intramodality dynamics to be efficiently modeled. To
solve this problem, TNNs are utilized in fusion tasks for modeling
intramodality dynamics based on the natural multilinear property.
In addition, TNNs are capable of processing higher-order data,
which is a widely used ability. In conclusion, TNs provide effective
frameworks for tensor operations, and it is natural and meaningful
to express and generalize the information fusion modules (such as
attention modules and vector concatenation modules) encountered
in deep learning through TNs. Therefore, many studies adopt TNNs
to capture the higher-order interactions among data or parameters.
In this section, we introduce two main series of TNN structures
for information fusion: the tensor fusion layer in Section 4.1 and
multimodal pooling in Section 4.2.

4.1 Tensor Fusion Layer-Based Methods

Multimodal sentiment analysis is a task containing three commu-
nicative modalities, i.e., the textual modality, visual modality, and
acoustic modality [97]. Addressing multimodal sentiment analysis,
Zadeh et al. [97] proposed novel TNNs with deep information
fusion layers named tensor fusion layers (TFLs), which can easily
learn intramodality dynamics and intermodality dynamics and are
able to aggregate multimodal interactions, thereby efficiently fusing
the three communicative modalities. Specifically, a TFL first takes
embedded feature vectors zt, zv and za derived by embedding
networks rather than the original three data types. Then, the TFL
concatenates a scalar 1 with each embedded feature vector:

z
′

t =

[
zt
1

]
z
′

v =

[
zv
1

]
z
′

a =

[
za
1

]
. (25)

Then, as shown in Fig. 7, the TFL obtains a feature tensor Z by
calculating the outer product among the three concatenated vectors:

Z = z
′

t ◦ z
′

v ◦ z
′

a =

[
zt
1

]
◦
[

zv
1

]
◦
[

za
1

]
. (26)

Finally, the TFL processes the feature tensor Z to obtain a
prediction y via a two-layer fully connected NN. Compared to
direct concatenation-based fusion, which only considers unimodal
interactions [97], the TFL benefits from capturing both unimodal
interactions and multimodal interactions.

=
1 1

1

1

Fig. 7: Illustration of the tensor fusion process in Eq. (26). Different
from a TN diagram, each circle corresponds to a value.

Despite its success, the TFL suffers from exponential increases
in its computational complexity and number of parameters when
the number of modalities increases. For example, in a multimodal
sentiment analysis case [97], the feature tensor Z ∈ R129×33×33

and the hidden vector h ∈ R128 can result in 17, 981, 568
parameters to be optimized. To address these excessive parameters,
low-rank multimodal fusion (LMF) [99] adopts a special BTT layer
to overcome the massive computational cost and overfitting risks
of the TFL. For a general situation with n modalities, the feature
tensor Z = ◦Mm=1z

′

m can be processed. The hidden vector h can
be computed as follows:

h = ReLU
(
he(W1z

′

1,W2z
′

2, · · ·WMz
′

M , I) + b
)
,

where Wi ∈ Rdi×dh is the weight matrix and I ∈ Rdh×dh is an
identity matrix. LMF reduces the computational complexity of the
TFL from O

(∏M
m=1 dm

)
to O

(
dh ×

∑M
m=1 dm

)
.

Although LMF and the TFL achieve better fusion results than
other methods, they restrict the order of interactions, causing higher-
order interactions to lack information. A PTP [100] block has been
proposed to tackle this problem. The whole procedure and TN
diagram of PTP are shown in Fig. 8 and Fig. 9, respectively.

PTP first merges all feature vectors {zm}Mm=1 into a long
feature vector

z>12···M =
[
1, z>1 , z

>
2 , · · · , z>M

]
. (27)

The polynomial feature tensor of degree P is represented as

ZP = z12...M ◦ z12...M ◦ · · · ◦ z12···M . (28)

PTP [100] then adopts a tensorial layer (e.g., a CP layer) to process
the polynomial feature tensor ZP . The CP layer is represented as

h = he(W1z12...M , · · ·WP z12...M ,Λ) (29)

where Wi ∈ Rdi×dh is the weight matrix and Λ ∈ Rdh×dh is a
learnable diagonal matrix. The structure of PTP is also equivalent
to that of a deep polynomial NN [173]. PTP models all nonlinear
high-order interactions. For multimodal time series data, one
approach uses a “window” to characterize local correlations and
stack the PTP blocks in multiple layers. Such a model is called a
hierarchical polynomial fusion network (HPFN) [100]. The HPFN
can recursively process local temporal-modality patterns to achieve
a better information fusion effect.

The structure of a single-layer PTP block is similar to that of a
shallow convolutional arithmetic circuit (ConvAC) network [107]
(see Section 5.3). The only difference between ConvAC and
PTP is that the standard ConvAC network processes quantum
location features, whereas PTP processes the temporal-modality
patterns and polynomial concatenated multimodal features. The

11

Outer Product
1

Concatenate w ≈

Low-rank Tensor Weight

1

11

1
1

Contraction

Fig. 8: Illustration of polynomial tensor pooling (PTP) [100]. PTP first concatenates all feature vectors z1, z2, z3 into a longer feature
vector z>123 =

[
1, z>1 , z

>
2 , z

>
3

]
, then derives a polynomial feature tensor by repeatedly performing outer product operations on the

feature vector z123 and finally adopts a tensorial layer (e.g., a TR layer) to merge the polynomial feature tensor into a vector h.

HPFN is nearly equivalent to a deeper ConvAC network, and its
great expressive power might be implied by their connection. The
recursive relationships in deep polynomial NNs have also been
found and implemented so that polynomial inputs can be efficiently
computed via a hierarchical NN [100]. Chrysos et al. [173] also
discovered similar results.

4.2 Multimodal Pooling-Based Methods

Another group of information fusion methods originated from
VQA tasks [142]. In VQA tasks, the most important aspect is to
parameterize bilinear the interactions between visual and textual
representations. To address this aspect, some tensor fusion methods
have been discovered in this area. Multimodal compact bilinear
pooling (MCB) [102] is a well-known fusion method for VQA
tasks and can be regarded as a special Tucker decomposition-based
NN. MCB tries to optimize the simple bilinear fusion operation

z = W[v ◦ q], (30)

where v and q are input vectors with different modalities and
W is a learnable weight matrix. Moreover, MCB optimizes the
computational cost of the outer product operation based on the
property of the count sketch projection function.

Multimodal low-rank bilinear pooling (MLB) [103] adopts a
CP layer in a data fusion step that can be formulated as follows:

z = 1T (Wvv ◦Wqq) , (31)

where Wq and Wv are prepossessing weight matrices for inputs
q and v, respectively and 1 is a vector in which all values are 1.
The structure of the MLB method is a special case of LMF (see
Sec. 4.1). MLB fusion methods can also be regarded as simple
product pooling when the number of modalities is equal to two.

MUTAN [101] is a generalization of MCB and MLB. MUTAN
adopts a Tucker layer to learn the bilinear interactions between
visual and textual features:

z =
((

Tc ×1
1

(
q>Wq

))
×1

2

(
v>Wv

))
×1

3 Wo,

z =
(
Tc ×1

1 q̃
)
×1

2 ṽ, (32)

where q̃ = tanh
(
q>Wq

)
and ṽ = tanh

(
v>Wv

)
, Tc is the

fusion weight tensor, and Wo is the output processing weight
matrix. Moreover, MUTAN [101] adopts a low rank for the fusion
weight tensor Tc, as follows:

Tc[:, :, k] =
R∑
r=1

mk
r ◦ nk>r , (33)

where mk
r and nk>r are weight vectors and R is the number of

ranks. MUTAN can represent comprehensive bilinear interactions
while maintaining a reasonable model size by factorizing the
interaction tensors into interpretable elements.

Furthermore, compact trilinear interaction (CTI) [104] was
proposed to use an attention-like structure. Instead of presenting
the given data as a single vector, this method represents every
modality as a matrix A ∈ Rn1×da , where da corresponds to
the feature dimension and n1 denotes the number of states. CTI
simultaneously learns high-level trilinear joint representations in
VQA tasks and overcomes both the computational complexity and
memory issues in trilinear interaction learning [104].

Remark. When fusing information in many multimodal tasks,
TNNs can achieve promising results with natural multilinear
and compact frameworks. However, the high-order outer product
operation used in TNNs may cause unexpected computational
complexity increases and even unstable numerical properties.
Therefore, it is important to consider an efficient algorithm for
reducing memory consumption and apply a feasible initialization
algorithm (e.g., [114]) to achieve good stability.

5 QUANTUM CIRCUIT SIMULATION WITH TNNS

In the past few years, the development of quantum computing
theory has attracted much attention [174], [175], [176]. Quantum
systems have superiority in terms of parallelism over classic
electronic computers [177], so they can achieve algorithms with
lower time complexity. For example, Shor’s algorithm [178] based
on quantum systems is theoretically exponentially faster than the
classic prime number decomposition algorithm. Quantum circuits
are computational hardware implements of quantum systems, and
they theoretically correspond to TNs and TNNs [179], [180].
Quantum states are mathematical entities of quantum systems and
are consistent with higher-order tensors with some constraints [8].
Therefore, TNNs can be used as simulators in classic computers to
model realistic quantum circuits [8], [145]. Taking advantage of the
ultrahigh parallelism of quantum computing, some special TNNs
can be implemented on small, near-term quantum devices [180].
Quantum circuit simulation on TNNs mainly focuses on the roles
of TNs as bridges between classic NNs and QNNs rather than
the more general TN-based quantum circuit simulation paradigm.
Please refer to other papers [8], [30], [145] if readers are interested
in general circuit simulation via TNs. In this section, we use
the term “classic data” to denote the data in classic electronic
computers. We introduce methods for mapping classic data to
quantum states through TNs in Section 5.1, then introduce basic
supervised and unsupervised processing methods for the mapped

12

PTP (CP) PTP (TR)

PTP Input

Fig. 9: TN diagrams of PTP. CP and TR structures can be adopted
in such a strategy.

quantum states in Section 5.2, and finally introduce the famous
quantum TNN model, i.e., ConvAC in Section 5.3.

5.1 Quantum State Embedding for Classic Data
To process machine learning tasks in a quantum system, the input
data should be converted into a linear combination of some quantum
states as an orthogonal basis:

|ψ〉 =
M∑

d1...dN=1

Ad1...dN |ψd1〉 ◦ · · · ◦ |ψdN 〉 ,

s.t
M∑

d1...dN=1

A2
d1...dN = 1, Ad1...dN ≥ 0, (34)

where |·〉 is the Dirac notation of a vector with complex val-
ues [181], and ◦ denotes the outer product operation. The tensor
A is the combination coefficient tensor and is always represented
and analyzed via a low-rank TN [8]. To embed classic data into
a quantum state for adapting quantum systems, Stoudenmire and
Schwab [105] proposed a quantum state mapping function φi(xi)
for the i-th pixel xi in a grayscale image as

φi(xi) = [cos(
π

2
xi), sin(

π

2
xi)]. (35)

The values of pixels are transformed into the range from 0.0 to 1.0
via the mapping function. Furthermore, a full grayscale image x
can be represented as outer products of the mapped quantum states
of each pixel:

Φ1,2,...N (x) = φ1(x1) ◦ φ2(x2) ◦ · · ·φN (xN), (36)

where Φ1,2,...N (x) ∈ R

N︷ ︸︸ ︷
2× 2 · · · × 2. Through Eq. (36), it is

feasible to associate realistic images with real quantum systems.
For a natural language document, the i-th word |xi〉 can also

be represented as the sum of orthogonal quantum state bases
|φhi
〉 (hi = 1, . . . ,M) [106], [107], [108], [182] corresponding

to a specific semantic meaning M :

|xi〉 =
M∑
hi=1

αi,hi |φhi〉 ,

s.t
M∑
hi=1

α2
i,hi

= 1, αi,hi ≥ 0, (37)

Label

Image Feature map Vectorized Image Quantum Circuit Output

Fig. 10: The processing procedure employed for quantum em-
bedded data [183]. Quantum circuits can be simulated via TNNs
on classic electronic computers, and some special TNNs (such
as ConvAC) can also be theoretically implemented on a realistic
quantum circuit.

where αi,hi
is the associated combination coefficient for each

semantic meaning. The constraint of αi is and . After completing
data mapping, the embedded quantum data can be processed by
TNNs on a realistic quantum circuit, as shown in Fig. 10. The loss
functions of TNNs can also be defined through the properties of
quantum circuits. Such a procedure can be simulated on classic
electronic computers via TNs and can be theoretically efficiently
implemented on realistic quantum systems.

5.2 Embedded Quantum Data Processing
Two series of learning methods are important and have potential
for designing and optimizing TNNs, which can be implemented
on realistic quantum circuits. One involves applying the density
matrix renormalization group (DMRG) algorithm [8], [184] to
train supervised models. The other adopts the ideas of the Born
machine [185] to learn data distributions via an unsupervised
procedure. We introduce these methods in the next part.

5.2.1 Supervised TN Models
Supervised models are used to model the conditional probability
distributions of labels (output) given input features based on
example input-output pairs. Taking embedded quantum data
as inputs, Stoudenmire and Schwab [105] proposed supervised
MPS-like tensorial multilinear models and adopted DMRG-like
algorithms to optimize the model weights. Prior to introducing a
specific implementation, their models must first be formulated as
procedures that optimize a set of functions indexed by different
labels `:

f`(x) = W` ×1,2···N
1,2···N Φ(x), (38)

where Φ(·) is the feature map function in Eq. (36) and W` ∈

R

N︷ ︸︸ ︷
2× 2 · · · × 2 is the weight tensor. Then, the aforementioned

tensorial models can be derived by replacing W` with an MPS TN:

W`
s1s2···sN =

∑
{α}

A(1)
s1,α1

· · ·A(m)
αm−1,sm,αm

· · ·A(N)
αN−1,sN ,

(39)

where A(1) · · ·A(N) are core tensors. Furthermore, the authors
proposed an optimization algorithm named Sweeping that was
motivated by the DMRG algorithm [8] in quantum mechanics.
The optimization algorithm sweeps along an MPS to optimize the
quadratic cost function:

c =
1

2

NT∑
n=1

∑
`

(
f ` (xn)− yn`

)2
, (40)

13

Gradient Update

& Dimension
Exchange
 SVD Split

To be updated in next stage

Sweeping Window

Contraction

ZigZag Shifting

Fig. 11: A single stage of the Sweeping method [105]. In each
stage, Sweeping only updates the nodes in the sweeping window,
which shifts along a zigzag trajectory.

where NT denotes the number of training samples, and yn denotes
the true one-hot label vector of xn. The optimization process is
carried out to minimize this cost function in stages with stochastic
gradient descent. A single stage is shown in Fig. 11. In each stage,
two MPS tensors A(2) and A(3) are combined into a single bond
tensor V via tensor contraction. Then, the tensor V is updated with
gradients. Finally, Ṽ is decomposed back into separate tensors with
the SVD algorithm. The Sweeping method is efficient in optimizing
models whose inputs embedded quantum data, and it can also be
adopted to train TNNs. In addition, other TNs, including the PEPS
structure [186], can be processed with a Sweeping-like method.

5.2.2 Unsupervised TN Models
The goal of unsupervised generative modeling is to model the joint
probability distribution of the given data. Generative adversarial
networks (GANs) [187] and variational autoencoders (VAE) [188]
are successful NN models for addressing classic data distributions.
Embedded quantum data are the key to training and designing
quantum TNNs for generating probabilistic distributions via TNs.
Inspired by the probabilistic interpretation of quantum states in
quantum mechanics [189], an MPS-based generative model called
the Born machine [185] was proposed. The Born machine is an
energy-based model [190] derived from quantum mechanics. The
distribution functions of the Born machine are shown as follows:

P (x) =
|Ψ(x)|2

Z
, (41)

where Z =
∑
x |Ψ(x)|2 is the normalization factor, Ψ(·) is the

quantum state embedding function, and the energy function of
x can be represented as |Ψ(x)|2 in view of quantum mechanics.
Ψ(x) can be parameterized via a TN format [185]. The learning
procedure can also be conducted via a DMRG-like algorithm and a
gauge transformation strategy [191]. The distribution definitions in
Eq. (41) are also useful for designing the loss functions of quantum
TNNs. Furthermore, a series of Born machine structures have been
proposed, including tree TNs [109], uniform MPSs for language
generation [108], and locally purified states [110]. In the future, it
is expected that representing and processing data via a particular
quantum view will pave the way for the further implementation of
TNNs on realistic quantum computers [109].

5.3 ConvAC Network

The expressive power of previously developed quantum data
processing models, e.g., the MPS models in Section 5.2.1 and the
Born machine in Section 5.2.2, suffers from a lack of nonlinearity.
Classic nonlinear operators, e.g., activation functions (such as the
rectified linear unit (ReLU) function) and average/max pooling,

Fig. 12: ConvAC is equivalent to an HT-like TN [180].
x1, . . . ,xN ∈ Rs. x1 corresponds to a local patch from the input
image or the feature map, and v(0,j) is the linear transformation
of xj . The width is 2 for a single block. Notably, a single layer is
equivalent to a CP format.

can significantly benefit model performance. However, classic
nonlinearity cannot be directly implemented in a quantum circuit.
To solve this problem, the ConvAC network [111], [192] was
proposed to adopt quantum deployable product pooling as a
nonlinear operator, proving that ConvAC can be transformed into
ConvNets with ReLU activations and average/max pooling.

The whole structure of ConvAC can be represented by an
HT format and has been proven to be theoretically deployable in
realistic quantum systems. A tensor diagram example of ConvAC is
shown in Fig. 12, and one hidden layer of ConvAC is in a CP format.
ConvAC can also handle language data [107] by mapping natural
language sentences into quantum states via Eq. (37). ConvAC
is a milestone in that deep convolutional networks, along with
nonlinear modules, are implemented on quantum circuits. It serves
as an inspiration for the integration of more NNs into quantum
systems. For instance, Zhang et al. [112] introduced the tensor
space language model (TSLM), which has been shown to be a
generalization of the n-gram language model.

Remark. The implementation of quantum TNNs is a symbolic
milestone that forms a bridge between QNNs and classic NNs
via TNs. However, strict mapping algorithms between simulated
quantum TNNs and realistic physical systems still need to be
explored. Moreover, as real high-performance quantum computers
are still a long way from being developed, the concept of verifying
the performance of quantum TNNs in the near future is infeasible.
Despite these issues, it is still important and meaningful to focus
on mapping algorithms and performance verifications for QNNs.

6 TRAINING STRATEGIES FOR TNNS

While the aforementioned TNNs can perform well on various tasks
and machines, it is also worth exploring training strategies with
more stability, better performance and higher efficiency. In this
section, we introduce such strategies in three groups; (1) strategies
for stabilizing the training processes of TNNs are presented in
Section 6.1, (2) strategies for selecting and searching the ranks of
TNNs are provided in Section 6.2, and (3) strategies for applying
hardware speedup are shown in Section 6.3.

6.1 Stable Training Approaches
Despite a variety of successes, TNNs still suffer from training
problems due to their multilinear characteristics. Compared to

14

6WDQGDUG�&RQYROXWLRQ +7.��&RQYROXWLRQ 2GG�&RQYROXWLRQ

Fig. 13: Three cases of unified TCNN initialization [114]. σ2 denotes the initial variance of each weight vertex. Gf denotes a forward
procedure, and Gb denotes a backward procedure. (i) Standard convolution. The method in [114] degenerates to Xavier/Kaiming
initialization on the standard convolution for the same weight variance formulation. (ii) Hyper Tucker-2 (HTK2) convolution. Tucker-2
(TK2) is a common TD that is utilized in ResNet as the bottleneck module [193]. HTK2 is formed by applying a hyperedge to the
weight vertices of TK2. (iii) Odd convolution. The odd TD was originally proposed by [194]. The connections among the vertices are
irregular, making weight initialization a complex problem. These three successful initialization cases can better demonstrate the potential
adaptability of unified initialization to diverse TCNNs.

simple linear operations such as matrix production, tensor con-
traction yields data flows with exponential scales, i.e., features
in forward propagation and gradients in backward propagation,
when modes linearly increase [114]. One solution is to utilize
the full-precision float64 format to denote large weights, which
can alleviate these numerical issues to some extent. However, a
full-precision format can result in more calculations and higher
time consumption compared to a lower-precision format, e.g.,
float16. Nevertheless, low precision may cause numerical stability
issues. To solve these problems, Panagakis et al. [113] proposed a
mixed-precision strategy to form a tradeoff. This dynamic precision
strategy is efficient in reducing memory occupation and promotes
training stability.

Another feasible way to solve the training problem lies
in developing a suitable initialization.Commonly used adaptive
initialization methods include Xavier [195] initialization and
Kaiming [196] initialization, which regulate the variances of the
data flows in layers. However, these two initializations cannot
calculate the correct scales of TNNs to neglect interactions in tensor
contractions. Furthermore, tensor formats are different from each
other, causing difficulty in developing a general fitting initialization
for diverse tensorial layers. To solve these two problems, Yu
initialization [114] proposed a unified initialization paradigm
based on Xavier to adaptively initialize for arbitrary TCNNs.
Specifically, Pan et al. extracted a backbone graph (BG) from a
tensorial convolution hypergraph [61] and then encoded an arbitrary
TCNN into an adjacency matrix with this BG. Finally, a suitable
initial variance for a TCNN can be directly calculated through
the adjacency matrix. We illustrate three cases of using unified
initializations in Fig. 13. Although Yu initialization was proposed
for TCNNs, it can also be widely used in other NNs, including
CNNs, RNNs, and Transformers, since these models basic layers,
i.e., convolutional and linear layers, belong to the scope of TCNNs.

6.2 Rank Selection and Search
Prior studies [67], [69], [79] focused on finding efficient TN formats
(e.g., TTs and TRs) for compressing NNs and achieve significant
efficiency for their natural compact structures. However, despite
these remarkable successes, efficient algorithms for adjusting or
selecting suitable ranks for a TN are lacking since rank selection is
an NP-hard problem [153]. As a result, many approaches [64], [68],
[69], [77] can only set values for all ranks manually, which severely
affects the resulting models’ training procedures. Fortunately, the

rank selection problem can still be optimized through heuristic
strategies, such as Bayesian optimization [118], reinforcement
learning (RL) [116] and evolutionary algorithms (EAs) [115]. Here,
we introduce some rank selection methods for TNNs.

DNNs utilize neural architecture search (NAS) [197] to search
for the optimal network hyperparameters, achieving significant
success. As ranks can be treated as architecture hyperparameters,
NAS is applicable to searching for optimal tensorial layers with
better rank settings. Following this idea, the progressive searching
TR network (PSTRN) [115] employs NAS with an EA to select
suitable ranks for a TR network (TRN). In detail, the PSTRN
employs a heuristic hypothesis for searching: “when a shape-fixed
TRN performs well, part or all of its rank elements are sensitive, and
each of them tends to aggregate in a narrow region, which is called
an interest region”. Instructed by the interest region hypothesis,
the PSTRN can reach the optimal point with a higher probability
than a plain EA method. The PSTRN consists of an evolutionary
phase and a progressive phase. During the evolutionary phase, this
method validates the ranks in the search space on benchmarks
and picks the rank that yields the best performance. Then, in
the progressive phase, the PSTRN samples new ranks around the
previously picked rank and inserts them into a new search space.
After several rounds, the heuristic EA can find a high-performance
solution. With such an efficient design, the PSTRN successfully
achieves better performance than hand-setting, which demonstrates
that its hypothesis is practical.

In addition to NAS, some other efficient methods are also
available for rank selection. Zhao et al. [117] inferred a CP
rank by implementing a reduction process on a large rank value
via a variational Bayesian optimization procedure. Hawkins and
Zhang [118] extended this CP procedure [117] to TT-based TNNs
and adopted the Stein variational gradient descent method, which
combines the flexibility of the Markov chain Monte Carlo (MCMC)
approach with the speed of variational Bayesian inference to
construct a Bayesian optimization method. In pretrained networks,
Kim et al. [120] and Gusak et al. [121] derive approximate ranks by
employing Bayesian matrix factorization (BMF) [198] to unfolding
weight tensors. Unlike Bayesian methods, Cheng et al. [116] treated
the rank searching task as a game process whose search space was
irregular, thus applying RL to find comparably suitable ranks for
a trained CNN. However, this algorithm is TD-dependent, which
indicates that its performance may be influenced by the selected
TD method. Yin et al. [119] leveraged the alternating direction

15

method of multipliers (ADMM) to gradually transfer the original
weight to a low-rank representation (i.e., a TT).

6.3 Hardware Speedup
Accelerating the training and inference procedures of TNNs can
benefit resource consumption and experimental adjustment, thereby
achieving economic gains and green research. A direct and effective
approach is to optimize the speed of tensor operations in TNNs
to realize hardware acceleration. As inferring TT-format TNNs
inevitably results in enormous quantities of redundant calculations,
the TIE scheme [122] was proposed to accelerate TT layers
by splitting the working SRAM into numerous groups with
a well-designed data selection mechanism. Huang et al. [123]
designed a parallel computation scheme with higher I/O bandwidth,
improving the speed of tensor contractions. Later, they proposed an
LTNN [123] to map TT-format TNNs into a 3D accelerator based
on CMOS-RRAM, leading to significantly increased bandwidth via
vertical I/O connections. As a result, they simultaneously attained
high throughput and low power consumption for TNNs. Recently,
Qu et al. [124] proposed a spatial 2D processing element (PE) array
architecture and built a hardware TT engine consisting of off-chip
DRAM. Kao et al. [125] proposed an energy-efficient hardware
accelerator for CP convolution with a mixing method that combines
the Walsh-Hadamard transform and the discrete cosine transform.

Many more fascinating methods have been developed for the
acceleration of generic tensor operations, which are correlated
with TNNs. For instance, Huang et al. [199] observed that the
tensor matricization operation is usually resource-consuming since
its DRAM access is built on a random reading address; thus,
they proposed a tensor storage scheme with a sequential address
design for better DRAM accessibility. Both T2s-tensor [200] and
Tensaurus [201] mainly focus on designing general computation
kernels for dense and sparse tensor data. Xie et al. [149] and Liang
et al. [202] accelerated search procedures for obtaining an optimal
sequence of tensor contractions. Xie et al. [149] solved the massive
computational complexity problem of double-layer TN contraction
in quantum analysis and mapped such a double-layer TN onto
an intersected single-layer TN. Liang et al. [202] implemented
multithread optimization to improve the parallelism of contractions.
Fawzi et al. [203] also illustrated the potential of RL to build
efficient universal tensor operations. In the future, it is expected
that more general hardware acceleration schemes based on tensor
operations will be developed to implement TNNs with smaller
storage and time consumption levels.

Remark. The comments are divided into three parts. (1) To
achieve training stability, it is possible to borrow ideas concerning
identity transition maintenance to construct more stable initializa-
tions. In addition, it is also feasible to add adversarial examples
to enhance network robustness. (2) Rank search is important for
further improving the performance of TNNs. However, as it is an
NP-hard problem, rank search has not been sufficiently explored.
In the future, suitable ranks can be searched through the guidance
of gradient sizes and EAs in searching for TNN architectures. (3)
Last, research on hardware has derived some success in terms of
speed acceleration and memory reduction. However, these methods
are almost ad hoc designs for specific TD formats, so they lack
applicability to other TNN structures.

7 TNN TOOLBOXES

In 1973, Pereyra and Scherer [204], as pioneers in this field,
developed a programming technique for basic tensor operations.

Recently, with the development of modern computers, many more
basic tensor operation toolboxes have been developed, and a series
of powerful TNN toolboxes have also been proposed for both
network compression and quantum circuit simulation, which are
the two main applications of TNNs. In this section, toolboxes
for TNNs are presented in three categories according to their
design purposes: (1) toolboxes for basic tensor operations contain
important and fundamental operations (e.g., tensor contraction and
permutation) in TNNs (Section 7.1); (2) toolboxes for network
compression are high-level TNN architecture toolboxes based on
other basic operation tools (Section 7.2); and (3) toolboxes for
quantum circuit simulation are software packages for the quantum
circuit simulation or quantum machine learning processes that use
TNs from a quantum perspective (Section 7.3).

7.1 Toolboxes for Basic Tensor Operations
Toolboxes for basic tensor operations aim to implement some
specific TD algorithms. Many basic tensor toolboxes based on
different programming languages and backends have been designed
for this purpose. For example, The online stochastic framework for
TD (OSTD) [130] and Tensor Toolbox [128] were constructed for
low-rank decomposition and implemented with MATLAB. Regard-
ing Python-based toolboxes, TensorTools based on NumPy [205]
implements CP only, while T3F [136] was explicitly designed
for TT decomposition on TensorFlow [206]. Similarly, based on
TensorFlow, TensorD [131] supports CP and Tucker decomposition.
Tntorch [133] is a PyTorch-based library for tensor modeling in the
CP, Tucker and TT formats. TorchMPS [134], TT-Toolbox [132]
and Scikit-TT [138] are all powerful Python-based specific TT
solvers that efficiently implement the DMRG algorithm. Tensorly
is a powerful general TD library that supports many decomposition
formats and various Python backends including CuPy, Pytorch,
TensorFlow and MXNet [207]. TensorNetwork [137] is a powerful
general-purpose TN library that supports a variety of Python
backends, including JAX, TensorFlow, PyTorch and NumPy.
In addition, some toolboxes based on C++ are also available.
TenDeC++ [208] leverages a unique pointer technology called
PointerDeformer in C++ to support the efficient computation of
TD functions. ITensor [135] is an efficient and flexible C++ library
for general TN calculations.

7.2 Toolboxes for Network Compression
Specific TNN toolboxes are used to assist with the development of
tensorial layers. Although some general tensor toolboxes such as
Tensorly [126] are powerful for TD processing and can use their TD
operations to help initialize TNN modules to a certain extent, they
still lack support for application programming interfaces (APIs) for
building TNNs directly. Therefore, a TNN library (Tensorly-Torch)
based on Tensorly was developed to build some tensor layers
within any PyTorch network. Pan et al. also developed a powerful
TNN library called TedNet [64]. TedNet can quickly set up TNN
layers by directly calling the API. In addition, TedNet supports the
construction of TCNNs and TRNNs in single lines of code.

7.3 Toolboxes for Quantum Circuit Simulation
A number of quantum circuit simulation toolboxes have been
designed. For example, some TT toolboxes such as Scikit-TT and
TorchMPS can partially simulate quantum circuits to some extent,
although they were not specifically designed for quantum circuit

16

simulation. In contrast, general TN toolboxes, e.g., TensorNetwork
and ITensor, can simulate any quantum circuit. In addition, with
optimized tensor contraction, TeD-Q [141], a TN-enhanced open-
source software framework for quantum machine learning, enables
the simulation of large quantum circuits. Furthermore, Yao [139], an
extensible and efficient library for designing quantum algorithms,
can provide support for dumping a quantum circuit into a TN.
Although no practical implementations of quantum TNNs are
available, these quantum circuit simulations are potentially useful
for the simulation of quantum TNNs.

Remark. Despite the success of current toolboxes, some
areas for improvement remain. (1) Existing basic tensor operation
toolboxes are built using high-level software frameworks, limiting
their ability to fully utilize the inherent capability of tensor
computations. (2) Existing deep model implementation toolboxes
for TNNs can only contain a limited number of predefined TNN
structures and cannot allow users to design structures freely.
(3) Existing quantum simulation toolboxes focus more on the
simulation of quantum circuits using TNs and do not facilitate the
processing of embedded quantum data via TNNs.

8 CONCLUSION AND FUTURE PROSPECTS

This survey embraces the connection between TNs and NNs,
summarizing the techniques for compressing NN parameters,
modeling the interactions between different dimensions of data,
and bridging QNNs with classic NNs. As previously noted, TNNs
have considerable strengths and immense potential, making them
applicable in many areas. In the future, research on TNNs can
benefit from the optimization and implementation of tensor-friendly
hardware; we believe that TNNs will have large impacts on studies
involving quantum physics and quantum computers.

Acceleration based on hardware design. Although many
TNNs have low calculation complexity levels in theory, realistic
hardware deployments usually fall short of this objective due
to their numerous permutation operations [64] and the absence
of sufficient parallelism [123]. Efficient hardware and matching
software for universal tensor acceleration or TNN acceleration can
be developed. As mentioned in Section 6.3, the existing tensor
acceleration software and hardware structures are all aimed at
certain TN structures or are based on parallel matrix acceleration.
The acceleration of general TN operations is necessary and urgent
for the implementation of TNNs.

Applications in quantum physics. In some specific physical
applications that need to deal with large-scale tensors, such as
wave function simulation [209], specifically designed TNNs can be
studied to efficiently solve these problems involving higher-order
interactions. Inspired by the universal approximation theorem, some
simple NNs have been adopted in wave function simulation tasks,
such as free boson and fermion systems [210]. However, because
of the curse of dimensionality, simple NNs are difficult to apply in
extremely large-scale wave function simulation tasks, and TNNs
can easily handle tasks with large-scale tensor as a result of the
compact nature of TNs.

Implementations in quantum mechanics. The existing TNNs
mainly adopt the mathematical forms of TNs and seldom consider
the physical properties of the quantum systems described by these
TNs [12], [113]. Since TNNs are highly related to quantum circuit
structures, it is possible to obtain more efficient and effective
TNNs by applying the concepts and theory of TNs in quantum
mechanics. For example, optimizing and interpreting TNNs from

the perspective of entanglement entropy theory [211] could be a
meaningful direction for producing interpretable and efficient NNs.

ACKNOWLEDGMENTS

This paper was partially supported by National Key Research and
Development Program of China (No. 2018AAA0100204), a key
program of fundamental research from Shenzhen Science and Tech-
nology Innovation Commission (No. JCYJ20200109113403826),
and the Major Key Project of PCL (No. PCL2021A06).

REFERENCES

[1] D. Cyganski and J. A. Orr, “Applications of tensor theory to object
recognition and orientation determination,” IEEE Trans. PAMI, no. 6, pp.
662–673, 1985.

[2] P. Koniusz, L. Wang, and A. Cherian, “Tensor representations for action
recognition,” IEEE Trans. PAMI, vol. 44, no. 2, pp. 648–665, 2021.

[3] J. Tang, X. Shu, Z. Li, Y.-G. Jiang, and Q. Tian, “Social anchor-unit
graph regularized tensor completion for large-scale image retagging,”
IEEE Trans. PAMI, vol. 41, no. 8, pp. 2027–2034, 2019.

[4] J. Tang, X. Shu, G.-J. Qi, Z. Li, M. Wang, S. Yan, and R. Jain, “Tri-
clustered tensor completion for social-aware image tag refinement,” IEEE
Trans. PAMI, vol. 39, no. 8, pp. 1662–1674, 2016.

[5] I. Davidson, S. Gilpin, O. Carmichael, and P. Walker, “Network discovery
via constrained tensor analysis of fmri data,” in ACM SIGKDD, 2013.

[6] E. Acar, Y. Levin-Schwartz, V. D. Calhoun, and T. Adali, “Tensor-
based fusion of EEG and fMRI to understand neurological changes in
schizophrenia,” in ISCAS. IEEE, 2017.

[7] K. Keegan, T. Vishwanath, and Y. Xu, “A tensor SVD-based classification
algorithm applied to fMRI data,” arXiv preprint arXiv:2111.00587, 2021.

[8] J. Biamonte and V. Bergholm, “Tensor networks in a nutshell,” arXiv
preprint arXiv:1708.00006, 2017.

[9] T. Huckle, K. Waldherr, and T. Schulte-Herbrüggen, “Computations in
quantum tensor networks,” Linear Algebra and its Applications, vol. 438,
no. 2, pp. 750–781, 2013.

[10] X. Chen, Z. He, and L. Sun, “A bayesian tensor decomposition approach
for spatiotemporal traffic data imputation,” Transportation research part
C: emerging technologies, vol. 98, pp. 73–84, 2019.

[11] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic
et al., “Tensor networks for dimensionality reduction and large-scale
optimization: Part 1 low-rank tensor decompositions,” Foundations and
Trends® in Machine Learning, vol. 9, no. 4-5, pp. 249–429, 2016.

[12] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama,
D. P. Mandic et al., “Tensor networks for dimensionality reduction and
large-scale optimization: Part 2 applications and future perspectives,”
Foundations and Trends® in Machine Learning, vol. 9, no. 6, pp. 431–
673, 2017.

[13] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an "explanatory" multi-modal factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[14] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an N-way generalization of “Eckart-Young”
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[15] H. A. Kiers, “Towards a standardized notation and terminology in multi-
way analysis,” Journal of Chemometrics: A Journal of the Chemometrics
Society, vol. 14, no. 3, pp. 105–122, 2000.

[16] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[17] ——, “Implications of factor analysis of three-way matrices for measure-
ment of change,” Problems in measuring change, vol. 15, pp. 122–137,
1963.

[18] L. De Lathauwer, “Decompositions of a higher-order tensor in block
terms—part I: Lemmas for partitioned matrices,” SIAM Journal on
Matrix Analysis and Applications, vol. 30, no. 3, pp. 1022–1032, 2008.

[19] ——, “Decompositions of a higher-order tensor in block terms—part
II: Definitions and uniqueness,” SIAM Journal on Matrix Analysis and
Applications, vol. 30, no. 3, pp. 1033–1066, 2008.

[20] L. De Lathauwer and D. Nion, “Decompositions of a higher-order tensor
in block terms—part III: Alternating least squares algorithms,” SIAM
journal on Matrix Analysis and Applications, vol. 30, no. 3, pp. 1067–
1083, 2008.

[21] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

17

[22] A. Cichocki, “Era of big data processing: A new approach via tensor
networks and tensor decompositions,” arXiv preprint arXiv:1403.2048,
2014.

[23] D. Perez-García, F. Verstraete, M. M. Wolf, and J. I. Cirac, “Matrix
product state representations,” Quantum Information and Computation,
vol. 7, no. 5-6, pp. 401–430, 2007.

[24] F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected
entangled pair states, and variational renormalization group methods for
quantum spin systems,” Advances in Physics, vol. 57, no. 2, pp. 143–224,
2008.

[25] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring
decomposition,” arXiv preprint arXiv:1606.05535, 2016.

[26] D. Kressner and C. Tobler, “htucker—a MATLAB toolbox for tensors in
hierarchical Tucker format,” Mathicse, EPF Lausanne, 2012.

[27] F. Verstraete and J. I. Cirac, “Renormalization algorithms for quantum-
many body systems in two and higher dimensions,” arXiv preprint
cond-mat/0407066, 2004.

[28] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, “Computational
complexity of projected entangled pair states,” Physical review letters,
vol. 98, no. 14, p. 140506, 2007.

[29] A. Milsted and G. Vidal, “Geometric interpretation of the multi-scale
entanglement renormalization ansatz,” arXiv preprint arXiv:1812.00529,
2018.

[30] F. Pan and P. Zhang, “Simulation of quantum circuits using the big-batch
tensor network method,” Physical Review Letters, vol. 128, no. 3, p.
030501, 2022.

[31] Z. Zhang, G. I. Allen, H. Zhu, and D. Dunson, “Tensor network
factorizations: Relationships between brain structural connectomes and
traits,” Neuroimage, vol. 197, pp. 330–343, 2019.

[32] S. Sharma and A. Alavi, “Multireference linearized coupled cluster
theory for strongly correlated systems using matrix product states,” The
Journal of chemical physics, vol. 143, no. 10, p. 102815, 2015.

[33] X. Cao, X. Wei, Y. Han, and D. Lin, “Robust face clustering via tensor
decomposition,” IEEE transactions on cybernetics, vol. 45, no. 11, pp.
2546–2557, 2014.

[34] A. Zare, A. Ozdemir, M. A. Iwen, and S. Aviyente, “Extension of
pca to higher order data structures: An introduction to tensors, tensor
decompositions, and tensor PCA,” Proceedings of the IEEE, vol. 106,
no. 8, pp. 1341–1358, 2018.

[35] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. PAMI, vol. 35,
no. 1, pp. 208–220, 2012.

[36] Z. Xu, F. Yan, and Y. Qi, “Bayesian nonparametric models for multiway
data analysis,” IEEE Trans. PAMI, vol. 37, no. 2, pp. 475–487, 2015.

[37] J. Zhang, X. Li, P. Jing, J. Liu, and Y. Su, “Low-rank regularized
heterogeneous tensor decomposition for subspace clustering,” IEEE
Signal Processing Letters, vol. 25, no. 3, pp. 333–337, 2017.

[38] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[39] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[40] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[41] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[42] G. E. Hinton, “A practical guide to training restricted Boltzmann
machines,” in Neural networks: Tricks of the trade. Springer, 2012, pp.
599–619.

[43] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, 2017.

[44] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, “Attention-based
bidirectional long short-term memory networks for relation classification,”
in ACL, 2016.

[45] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (GRU)
neural networks,” in MWSCAS, 2017.

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS,
2017.

[47] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT, 2019.

[48] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” in ICLR, 2020.

[49] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s trans-
formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in NeurIPS, 2012.

[51] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
CVPR, 2015.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[54] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “ImageNet large scale visual
recognition challenge,” International Journal of Computer Vision, vol.
115, no. 3, pp. 211–252, 2015.

[55] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko et al., “Highly
accurate protein structure prediction with AlphaFold,” Nature, vol. 596,
no. 7873, pp. 583–589, 2021.

[56] M. van Breugel, I. Rosa e Silva, and A. Andreeva, “Structural validation
and assessment of AlphaFold2 predictions for centrosomal and centriolar
proteins and their complexes,” Communications Biology, vol. 5, no. 1,
pp. 1–10, 2022.

[57] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černockỳ, “Strategies
for training large scale neural network language models,” in 2011 IEEE
Workshop on Automatic Speech Recognition & Understanding. IEEE,
2011, pp. 196–201.

[58] M. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey, “Deep learning of
the tissue-regulated splicing code,” Bioinformatics, vol. 30, no. 12, pp.
i121–i129, 2014.

[59] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The
rise of deep learning in drug discovery,” Drug discovery today, vol. 23,
no. 6, pp. 1241–1250, 2018.

[60] Y. Zhou, E. Lentz, H. Michelson, C. Kim, and K. Baylis, “Machine
learning for food security: Principles for transparency and usability,”
Applied Economic Perspectives and Policy, vol. 44, no. 2, pp. 893–910,
2022.

[61] K. Hayashi, T. Yamaguchi, Y. Sugawara, and S. Maeda, “Exploring
unexplored tensor network decompositions for convolutional neural
networks,” in NeurIPS, 2019.

[62] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” in ICLR, 2015.

[63] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in NeurIPS, 2014, pp. 1269–1277.

[64] Y. Pan, M. Wang, and Z. Xu, “Tednet: A Pytorch toolkit for tensor
decomposition networks,” Neurocomputing, vol. 469, pp. 234–238, 2022.

[65] Y. Liu and M. K. Ng, “Deep neural network compression by Tucker
decomposition with nonlinear response,” Knowledge-Based Systems,
2022.

[66] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov, “Ultimate
tensorization: compressing convolutional and fc layers alike,” arXiv
preprint arXiv:1611.03214, 2016.

[67] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in NeurIPS, 2015.

[68] W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Aggarwal, “Wide
compression: Tensor ring nets,” in CVPR, 2018, pp. 9329–9338.

[69] J. Ye, G. Li, D. Chen, H. Yang, S. Zhe, and Z. Xu, “Block-term
tensor neural networks.” Neural Networks: the Official Journal of the
International Neural Network Society, vol. 130, pp. 11–21, 2020.

[70] J. Kossaifi, A. Khanna, Z. Lipton, T. Furlanello, and A. Anandkumar,
“Tensor contraction layers for parsimonious deep nets,” in CVPR
Workshops, 2017.

[71] J. Kossaifi, Z. C. Lipton, A. Kolbeinsson, A. Khanna, T. Furlanello, and
A. Anandkumar, “Tensor regression networks,” J. Mach. Learn. Res.,
vol. 21, no. 123, pp. 1–21, 2020.

[72] B. Wu, D. Wang, G. Zhao, L. Deng, and G. Li, “Hybrid tensor
decomposition in neural network compression,” Neural Networks, vol.
132, pp. 309–320, 2020.

[73] J. Kossaifi, A. Bulat, G. Tzimiropoulos, and M. Pantic, “T-net:
Parametrizing fully convolutional nets with a single high-order tensor,”
in CVPR, 2019.

[74] Y. Yang and T. Hospedales, “Deep multi-task representation learning: A
tensor factorisation approach,” in ICLR, 2017.

18

[75] M. Wang, Z. Su, X. Luo, Y. Pan, S. Zheng, and Z. Xu, “Concatenated
tensor networks for deep multi-task learning,” in ICONIP, 2020.

[76] J. Kossaifi, A. Toisoul, A. Bulat, Y. Panagakis, T. M. Hospedales, and
M. Pantic, “Factorized higher-order cnns with an application to spatio-
temporal emotion estimation,” in CVPR, 2020.

[77] Y. Yang, D. Krompass, and V. Tresp, “Tensor-Train recurrent neural
networks for video classification,” in ICML, 2017.

[78] J. Ye, L. Wang, G. Li, D. Chen, S. Zhe, X. Chu, and Z. Xu,
“Learning compact recurrent neural networks with block-term tensor
decomposition,” in CVPR, 2018.

[79] Y. Pan, J. Xu, M. Wang, J. Ye, F. Wang, K. Bai, and Z. Xu, “Compressing
recurrent neural networks with tensor ring for action recognition,” in
AAAI, 2019.

[80] M. Yin, S. Liao, X. Liu, X. Wang, and B. Yuan, “Towards extremely
compact rnns for video recognition with fully decomposed hierarchical
tucker structure,” in CVPR, 2021.

[81] C. Jose, M. Cissé, and F. Fleuret, “Kronecker recurrent units,” in ICML,
2018.

[82] A. Tjandra, S. Sakti, and S. Nakamura, “Recurrent neural network
compression based on low-rank tensor representation,” IEICE Trans. Inf.
Syst., vol. 103-D, no. 2, pp. 435–449, 2020.

[83] D. Wang, B. Wu, G.-S. Zhao, H. Chen, L. Deng, T. Yan, and G. Li,
“Kronecker cp decomposition with fast multiplication for compressing
rnns,” IEEE Trans. NNLS, vol. PP, 2021.

[84] J. Su, W. Byeon, J. Kossaifi, F. Huang, J. Kautz, and A. Anandkumar,
“Convolutional tensor-train LSTM for spatio-temporal learning,” in
NeurIPS, 2020.

[85] X. Ma, P. Zhang, S. Zhang, N. Duan, Y. Hou, M. Zhou, and D. Song, “A
tensorized transformer for language modeling,” NeurIPS, 2019.

[86] P. Liu, Z. Gao, W. X. Zhao, Z. Xie, Z. Lu, and J. Wen, “Enabling
lightweight fine-tuning for pre-trained language model compression
based on matrix product operators,” in ACL/IJCNLP, 2021.

[87] X. Liu, J. Su, and F. Huang, “Tuformer: Data-driven design of expressive
transformer by Tucker tensor representation,” in ICLR, 2022.

[88] B. Wang, Y. Ren, L. Shang, X. Jiang, and Q. Liu, “Exploring extreme
parameter compression for pre-trained language models,” in ICLR, 2022.

[89] L. Sunzhu, Z. Peng, G. Guobing, L. Xiuqing, W. Benyou, W. Junqiu,
and J. Xin, “Hypoformer: Hybrid decomposition transformer for edge-
friendly neural machine translation,” EMNLP, 2022.

[90] C. Hua, G. Rabusseau, and J. Tang, “High-order pooling for graph neural
networks with tensor decomposition,” NeurIPS, 2022.

[91] P. Baghershahi, R. Hosseini, and H. Moradi, “Efficient relation-aware
neighborhood aggregation in graph neural networks via tensor decompo-
sition,” arXiv preprint arXiv:2212.05581, 2022.

[92] C. Jia, B. Wu, and X.-P. Zhang, “Dynamic spatiotemporal graph neural
network with tensor network,” arXiv preprint arXiv:2003.08729, 2020.

[93] F. Ju, Y. Sun, J. Gao, M. Antolovich, J. Dong, and B. Yin, “Tensorizing
restricted Boltzmann machine,” ACM Transactions on Knowledge
Discovery from Data, vol. 13, no. 3, pp. 1–16, 2019.

[94] M. Wang, C. Zhang, Y. Pan, J. Xu, and Z. Xu, “Tensor ring restricted
Boltzmann machines,” in IJCNN, 2019.

[95] T. D. Nguyen, T. Tran, D. Phung, and S. Venkatesh, “Tensor-variate
restricted Boltzmann machines,” in AAAI, 2015.

[96] G. Qi, Y. Sun, J. Gao, Y. Hu, and J. Li, “Matrix variate restricted
Boltzmann machine,” in IJCNN, 2016.

[97] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency, “Tensor
fusion network for multimodal sentiment analysis,” in EMNLP, 2017.

[98] S. Rendle, “Factorization machines,” in ICDM, 2010.
[99] Z. Liu, Y. Shen, V. B. Lakshminarasimhan, P. P. Liang, A. B. Zadeh,

and L.-P. Morency, “Efficient low-rank multimodal fusion with modality-
specific factors,” in ACL, 2018.

[100] M. Hou, J. Tang, J. Zhang, W. Kong, and Q. Zhao, “Deep multimodal
multilinear fusion with high-order polynomial pooling,” NeurIPS, 2019.

[101] H. Ben-Younes, R. Cadene, M. Cord, and N. Thome, “Mutan: Multi-
modal Tucker fusion for visual question answering,” in ICCV, 2017.

[102] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach,
“Multimodal compact bilinear pooling for visual question answering and
visual grounding,” in EMNLP, 2016.

[103] J.-H. Kim, K.-W. On, W. Lim, J. Kim, J.-W. Ha, and B.-T. Zhang,
“Hadamard product for low-rank bilinear pooling,” arXiv preprint
arXiv:1610.04325, 2016.

[104] T. Do, T.-T. Do, H. Tran, E. Tjiputra, and Q. D. Tran, “Compact trilinear
interaction for visual question answering,” in ICCV, 2019.

[105] E. Stoudenmire and D. J. Schwab, “Supervised learning with tensor
networks,” NeurIPS, 2016.

[106] Q. Li, B. Wang, and M. Melucci, “CNM: An interpretable complex-
valued network for matching,” in NAACL, 2019.

[107] P. Zhang, Z. Su, L. Zhang, B. Wang, and D. Song, “A quantum many-
body wave function inspired language modeling approach,” in CIKM,
2018.

[108] J. Miller, G. Rabusseau, and J. Terilla, “Tensor networks for probabilistic
sequence modeling,” in AISTATS, 2021.

[109] S. Cheng, L. Wang, T. Xiang, and P. Zhang, “Tree tensor networks for
generative modeling,” Physical Review B, vol. 99, no. 15, p. 155131,
2019.

[110] I. Glasser, R. Sweke, N. Pancotti, J. Eisert, and I. Cirac, “Expressive
power of tensor-network factorizations for probabilistic modeling,”
NeurIPS, 2019.

[111] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of deep
learning: A tensor analysis,” in COLT, 2016.

[112] L. Zhang, P. Zhang, X. Ma, S. Gu, Z. Su, and D. Song, “A generalized
language model in tensor space,” in AAAI, 2019.

[113] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield, M. A. Nicolaou,
A. Anandkumar, and S. Zafeiriou, “Tensor methods in computer vision
and deep learning,” Proc. IEEE, vol. 109, no. 5, pp. 863–890, 2021.

[114] Y. Pan, Z. Su, A. Liu, J. Wang, N. Li, and Z. Xu, “A unified weight
initialization paradigm for tensorial convolutional neural networks,” in
ICML, 2022.

[115] N. Li, Y. Pan, Y. Chen, Z. Ding, D. Zhao, and Z. Xu, “Heuristic rank
selection with progressively searching tensor ring network,” Complex &
Intelligent Systems, pp. 1–15, 2021.

[116] Z. Cheng, B. Li, Y. Fan, and Y. Bao, “A novel rank selection scheme
in tensor ring decomposition based on reinforcement learning for deep
neural networks,” in ICASSP, 2020.

[117] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of
incomplete tensors with automatic rank determination,” IEEE Trans.
PAMI, vol. 37, no. 9, pp. 1751–1763, 2015.

[118] C. Hawkins and Z. Zhang, “Bayesian tensorized neural networks with
automatic rank selection,” Neurocomputing, vol. 453, pp. 172–180, 2021.

[119] M. Yin, Y. Sui, S. Liao, and B. Yuan, “Towards efficient tensor
decomposition-based DNN model compression with optimization frame-
work,” in CVPR, 2021.

[120] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” in ICLR, 2016.

[121] J. Gusak, M. Kholyavchenko, E. Ponomarev, L. Markeeva,
P. Blagoveschensky, A. Cichocki, and I. V. Oseledets, “Automated multi-
stage compression of neural networks,” in ICCV Workshops, 2019.

[122] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “TIE: energy-
efficient tensor train-based inference engine for deep neural network,” in
ISCA, 2019.

[123] H. Huang, L. Ni, and H. Yu, “LTNN: An energy-efficient machine
learning accelerator on 3d cmos-rram for layer-wise tensorized neural
network,” in SOCC, 2017.

[124] Z. Qu, L. Deng, B. Wang, H. Chen, J. Lin, L. Liang, G. Li, Z. Zhang, and
Y. Xie, “Hardware-enabled efficient data processing with tensor-train
decomposition,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 41, no. 2, pp. 372–385, 2022.

[125] C. Kao, Y. Hsieh, C. Chen, and C. Yang, “Hardware acceleration in
large-scale tensor decomposition for neural network compression,” in
MWSCAS, 2022.

[126] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, “Tensorly:
Tensor learning in python,” J. Mach. Learn. Res., vol. 20, pp. 26:1–26:6,
2019.

[127] A. H. Williams, T. H. Kim, F. Wang, S. Vyas, S. I. Ryu, K. V. Shenoy,
M. Schnitzer, T. G. Kolda, and S. Ganguli, “Unsupervised discovery of
demixed, low-dimensional neural dynamics across multiple timescales
through tensor component analysis,” Neuron, vol. 98, no. 6, pp. 1099–
1115, 2018.

[128] T. G. Kolda and B. W. Bader, “Matlab tensor toolbox,” Sandia National
Laboratories (SNL), Albuquerque, NM, and Livermore, CA, Tech. Rep.,
2006.

[129] J. Huang, L. Kong, X. Liu, W. Qu, and G. Chen, “A C++ library for
tensor decomposition,” in IPCCC, 2019.

[130] A. Sobral, S. Javed, S. K. Jung, T. Bouwmans, and E. Zahzah,
“Online stochastic tensor decomposition for background subtraction
in multispectral video sequences,” in ICCV Workshops, 2015.

[131] L. Hao, S. Liang, J. Ye, and Z. Xu, “TensorD: A tensor decomposition
library in tensorflow,” Neurocomputing, vol. 318, pp. 196–200, 2018.

[132] I. Oseledets, S. Dolgov, V. Kazeev, D. Savostyanov, O. Lebedeva,
P. Zhlobich, T. Mach, and L. Song, “TT-toolbox,” 2016.

[133] R. Ballester-Ripoll, “tntorch - tensor network learning with PyTorch,”
2018. [Online]. Available: https://github.com/rballester/tntorch

https://github.com/rballester/tntorch

19

[134] J. Miller, “TorchMPS,” 2019. [Online]. Available: https://github.com/
jemisjoky/torchmps

[135] M. Fishman, S. R. White, and E. M. Stoudenmire, “The ITensor software
library for tensor network calculations,” 2020.

[136] A. Novikov, P. Izmailov, V. Khrulkov, M. Figurnov, and I. V. Oseledets,
“Tensor train decomposition on tensorflow (T3F),” J. Mach. Learn. Res.,
vol. 21, pp. 30:1–30:7, 2020.

[137] C. Roberts, A. Milsted, M. Ganahl, A. Zalcman, B. Fontaine, Y. Zou,
J. Hidary, G. Vidal, and S. Leichenauer, “Tensornetwork: A library for
physics and machine learning,” arXiv preprint arXiv:1905.01330, 2019,
2019.

[138] P. Gel, S. Klus, M. Scherer, and F. Nske, “Scikit-TT tensor train toolbox,”
2018. [Online]. Available: https://github.com/PGelss/scikit$/_$tt

[139] X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang, “Yao. jl: Extensible,
efficient framework for quantum algorithm design,” Quantum, vol. 4, p.
341, 2020.

[140] D. Kartsaklis, I. Fan, R. Yeung, A. Pearson, R. Lorenz, A. Toumi,
G. de Felice, K. Meichanetzidis, S. Clark, and B. Coecke, “lambeq:
An efficient high-level python library for quantum nlp,” arXiv preprint
arXiv:2110.04236, 2021.

[141] J. E. Academy, “Tensor-network enhanced distributed quantum,” 2022.
[Online]. Available: https://github.com/JDEA-Quantum-Lab/TeD-Q

[142] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and
D. Parikh, “Vqa: Visual question answering,” in ICCV, 2015.

[143] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner,
“The power of quantum neural networks,” Nature Computational Science,
vol. 1, no. 6, pp. 403–409, 2021.

[144] S. C. Kak, “Quantum neural computing,” Advances in imaging and
electron physics, vol. 94, pp. 259–313, 1995.

[145] W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, and E. M. Stoudenmire,
“Towards quantum machine learning with tensor networks,” Quantum
Science and technology, vol. 4, no. 2, p. 024001, 2019.

[146] Z. Xu, F. Yan, and Y. Qi, “Infinite Tucker decomposition: nonparametric
bayesian models for multiway data analysis,” in ICML, 2012.

[147] S. Zhe, Y. Qi, Y. Park, Z. Xu, I. Molloy, and S. Chari, “Dintucker:
Scaling up gaussian process models on large multidimensional arrays,”
in AAAI, 2016.

[148] R. Penrose, “Applications of negative dimensional tensors,” Combinato-
rial mathematics and its applications, vol. 1, pp. 221–244, 1971.

[149] Z. Xie, H. Liao, R. Huang, H. Xie, J. Chen, Z. Liu, and T. Xiang,
“Optimized contraction scheme for tensor-network states,” Physical
Review B, vol. 96, no. 4, p. 045128, 2017.

[150] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[151] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[152] U. Schollwöck, “Matrix product state algorithms: DMRG, TEBD and
relatives,” in Strongly Correlated Systems. Springer, 2013, pp. 67–98.

[153] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” Journal
of the ACM, vol. 60, no. 6, pp. 1–39, 2013.

[154] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[155] U. Schollwöck, “The density-matrix renormalization group in the age of
matrix product states,” Annals of Physics, vol. 326, no. 1, pp. 96–192,
2011.

[156] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, “Matrix product operator
representations,” New Journal of Physics, vol. 12, no. 2, p. 025012, 2010.

[157] H. Huang, Y. Liu, and C. Zhu, “Low-rank tensor grid for image
completion,” arXiv preprint arXiv:1903.04735, 2019.

[158] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in ECCV, 2014.

[159] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in CVPR, 2019, pp. 11 264–
11 272.

[160] E. D. Karnin, “A simple procedure for pruning back-propagation trained
neural networks,” IEEE Trans. Neural Networks, vol. 1, no. 2, pp. 239–
242, 1990.

[161] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and X. Hua,
“Quantization networks,” in CVPR, 2019.

[162] Y. Zhou, S. Moosavi-Dezfooli, N. Cheung, and P. Frossard, “Adaptive
quantization for deep neural network,” in AAAI, 2018.

[163] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[164] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu, “Tinybert: Distilling BERT for natural language understanding,”
in EMNLP, 2020.

[165] S. Chen, J. Zhou, W. Sun, and L. Huang, “Joint matrix decomposition
for deep convolutional neural networks compression,” arXiv preprint
arXiv:2107.04386, 2021.

[166] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-
hadran, “Low-rank matrix factorization for deep neural network training
with high-dimensional output targets,” in ICASSP, 2013.

[167] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[168] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, “Dy-
namical approximation by hierarchical Tucker and tensor-train tensors,”
SIAM Journal on Matrix Analysis and Applications, vol. 34, no. 2, pp.
470–494, 2013.

[169] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[170] C. Chen, K. Batselier, C.-Y. Ko, and N. Wong, “Matrix product operator
restricted Boltzmann machines,” in IJCNN, 2019.

[171] L. Morency, R. Mihalcea, and P. Doshi, “Towards multimodal sentiment
analysis: harvesting opinions from the web,” in ICMI, 2011.

[172] H. Wang, A. Meghawat, L. Morency, and E. P. Xing, “Select-additive
learning: Improving cross-individual generalization in multimodal senti-
ment analysis,” CoRR, vol. abs/1609.05244, 2016.

[173] G. G. Chrysos, S. Moschoglou, G. Bouritsas, J. Deng, Y. Panagakis, and
S. Zafeiriou, “Deep polynomial neural networks,” IEEE Trans. PAMI,
vol. 44, no. 8, pp. 4021–4034, 2021.

[174] J. D. Hidary and J. D. Hidary, Quantum computing: an applied approach.
Springer, 2021, vol. 1.

[175] N. Zettili, “Quantum mechanics: concepts and applications,” 2003.
[176] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A

Rydberg quantum simulator,” Nature Physics, vol. 6, no. 5, pp. 382–388,
2010.

[177] J. Eisert, M. Friesdorf, and C. Gogolin, “Quantum many-body systems
out of equilibrium,” Nature Physics, vol. 11, no. 2, pp. 124–130, 2015.

[178] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in FOCS, 1994.

[179] A. Steane, “Quantum computing,” Reports on Progress in Physics,
vol. 61, no. 2, p. 117, 1998.

[180] N. Cohen and A. Shashua, “Convolutional rectifier networks as general-
ized tensor decompositions,” in ICML, 2016.

[181] D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, no. 5234,
pp. 255–261, 1995.

[182] G. Gan, P. Zhang, S. Li, X. Lu, and B. Wang, “Morphte: Injecting
morphology in tensorized embeddings,” in NeurIPS, 2022.

[183] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, “Parameterized
quantum circuits as machine learning models,” Quantum Science and
Technology, vol. 4, no. 4, p. 043001, 2019.

[184] C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf, “Strictly
single-site DMRG algorithm with subspace expansion,” Physical Review
B, vol. 91, no. 15, p. 155115, 2015.

[185] Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, “Unsupervised
generative modeling using matrix product states,” Physical Review X,
vol. 8, no. 3, p. 031012, 2018.

[186] S. Cheng, L. Wang, and P. Zhang, “Supervised learning with projected
entangled pair states,” Physical Review B, vol. 103, no. 12, p. 125117,
2021.

[187] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[188] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[189] M. Born, “Quantenmechanik der stoßvorgänge,” Zeitschrift für physik,
vol. 38, no. 11, pp. 803–827, 1926.

[190] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial
on energy-based learning,” Predicting structured data, vol. 1, no. 0,
2006.

[191] J. P. Garrahan, “Classical stochastic dynamics and continuous matrix
product states: gauge transformations, conditioned and driven processes,
and equivalence of trajectory ensembles,” Journal of Statistical Mechan-
ics: Theory and Experiment, vol. 2016, no. 7, p. 073208, 2016.

[192] Y. Levine, O. Sharir, N. Cohen, and A. Shashua, “Quantum entanglement
in deep learning architectures,” Physical review letters, vol. 122, no. 6, p.
065301, 2019.

[193] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

https://github.com/jemisjoky/torchmps
https://github.com/jemisjoky/torchmps
https://github.com/PGelss/scikit$/_$tt
https://github.com/JDEA-Quantum-Lab/TeD-Q

20

[194] C. Li and Z. Sun, “Evolutionary topology search for tensor network
decomposition,” in ICML, 2020.

[195] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS, 2010.

[196] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on t classification,” in ICCV, 2015.

[197] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, no. 1, pp. 1997–2017, 2019.

[198] S. Nakajima, R. Tomioka, M. Sugiyama, and S. D. Babacan, “Perfect
dimensionality recovery by variational bayesian PCA,” in NeurIPS, 2012.

[199] L. Huang, C. Deng, S. Ibrahim, X. Fu, and B. Yuan, “VLSI hardware
architecture of stochastic low-rank tensor decomposition,” in ACSCC,
2021.

[200] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Albonesi,
V. Sarkar, W. Chen, P. Petersen et al., “T2S-Tensor: Productively gener-
ating high-performance spatial hardware for dense tensor computations,”
in FCCM, 2019.

[201] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor
computations,” in HPCA, 2020.

[202] L. Liang, J. Xu, L. Deng, M. Yan, X. Hu, Z. Zhang, G. Li, and Y. Xie,
“Fast search of the optimal contraction sequence in tensor networks,”
IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 3, pp.
574–586, 2021.

[203] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz
et al., “Discovering faster matrix multiplication algorithms with rein-
forcement learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.

[204] V. Pereyra and G. Scherer, “Efficient computer manipulation of tensor
products with applications to multidimensional approximation,” Mathe-
matics of Computation, vol. 27, no. 123, pp. 595–605, 1973.

[205] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array:
A structure for efficient numerical computation,” Comput. Sci. Eng.,
vol. 13, no. 2, pp. 22–30, 2011.

[206] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system
for large-scale machine learning,” in USENIX, K. Keeton and T. Roscoe,
Eds., 2016.

[207] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015, 2015.

[208] X. Liu, “TenDeC++: Tensor decomposition library in c++,” 2020.
[Online]. Available: https://github.com/osmint/TenDeC

[209] Z. Cai and J. Liu, “Approximating quantum many-body wave functions
using artificial neural networks,” Physical Review B, vol. 97, no. 3, p.
035116, 2018.

[210] K. Choo, G. Carleo, N. Regnault, and T. Neupert, “Symmetries and
many-body excitations with neural-network quantum states,” Physical
review letters, vol. 121, no. 16, p. 167204, 2018.

[211] H. He, Y. Zheng, B. A. Bernevig, and N. Regnault, “Entanglement
entropy from tensor network states for stabilizer codes,” Physical Review
B, vol. 97, no. 12, p. 125102, 2018.

https://github.com/osmint/TenDeC

	1 Introduction
	2 Tensor Basis
	2.1 Tensor Notations
	2.2 Tensor Diagrams
	2.2.1 Tensor Nodes
	2.2.2 Tensor Contraction
	2.2.3 Dummy Tensor
	2.2.4 Hyperedge
	2.2.5 Tensor Unfolding

	2.3 Tensor Decomposition Formats
	2.3.1 CANDECOMP/PARAFAC
	2.3.2 Tucker Decomposition
	2.3.3 BTT Decomposition
	2.3.4 TT Decomposition
	2.3.5 TR Decomposition
	2.3.6 HT Decomposition
	2.3.7 PEPS Decomposition

	3 Network Compression with TNNs
	3.1 TCNNs
	3.2 TRNNs
	3.3 Tensorial Transformers
	3.4 TGNNs
	3.5 Tensorial RBMs

	4 Information Fusion via TNNs
	4.1 Tensor Fusion Layer-Based Methods
	4.2 Multimodal Pooling-Based Methods

	5 Quantum Circuit Simulation with TNNs
	5.1 Quantum State Embedding for Classic Data
	5.2 Embedded Quantum Data Processing
	5.2.1 Supervised TN Models
	5.2.2 Unsupervised TN Models

	5.3 ConvAC Network

	6 Training Strategies for TNNs
	6.1 Stable Training Approaches
	6.2 Rank Selection and Search
	6.3 Hardware Speedup

	7 TNN Toolboxes
	7.1 Toolboxes for Basic Tensor Operations
	7.2 Toolboxes for Network Compression
	7.3 Toolboxes for Quantum Circuit Simulation

	8 Conclusion and Future Prospects
	References

