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Abstract—We respond to Tetlock et al. (2022) showing 1)
how expert judgment fails to reflect tail risk, 2) the lack of
compatibility between forecasting tournaments and tail risk
assessment methods (such as extreme value theory).More
importantly, we communicate a new result showing a
greater gap between the properties of tail expectation and
those of the corresponding probability.

I. THE FAT TAILS PROBLEM

Tetlock et al. (2022) [1], in their criticism of claims by a
paper titled ”On single point forecasts for fat-tailed variables”
in this journal (Taleb et al., 2022 [2]) insist that discriminating
between a binary probability and a continuous distribution is a
false dichotomy, that binary probabilities derived from expert
forecasting tournaments can provide information on tail risk,
in addition to some claims about a collaboration with the first
author and a ”challenge”.

We apologize for not answering most of their points as these
are already amply covered in two papers in this very journal,
which includes the one they are criticizing, [2] and the more
formal [3]. Alas ”probability” is a mathematical concept that
does not easily accommodate verbal discussions and requires
a formal treatment, which necessitates precise definitions.

At the gist of what we referred to as ”the so-called masquer-
ade problem” is the following conflation, we simplify from [3]
using a continuous distribution for ease of exposition:

Let K ∈ R+ be a threshold, f(.) a density function for a
random variable X ∈ R+ , PK = P(X > K) ∈ [0, 1] the
probability of exceeding it, and g(x): R+ → R, an impact
function. Let GK be a partial expectation of g(.) for the
function of realizations of X above K:

GK =

∫ ∞
K

g(x)f(x) dx,

and for clarity lets write the survival function (that is, the
complementary cumulative distribution function, CDF) at K:

PK =

∫ ∞
K

f(x) dx

The error comes from conflating the properties of GK which
those of PK , often associating PK with some constant repre-
senting the presumed impact associated with the threshold K.
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Fig. 1. The inverse survival function (complementary quantile function)
corresponding to a complementary CDF (PK ) is unbounded while the
complementary CDF is bounded; it is extremely concave for tail probabilities,
and compounds the estimation errors on p. Simply the transformation reverses
the signs of the second derivative and compounds it. We show how errors on
PK translate in larger and larger values for K, possibly infinite.

The intuition of the difference can be shown as follows:
assuming g(x) = x, for X a random variable with finite
first moment, we have, focusing on the positive domain,
generalizing the Tail Probability Expectation Formula,

GK = K PK︸ ︷︷ ︸
Prob times impact at threshold

+

∫ ∞
K

Px dx︸ ︷︷ ︸
additional term

, (1)

with a second term that can dominate the first, particularly
under heavy tailed distributions.
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As explained in the two referenced papers, PK as a random
variable, being bounded between 0 and 1, necessarily has
thin tails, with finite mean, variance, and all moments. By
the probability integral transform, its unconditional probability
distribution is the Uniform U(0, 1) –and its conditional is
usually treated, particularly in the Bayesian literature, as a Beta
(a special case of which is the Uniform) –the Beta distribution
can accommodate practically all shapes of double bounded
unimodal distributions. A sum of such bets becomes rapidly
Gaussian.

Remark 1: Moments
PK corresponds to the zeroeth moment and is always
thin-tailed. GK maps to higher moments, and up to the
infinite moment (i.e. the extremum) dealt with in extreme
value theory.a

aConsider the expectation of the pth moment E(xp). PK corre-
sponds to p = 0 and the expected maximum to limp→∞E(xp).
In general, risk management concerns extrema, another point of
divergence with Tetlock et al.

As discussed extensively in Taleb (1997) reflecting the
author’s experiences as a derivatives market-maker [4], one
fails to ”hedge” the other in practice (and, of course, in theory).
For instance, a rise in skewness of the distribution will tend
to increase one side (GK) while decreasing the other (PK):
simply, the number of realizations above K drops, but their
impact becomes larger.1

And if one does not hedge the other, then being ”good at
predicting PK” provides no information on GK .

Remark 2: Probability Classes
If PK and GK are not in the same probability class,
that is, while PK is always thin tailed, if GK is not
thin-tailed, then one cannot be a practical proxy for the
other.

The field of extreme value theory was designed to deal with
the issue. Basically, ”probability” is not a tangible object like
a tomato; it is, mathematically, a kernel inside an integral
(or a summation), inseparable from other integrands, and one
should avoid drowning it with verbalism. This point applies
no matter the probability interpretation (Bayesian, frequentist,
propensional, or subjectivist). Furthermore, science is not
about precise measurements of exceedance probability, but
understanding properties in a comprehensive and useful ways.
As explained in the paper criticized by Tetlock et al (2022),
one does not handle pandemics via forecasting tournaments
and reliance on champions for single point forecasts, but by
getting full distributional properties, particularly the shape in

1Tetlock et al states that Taleb and Tetlock (2013) claims that the two
methods are ”complementary”. Our understanding of the latter paper is that
says the exact opposite: there is no such complementarity fat tailed variables,
which is what this discussion about ”masquerade” is about. This is the reason
why the first author (Taleb) refused to be involved in the IARPA forecasting
exercise.

the tails. Decisions must be informed by the shape of the total
distribution, and some understanding of the dynamics involved
in generating such a distribution (multiplicative effects cause
thick tails while additive ones tend to be benign stochastic
outcomes).

Just as warning is not predicting, understanding distribution
classes and tail properties is not forecasting. Furthermore, the
language of ”false positive”, while useful in medicine and
similar applications based on signal, in not useful in risk and
insurance based on distributional considerations.

Remark 3: Gambling
It is worth noting that binary options on financial
instruments (that is, the trading of PK or 1 − PK)
proved of little economic value and are not considered
an investment in the U.S. and the European Union; they
are banned by most corresponding regulators, as they are
considered gambling devices. The European Securities
and Markets Authority (ESMA) have disallowed retail
dealing with binary options. These binaries were also
traded at Lloyds, until banned by U.K. legislation with
the 1909 Marine Insurance Act.

Note on ”dichotomies”: Tetlock et al (2022) seem to mix
the ”dichotomy” between binary and full payoffs with another
distinction, that probability estimates help to flag tail risk. Our
representation can accommodate both with the function g(.)
which as mentioned earlier can reflect the infinite moment, i.e.
the extremum.

II. A NEW RESULT

At the Global Uncertainty Reading Group discussion around
Tetlock et al (2022), on Dec 1, 2022, a new useful result
emerged, which we find worth communicating2.

Remark 4: Events are not defined
A well known problem with heavy tails is that, at the
core, in that class of distributions, ”events” are not
defined verbally: a ”war” can have 200 or a million
casualties, so it does not have a quantitative meaning.
But setting a precise threshold no longer maps to a
precise probability under an error rate, and, vice versa.

As illustrated in Fig. 1, The error in the evaluation of the
probability PK can translate into an explosive value for the
corresponding K, and the more fat tailed the distribution, the
more explosive such corresponding value.

There is no space for a general proof, so we shall provide
one for any distribution that ends (for large values) with
Paretan tails, which is the standard case. Let us assume
the probability PK follows a Beta Distribution β(a, b) (both

2This result can be useful in financial risk management, particulaly the
mapping between ”VaR” (Value at Risk, maps to K for a set probability PK

of losses above that threshold) and expected shortfall, ”CVaR” (maps to GK ,
that is, includes the impact of losses).
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parameters > 0 and as we mentioned this fits the unconditional
uniform with a = b = 1).

fPK (p) =
pa−1(1− p)b−1

B(a, b)
,

0 < p < 1, where (B., .) is the standard Beta function.
The mean and variance will be MPK = a

a+b , VPK =
ab

(a+b)2(a+b+1) .
Now assume the underlying distribution for X where X >

K, lies in the strong Pareto basin, meaning P (X > K) =
LαK−α, where α is the tail index an L a scaling constant
–this is general for large values of X under all fat-tailed
distributions.

The inverse complementary CDF (quantile function) can be
expressed as: K = L (PK)

−1/α if 0 ≤ PK ≤ 1.
If probability taken as a random variable PK , that is, 1 −

CDF (the cumulative distribution function), follows a Beta
distribution β(a, b), then K, the inverse complementary CDF
has for density:

fK(k) =
αK−aα−1Laα (1−K−αLα)

b−1

B(a, b)
, (2)

with mean

MK =
LΓ

(
a− 1

α

)
Γ(a+ b)

Γ(a)Γ
(
a+ b− 1

α

) ,

and variance

VK =

L2 Γ(a+ b)

(
Γ(a)Γ(a− 2

α )
Γ(a+b− 2

α )
− Γ(a− 1

α )
2
Γ(a+b)

Γ(a+b− 1
α )

2

)
Γ(a)2

.

The proof is done via the standard Jacobian Method for the
transformation of probability distributions.

As we can see the first moment exists only if α > 1
a and

α > 1
a+b ; the second moment exists only if α > 2

a and α >
2
a+b ; more generally the nth moment exists only if α > n

a
and α > n

a+b .

Remark 5: Error Propagation
While the error on the probability can be small and
controlled, the error on the corresponding quantity under
consideration can be infinite.

We note that the tail index α for pandemics (as addressed at
length in the paper criticized by Tetlock et al. (2022)) is well
below 1. The same applies to wars, which means that when it
comes to conflicts, forecasts for tail events are not compatible
with probability theory.

III. A RATHER UNSCIENTIFIC ”CHALLENGE”

”We challenge Taleb et al. (2022) to be equally
transparent about the performance of their tail-risk
hedging strategies —-a controversial topic (Brown,
2020).”

We are surprised to see such a remark coming from profes-
sional evidence-based researchers: requesting the single track

record of a tail hedging program as a back-up for a claim about
the mathematical inadequacy of using a binary forecast for,
say, Covid 19 or similar events under fat tailed distributions.
Said tail-hedging strategy consists in capturing the difference
between idiosyncratically selected option prices in the market
and subsequent market jumps. (Incidentally Professor Tetlock
has appeared to conflate tail events –which take place in the
tails of any distribution – and the fat-tailedness attributes of
statistical distributions). And, on top, such request is made to
the author of an entire book, Fooled by Randomness about the
futility of such claims. To repeat the famous disparagement by
the economist Jagdish Bhagwati of the claim by the speculator
George Soros that he ”falsified the random walk” [5], we find
it highly unscientific to use a single track record to make any
general claim – this bizarre demand on the part of professional
researchers is no different from anecdotal claims (n = 1) used
by medical charlatans. In addition, trading records are not like
points in soccer games, particularly when they can hide tail
risks.3

So we prefer the more robust challenge which, under these
circumstances, becomes fair. We believe that academia is
about search for knowledge and understanding the world,
not a commercial enterprise. The same with societal risk
management, which is about the public good and does not
issue precise point forecasts (recall that Taleb et al.(2022), as
its title indicates, is against single point prediction in some
domains). So the burden is on forecasters to forecast. And we
fail to get how a practical project with remarkable forecasting
skills could work for government and not the private sector.
The superforecasting project is just about such betting. So,
as much as we would have preferred to voice the unspoken
question, here we are obligated to put the old adage as ”if
they claim to be so good at forecasting, and their forecasts
are actionable and related to reality, why aren’t they so rich?”
–in other words, why do they depend on taxpayer funds and,
possibly, tax deductible (that is, charitable) contributions to
finance such forecasts?

IV. CONCLUSION: SOME MORE EVIDENCE REQUIRED

Finally, can Tetlock et al. prove that better estimates of PK
can provide real benefits to decision makers?

In addition to the problems in the financial domain men-
tioned above, we completely fail to see the link in insurance
–and in event risk in general. In our experience as risk and
insurance practitioners, decision makers are usually not well
equipped to deal with probabilistic information (compounding
the difficulty in translating probabilistic information into prac-
tical effects)4. For instance, in a military context, if we refine

3Since Tetlock et al (2022) is uncritically citing a web opinion article by
Aaron Brown, we would like to debunk the claim in it that the performance
record is not available: not being a retail product, it has been continuously
available to what the Security and Exchange Commission (S.E.C.) defines
as qualified investors, not Twitter activists, and Mr. Brown (who by his own
disclosure had a severe conflict of interest) violated, willingly or unwillingly
journalistic standards. For it turned out that Brown never did the fact
checking, and never asked to see the audited returns. We also note that only
dimensionless returns are to be compared.

4There is the other problem that payoffs are in in expectation space not in
frequency space. For instance hedge funds with the best track records turned
out to be the most vulnerable to tail events in 2008, see [6].
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the estimate of a South China sea conflict from e.g. 15% to
17%, can Tetlock et al prove that this makes a difference in
any practical situation?

Also, one is allowed to wonder why the superforecasting
project is not applied to sports and election forecasts where 1)
PK applies, 2) compatible with probability theory, 3) provides
repeatable tests with overly abundant data and, centrally, 4) is
”bankable” (that is, translatable into dollars and cents)?

We conclude with the following recommendation: in future
work, it would be helpful if Tetlock et al. provided more
rigorous backing of their claims about the link between PK
and GK . For, as it stands, we see neither theoretical nor
practical benefits to that ”superforecasting” enterprise.
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SUPPLEMENTARY MATERIAL

The recording of the discussion session (webinar) is avail-
able at https://www.techincertoreadingclub.com.

https://www.techincertoreadingclub.com
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