

Top 20 Data Quality Solutions
 for Data Science

Data Science & Business Analytics Meetup
Denver, CO 2015-01-21

Ken Farmer

DQ Problems for Data Science
Loom Large & Frequently

Impacts Include:
● Strikingly visible defects
● Bad Decisions
● Loss of credibility
● Loss of revenue

Types of Problems Include:
● Requirement & Design Defects
● Misinterpretation Errors
● Source Data Defects
● Process Errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Months

W
id
g
e
ts

Lets Talk about Solutions

But keep in mind...
Proportionality is Important

Solution #1: Quality Assurance (QA)

 “If it's not tested it's broken” - Bruce Eckel

Programmer Testing:
● Unit Testing
● Functional Testing

QA Team Testing:
● Black Box Testing
● Regression Testing
● System and Integration Testing

Data Scientist Testing:
● All of the above
● Especially Programmer

Tests of application and system behavior
● input assumptions

● performed after application changes

Solution #2: Quality Control (QC)

Because the environment & inputs are ever-changing

Track & analyze record counts:
 - identify partial data sets

 - identify upstream changes

Track & analyze rule counts:
- identify upstream changes

Track & analyze replication
& aggregation consistency:

- identify process failures

1 2 3 4 5 6 7 8 9 10 11 121314151617181920
0

500000

1000000

1500000

2000000

2500000

3000000

Records

Solution #3: Data Profiling

Find out what data looks like BEFORE you model it

Save enormous amount of time:
 - quickly get the type, size, cardinality, unk values
 - share profiling results with users

Example Deliverables:
 - What is the distribution of data for every field?

- How do partitions affect data distributions?
 - What correlations exist between fields?

 Name f250_499
 Field Number 59
 Wrong Field Cnt 0
 Type string
 Min C
 Max M
 Unique Values 12
 Known Values 11
 Case mixed
 Min Length 1
 Max Length 1
 Mean Length 1.0
 Top Values
 x 10056 occurrences
 E x 1299 occurrences
 F x 969 occurrences
 G x 358 occurrences
 C x 120 occurrences
 H x 89 occurrences
 I x 36 occurrences
 J x 18 occurrences
 M x 12 occurrences
 K x 11 occurrences
 e x 4 occurrences

Solution #4: Organization

So people don't use the wrong data
or the right data incorrectly

Manage Historical Data:
● Migrate old data

● Schemas
● Rules

● Curate adhoc files
● Segregate
● Name
● Document
● Eliminate

Simplify Data Models:
● Consistency in naming, types, defaults
● Simplicity in relationships and values

Solution #5: Process Auditing

Because with a lot of moving parts comes a lot of failures

Features:
● Tracks all processes: start, stop, times, return

codes, batch_ids
● Alerting

Example Products:
● Graphite - focus: resources
● Nagios - focus: process failure
● Or what's built-into every ETL tool

Addresses:
● Slow processes
● Broken processes

(the inspecting metaphor,
not the searching metaphor)

Helps identify:
● Duplicate loads
● Missing files
● Pipeline status

Challenge with Streaming:
● Helps to create artificial batch concept from timestamp

within the data

Solution #6: Full Automation

Because manual processes account for a majority of problems

Addresses:
● Duplicate data
● Missing data

Top Causes:
● manual process restarts
● manual data recoveries
● manual process overrides

Solution Characteristics:
- Test catastrophic failures

 - Automate failure recoveries
 - Consider Netflick's Chaos Monkey

Solution #7: Changed Data Capture

Typical Alternatives:

Application Timestamp:
 - pro: may already be there

- con: reliability challenges

Triggers:
 - pro: simple for downstream

- con: reliability challenges
 - con: requires changes to source

File-Image Delta:
 - pro: implementation effort
 - con: very accurate

Source
Data

Target
Data

Sort

Dedup Dedup

File
Delta

& Transform

Same Inserts Deletes Change
New

Change
Old

Sort

File Image Delta Example

Because identifying changes is harder than most people realize

Solution #8: Master Data Management

Addresses:
● Data consistency between multiple systems

Features:

● Centralized storage of reference data
● Versioning of data
● Access via multiple protocols

Lat/Long
Geocoding

GeoIP

Finance Billing CRM SFA DW

Master
Data

Management

Customers
Products

StatesIndustry

Sales
RegionsProducts

Because sharing reference data eliminates many issues

Solution #9: Extrapolate for Missing Data

Features:
● Requires sufficient data to identify pattern
● Identify generated data (see Quality Indicator & Dimension)

Because if done well it can simplify queries

Solution #10: Crowd-sourced Data Cleansing

Features:
● Collect consensus answers from workers
● Workers can be from external market
● Workers can be from your team

Example Product:
● CrowdFlower
● Mechanical Turk

Simple Data Scenario:
● Correct obvious problems

● Spelling
● Grammar
● Missing descriptions

● Use public resources

Complex Data Scenario:
● Correct sophisticated problems

● Provide scores
● Provide descriptions
● Correct complex data

● Use internal & external resources
● Leverage crowdsourcing services for

coordination

Because cleansing & enrichening data can benefit from consensus

Solution #11: Keep Original Values

Options:

● keep archive copy of source data
● Pro: can be very highly compressed
● Pro: can be kept off-server
● Con: cannot be easily queried

● Or keep with transformed data
● Pro: can be easily queried
● Con: may be used when it should not be
● Con: may double volume of data to host

os_orig os

Win2k win2000

MS Win win2000

Win 2000 win2000

Windoze 2k win2000

Windows 2000 SP4 win2000

MS Win 2k SP2 win2000

ms win 2000 server ed win2000

win2ksp3 win2000

Win 2k server sp9 win2000

Because your transformations will fail & you will change your mind

Solution #12: Keep usage logs

Solution Types:

● Log application queries
● Pro: database audit tools can do this
● Con: requires process audit logs to translate to data

 content

● Store data that was delivered
● Pros: can precisely identify who got what when
● Con: requires dev, only works with certain tools

 (ex: restful API)
● Con: doesn't show what wasn't delivered

Because knowing who got bad data can help you minimize impact

Solution #13: Cleanup at Source

Always be prepared to:

● Clean & scrub data in-route to target
database

But always try to:

● give clean-up tasks to source system

Because it's cheaper to clean at the source than downstream

Solution #14: Static vs Dynamic, Strong vs Weak
Type & Structure

Static vs Dynamic Schemas:

- Dynamic Examples: MongoDB, JSON in Postgres, etc
- Dynamic Schemas – optimize for writer – at cost of reader

Static vs Dynamic Typing:

- static typing provide fewer defects*
- but maybe not better data quality

Declarative Constraints:

- Ex: primary key, foreign key, Uniqueness, and check constraints
- Code: “ALTER TABLE foo ADD CONSTRAINT ck1 CHECK(open_date <= close_date) ”

Because this is debated endlessly

Solution #15: Data Quality Indicator & Dimension

Example:
● Single id that represents status for multiple fields
● Bitmap example:

● bitmap 16-bit integer
● each bit represents a single field
● bit value of 0 == good, value of 1 == bad
● Translate integer to field status with UDF or table

quality_id result col1 col2 col3 col4 col5 col6 col7 col8 colN

0000000000000000 good good good good good good good good good good

0000000000000001 bad bad good good good good good good good good

0000000000000010 bad good bad good good good good good good good

0000000000000011 bad bad bad good good good good good good good

0000000000000100 bad good good bad good good good good good good

0000000000000101 bad bad good bad good good good good good good

0000000000000111 bad bad bad bad good good good good good good

Because it allows users to know what is damaged

Solution #16: Generate Test Data

Various Types:

● Deterministic:
● Contains very consistent data
● Great for benchmarking
● cheap to build

● Realistic:
● Produced through a simulation
● Great for demos
● Great for sanity-checking analysis
● Hard to build

● Extreme:
● Contains extreme values
● Great for bounds-checking
● cheap to build

Because production data is of limited usefulness

Solution #17: Use the Data!

Data driving a business process:
● Looks great
● Gets tested & corrected – in order

to run the business.

Data in a report:
● Looks great
● Can see obvious defects
● But doesn't drive, doesn't get tested

Data unused:
● Will decay over time
● Will lose pieces of data
● Will lose metadata

Solution #18: Push Transformations Upstream

From Data Scientists to ETL
Developers:

● Eliminates inconsistencies
between runs

From ETL Developers to
Source System:

● Eliminate unnecessary source
system knowledge

● Decouples systems

Because you don't want to become source implementation experts

DW /
Hadoop /

etc
Source

Scientist

Scientist

Scientist

Scientist

MOVE

DW /
Hadoop /

etc
Source

Scientist

Scientist

Scientist

Scientist

MOVE

Solution #19: Documentation (Metadata)

Field Metadata:
● Name
● Description
● Type
● Length
● Unknown value
● Case
● Security

Extended Metadata:
● Lineage
● Data Profile

● Common values/codes
● Their meaning
● Their frequency

● Validation rules & results
● Transformation rules

Source Code:
 if gender == 'm':
 return 'male'
 else:
 return 'female'

Report & Tool Documentation:
● Description
● Filtering Rules
● Transformation Rules

Solution #20: Data Defect Tracking

Like Bug-Tracking, but for sets of bad data:

● Will explain anomalies later
● Can be used for data annotation
● Is simple, just needs to be used

Because you won't remember why a set of data was bad in 6 months

Bonus Solution #21: Change the Culture (ha)

Single Most Important thing to do:
● Establish policy of transparency = 90%
● Share data with customers, stakeholders, owners, users

Everything else results from transparency:
● Establish policy of automation
● Establish policy of measuring
● Plus everything we already covered

What doesn't work?
● Ask management to mandate quality

Because you need support for priorities, resources, and time

Resources & Thanks

International Association for Information & Data Quality (IAIDQ)
http://www.iqtrainwrecks.com/

Improving Data Warehouse and Business Information Quality, Larry English
The Data Warehouse Institute (TDWI)

1-A Large Scale Study of Programming Languages
and Code Quality in Github

http://macbeth.cs.ucdavis.edu/lang_study.pdf

http://www.iqtrainwrecks.com/

Solution List
Solution Source ETL DEST/DW Consume

1. QA HIGH LOW MEDIUM

2. QC HIGH MEDIUM MEDIUM

3. Data Profiling HIGH

4. Organize HIGH

5. Process Auditing HIGH MEDIUM

6. Full Automation HIGH HIGH

7. Changed Data Capture HIGH

8. MDM HIGH HIGH HIGH

9. Extrapolate Missing Data HIGH HIGH

10. Crowdsource Cleansing MEDIUM HIGH

11. Keep original values MEDIUM HIGH

12. Keep usage logs HIGH HIGH

13. Cleanup at source HIGH

14. Static vs Dynamic MEDIUM LOW MEDIUM

15. DQ Dimension HIGH HIGH

16. Generate Test Data HIGH HIGH HIGH

17. Use the Data HIGH HIGH

18. Push Transforms Upstream HIGH HIGH

19. Documentation MEDIUM HIGH HIGH

20. Data Defect Tracking HIGH

21. Change the Culture HIGH HIGH HIGH HIGH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

