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∗Faculty of Informatics, Masaryk University ({xbrazdil,kucera}@fi.muni.cz)

†IST Austria (krish.chat@gmail.com)
‡Department of Computer Science, University of Oxford (vojfor@cs.ox.ac.uk)

Abstract—We study the complexity of central controller syn-
thesis problems for finite-state Markov decision processes, where
the objective is to optimize both the expected mean-payoff
performance of the system and its stability. We argue that the
basic theoretical notion of expressing the stability in terms of the
variance of the mean-payoff (called global variance in our paper)
is not always sufficient, since it ignores possible instabilities on
respective runs. For this reason we propose alernative definitions
of stability, which we call local and hybrid variance, and which
express how rewards on each run deviate from the run’s own
mean-payoff and from the expected mean-payoff, respectively.

We show that a strategy ensuring both the expected mean-
payoff and the variance below given bounds requires randomiza-
tion and memory, under all the above semantics of variance. We
then look at the problem of determining whether there is a such
a strategy. For the global variance, we show that the problem
is in PSPACE, and that the answer can be approximated in
pseudo-polynomial time. For the hybrid variance, the analogous
decision problem is in NP, and a polynomial-time approximating
algorithm also exists. For local variance, we show that the
decision problem is in NP. Since the overall performance canbe
traded for stability (and vice versa), we also present algorithms
for approximating the associated Pareto curve in all the three
cases.

Finally, we study a special case of the decision problems,
where we require a given expected mean-payoff together with
zero variance. Here we show that the problems can be all solved
in polynomial time.

I. Introduction

Markov decision processes (MDPs) are a standard model for
stochastic dynamic optimization. Roughly speaking, an MDP
consists of a finite set of states, where in each state, one of the
finitely many actions can be chosen by a controller. For every
action, there is a fixed probability distribution over the states.
The execution begins in some initial state where the controller
selects an outgoing action, and the system evolves into another
state according to the distribution associated with the chosen
action. Then, another action is chosen by the controller, and
so on. Astrategyis a recipe for choosing actions. In general, a
strategy may depend on the execution history (i.e., actionsmay
be chosen differently when revisiting the same state) and the
choice of actions can be randomized (i.e., the strategy specifies
a probability distribution over the available actions). Fixing a
strategy for the controller makes the behaviour of a given MDP
fully probabilistic and determines the usual probability space
over its runs, i.e., infinite sequences of states and actions.

A fundamental concept of performance and dependability
analysis based on MDP models ismean-payoff. Let us assume

that every action is assigned some rationalreward, which
corresponds to some costs (or gains) caused by the action.
The mean-payoff of a given run is then defined as the long-
run average reward per executed action, i.e., the limit of
partial averages computed for longer and longer prefixes of
a given run. For every strategyσ, the overall performance (or
throughput) of the system controlled byσ then corresponds
to the expected value of mean-payoff, i.e., theexpected mean-
payoff. It is well known (see, e.g., [18]) that optimal strate-
gies for minimizing/maximizing the expected mean-payoff are
positional (i.e., deterministic and independent of execution
history), and can be computed in polynomial time. However,
the quality of services provided by a given system often
depends not only on its overall performance, but also on its
stability. For example, an optimal controller for a live video
streaming system may achieve the expected throughput of
approximately 2 MBits/sec. That is, if a user connects to the
server many times, he gets 2 Mbits/sec connectionon average.
If an acceptable video quality requires at least 1.8 Mbits/sec,
the user is also interested in the likelihood that he gets at least
1.8 Mbits/sec. That is, he requires a certain level ofoverall
stability in service quality, which can be measured by the
varianceof mean-payoff, calledglobal variancein this paper.
The basic computational question is“given rationals u and v,
is there a strategy that achieves the expected mean-payoff u (or
better) and variance v (or better)?”. Since the expected mean-
payoff can be “traded” for smaller global variance, we are
also interested in approximating the associatedPareto curve
consisting of all points (u, v) such that (1) there is a strategy
achieving the expected mean-payoff u and global variancev;
and (2) no strategy can improveu or v without worsening the
other parameter.

The global variance says how much the actual mean-payoff

of a run tends to deviate from the expected mean-payoff.
However, it does not sayanything about the stability of
individual runs. To see this, consider again the video streaming
system example, where we now assume that although the
connection is guaranteed to be fast on average, the amount
of data delivered per second may change substantially along
the executed run for example due to a faulty network in-
frastructure. For simplicity, let us suppose that performing
one action in the underlying MDP model takes one second,
and the reward assigned to a given action corresponds to the
amount of transferred data. The above scenario can be modeled
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by saying that 6 Mbits are downloaded every third action,
and 0 Mbits are downloaded in other time frames. Then the
user gets 2 Mbits/sec connection almost surely, but since the
individual runs are apparently “unstable”, he may still seea lot
of stuttering in the video stream. As an appropriate measure
for the stability of individual runs, we proposelocal variance,
which is defined as the long-run average of (r i(ω) −mp(ω))2,
wherer i(ω) is the reward of thei-th action executed in a run
ω andmp(ω) is the mean-payoff of ω. Hence, local variance
says how much the rewards of the actions executed along a
given run deviate from the mean-payoff of the run on average.
For example, if the mean-payoff of a run is 2 Mbits/sec and
all of the executed actions deliver 2 Mbits, then the run is
“absolutely smooth” and its local variance is zero. The level of
“local stability” of the whole system (under a given strategy)
then corresponds to theexpected local variance. The basic
algorithmic problem for local variance is similar to the one
for global variance, i.e.,“given rationals u and v, is there a
strategy that achieves the expected mean-payoff u (or better)
and the expected local variance v (or better)?”. We are also
interested in the underlying Pareto curve.

Observe that the global variance and the expected local
variance capture different and to a large extentindependent
forms of systems’ (in)stability. Even if the global variance
is small, the expected local variance may be large, and vice
versa. In certain situations, we might wish to minimizeboth
of them at the same. Therefore, we propose another notion
of hybrid varianceas a measure for “combined” stability of
a given system. Technically, the hybrid variance of a given
run ω is defined as the long-run average of (r i(ω) − E

[
mp
]
)2,

where E
[
mp
]

is the expected mean-payoff. That is, hybrid
variance says how much the rewards of individual actions
executed along a given run deviate from the expected mean-
payoff on average. The combined stability of the system
then corresponds to theexpected hybrid variance. One of
the most crucial properties that motivate the definition of
hybrid variance is that the expected hybrid variance is small
iff both the global variance and the expected local variance
are small (in particular, for a prominent class of strategies
the expected hybrid variance is a sum of expected local
and global variances). The studied algorithmic problems for
hybrid variance are analogous to the ones for global and local
variance.

The Results.Our results are as follows:

1) (Global variance).The global variance problem was
considered before but only under the restriction of
memoryless strategies [21]. We first show that in general
randomized memoryless strategies are not sufficient for
Pareto optimal points for global variance (Example 1).
We then establish that 2-memory strategies are sufficient.
We show that the basic algorithmic problem for global
variance is in PSPACE, and the approximate version can
be solved in pseudo-polynomial time.

2) (Local variance).The local variance problem comes
with new conceptual challenges. For example, for

unichain MDPs, deterministic memoryless strategies are
sufficient for global variance, whereas we show (Exam-
ple 2) that even for unichain MDPs both randomization
and memory is required for local variance. We estab-
lish that 3-memory strategies are sufficient for Pareto
optimality for local variance. We show that the basic
algorithmic problem (and hence also the approximate
version) is in NP.

3) (Hybrid variance).After defining hybrid variance, we
establish that for Pareto optimality 2-memory strategies
are sufficient, and in general randomized memoryless
strategies are not. We show the basic algorithmic prob-
lem for hybrid variance is in NP, and the approximate
version can be solved in polynomial time.

4) (Zero variance).Finally, we consider the problem where
the variance is optimized to zero (as opposed to a
given non-negative number in the general case). In this
case, we present polynomial-time algorithms to compute
the optimal mean-payoff that can be ensured with zero
variance (if zero variance can be ensured) for all the
three cases. The polynomial-time algorithms for zero
variance for mean-payoff objectives is in sharp contrast
to the NP-hardness for cumulative reward MDPs [16].

To prove the above results, one has to overcome various
obstacles. For example, although at multiple places we build
on the techniques of [13] and [4] which allow us to deal with
maximal end components of an MDP separately, we often
need to extend these techniques, since unlike the above works
which study multiple “independent” objectives, in the caseof
global and hybrid variance any change of value in the expected
mean payoff implies a change of value of the variance. Also,
since we do not impose any restrictions on the structure of the
strategies, we cannot even assume that the limits defining the
mean-payoff and the respective variances exist; this becomes
most apparent in the case of local and hybrid variance, where
we need to rely on delicate techniques of selecting runs from
which the limits can be extracted. Another complication is
that while most of the work on multi-objective verification
deals with objective functions which are linear, our objective
functions are inherently quadratic due to the definition of
variance.

The summary of our results is presented in Table I. A simple
consequence of our results is that the Pareto curves can be
approximated in pseudo-polynomial time in the case of global
and hybrid variance, and in exponential time for local variance.

Related Work. Studying the trade-off between multiple ob-
jectives in an MDP has attracted significant attention in the
recent years (see [1] for overview). In the verification area,
MDPs with multiple mean-payoff objectives [4], discounted
objectives [9], cumulative reward objectives [15], and multiple
ω-regular objectives [13] have been studied. As for the stability
of a system, the variance penalized mean-payoff problem
(where the mean-payoff is penalized by a constant times
the variance) under memoryless (stationary) strategies was
studied in [14]. The mean-payoff variance trade-off problem
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Memory size Complexity Approx. complexity Zero-var. complexity

Global 2-memory PSPACE (Theorem 1) Pseudo-polynomial (Theorem 1) PTIME (Theorem 4)
LB: Example 1, UB: Theorem 1

Local LB: 2-memory (Example 2) NP (Theorem 2) NP PTIME (Theorem 4)
UB: 3-memory (Theorem 2)

Hybrid 2-memory NP (Theorem 3) PTIME (Theorem 3) Quadratic (Theorem 4)
LB: Example 4, UB: Theorem 3

TABLE I
Summary of the results,where LB and UB denotes lower- and upper-bound, respectively.

for unichain MDPs was considered in [10], where a solution
using quadratic programming was designed; under memoryless
(stationary) strategies the problem was considered in [21]. All
the above works for mean-payoff variance trade-off consider
the global variance, and are restricted to memoryless strategies.
The problem for general strategies and global variance was
not solved before. Although restrictions to unichains or mem-
oryless strategies are feasible in some areas, many systems
modelled as MDPs might require more general approach. For
example, a decision of a strategy to shut the system down
might make it impossible to return the running state again,
yielding in a non-unichain MDP. Similarly, it is natural to
synthesise strategies that change their decisions over time.

As regards other types of objectives, no work considers the
local and hybrid variance problems. The variance problem for
discountedreward MDPs was studied in [20]. The trade-off of
expected value and variance ofcumulativereward in MDPs
was studied in [16], showing the zero variance problem to be
NP-hard. This contrasts with our results, since in our setting
we present polynomial-time algorithms for zero variance.

II. Preliminaries

We useN, Z,Q, andR to denote the sets of positive integers,
integers, rational numbers, and real numbers, respectively. We
assume familiarity with basic notions of probability theory,
e.g., probability space, random variable, or expected value.
As usual, aprobability distributionover a finite or countable
setX is a function f : X→ [0, 1] such that

∑
x∈X f (x) = 1. We

call f positiveif f (x) > 0 for everyx ∈ X, rational if f (x) ∈ Q
for every x ∈ X, andDirac if f (x) = 1 for somex ∈ X. The
set of all distributions overX is denoted bydist(X).

For our purposes, aMarkov chainis a tripleM = (L, → , µ)
where L is a finite or countably infinite set oflocations,
→ ⊆ L × (0, 1] × L is a transition relationsuch that for each
fixed ℓ ∈ L,

∑
ℓ

x
→ℓ′

x = 1, andµ is the initial probability distri-
butionon L. A run in M is an infinite sequenceω = ℓ1ℓ2 . . . of
locations such thatℓi

x
→ ℓi+1 for everyi ∈ N. A finite pathin M

is a finite prefix of a run. Each finite pathw in M determines
the setCone(w) consisting of all runs that start withw. To
M we associate the probability space (RunsM ,F , P), where
RunsM is the set of all runs inM, F is theσ-field generated by
all Cone(w) for finite pathsw, andP is the unique probability
measure such thatP(Cone(ℓ1, . . . , ℓk)) = µ(ℓ1) ·

∏k−1
i=1 xi , where

ℓi
xi→ ℓi+1 for all 1 ≤ i < k (the empty product is equal to 1).

Markov decision processes.A Markov decision process

(MDP) is a tupleG = (S,A,Act, δ) where S is a finite set
of states,A is a finite set of actions,Act : S → 2A \ {∅} is
an action enabledness function that assigns to each states the
setAct(s) of actions enabled ats, andδ : S × A→ dist(S) is
a probabilistic transition function that given a states and an
actiona ∈ Act(s) enabled ats gives a probability distribution
over the successor states. For simplicity, we assume that every
action is enabled in exactly one state, and we denote this state
Src(a). Thus, henceforth we will assume thatδ : A→ dist(S).

A run in G is an infinite alternating sequence of states and
actionsω = s1a1s2a2 . . . such that for alli ≥ 1, Src(ai) = si and
δ(ai)(si+1) > 0. We denote byRunsG the set of all runs inG. A
finite pathof lengthk in G is a finite prefixw = s1a1 . . .ak−1sk

of a run, and we uselast(w) = sk for the last state ofw. Given
a runω ∈ RunsG, we denote byAi(ω) the i-th actionai of ω.

A pair (T, B) with ∅ , T ⊆ S and B ⊆
⋃

t∈T Act(t) is an
end componentof G if (1) for all a ∈ B, if δ(a)(s′) > 0
then s′ ∈ T; and (2) for all s, t ∈ T there is a finite path
w = s1a1 . . .ak−1sk such thats1 = s, sk = t, and all states and
actions that appear inw belong toT and B, respectively. An
end component (T, B) is a maximal end component (MEC)if
it is maximal wrt. pointwise subset ordering. The set of all
MECs ofG is denoted byMEC(G). Given an end component
C = (T, B), we sometimes abuse notation by consideringC as
the disjoint union ofT and B (for example, we writeS ∩ C
to denote the setT). For a givenC ∈ MEC(G), we useRC to
denote the set of all runsω = s1a1s2a2 . . . that eventuallystay
in C, i.e., there isk ∈ N such that for allk′ ≥ k we have that
sk′ , ak′ ∈ C.

Strategies and plays.Intuitively, a strategy in an MDPG is
a “recipe” to choose actions. Usually, a strategy is formally
defined as a functionσ : (S A)∗S→ dist(A) that given a finite
pathw, representing the execution history, gives a probability
distribution over the actions enabled inlast(w). In this paper
we adopt a definition which is equivalent to the standard one,
but more convenient for our purpose. LetM be a finite or
countably infinite set ofmemory elements. A strategy is a
triple σ = (σu, σn, α), whereσu : A × S × M → dist(M)
and σn : S × M → dist(A) are memory updateand next
movefunctions, respectively, andα is an initial distribution on
memory elements. We require that for all (s,m) ∈ S ×M, the
distributionσn(s,m) assigns a positive value only to actions
enabled ats. The set of all strategies is denoted byΣ (the
underlying MDPG will be always clear from the context).

A play of G determined by an initial states ∈ S and a
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strategyσ is a Markov chainGσs (or Gσ if s is clear from the
context) where the set of locations isS × M × A, the initial
distributionµ is positive only on (some) elements of{s}×M×A
whereµ(s,m, a) = α(m) ·σn(s,m)(a), and (t,m, a) x

→ (t′,m′, a′)
iff x = δ(a)(t′) · σu(a, t′,m)(m′) · σn(t′,m′)(a′) > 0. Hence,Gσs
starts in a location chosen randomly according toα andσn. In
a current location (t,m, a), the next action to be performed isa,
hence the probability of enteringt′ is δ(a)(t′). The probability
of updating the memory tom′ is σu(a, t′,m)(m′), and the
probability of selectinga′ as the next action isσn(t′,m′)(a′).
Since these choices are independent (in the probability theory
sense), we obtain the product above.

Note that every run inGσs determines a unique run inG.
Hence, every notion originally defined for the runs inG can
also be used for the runs inGσs , and we use this fact implicitly
at many places in this paper. For example, we use the symbol
RC to denote the set of all runs inGσs that eventually stay inC,
certain functions originally defined overRunsG are interpreted
as random variables over the runs inGσs , etc.

Strategy types.In general, a strategy may use infinite memory,
and bothσu andσn may randomize. A strategy ispure (or
deterministic) if α is Dirac and both the memory update
and the next move functions give a Dirac distribution for
every argument, andstochastic-updateif α, σu, andσn are
unrestricted. Note that every pure strategy is stochastic-update.
A randomizedstrategy is a strategy which is not necessarily
pure. We also classify the strategies according to the size
of memory they use. Important subclasses arememoryless
strategies, in whichM is a singleton,n-memorystrategies, in
which M has exactlyn elements, andfinite-memorystrategies,
in which M is finite.

For a finite-memory strategyσ, a bottom strongly con-
nected component(BSCC) of Gσs is a subset of locations
W ⊆ S ×M × A such that for allℓ1 ∈ W and ℓ2 ∈ S ×M × A
we have that (i) ifℓ2 is reachable fromℓ1, then ℓ2 ∈ W,
and (ii) for all ℓ1, ℓ2 ∈ W we have thatℓ2 is reachable
from ℓ1. Every BSCCW determines a unique end component
({s | (s,m, a) ∈ W}, {a | (s,m, a) ∈ W}), and we sometimes do
not distinguish betweenW and its associated end component.

An MDP is strongly connectedif all its states form a single
(maximal) end component. A strongly connected MDP is a
unichain if for all end components (T, B) we haveT = S.

Throughout this paper we will use the following standard
result about MECs.

Lemma 1 ([11, Proposition 3.1]). Almost all runs eventually
end in a MEC, i.e.Pσs

[⋃
C∈Mec(G) RC

]
= 1 for all σ and s.

Global, local, and hybrid variance. Let G = (S,A,Act, δ) be
an MDP, andr : A → Q a reward function. We define the
mean-payoff of a runω ∈ RunsG by

mp(ω) = lim sup
n→∞

1
n

n−1∑

i=0

r(Ai(ω)) .

The expected value and variance ofmp in Gσs are denoted
by Eσs

[
mp
]

and Vσs
[
mp
]
, respectively (recall thatVσs

[
mp
]
=

Eσs

[
(mp− Eσs

[
mp
]
)2
]
= Eσs

[
mp2
]
− (Eσs

[
mp
]
)2). Intuitively,

Eσs
[
mp
]

corresponds to the “overall performance” ofGσs , and
Vσs
[
mp
]

is a measure of “global stability” ofGσs indicating
how much the mean payoffs of runs inGσs tend to deviate
from Eσs

[
mp
]

(see Section I). In the rest of this paper, we
refer toVσs

[
mp
]

asglobal variance.
The stability of a given runω ∈ RunsG (see Section I) is

measured by itslocal variancedefined as follows:

lv(ω) = lim sup
n→∞

1
n

n−1∑

i=0

(
r(Ai(ω)) −mp(ω)

)2

Note thatlv(ω) is not really a “variance” in the usual sense of
probability theory1. We call the functionlv(ω) “local variance”
because we find this name suggestive;lv(ω) is the long-run
average square of the distance frommp(ω). The expected value
of lv in Gσs is denoted byEσs [lv].

Finally, given a runω in Gσs , we define thehybrid variance
of ω in Gσs as follows:

hv(ω) = lim sup
n→∞

1
n

n−1∑

i=0

(
r(Ai(ω)) − Eσs

[
mp
])2

Note that the definition ofhv(ω) depends on the expected mean
payoff, and hence it makes sense only after fixing a strategy
σ and an initial states. Sometimes we also writehvσ,s(ω)
instead ofhv(ω) to prevent confusions about the underlyingσ
and s. The expected value ofhv in Gσs is denoted byEσs [hv].
Intuitively, Eσs [hv] measures the “combined” stability ofGσs
(see Section I).

Pareto optimality. We say that a strategyσ is Pareto
optimal in s wrt. global variance if for every strategyζ
we have that (Eσs

[
mp
]
,Vσs
[
mp
]
) ≥ (Eζs

[
mp
]
,V
ζ
s
[
mp
]
) implies

(Eσs
[
mp
]
,Vσs
[
mp
]
) = (Eζs

[
mp
]
,V
ζ
s
[
mp
]
), where≥ is the stan-

dard component-wise ordering. Similarly, we define Pareto
optimality of σ wrt. local and hybrid variance by replacing
Vαs
[
mp
]

with Eαs [lv] and Eαs [hv], respectively. We choose the
order≥ for technical convenience, if one wishes to maximize
the expected value while minimizing the variance, it suffices to
multiply all rewards by−1. ThePareto curvefor s wrt. global,
local, and hybrid variance consists of all points of the form
(Eσs
[
mp
]
,Vσs
[
mp
]
), (Eσs

[
mp
]
,Eσs [lv]), and (Eσs

[
mp
]
,Eσs [hv]),

whereσ is a Pareto optimal strategy wrt. global, local, and
hybrid variance, respectively.

Frequency functions.Let C be a MEC. We say thatf : C ∩
A→ [0, 1] is a frequency function on Cif

•
∑

a∈C∩A f (a) = 1
•
∑

a∈C∩A f (a) · δ(a)(s) =
∑

a∈Act(s) f (a) for every s ∈ C ∩ S

Definemp[ f ] :=
∑

a∈C f (a) ·r(a) andlv[ f ] :=
∑

a∈C f (a) ·(r(a)−
mp[ f ])2.

1By investing some effort, one could perhaps find a random variableX such
that lv(ω) is the variance ofX, but this question is not really relevant—we
only uselv as arandom variable which measures the level of local stability
of runs. One could perhaps study the variance oflv, but this is beyond the
scope of this paper. The same applies to the functionhv.

4



The studied problems.In this paper, we study the following
basic problems connected to the three stability measures intro-
duced above (belowVσs is eitherVσs

[
mp
]
, Eσs [lv], or Eσs [hv]):

• Pareto optimal strategies and their memory. Do Pareto
optimal strategies exist for all points on the Pareto curve?
Do Pareto optimal strategies require memory and random-
ization in general? Do strategies achieving non-Pareto
points require memory and randomization in general?

• Deciding strategy existence. For a given MDPG, an initial
states, a rational reward functionr, and a point (u, v) ∈
Q2, we ask whether there exists a strategyσ such that
(Eσs
[
mp
]
,Vσs ) ≤ (u, v).

• Approximation of strategy existence. For a given MDPG,
an initial states, a rational reward functionr, a number
ε and a point (u, v) ∈ Q2, we want to get an algorithm
which (a) outputs “yes” if there is a strategyσ such that
(Eσs
[
mp
]
,Vσs ) ≤ (u− ε, v− ε); (b) outputs “no” if there is

no strategy such that (Eσs
[
mp
]
,Vσs ) ≤ (u, v).

• Strategy synthesis.If there exists a strategyσ such that
(Eσs
[
mp
]
,Vσs ) ≤ (u, v), we wish tocomputesuch strategy.

Note that it is not a priori clear that σ is finitely
representable, and hence we also need to answer the
question whattype of strategies is needed to achieve
Pareto optimal points.

• Optimal performance with zero-variance.Here we are
interested in deciding if there exists a Pareto point of
the form (u, 0) and computing the value ofu, i.e., the
optimal expected mean payoff achievable with “absolute
stability” (note that the variance is always non-negative
and its value 0 corresponds to stable behaviours).

Remark 1. If the approximation of strategy existence problem
is decidable, we design the following algorithm to approximate
the Pareto curve up to an arbitrarily small givenε > 0. We
compute a finite set of points P⊆ Q2 such that (1) for every
Pareto point(u, v) there is(u′, v′) ∈ P with (|u− u′|, |v− v′|) ≤
(ε, ε), and (2) for every(u′, v′) ∈ P there is a Pareto point
(u, v) such that(|u−u′|, |v− v′|) ≤ (ε, ε). Let R= maxa∈A |r(a)|.
Note that|Eσs

[
mp
]
| ≤ R and Vσs ≤ R2 for an arbitrary strategy

σ. Hence, the set P is computable by a naive algorithm which
decides the approximation of strategy existence forO(|R|3/ε2)
points in the correspondingε-grid and putsO(|R|2/ε) points
into P. The question whether the three Pareto curves can be
approximated more efficiently by sophisticated methods based
on deeper analysis of their properties is left for future work.

III. Global variance

In the rest of this paper, unless specified otherwise, we
suppose we work with a fixed MDPG = (S,A,Act, δ) and
a reward functionr : A → Q. We start by proving that both
memory and randomization is needed even for achieving non-
Pareto points; this implies that memory and randomization
is needed even to approximate the value of Pareto points.
Then we show that 2-memory stochastic update strategies are
sufficient, which gives a tight bound.

s1

s2

s3 s4

a,0 0.5

0.5

b,4

c,5 e,0
d,0

Fig. 1. An MDP witnessing the need for memory and randomization in
Pareto optimal strategies for global variance.

Example 1. Consider the MDP of Fig. 1. Observe that the
point (4, 2) is achievable by a strategyσ which selects c with
probability 4

5 and d with probability1
5 upon thefirst visit to

s3; in every other visit to s3, the strategyσ selects c with
probability 1. Hence,σ is a 2-memory randomized strategy
which stays in MEC C= ({s3}, {c}) with probability 1

2 ·
4
5 =

2
5.

Clearly, Eσs1

[
mp
]
= 1

2 · 4 + 1
2 ·

4
5 · 5 + 1

2 ·
1
5 · 0 = 4 and

Vσs1

[
mp
]
= 1

2 · 4
2 + 1

2 ·
4
5 · 5

2 + 1
2 ·

1
5 · 0

2 − 42 = 2. Further, note
that every strategȳσ which stays in C with probability x satis-
fiesEσ̄s1

[
mp
]
= 1

2 ·4+x·5 andVσ̄s1

[
mp
]
= 1

2 ·4
2+x·52−(2+x·5)2.

For x > 2
5 we get Eσ̄s1

[
mp
]
> 4, and for x < 2

5 we get
Vσ̄s1

[
mp
]
> 2, so (4, 2) is indeed a Pareto point. Every

deterministic (resp. memoryless) strategy can stay in C with
probability either 1

2 or 0, giving Eσ̄s1

[
mp
]
= 9

2 or Vσ̄s1

[
mp
]
= 4.

So, both memory and randomization are needed to achieve the
Pareto point(4, 2) or a non-Pareto point(4.1, 2.1).

Interestingly, if the MDP is strongly connected, memoryless
deterministic strategies always suffice, because in this case a
memoryless strategy that minimizes the expected mean payoff

immediately gets zero variance. This is in contrast with local
and hybrid variance, where we will show that memory and
randomization is required in general already for unichain
MDPs. For the general case of global variance, the sufficiency
of 2-memory strategies is captured by the following theorem.

Theorem 1. If there is a strategy ζ satisfying
(Eζs
[
mp
]
,V
ζ
s
[
mp
]
) ≤ (u, v), then there is a 2-memory

strategy with the same properties. Moreover, Pareto optimal
strategies always exist, the problem whether there is a strategy
achieving a point(u, v) is in PSPACE, and approximation of
the answer can be done in pseudo-polynomial time.

Note that everyC ∈ MEC(G) can be seen as a strongly
connected MDP. By using standard linear programming meth-
ods (see, e.g., [18]), for everyC ∈ MEC(G) we can compute
theminimaland themaximalexpected mean payoff achievable
in C, denoted byαC and βC, in polynomial time (sinceC is
strongly connected, the choice of initial state is irrelevant).
Thus, we can also compute the systemL of Fig. 2 in polyno-
mial time. We show the following:

Proposition 1. Let s∈ S and u, v ∈ R.

1) If there is a strategyζ satisfying (Eζs
[
mp
]
,V
ζ
s
[
mp
]
) ≤

(u, v) then the system L of Fig. 2 has a solution.
2) If the system L of Fig. 2 has a solution, then there exist

a 2-memory stochastic-update strategyσ and z ∈ R
such that (Eσs

[
mp
]
,Vσs
[
mp
]
) ≤ (u, v) and for every

C ∈ MEC(G) we have the following: IfαC > z, then
xC = αC; if βC < z, then xC = βC; otherwise (i.e., if
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1s(t) +
∑

a∈A

ya · δ(a)(t) =
∑

a∈Act(t)

ya + yt for all t ∈ S (1)

∑

C∈MEC(G)
t∈S∩C

yt = 1 (2)

yκ ≥ 0 for all κ ∈ S ∪ A (3)

αC ≤ xC for all C ∈ MEC(G) (4)

xC ≤ βC for all C ∈ MEC(G) (5)

u ≥
∑

C∈MEC(G)

xC ·
∑

t∈S∩C

yt (6)

v ≥
( ∑

C∈MEC(G)

x2
C·
∑

t∈S∩C

yt

)
−
( ∑

C∈MEC(G)

xC·
∑

t∈S∩C

yt

)2
(7)

Fig. 2. The systemL. (Here1s0 (s) = 1 if s= s0, and1s0 (s) = 0 otherwise.)

αC ≤ z≤ βC) xC = z.

Observe that the existence of Pareto optimal strategies
follows from the above proposition, since we define points
(u, v) that some strategy can achieve by a continous function
from valuesxC and

∑
t∈S∩C yt for C ∈ MEC(G) to R2. Because

the domain is bounded (allxC and
∑

t∈S∩C yt have minimal and
maximal values they can achieve) and closed (the points of the
domain are expressible as a projection of feasible solutions of
a linear program), it is also compact, and a continuous map
of a compact set is compact [19], and hence closed.

Let us briefly sketch the proof of Proposition 1, which
combines new techniques with results of [4], [13]. We start
with Item 1. Letζ be a strategy satisfying (Eζs

[
mp
]
,V
ζ
s
[
mp
]
) ≤

(u, v). First, note that almost every run ofGζs eventually stays
in some MEC ofG by Lemma 1. The way howζ determines
the values of allyκ, whereκ ∈ S∪A, is exactly the same as in
[4] and it is based on the ideas of [13]. The details are given
in Appendix A1. The important property preserved is that for
everyC ∈ MEC(G) and every statet ∈ S ∩C, the value ofyt

corresponds to the probability that a run stays inC and enters
C via the statet. Hence,

∑
t∈S∩C yt is the probability that a run

of Gζs eventually stays inC. The way howζ determines the
value of ya, wherea ∈ A, is explained in Appendix A1. The
value ofxC is the conditional expected mean payoff under the
condition that a run stays inC, i.e., xC = E

ζ
s
[
mp | RC

]
. Hence,

αC ≤ xC ≤ βC, which means that (4) and (5) are satisfied.
Further, Eζs

[
mp
]
=
∑

C∈MEC(G) xC ·
∑

t∈S∩C yt, and hence (6)
holds. Note thatVζs

[
mp
]

is not necessarily equal to the right-
hand side of (7), and hence it is not immediately clear why (7)
should hold. Here we need the following lemma (a proof is
given in Appendix A2):

Lemma 2. Let C ∈ MEC(G), and let zC ∈ [αC, βC]. Then
there exists a memoryless randomized strategyσzC such that
for every state t∈ C ∩ S we have thatP

σzC
t
[
mp=zC

]
= 1.

Using Lemma 2, we can define another strategyζ′ from
ζ such that for everyC ∈ MEC(G) we have the following:
(1) the probability ofRC in Gζs and in Gζ

′

s is the same; (2)

almost all runsω ∈ RC satisfy mp(ω) = xC. This means
that Eζs

[
mp
]
= E

ζ′

s
[
mp
]
, and we show thatVζs

[
mp
]
≥ V

ζ′

s
[
mp
]

(see Appendix A3). Hence, (Eζ
′

s
[
mp
]
,V
ζ′

s
[
mp
]
) ≤ (u, v), and

therefore (1)–(6) also hold if we useζ′ instead of ζ to
determine the values of all variables. Further, the right-hand
side of (7) is equal toVζ

′

s
[
mp
]
, and hence (7) holds. This

completes the proof of Item 1.
Item 2 is proved as follows. Letyκ, where κ ∈ S ∪ A,

and xC, whereC ∈ MEC(G), be a solution ofL. For every
C ∈ MEC(G), we put yC =

∑
t∈S∩C yt. By using the results

of Sections 3 and 5 of [13] and the modifications presented
in [4], we first construct a finite-memory stochastic update
strategy̺ such that the probability ofRC in G̺s is equal to
yC. Then, we construct a strategy ˆσ which plays according
to ̺ until a bottom strongly connected componentB of G̺s is
reached. Observe that the set of all states and actions which
appear inB is a subset of someC ∈ MEC(G). From that point
on, the strategy ˆσ “switches” to the memoryless randomized
strategyσxC of Lemma 2. Hence,E̺s

[
mp
]

andV̺s
[
mp
]

are equal
to the right-hand sides of (6) and (7), respectively, and thus
we get (E̺s

[
mp
]
,V
̺
s
[
mp
]
) ≤ (u, v). Note thatσ̂ may use more

than 2-memory elements. A 2-memory strategy is obtained by
modifying the initial part ofσ̂ (i.e., the part before the switch)
into a memoryless strategy in the same way as in [4]. Then,
σ̂ only needs to remember whether a switch has already been
performed or not, and hence 2 memory elements are sufficient.
Finally, we transform ˆσ into another 2-memory stochastic
update strategyσ which satisfies the extra conditions of Item 2
for a suitablez. This is achieved by modifying the behaviour
of σ̂ in some MECs so that the probability of staying in
every MEC is preserved, the expected mean payoff is also
preserved, and the global variance can only decrease. This part
is somewhat tricky and the details are given in Appendix A.

We can solve the strategy existence problem by encoding
the existence of a solution toL as a closed formulaΦ of the
existential fragment of (R,+, ∗,≤). SinceΦ is computable in
polynomial time and the existential fragment of (R,+, ∗,≤) is
decidable in polynomial space [5], we obtain Theorem 1.

The pseudo-polynomial-time approximation algorithm is
obtained as follows. First note that if we had the numberz
above, we could simplify the systemL of Fig. 2 by substituting
all xC variables with constants. Then, (4) and (5) can be
eliminated, (6) becomes a linear constraint, and (7) the only
quadratic constraint. Thus, the systemL can be transformed
into a quadratic programLz in which the quadratic constraint
is negative semi-definite with rank 1 (see Appendix A5), and
hence approximated in polynomial time [23]. Since we do
not know the precise numberz we try different candidates ¯z,
namely we approximate the value (to the precisionε2) of Lz̄

for all numbers ¯z between mina∈A r(a) and maxa∈A r(a) that are
a multiple of τ = ε

8 max{N,1} whereN is the maximal absolute
value of an assigned reward. If anyLz̄ has a solution lower
than u− ε2, we output “yes”, otherwise we output “no”. The
correctness of the algorithm is proved in Appendix A6.

Note that if weknew the constantz we would even get
that the approximation problem can be solved in polynomial

6



s1 s2

a,0

b,2

c,2

Fig. 3. An MDP showing that Pareto optimal strategies need randomiza-
tion/memory for local and hybrid variance.

time (assuming that the number of digits inz is polynomial
in the size of the problem instance). Unfortunately, our proof
of Item 2 does not give a procedure for computingz, and we
cannot even conclude thatz is rational. We conjecture that
the constantz can actually be chosen as a rational number
with small number of digits (which would immediately lower
the complexity of strategy existence toNP using the results
of [22] for solving negative semi-definite quadratic programs).
Also note that Remark 1 and Theorem 1 immediately yield the
following result.

Corollary 1. The approximate Pareto curve for global vari-
ance can be computed in pseudo-polynomial time.

IV. Local variance

In this section we analyse the problem for local variance.
As before, we start by showing the lower bounds for memory
needed by strategies, and then provide an upper bound together
with an algorithm computing a Pareto optimal strategy. As in
the case of global variance, Pareto optimal strategies require
both randomization and memory, however, in contrast to global
variance where for unichain MDPs deterministic memoryless
strategies are sufficient we show (in the following example)
that for local variance both memory and randomization is
required even for unichain MDPs.

Example 2. Consider the MDP from Figure 3 and consider a
strategyσ that in the first step in s1 makes a random choice
uniformly between a and b, and then, whenever the state s1 is
revisited, it chooses the action that was chosen in the first step.
The expected mean-payoff under such strategy is0.5·2+0.5·1=
1.5 and the variance is

(
0.5·
(
0.5·(0−1)2+0.5·(2−1)2

))
+
(
0.5·(2−

2)2
)
= 0.5. We show that the point(1.5, 0.5) cannot be achieved

by any memoryless randomized strategyσ′. Given x∈ {a, b, c},
denote by f(x) the frequency of the action x underσ′. Clearly,
f (c) = 0.5 and f(b) = 0.5− f (a). If f (a) < 0.2, then the mean-
payoff Eσ

′

s1

[
mp
]
= 2 · ( f (c) + f (b)) = 2− 2 f (a) is greater than

1.6. Assume that0.2 ≤ f (a) ≤ 0.5. ThenEσ
′

s1

[
mp
]
≤ 1.6 but the

variance is at least0.64 (see Appendix B1 for computation).
Insufficiency of deterministic history-dependent strategies is
proved using the same equations and the fact that there is
only one run under such a strategy.

Thus have shown that memory and randomization is needed
to achieve a non-Pareto point(1.55, 0.6). The need of memory
and randomization to achieve Pareto points will follow later
from the fact that there always exist Pareto optimal strategies.

In the remainder of this section we prove the following.

Theorem 2. If there is a strategy ζ satisfying
(Eζs0

[
mp
]
,E
ζ
s0

[lv]) ≤ (u, v) then there is a 3-memory
strategy with the same properties. The problem whether such
a strategy exists belongs toNP. Moreover, Pareto optimal
strategies always exist.

We start by proving that 3-memory stochastic update strate-
gies achieve all achievable points wrt. local variance.

Proposition 2. For every strategyζ there is a 3-memory
stochastic-update strategyσ satisfying

(Eσs0

[
mp
]
,Eσs0

[lv]) ≤ (Eζs0

[
mp
]
,E
ζ
s0

[lv])

Moreover, the three memory elements ofσ, say m1,m2,m′2,
satisfy the following:
• The memory element m1 is initial, σ may randomize in

m1 and may stochastically update its memory either to
m2, or to m′2.

• In m2 and m′2 the strategyζ behavesdeterministicallyand
never changes its memory.

Proof: By Lemma 1
∑

C∈MEC(G) P(RC) = 1, and

(Eζs0

[
mp
]
,E
ζ
s0

[lv])

=
( ∑

C∈MEC(G)

P(RC)·Eζs0

[
mp | RC

]
,
∑

C∈MEC(G)

P(RC)·Eζs0
[lv | RC]

)
.

In what follows we sometimes treat each MECC as a
standalone MDP obtained by restrictingG to C. Then, for
example,Cκ denotes the Markov chain obtained by applying
the strategyκ to the componentC.

The next proposition formalizes the main idea of our proof:

Proposition 3. Let C be a MEC. There are two frequency
functions fC : C → R and f′C : C → R on C, and a number
pC ∈ [0, 1] such that the following holds

pC · (mp[ fC], lv[ fC]) + (1− pC) · (mp[ f ′C], lv[ f ′C])

≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC]) .

The proposition is proved in Appendix B2, where we first
show that it follows from a relaxed version of the proposition
which gives us, for anyε > 0, frequency functionsfε and f ′ε
and numberpε such that

pε · (mp[ fε], lv[ fε]) + (1− pε) · (mp[ f ′ε ], lv[ f ′ε ])

≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC]) + (ε, ε) .

Then we show that the weaker version holds by showing that
there are runsω from which we can extract the frequency
functions fε and f ′ε . The selection of runs is rather involved,
since it is not clear a priori which runs to pick or even how to
extract the frequencies from them (note that the naive approach
of considering the average ratio of taking a given actiona does
not work, since the averages might not be defined).

Proposition 3 implies that any expected mean payoff and
local variance achievable on a MECC can be achieved
by a composition of two memoryless randomized strategies
giving precisely the frequencies of actions specified byfC
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and f ′C (note that lv[ fC] and lv[ f ′C] may not be equal to
the expected local variance of such strategies, but we show
that the “real” expected local variance cannot be larger).
By further selecting BSCCs of these strategies and using
some de-randomization tricks we obtain, for every MECC,
two memoryless deterministic strategiesπC and π′C and a
constanthC such that for everys ∈ C ∩ S the value of
hC(EπC

s
[
mp
]
,EπC

s [lv]) + (1−hC)(E
π′C
s
[
mp
]
,E
π′C
s [lv]) is equal to a

fixed (u′, v′) (since bothCπC and Cπ
′
C have only one BSCC)

satisfying (u′, v′) ≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC]). We define two
memoryless deterministic strategiesπ andπ′ that in everyC
behave asπC andπ′C, respectively. Details of the steps above
are postponed to Appendix B3.

Using similar arguments as in [4] (that in turn depend
on results of [13]) one may show that there is a 2-memory
stochastic update strategyσ′, with two memory locations
m1,m2, satisfying the following properties: Inm1, the strategy
σ′ may randomize and may stochastically update its memory
to m2. In m2, the strategyσ′ never changes its memory. Most
importantly, the probability thatσ′ updates its memory from
m1 to m2 in a given MECC is equal toPζs0

[RC].
We modify the strategyσ′ to the desired 3-memoryσ by

splitting the memory elementm2 into two elementsm2,m′2.
Wheneverσ′ updates tom2, the strategyσ further chooses
randomly whether to update either tom2 (with prob.hC), or to
m′2 (with prob. 1−hC). Once inm2 or m′2, the strategyσ never
changes its memory and plays according toπ or π′, respec-
tively. For every MECC we havePσs0

(update tom2 in C) =
P(RC) ·hC andPσs0

(update tom′2 in C) = P(RC) · (1−hC). Thus
we get

(Eζs0

[
mp
]
,E
ζ
s0

[lv]) = (Eσs0

[
mp
]
,Eσs0

[lv]) (8)

as shown in Appendix B4.
Proposition 2 combined with results of [4] allows us to

finish the proof of Theorem 2.
Proof (of Theorem 2): Intuitively, the non-deterministic

polynomial time algorithm works as follows: First, guess two
memoryless deterministic strategiesπ andπ′. Verify whether
there is a 3-memory stochastic update strategyσ with memory
elementsm1,m2,m′2 which in m2 behaves asπ, and in m′2
behaves asπ′ such that (Eσs0

[
mp
]
,Eσs0

[lv]) ≤ (u, v). Note that it
suffices to compute the probability distributions chosen byσ
in the memory elementm1 and the probabilities of updating to
m2 andm′2. This can be done by a reduction to the controller
synthesis problem for two dimensional mean-payoff objectives
studied in [4].

More concretely, we construct a new MDPG[π, π′] with
• the set of statesS′ := {sin} ∪ (S × {m1,m2,m′2})

(Intuitively, the m1,m2,m′2 correspond to the memory
elements ofσ.)

• the set of actions2 A∪ {[π], [π′], default}
• the mappingAct′ defined byAct′(sin) = {[π], [π′], default},

Act′((s,m1)) = Act(s) ∪ {[π], [π′]} and Act′((s,m2)) =
Act′((s,m′2)) = {default}

2To keep the presentation simple, here we do not require that every action
is enabled in at most one step.

(Intuitively, the actions [π] and [π′] simulate the update
of the memory elementm2 and tom′2, respectively, inσ.
As σ is supposed to behave in a fixed way inm2 andm′2,
we do not need to simulate its behavior in these states in
G[π, π′]. Hence, theG[π, π′] just loops under the action
defaultin the states (s,m2) and (s,m′2). The actiondefault
is also used in the initial state to denote that the initial
memory element ism1.)

• the probabilistic transition functionδ′ defined as follows:

– δ′(sin)(default)((s0,m1)) = δ(sin, [π])((s0,m2)) =

δ(sin, [π′])((s0,m′2)) = 1 for a ∈ A and t ∈ S
– δ′((s,m1), a)((t,m1)) = δ(s, a)(t) for a ∈ A and t ∈ S
– δ′((s,m1), [π])((s,m2)) =
δ′((s,m1), [π′])((s,m′2)) = 1

– δ′((s,m2), default)((s,m2)) =
δ′((s,m′2), default)((s,m′2)) = 1

We define a vector of rewards~r : S′ → R2 as
follows: ~r((s,m2)) := (Eπs

[
mp
]
,Eπs[lv]) and ~r((s,m′2)) :=

(Eπ
′

s
[
mp
]
,Eπ

′

s [lv]) and ~r(sin) = ~r((s,m1)) := (maxa∈A r(a) +
1, (maxa∈A r(a) − mina∈A r(a))2 + 1). (Here the rewards are
chosen in such a way that no (Pareto) optimal scheduler can
stay in the states of the form (s,m1) with positive probability.)
Note that~r can be computed in polynomial time using standard
algorithms for computing mean-payoff in Markov chains [17].

In Appendix B5 we show that if there is a strategyζ
for G such that (Eζs0

[
mp
]
,E
ζ
s0

[lv]) ≤ (u, v), then there is a
(memoryless randomized) strategyρ in G[π, π′] such that
(Eρsin

[
mp~r1
]
,E
ρ
sin

[
mp~r2
]
) ≤ (u, v). Also, we show that suchρ can

be computed in polynomial time using results of [4]. Finally, it
is straightforward to move the second component of the states
of G[π, π′] to the memory of a stochastic update strategy which
gives a 3-memory stochastic update strategyσ for G with
the desired properties. Thus a non-deterministic polynomial
time algorithm works as follows: (1) guessπ, π′ (2) construct
G[π, π′] and~r (3) computeρ (if it exists). As noted above,ρ
can be transformed to the 3-memory stochastic update strategy
σ in polynomial time.

Finally, we can show that Pareto optimal strategies exist by
a reasoning similar to the one used in global variance.

Theorem 2 and Remark 1 give the following corollary.

Corollary 2. The approximate Pareto curve for local variance
can be computed in exponential time.

V. Hybrid variance

We start by showing that memory or randomization is
needed for Pareto optimal strategies in unichain MDPs for
hybrid variance; and then show that both memory and ran-
domization is required for hybrid variance for general MDPs.

Example 3. Consider again the MDP from Fig. 3, and any
memoryless deterministic strategy. There are in fact two of
these. One, which choses a in s1, yields the variance1, and
the other, which chooses b in s1, yields the expectation2.

However, a memoryless randomized strategyσ which ran-
domizes uniformly between a and b yields the expectation1.5
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and variance

(
0.5 ·
(
0.5 · (0− 1.5)2 + 0.5 · (2− 1.5)2

))
+
(
0.5 · (2− 0.15)2

)

= 0.25 · 2.25+ 0.75 · 0.25= 0.75

which makes it incomparable to either of the memoryless
deterministic strategies. Similarly, the deterministic strategy
which alternates between a and b on subsequent visits of s1

yields the same values as theσ above. This gives us that
memory or randomization is needed even to achieve a non-
Pareto point(1.6, 0.8).

Before proceeding with general MDPs, we give the follow-
ing proposition, which states an interesting and importantre-
lation between the three notions of variance3. The proposition
is proved in Appendix C1.

Proposition 4. Supposeσ is a strategy under which for almost
all ω the limits exists for hv(ω), mp(ω), and lv(ω) (i.e. the
lim sup in their definitions can be swapped forlim). Then

Eσs [hv] = Vσs
[
mp
]
+ Eσs [lv] .

Now we can show that both memory and randomization is
needed, by extending Example 1.

Example 4. Consider again the MDP from Fig. 1. Under
every strategy, every runω satisfies lv(ω) = 0, and the limits
for mp(ω), lv(ω) and hv(ω) exist. ThusEζs[lv] = 0 for all ζ and
by Proposition 4 we getEζs[hv] = Vζs

[
mp
]
. Hence we can use

Example 1 to reason that both memory and randomization is
needed to achieve the Pareto point(4, 2) in Fig. 1.

Now we prove the main theorem of this section.

Theorem 3. If there is a strategy ζ satisfying
(Eζs
[
mp
]
,E
ζ
s0

[hv]) ≤ (u, v), then there is a 2-memory
strategy with the same properties. The problem whether such
a strategy exists belongs toNP, and approximation of the
answer can be done in polynomial time. Moreover, Pareto
optimal strategies always exist.

We start by proving that 2-memory stochastic update strate-
gies are sufficient for Pareto optimality wrt. hybrid variance.

Proposition 5. Let s0 ∈ S and u, v ∈ R.

1) If there is a strategyζ satisfying (Eζs0

[
mp
]
,E
ζ
s0

[hv]) ≤
(u, v), then the system LH (Fig. 4) has a non-negative
solution.

2) If there is a non-negative solution for the system LH

(Fig. 4), then there is a 2-memory stochastic-update
strategyσ satisfying(Eσs0

[
mp
]
,Eσs0

[hv]) ≤ (u, v).

Notice that we get the existence of Pareto optimal strategies
as a side product of the above proposition, similarly to the case
of global variance.

3Note that Proposition 4 doesnot simplify the decision problem for hybrid
variance, since it does not imply that the algorithms for global and local
variance could be combined.

1s0(s) +
∑

a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya + ys for all s ∈ S (9)

∑

C∈MEC(G)

∑

s∈S∩C

ys = 1 (10)

∑

s∈C

ys =
∑

a∈A∩C

xa for all C ∈ MEC(G) (11)

∑

a∈A

xa · δ(a)(s) =
∑

a∈Act(s)

xa for all s ∈ S (12)

u ≥
∑

a∈A

xa · r(a) (13)

v ≥
∑

a∈A

xa · r
2(a) −

(∑

a∈A

xa · r(a)
)2

(14)

Fig. 4. The systemLH . (Here1s0 (s) = 1 if s= s0, and1s0 (s) = 0 otherwise.)

We briefly sketch the main ingredients for the proof of
Proposition 5. We first establish the sufficiency of finite-
memory strategies by showing that for an arbitrary strategy
ζ, there is a 3-memory stochastic update strategyσ such that
(Eσs0

[
mp
]
,Eσs0

[hv]) ≤ (Eζs0

[
mp
]
,E
ζ
s0

[hv]). The key idea of the
proof of the construction of a 3-memory stochastic update
strategyσ from an arbitrary strategyζ is similar to the proof of
Proposition 2. The details are in Appendix C2. We then focus
on finite-memory strategies. For a finite-memory strategyζ,
the frequencies are well-defined, and for an actiona ∈ A,
let f (a) ≔ limℓ→∞ 1

ℓ

∑ℓ−1
t=0 P

ζ
s0

[At = a] denote the frequency
of action a. We show that settingxa ≔ f (a) for all a ∈ A
satisfies Eqns. (12), Eqns. (13) and Eqns. (14) ofLH . To
obtain ya and ys, we define them in the same way as done
in [4, Proposition 2] using the results of [13]. The details
are postponed to Appendix C3. This completes the proof of
the first item. The proof of the second item is as follows:
the construction of a 2-memory stochastic update strategyσ

from the constraints of the systemLH (other than constraint
of Eqns 14) was presented in [4, Proposition 1]. The key
argument to show that strategyσ also satisfies Eqns 14 is
obtained by establishing that for the strategyσ we have:
Eσs [hv] = Eσs

[
mpr2

]
− Eσs

[
mp
]2 (here mpr2 is the value of

mp w.r.t. reward function defined byr2(a) = r(a)2; the
equality is shown in Appendix C4). It follows immediately that
Eqns 14 is satisfied. This completes the proof of Proposition5.
Finally we show that for the quadratic program defined by
the systemLH , the quadratic constraint satisfies the conditions
of negative semi-definite programming with matrix of rank 1
(see Appendix C5). Since negative semi-definite programs can
be decided in NP [22] and with the additional restriction of
rank 1 can be approximated in polynomial time [23], we get
the complexity bounds of Theorem 3. Finally, Theorem 3 and
Remark 1 give the following result.

Corollary 3. The approximate Pareto curve for hybrid vari-
ance can be computed in pseudo-polynomial time.
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VI. Zero variance with optimal performance

Now we present polynomial-time algorithms to compute
the optimal expectation that can be ensured along with zero
variance. The results are captured in the following theorem.

Theorem 4. The minimal expectation that can be ensured
1) with zero hybrid variance can be computed in O((|S| ·
|A|)2) time using discrete graph theoretic algorithms;

2) with zero local variance can be computed in PTIME;
3) with zero global variance can be computed in PTIME.

Hybrid variance. The algorithm for zero hybrid variance is
as follows: (1) Order the rewards in an increasing sequence
β1 < β2 < . . . < βn; (2) find the leasti such thatAi is the set of
actions with rewardβi and it can be ensured with probability 1
(almost-surely) that eventually only actions inAi are visited,
and outputβi ; and (3) if no suchi exists output “NO” (i.e., zero
hybrid variance cannot be ensured). Since almost-sure winning
for MDPs with eventually always property (i.e., eventualy only
actions inAi are visited) can be decided in quadratic time with
discrete graph theoretic algorithm [7], [6], we obtain the first
item of Theorem 4. The correctness is proved in Appendix D1.

Local variance. For zero local variance, we make use of
the previous algorithm. The intuition is that to minimize the
expectation with zero local variance, a strategyσ needs to
reach statess in which zero hybrid variance can be ensured
by strategiesσs, and then mimic them. Moreover,σminimizes
the expected value ofmp among all possible behaviours
satisfying the above. The algorithm is as follows: (1) Use the
algorithm for zero hybrid variance to compute a functionβ that
assigns to every states the minimal expectation valueβ(s) that
can be ensured along with zero hybrid variance when starting
in s, and if zero hybrid variance cannot be ensured, thenβ(s)
is assigned+∞. Let M = 1 + maxs∈S β(s). (2) Construct an
MDP G as follows: For each states such thatβ(s) < ∞ we
add a states with a self-loop on it, and we add a new action
as that leads froms to s. (3) Assign a rewardβ(s) − M to
as, and 0 to all other actions. LetT = {as | β(s) < ∞} be the
target set of actions. (4) Compute a strategy that minimizes
the cumulative reward and ensures almost-sure (probability 1)
reachability toT in G. Let β̂(s) denote the minimal expected
payoff for the cumulative reward; andβ(s) = β̂(s) + M. In
Appendix D2 we show thatβ(s) is the minimal expectation
that can be ensured with zero local variance, and every step
of the above computation can be achieved in polynomial time.
This gives us the second item of Theorem 4.

Global variance. The basic intuition for zero global variance
is that we need to find the minimal numbery such that there
is an almost-sure winning strategy to reach the MECs where
expectationexactly ycan be ensured with zero variance.

The algorithm works as follows: (1) Compute the MEC de-
composition of the MDP and let the MECs beC1,C2, . . . ,Cn.
(2) For every MECCi compute the minimal expectation
αCi = infσmins∈Ci E

σ
s
[
mp
]

and the maximal expectationβCi =

supσmaxs∈Ci E
σ
s
[
mp
]

that can be ensured in the MDP induced
by the MECCi . (3) Sort the valuesαCi in a non-decreasing

order asℓ1 ≤ ℓ2 ≤ . . . ≤ ℓn. (4) Find the leasti such that
(a) Ci = {C j | αC j ≤ ℓi ≤ βC j } is the MEC’s whose interval
containsℓi ; (b) almost-sure (probability 1) reachability to the
set
⋃

C j∈Ci
C j (the union of the MECs inCi) can be ensured;

and outputℓi . (5) If no suchi exists, then the answer to zero
global variance is “NO” (i.e., zero global variance cannot be
ensured). All the above steps can be computed in polynomial
time. The correctness is proved in Appendix D3, and we obtain
the last item of Theorem 4.

VII. Conclusion

We studied three notions of variance for MDPs with mean-
payoff objectives: global (the standard one), local and hybrid
variance. We established a strategy complexity (i.e., the mem-
ory and randomization required) for Pareto optimal strategies.
For the zero variance problem, all the three cases are in
PTIME. There are several interesting open questions. The
most interesting open questions are whether the approximation
problem for local variance can be solved in polynomial time,
and what are the exact complexities of the strategy existence
problem.
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Appendix

A. Proofs for Global Variance

1) Obtaining values yκ for κ ∈ S ∪ A in Item 1 of Proposition 1:Let G be an MDP, and letG′ be obtained fromG by
adding a stateds for every states ∈ S, and an actionas that leads tods from s.

Lemma 3. Let σ be a strategy for G. Then there is a strategyσ̄ in G′ such thatPσsin
[RC] = Pσ̄sin

[⋃
s∈C Reach(ds)

]
.

Proof: We give a proof by contradiction. LetC1, . . .Cn be all MECs ofG, and let X ⊆ Rn be the set of all points
(x1, . . . , xn) for which there is a strategyσ′ in G′ such thatPσ

′

sin

[⋃
s∈Ci

Reach(ds)
]
≥ xi for all 1 ≤ i ≤ n. Let (y1, . . . , yn) be the

numbers such thatPσsin

[
RCi

]
= yi for all 1 ≤ i ≤ n. For contradiction, suppose (y1, . . . , yn) < X. By [13, Theorem 3.2] the setX

can be described as a set of solutions of a linear program, andhence it is convex. By separating hyperplane theorem (see e.g.
[3]) there are non-negative weightsw1, . . . ,wn such that

∑n
i=0 yi · wi >

∑n
i=0 xi · wi for every (x1, . . . , xn) ∈ X.

We define a reward functionr by r(a) = wi for an actiona from Ci , where 1≤ i ≤ n, and r(a) = 0 for actions not in any
MEC. Observe that the mean payoff of any run that eventually stays in a MECCi is wi , and so the expected mean payoff
w.r.t. r underσ is

∑n
i=0 yi · wi . Because memoryless deterministic strategies suffice for maximizing the expected mean payoff,

there is also a memoryless deterministic strategy ˆσ for G that yields expected mean payoff w.r.t. r equal toz ≥
∑n

i=0 yi · wi .
We now define a strategy ¯σ for G′ to mimic σ̂ until a BSCC is reached, and when a BSCC is reached, say along apath w,
the strategy ¯σ takes the actionalast(w). Let xi = P

σ̄
sin

[⋃
s∈Ci

Reach(ds)
]
. Due to the construction of ¯σ we havexi = P

σ̂
sin

[
RCi

]
:

this follows because once a BSCC is reached on a pathw, every runω extendingw has an infinite suffix containing only the
states of the MEC containing the statelast(w). Hence

∑n
i=0 xi · wi = z. However, by the choice of the weightswi we get that

(x1, . . . , xn) < X, and hence a contradiction, because ¯σ witnesses that (x1, . . . , xn) ∈ X.
Let ζ be the strategy from Item 1. of Proposition 1. By the above lemma there is a strategyζ′ for G′ such thatPζsin

[RC] =
P
ζ′

sin

[⋃
s∈C Reach(ds)

]
. SinceG′ satisfies the conditions of [13, Theorem 3.2], we get a solution ȳ to the linear program of [13,

Figure 3] where for allC we have
∑

s∈C∩S ȳds = P
ζ
sin

[RC]. This solution gives us a solution to the Inequalities 1 – 3 of the
linear systemL of Figure 2 byyt := ȳdt for all t ∈ S, andya = ȳ(s,a) for all a (note that the states is given uniquely as the
state in whicha is enabled). Because ¯yds = yt, we get the required property that

∑
t∈C∩S yt =

∑
t∈C∩S ydt = P

ζ
sin

[RC].
2) Proof of Lemma 2:Given a memoryless strategyσ and an actiona, we usefσ(a) = Eσs

[
lim i→∞

1
i Ia(Ai)

]
(whereIa(a) = 1

and Ia(b) = 0 for a , b) the frequency of actiona.
Let σ1 andσ2 be memoryless deterministic strategies that minimize and maximize the expectation, respectively, and only

yield one BSCC for any initial state. Letσ′ be arbitrary memoryless randomized strategy that visits every action inC with
nonzero frequency (such strategy clearly exists). We definethe strategyσzC as follows. If zC =

∑
a∈C∩A fσ′ (a) · r(a), then

σzC = σ
′. If zC >

∑
a∈C∩A fσ′ (a) · r(a), then, because alsozC ≤

∑
a∈C∩A fσ2(a) · r(a), there must be a numberp ∈ (0, 1] such that

zC = p ·
( ∑

a∈C∩A

fσ′ (a) · r(a)
)
+ (1− p) ·

( ∑

a∈C∩A

fσ2(a) · r(a)
)

We define numbersza = p · fσ′ (a) + (1− p) · fσ2(a) for all a ∈ C ∩ A. Observe that we have, for anys ∈ C
∑

a∈C∩A

za · δ(a)(s) =
∑

a∈C∩A

(
p · fσ′ (a) · δ(a)(s) + (1− p) · fσ2(a) · δ(a)(s)

)

= p ·
( ∑

a∈C∩A

fσ′ (a) · δ(a)(s)
)
+ (1− p) ·

( ∑

a∈C∩A

fσ2(a) · δ(a)(s)
)

= p ·
( ∑

a∈Act(s)

fσ′ (a)
)
+ (1− p) ·

( ∑

a∈Act(s)

fσ2(a)
)

=
∑

a∈Act(s)

(
p · fσ′ (a) + (1− p) · fσ2(a)

)

Hence, there is a memoryless randomized strategyσzC which visitsa with frequencyza, hence giving the expectation
( ∑

a∈C∩A

p · fσ′ (a) · r(a)
)
+
( ∑

a∈C∩A

(1− p) · fσ2(a) · r(a)
)
= p ·

( ∑

a∈C∩A

fσ′ (a) · r(a)
)
+ (1− p) ·

( ∑

a∈C∩A

fσ2(a) · r(a)
)
= zC

For zC <
∑

a∈C∩A fσ′ (a) · r(a) we proceed similarly, this time combiningσC with σ1 instead ofσ2.
3) Showing thatVζs

[
mp
]
≥ V

ζ′

s
[
mp
]
: Since by law of total varianceV(Z) = E(V(Z|Y)) +V(E(Z|Y)) for all random variables

Y, Z we have forσ ∈ {ζ, ζ′}:
Vσs
[
mp
]
=
( ∑

C∈MECG

Pσs [RC] · Vσs
[
mp|RC

] )
+ V(X)

whereX is the random variable which to every MEC C assignsEσs
[
mp|RC

]
. Note that these random variables are equal for

both ζ and ζ′, and so also the second summands in the equation above are equal for ζ and ζ′. In the first summand, all the
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valuesVζs
[
mp|RC

]
are nonnegative, whileVζ

′

s
[
mp|RC

]
are zero. Hence the variance can only decrease when we go fromζ to

ζ′.
4) From σ̂ to σ: In the construction ofσ we employ the following technical lemma.

Lemma 4. Let A be a finite set, X,Y : A→ R be random variables, a1, a2 ∈ A and d> 0 a number satisfying the following:

• For all a < {a1, a2}: X(a) = Y(a).
• Y(a1) ≤ Y(a2)
• X(a1) + d = Y(a1)
• X(a2) −

P(a1)
P(a2) · d = Y(a2)

ThenE(X) = E(Y) andV(X) ≥ V(Y).

Proof: Let us fix the following notation:

µ = E(X) e1 = X(a1) e2 = X(a2) ec = E(X | A \ {a1, a2})

p1 = P(a1) p2 = P(a2) pc = P(A \ {a1, a2})

For expectation, we have

E(X) = E(X | A \ {a1,a2}) · pc + E(X | a1) · p1 + E(X | a2) · p2

= E(Y | A \ {a1,a2}) · pc + (E(Y | a1) − d) · p1 + (E(Y | a2) +
p1

p2
· d) · p2

= E(Y | A \ {a1,a2}) · pc + E(Y | a1) · p1 + E(Y | a2) · p2

= E(Y).

For variance, we need to show that

E((X−µ)2 | A\ {a1,a2}) · pc+E((X−µ)2 | a1) · p1+E((X−µ)2 | a2) · p2 ≥ E((Y−µ)2 | A\ {a1,a2}) · pc+E((Y−µ)2 | a1) · p1+E((Y−µ)2 | a2) · p2

which boils down to showing that

E((X − µ)2 | a1) · p1 + E((X − µ)2 | a2) · p2 ≥ E((Y− µ)2 | a1) · p1 + E((Y− µ)2 | a2) · p2

We have

E((Y− µ)2 | a1) · p1 + E((Y− µ)2 | a2) · p2 = p1 · (e1 + d − µ)2 + p2 · (e2 −
p1

p2
· d − µ)2

= p1 · ((e1 + d)2 − 2 · (e1 + d) · µ + µ2)

+p2 · ((e2 −
p1

p2
· d)2 − 2 · (e2 −

p1

p2
· d) · µ + µ2)

= p1 · (e
2
1 + 2 · e1 · d + d2 − 2 · (e1 + d) · µ + µ2)

+p2 · (e
2
2 − 2 · e2 ·

p1

p2
· d +

p2
1

p2
2

· d2 − 2 · (e2 −
p1

p2
· d) · µ + µ2)

= p1 · ((e1 − µ)
2 + d2 + 2 · e1 · d− 2 · d · µ)

+p2 · ((e2 − µ)
2 − 2 · e2 ·

p1

p2
· d +

p2
1

p2
2

· d2 + 2 ·
p1

p2
· d · µ)

= p1 · E((X− µ)2 | a1) + p2 · E((X − µ)2 | a2)

+p1 · (d
2 + 2 · e1 · d − 2 · d · µ) + p2 · (−2 · e2 ·

p1

p2
· d +

p2
1

p2
2

· d2 + 2 ·
p1

p2
· d · µ)

and so we need to show that the term on the last line is not positive. It is equal to

p1 · d
2 + p1 · 2 · e1 · d− p1 · 2 · d · µ − 2 · e2 · p1 · d+

p2
1

p2
· d2 + 2 · p1 · d · µ = p1 · d

2 + p1 · 2 · (e1 − e2) · d +
p2

1

p2
· d2

and hence we need to show thatd + 2(e1 − e2) + p1

p2
· d is not positive, which is the case, because by the assumptionwe have

(e2 − e1) = Y(a2) + p1

p2
· d− (Y(a1) − d) ≥ d+ p1

p2
· d.

Let σ̂ be the strategy from page 6, i.e. for every MECC there is a numberxC such thatmp(ω) = xC for almost every run
from RC. Let us fix arbitraryz, and letC(z, σ) be the set of all the MECs which satisfy:
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• If αC > z, then xC , αC.
• If βC < z, then xC , βC.
• Otherwise (ifαC ≤ z≤ βC) we havexC , z.

We create a sequence of strategiesσ0, σ1 . . . and numbersz0, z1, . . . by starting withσ0 = σ̂, z0 = z and creatingσk+1 and
zk+1 from σk andzk as follows, finishing the sequence with a desired strategyσ. First, until possible, we repeat the following
step.

If there are MECsCi andC j in C(zk, σk) such thatxCi < z and xC j > z, denotep =
P
σk
s [RCi ]
P
σk
s

[
RCj

] and pick the maximald such

that d ≤ xCi −max{z, αCi } and p · d ≤ min{z, βC j } − xC j . We construct a 2-memory strategyσk+1 that preserves the probabilities
of σk to reach each of the MECs, satisfiesEσk+1

s
[
mp | RC

]
= E

σk
s
[
mp | RC

]
andVσk+1

s
[
mp | RC

]
= 0 for every MECC different

from Ci and C j , and also satisfiesEσk+1
s
[
mp | RCi

]
= vCi + d andEσk+1

s
[
mp | RCi

]
= vC j − p · d. We also definezk+1 = zk. By

Lemma 4 the resulting strategyσk+1 satisfiesEσk+1
s
[
mp
]
= E

σk
s
[
mp
]

andVσk+1
s
[
mp
]
≤ V

σk
s
[
mp
]
. Also, C(zk+1, σk+1) ( C(zk, σk),

because one of the MECsCi andC j does not satisfy the defining condition ofC and no new MEC satisfies it.
Once it is not possible to perform the above, we either gotC(zk+1, σk+1) = ∅ (in which case we putσ = σk+1 and we are

done) or exactly one of the following takes place: there is a MEC C in C(zk+1, σk+1) such thatxC > z or there is a MECC in
C(zk+1, σk+1) such thatxC < z. Depending on which of these two happen, we continue building the sequence of strategies and
numbers using one of the following items, until possible.

• Suppose there is a MECC in C(zk, σk) such thatxC > z. LetD(zk, σk) be the set of all MECsC′ such thatEσk
s
[
mp | RC′

]
= z

and z , βC′ , and let p =
∑

C′∈D(zk ,σk) P
σ
s[RC′ ]

Pσs[RC] . Let us pick a maximald such thatp · d ≤ xC − max{z + p · d, αC} and
d ≤ min{αC′ | C′ ∈ D} − z. We construct a strategyσk+1 so that it satisfiesVσk+1

s
[
mp | RC′

]
= 0 for every MECC′,

E
σk+1
s
[
mp | RC′

]
= E

σk
s
[
mp | RC′

]
for every MECC′ < D(zk, σk) ∪ {C} and also satisfiesEσk+1

s
[
mp | RC

]
= vC − p · d and

Eσ
′

s
[
mp | RC′

]
= vC′′ + d for all C′ ∈ D(zk, σk). By Lemma 4 the resulting strategy satisfiesEσk+1

s
[
mp
]
= E

σk
s
[
mp
]

and
Vσ

′

s
[
mp
]
≤ V

σk
s
[
mp
]
.

One of the following also takes place:

– C(zk+1, σk+1) ( C(zk+1, σk+1), becauseC < C(zk+1, σk+1).
– C(zk+1, σk+1) = C(zk+1, σk+1) andD(zk+1, σk+1) ( D(zk+1, σk+1)

We setzk+1 = zk and continue, if possible.
• If there is a MECC such thatxC < z we proceed similarly as in the above item.

Note that the above procedure eventually terminates, because in every step eitherC(zi+1, σi+1) ⊆ C(zi , σi), and form= |MEC(G)|
we haveC(zi+m, σi+m) ( C(zi+1, σi+1), because ifC(zi+1, σi+1) = C(zi , σi), thenD(zi+1, σi+1) ( D(zi , σi) and |D(·, ·)| ≤ m.

5) Solving L̂z in polynomial time.:

Lemma 5. Let n ∈ N and mi ∈ N for every1 ≤ i ≤ n. For all 1 ≤ i ≤ n and 1 ≤ j ≤ mi , we use〈i, j〉 to denote the index
j +
∑i−1
ℓ=1 mℓ. Consider a function f: Rk → R, where k=

∑n
i=1 mi , of the form

f (~v) =


n∑

i=1

(
~c2

i ·

mi∑

j=1

~v〈i, j〉
) −


n∑

i=1

(
~ci ·

mi∑

j=1

~v〈i, j〉
)

2

where~c ∈ Rn. Then f(~v) can be written as f(~v) = ~vT Q~v + ~dT~v where Q is a negative semi-definite matrix of rank1 and
~d ∈ Rk. Consequently, f(~v) is concave and Q has exactly one eigenvalue.

Proof: Observe that every vector~u ∈ Rk can be written as~uT = (~u〈1,1〉, . . . , ~u〈1,m1〉, · · · , ~u〈n,1〉, . . . , ~u〈1,mn〉). Let Q be k × k
matrix whereQ〈i, j〉,〈i′, j′〉 = −(ci′ · ci). Then

(Q~v)〈i, j〉 =

n∑

i′=1

mi′∑

j′=1

Q〈i, j〉,〈i′, j′〉 · ~v〈i′ , j′〉 = −

n∑

i′=1

mi′∑

j′=1

(ci′ · ci)~v〈i′ , j′〉

and consequently

~vTQ~v = −

n∑

i=1

mi∑

j=1

~v〈i, j〉 ·


n∑

i′=1

mi′∑

j′=1

(ci′ · ci)~v〈i′ , j′〉

 = −

n∑

i=1

n∑

i′=1

(ci · ci′ ) ·
mi∑

j=1

~v〈i, j〉 ·
mi′∑

j′=1

~v〈i′, j′〉 = −


n∑

i=1

(
~ci ·

mi∑

j=1

~vi, j

)
2

Hence, f (~v) = ~vTQ~v + ~dT~v, where~d〈i, j〉 = c2
i . Let ~u ∈ Rk be a (fixed) vector such that~u〈i, j〉 = −ci . Then the〈i′, j′〉-th column

of Q is equal toci′ · ~u, which means that the rank ofQ is 1. The matrixQ is negative semi-definite because~vT Q~v ≤ 0 for
every~v ∈ Rk.
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6) Correctness of the approximation algorithm.:Assume there is a strategyσ such that (Eσs
[
mp
]
,Vσs
[
mp
]
) ≤ (u− ε, v− ε),

and letz be the number from Item 2, and let us fix a valuation ¯yκ for the variablesyκ whereκ ∈ S ∪ A from equations of the
systemL (see Figure 2). Let ¯z be a number between the minimal and the maximal assigned reward that is a multiple ofτ,
and which satisfies|z− z̄| < τ. Such a number must exist. We show that the systemLz̄ has a solution. The valuation ¯yκ can be
applied to the systemLz̄, and we get

∑

C∈MEC(G)

xC,z̄ ·
∑

t∈S∩C

yt =
( ∑

C∈MEC(G)

xC,z ·
∑

t∈S∩C

yt

)
+
( ∑

C∈MEC(G)

(xC,z̄ − xC,z) ·
∑

t∈S∩C

yt

)

≤ (u− ε) +
( ∑

C∈MEC(G)

τ ·
∑

t∈S∩C

yt

)

≤ (u− ε) +
( ∑

C∈MEC(G)

τ ·
∑

t∈S∩C

yt

)

≤ (u− ε) + τ ≤ u

For variance, we have that

∑

C∈MEC(G)

x2
C,z̄ ·
∑

t∈S∩C

yt

 =

∑

C∈MEC(G)

(
xC,z + (xC,z̄ − xC,z)

)2
·
∑

t∈S∩C

yt



=


∑

C∈MEC(G)

x2
C,z ·
∑

t∈S∩C

yt

 +

∑

C∈MEC(G)

(2 · xC,z · (xC,z̄ − xC,z) + (xC,z̄ − xC,z)2) ·
∑

t∈S∩C

yt



≤


∑

C∈MEC(G)

x2
C,z ·
∑

t∈S∩C

yt

 +

∑

C∈MEC(G)

(2 · xC,z · τ + τ
2) ·
∑

t∈S∩C

yt



≤


∑

C∈MEC(G)

x2
C,z ·
∑

t∈S∩C

yt

 +

∑

C∈MEC(G)

(2 · N · τ + τ2) ·
∑

t∈S∩C

yt



≤


∑

C∈MEC(G)

x2
C,z ·
∑

t∈S∩C

yt

 + 2 · N · τ + τ2

and

∑

C∈MEC(G)

xC,z̄ ·
∑

t∈S∩C

yt


2

=


∑

C∈MEC(G)

(
xC,z + (xC,z̄ − xC,z)

)
·
∑

t∈S∩C

yt


2

=


( ∑

C∈MEC(G)

xC,z ·
∑

t∈S∩C

yt

)
+
( ∑

C∈MEC(G)

(xC,z̄ − xC,z) ·
∑

t∈S∩C

yt

)


2

≥


( ∑

C∈MEC(G)

xC,z ·
∑

t∈S∩C

yt

)
−
( ∑

C∈MEC(G)

τ ·
∑

t∈S∩C

yt

)


2

=


( ∑

C∈MEC(G)

xC,z ·
∑

t∈S∩C

yt

)
− τ


2

=


∑

C∈MEC(G)

xC,z ·
∑

t∈S∩C

yt


2

− 2 ·
( ∑

C∈MEC(G)

xC,z ·
∑

t∈S∩C

yt

)
· τ + τ2

≥


∑

C∈MEC(G)

xC,z ·
∑

t∈S∩C

yt


2

− 2 · N · τ + τ2

and so we get

∑

C∈MEC(G)

x̂2
C,z̄ ·
∑

t∈S∩C

yt

 −

∑

C∈MEC(G)

xC,z̄ ·
∑

t∈S∩C

yt


2

≤


∑

C∈MEC(G)

x̂2
C,z ·
∑

t∈S∩C

yt

 −

∑

C∈MEC(G)

xC,z ·
∑

t∈S∩C

yt


2

+2 · N · τ + τ2 + 2 · N · τ + τ2

≤ v− ε + ε ≤ v
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Hence we have shown that there is a solution forLz̄, and so the algorithm returns “yes”.
On the other hand, if there is no strategy such that (Eσs

[
mp
]
,Vσs
[
mp
]
) ≤ (u, v), then the algorithm clearly returns “no”.

B. Proofs for Local Variance

1) Computation for Example 2:We have

Eσ
′

s1
[lv] = f (a)(0− Eσ

′

s1

[
mp
]
)2 + ( f (b) + f (c))(2− Eσ

′

s1

[
mp
]
)2

= f (a)(−2+ 2 f (a)))2 + (1− f (a))(2 f (a))2

= 4 f (a) − 8 f (a)2 + 4 f (a)3 + 4 f (a)2 − 4 f (a)3

= 4 f (a) − 4 f (a)2 ≥ 0.64

Throughout this section we use the following three simple lemmas. The first one allows us to reduce convex combinations
of two-dimensional vectors (typically vectors consistingof the mean-payoff and variance) to combinations of just two vectors.

Lemma 6. Let (a1, b1), (a2, b2), . . . , (am, bm) be a sequence of points inR2 and c1, c2, . . . , cm ∈ (0, 1] satisfy
∑m

i=1 ci = 1. Then
there are two vectors(ak, bk) and (aℓ, bℓ) and a number p∈ [0, 1] such that

m∑

i=1

ci(ai , bi) ≥ p(ak, bk) + (1− p)(aℓ, bℓ)

Proof: Denote by (x, y) the point
∑m

i=1 ci(ai , bi) and byH the set{(ai , bi) | 1 ≤ i ≤ m}. If all the points ofH lie in the
same line, then clearly there must be some (ak, bk) ≤ (x, y). Assume that this is not true. Then the convex hullC(H) of H is a
convex polygon whose vertices are some of the points ofH. Consider a point (x′, y) wherex′ = min{z | z ≤ x, (z, y) ∈ C(H)}.
The point (x′, y) lies on the boundary ofC(H) and thus, asC(H) is a convex polygon, (x′, y) lies on the line segment between
two vertices, say (ak, bk), (aℓ, bℓ), of C(H). Thus there isp ∈ [0, 1] such that

(x′, y) = p(ak, bk) + (1− p)(aℓ, bℓ) ≤ (x, y) =
m∑

i=1

ci(ai, bi) .

This finishes the proof.
The following lemma shows how to minimize the mean square deviation (to which our notion of variance is a special case).

Lemma 7. Let a1, . . . , am ∈ R such that
∑m

i=0 ai = 1, let r1, . . . , rm ∈ R and let us consider the following function of one real
variable:

V(x) =
m∑

i=1

ai (r i − x)2

Then the function V has a unique minimum in
∑m

i=1 air i .

Proof: By taking the first derivative ofV we obtain

δV
δx
= −2 ·

m∑

i=1

ai (r i − x) = −2 ·


m∑

i=1

air i

 + 2x

Thus δV
δx (x) = 0 iff x =

∑m
i=1 air i . Moreover, by taking the second derivative we obtainδ

2V
δx2 = 2 > 0, and thus

∑m
i=1 air i is a

minimum.
The following lemma shows that frequencies of actions determine (in some cases) the mean-payoff as well as the variance.

Lemma 8. Let µ be a memoryless strategy and let D be a BSCC of Gµ. Consider frequencies of individual actions a∈ D∩ A
when starting in a state s∈ D ∩ S : Eµs

[
mpIa
]

where Ia assigns1 to a and0 to all other actions (note that the values do not

depend on which s we choose). ThenEµs
[
mpIa
]

determine uniquely all ofEµs
[
mp
]
, Eµs[hv], andEµs[lv] as follows:

E
µ
s
[
mp
]
=
∑

a∈A

r(a) · Eµs
[
mpIa
]

and E
µ
s[hv] = Eµs[lv] =

∑

a∈A

(r(a) − Eµs
[
mp
]
)2 · E

µ
s

[
mpIa
]

Proof: We have

E
µ
s
[
mp
]
= E

µ
s

limi→∞

1
i
·

i∑

j=1

r(A j)

 = E
µ
s

 limi→∞

1
i
·

i∑

j=1

∑

a∈A

r(a)Ia(A j)

 =
∑

a∈A

r(a) · Eµs

 limi→∞

1
i
·

i∑

j=1

Ia(A j)

 =
∑

a∈A

r(a) · Eµs
[
mpIa
]
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and

E
µ
s[hv] = Eµs

limi→∞

1
i
·

i∑

j=1

(r(A j) − E
µ
s
[
mp
]
)2

 = E
µ
s

limi→∞

1
i
·

i∑

j=1

∑

a∈A

(r(a) − Eµs
[
mp
]
)2 · Ia(A j)



=
∑

a∈A

(r(a) − Eµs
[
mp
]
)2 · E

µ
s

limi→∞

1
i
·

i∑

j=1

Ia(A j)

 =
∑

a∈A

(r(a) − Eµs
[
mp
]
)2 · E

µ
s

[
mpIa
]

Finally, it is easy to see that the local and hybrid variance coincide in BSCCs since almost all runs have the same frequencies
of actions. This gives us the result for the local variance.

2) Proof of Proposition 3.:We obtain the proof from the following slightly weaker version.

Proposition 6. Let us fix a MEC C and letε > 0. There are two frequency functions fε : C∩A→ [0, 1] and f′ε : C∩A→ [0, 1],
and a number pε ∈ [0, 1] such that:

pε · (mp[ fε], lv[ fε]) + (1− pε) · (mp[ f ′ε ], lv[ f ′ε ]) ≤ (Eζs0

[
mp
]
,E
ζ
s0

[lv]) + (ε, ε)

Before we prove Proposition 6, let us show that it indeed implies Proposition 3. There is a sequenceε1, ε2, . . ., two functions
fC and f ′C, and pC ∈ [0, 1] such that asn→ ∞

• εn→ 0
• fεn converges pointwise tofC
• f ′εn converges pointwise tof ′C
• pεn converges topC

It is easy to show thatfC as well asf ′C are frequency functions. Moreover, as

lim
n→∞

(Eζs0

[
mp
]
,E
ζ
s0

[lv]) + (εn, εn) = (Eζs0

[
mp
]
,E
ζ
s0

[lv])

and
lim
n→∞

pεn · (mp[ fεn], lv[ fεn]) + (1− pεn) · (mp[ f ′εn], lv[ f ′εn]) = pC · (mp[ fC], lv[ fC]) + (1− pC) · (mp[ f ′C], lv[ f ′C])

we obtain
pC · (mp[ fC], lv[ fC]) + (1− pC) · (mp[ f ′C], lv[ f ′C]) ≤ (Eζs0

[
mp
]
,E
ζ
s0

[lv])

This finishes a proof of Proposition 3. It remains to prove Proposition 6.

Proof of Proposition 6.: Given ℓ, k ∈ Z we denote byAℓ,k the set of all runsω ∈ RC such that

(ℓ · ε, k · ε) ≤ (mp(ω), lv(ω)) < (ℓ · ε, k · ε) + (ε, ε)

Note that ∑

ℓ,k∈Z

P
ζ
s0

(Aℓ,k|RC) · (ℓ · ε, k · ε) ≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC])

By Lemma 6, there areℓ, k, ℓ′, k′ ∈ Z and p ∈ [0, 1] such thatPζs0
(Aℓ,k|RC) > 0 andPζs0

(Aℓ
′,k′ |RC) > 0 and

p · (ℓ · ε, k · ε) + (1− p) · (ℓ′ · ε, k′ · ε) ≤
∑

ℓ,k∈Z

P
ζ
s0

(Aℓ,k|RC) · (ℓ · ε, k · ε) ≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC]) (15)

Let us concentrate on (ℓ · ε, k · ε) and construct a frequency functionf on C such that

(mp[ f ], lv[ f ]) ≤ (ℓ · ε, k · ε) + (ε, ε)

Intuitively, we obtainf as a vector of frequencies of individual actions on an appropriately chosen run ofRC. Such frequencies
determine the average and variance close toℓ · ε and k · ε, respectively. We have to deal with some technical issues, mainly
with the fact that the frequencies might not be well defined for almost all runs (i.e. the corresponding limits might not exist).
This is solved by a careful choice of subsequences as follows.

Claim 1. For every runω ∈ RC there is a sequence of numbers T1[ω],T2[ω], . . . such that all the following limits are defined:

lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

r(A j(ω)) = mp(ω) and lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

(r(A j(ω)) −mp(ω))2 ≤ lv(ω)
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and for every action a∈ A there is a number fω(a) such that

lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

Ia(A j(ω)) = fω(a)

(Here Ia(A j(ω)) = 1 if A j(ω) = a, and Ia(A j(ω)) = 0 otherwise.)

Moreover, for almost all runsω of RC we have that fω is a frequency function on C and that fω determines(mp(ω), lv(ω)),
i.e., mp(ω) = mp( fω) and lv(ω) ≥ lv( fω).

Proof: We start by taking a sequenceT′1[ω],T′2[ω], . . . such that

lim
i→∞

1
T′i [ω]

T′i [ω]∑

j=1

r(A j(ω)) = mp(ω)

Existence of such a sequence follows from the fact that everysequence of real numbers has a subsequence which converges
to the lim sup of the original sequence.

Now we extract a subsequenceT′′1 [ω],T′′2 [ω], . . . of T′1[ω],T′2[ω], . . . such that

lim
i→∞

1
T′′i [ω]

T′′i [ω]∑

j=1

(r(A j(ω)) −mp(ω))2 ≤ lv(ω) (16)

using the same argument.

Now assuming an order on actions,a1, . . . , am, we defineTk
1[ω],Tk

2[ω], . . . for 0 ≤ k ≤ m so thatT0
1[ω],T0

2[ω], . . . is the
sequenceT′′1 [ω],T′′2 [ω], . . ., and everyTk+1

1 [ω],Tk+1
2 [ω], . . . is a subsequence ofTk

1[ω],Tk
2[ω], . . . such that the following limit

exists (and is equal to a numberfω(ak+1))

lim
i→∞

1

Tk+1
i [ω]

Tk+1
i [ω]∑

j=1

Iak+1(A j(ω))

We takeTm
1 [ω],Tm

2 [ω], . . . to be the desired sequenceT1[ω],T2[ω], . . ..

Now we have to prove thatfω is a frequency function onC for almost all runs ofRC. Clearly, 0≤ fω(a) ≤ 1 for all a ∈ C∩A.
Also,

∑

a∈C∩A

fω(a) =
∑

a∈C∩A

lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

Ia(A j(ω)) = lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

∑

a∈C∩A

Ia(A j(ω)) = lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

1 = 1

To prove the third condition from the definition of frequencyfunctions, we invoke the law of large numbers (SLLN) [2]. Given
a runω, an actiona, a states andk ≥ 1, define

Na,s
k (ω) =


1 a is executed at leasti times, ands is visited just after thei-th execution ofa;

0 otherwise.

By SLLN and by the fact that in every step the distribution on the next states depends just on the chosen action, for almost
all runsω the following limit is defined and the equality holds whenever fω(a) > 0:

lim
j→∞

∑ j
k=1 Na,s

k (ω)

j
= δ(a)(s)

18



We obtain

∑

a∈C∩A

fω(a) · δ(a)(s) =
∑

a∈C∩A

lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

Ia(A j(ω)) · lim
i→∞

1
i

i∑

k=1

Na,s
k (ω)

=
∑

a∈C∩A

lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

Ia(A j(ω)) · lim
i→∞

1
∑Ti [ω]

j=1 Ia(A j(ω))

∑Ti [ω]
j=1 Ia(A j (ω))∑

k=1

Na,s
k (ω)

=
∑

a∈C∩A

lim
i→∞

1
Ti [ω]

∑Ti [ω]
j=1 Ia(A j (ω))∑

k=1

Na,s
k (ω)

= lim
i→∞

1
Ti [ω]

∑

a∈C∩A

∑Ti [ω]
j=1 Ia(A j (ω))∑

k=1

Na,s
k (ω)

= lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

Is(S j(ω))

= lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

∑

a∈Act(s)

Ia(A j(ω))

=
∑

a∈Act(s)

lim
i→∞

1
Ti[ω]

Ti [ω]∑

j=1

Ia(A j(ω))

=
∑

a∈Act(s)

fω(a)

HereS j(ω) is the j-th state ofω, and Is(t) = 1 for s= t and Is(t) = 0 otherwise.

mp(ω) = lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

r(A j(ω))

= lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

∑

a∈C∩A

Ia(A j(ω)) · r(a)

=
∑

a∈C∩A

r(a) · lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

Ia(A j(ω))

=
∑

a∈C∩A

r(a) · fω(a)

= mp[ fω]

lv(ω) ≥ lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

(r(A j(ω)) −mp(ω))2

= lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

∑

a∈C∩A

Ia(A j(ω)) · (r(a) −mp(ω))2

=
∑

a∈C∩A

(r(a) −mp(ω))2 · lim
i→∞

1
Ti[ω]

Ti [ω]∑

j=1

Ia(A j(ω))

=
∑

a∈C∩A

(r(a) −mp(ω))2 · fω(a)

= lv[ fω]

Now pick an arbitrary runω of Ak,ℓ such thatfω is a frequency function. Then

(mp( fω), lv( fω)) ≤ (mp(ω), lv(ω)) ≤ (ℓ · ε, k · ε) + (ε, ε)
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Similarly, for ℓ′, k′ we obtain f ′ω such that

(mp( f ′ω), lv( f ′ω)) ≤ (mp(ω), lv(ω)) ≤ (ℓ′ · ε, k′ · ε) + (ε, ε)

This together with the equation (15) from page 17 proves Proposition 6:

p · (mp( fω), lv( fω)) + (1− p) · (mp( f ′ω), lv( f ′ω)) ≤ p · ((ℓ · ε, k · ε) + (ε, ε)) + (1− p) ·
(
(ℓ′ · ε, k′ · ε) + (ε, ε)

)

≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC]) + (ε, ε)

This finishes the proof of Proposition 6.
3) Details for proof of Proposition 2:We have

E
ζ
s0

[
mp
]
=
∑

C∈MEC(G)

P(RC) · Eζs0

[
mp | RC

]
and E

ζ
s0

[lv] =
∑

C∈MEC(G)

P(RC) · Eζs0
[lv | RC]

HereEζs0

[
mp | RC

]
andEζs0

[
mp | RC

]
are conditional expectations ofmp and lv, respectively, on runs ofRC. Thus

(Eζs0

[
mp
]
,E
ζ
s0

[lv]) =
∑

C∈MEC(G)

P(RC) ·
(
E
ζ
s0

[
mp | RC

]
,E
ζ
s0

[lv | RC]
)

(17)

We define memoryless strategiesκ andκ′ in C as follows: Givens ∈ C∩S such that
∑

b∈A(s) fC(b) > 0 anda ∈ A(s), we put

κ(s)(a) = fC(a) /
∑

b∈A(s)

fC(b) and κ′(s)(a) = fC(a) /
∑

b∈A(s)

fC(b)

In the remaining statess the strategyκ (or κ′) behaves as a memoryless deterministic strategy reaching{s ∈ C ∩ S |∑
b∈Act(s) fC(b) > 0} (or {s ∈ C ∩ S |

∑
b∈Act(s) f ′C(b) > 0}, resp.) with probability one.

Given a BSCCD of Cκ (or D′ of Cκ
′

), we write fC(D) =
∑

a∈D∩A fC(a) (or f ′C(D′) =
∑

a∈D′∩A f ′C(a), resp.)
Denoting byL the tuple (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC]) we obtain

L = pC · (mp[ fC], lv[ fC]) + (1− pC) · (mp[ f ′C], lv[ f ′C])

=
∑

D∈BSCC(Cκ )

pC · fC(D) ·


∑

a∈D∩A

fC(a)
fC(D)

· r(a),
∑

a∈D∩A

fC(a)
fC(D)

· (r(a) −mp[ fC])2



+
∑

D∈BSCC(Cκ′ )

(1− pC) · f ′C(D) ·


∑

a∈D∩A

f ′C(a)

f ′C(D)
· r(a),

∑

a∈D∩A

f ′C(a)

f ′C(D)
· (r(a) −mp[ f ′C])2



≥
∑

D∈BSCC(Cκ )

pC · fC(D) ·


∑

a∈D∩A

fC(a)
fC(D)

· r(a),
∑

a∈D∩A

fC(a)
fC(D)

· (r(a) −
∑

b∈D∩A

fC(b)
fC(D)

· r(b))2



+
∑

D∈BSCC(Cκ′ )

(1− pC) · f ′C(D) ·


∑

a∈D∩A

f ′C(a)

f ′C(D)
· r(a),

∑

a∈D∩A

f ′C(a)

f ′C(D)
· (r(a) −

∑

b∈D∩A

f ′C(b)

f ′C(D)
· r(b))2



=
∑

D∈BSCC(Cκ )

pC · fC(D) · (ED(mp),ED(lv)) +
∑

D∈BSCC(Cκ′ )

(1− pC) · f ′C(D) · (ED(mp),ED(lv))

HereED(mp) andED(lv) denote the expected mean-payoff and the expected local variance, resp., on almost all runs ofeither
Cκ or Cκ

′

initiated in any state ofD (note that almost all such runs have the same mean-payoff and the local variance due to
ergodic theorem). Note that the second equality follows from the fact thatfC(a) > 0 (or f ′C(a) > 0) iff a ∈ D ∩ A for a BSCC
D of Cκ (or of Cκ

′

). The third inequality follows from Lemma 7. The last equality follows from Lemma 8 and the fact that
fC(a)/ fC(D) is the frequency of firinga on almost all runs initiated inD.

By Lemma 6, there are two componentsD,D′ ∈ BSCC(Cκ) ∪ BSCC(Cκ
′

) and 0≤ dC ≤ 1 such that

L ≥ dC · (ED(mp),ED(lv)) + (1− dC) · (ED′ (mp),ED′(lv))

In what follows we use the following definition: Letν be a memoryless randomized strategy on a MECC and let K be a
BSCC ofCν. We say that a strategyµK is inducedby K if

1) µK(s)(a) = ν(s)(a) for all s ∈ K ∩ S anda ∈ K ∩ A
2) in all s ∈ S r (K ∩ S) the strategyµK corresponds to a memoryless deterministic strategy which reaches a state ofK

with probability one

(Note that the above definition is independent of the strategy ν once it generates the same BSCCK.)
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The strategiesµD andµD′ induced byD and D′, resp., generate single-BSCC Markov chainsCµD andCµD′ satisfying for
every states ∈ C ∩ S the following

L = (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC])

≥ dC · (ED(mp),ED(lv)) + (1− dC) · (ED′ (mp),ED′(lv))

= dC · (E
µD
s
[
mp
]
,E
µD
s [lv]) + (1− dC) · (EµD′

s
[
mp
]
,E
µD′
s [lv])

= dC · (E
µD
s
[
mp
]
,E
µD
s [hv]) + (1− dC) · (EµD′

s
[
mp
]
,E
µD′
s [hv])

Here the last equality follows from the fact that almost all runs inCµD (and also inCµD′ ) have the same mean-payoff. Thus for
almost all runs the local variance is equal to the hybrid one.This shows that inC, a convex combination of two memoryless
(possibly randomized) strategies is sufficient to optimize the mean-payoff and the local variance.

Now we show that these strategies may be even deterministic.

Claim 2. Let s∈ S . There arememoryless deterministicstrategiesχ1, χ2, χ
′
1, χ
′
2 in C, each generating a single BSCC, and

numbers0 ≤ ν, ν′ ≤ 1 such that

(EµD
s
[
mp
]
,E
µD
s [hv]) ≥ ν · (Eχ1

s
[
mp
]
,E
χ1
s [hv]) + (1− ν) · (Eχ2

s
[
mp
]
,E
χ2
s [hv]) ≥ ν · (Eχ1

s
[
mp
]
,E
χ1
s [lv]) + (1− ν) · (Eχ2

s
[
mp
]
,E
χ2
s [lv])

and

(EµD′

s
[
mp
]
,E
µD′

s [hv]) ≥ ν′ · (E
χ′1
s
[
mp
]
,E
χ′1
s [hv]) + (1− ν′) · (E

χ′2
s
[
mp
]
,E
χ′2
s [hv]) ≥ ν′ · (E

χ′1
s
[
mp
]
,E
χ′1
s [lv]) + (1− ν′) · (E

χ′2
s
[
mp
]
,E
χ′2
s [lv])

Proof: It suffices to concentrate onµD. By [12], EµD
s0

[
mpIa
]

is equal to a convex combination of the valuesEιis0

[
mpIa
]

for

some memoryless deterministic strategiesι1, . . . , ιm, i.e. there areγ1, . . . , γm > 0 such that
∑m

i=1 γi = 1 and
∑m

i=1 γi · E
ιi
s0

[
mpIa
]
=

E
µD
s0

[
mpIa
]
. For all 1≤ i ≤ m and D ∈ BSCC(Cιi ) denoteιi,D a memoryless deterministic strategy such thatιi,D(s) = ιi(s) on

all s ∈ D ∩ S, and on other statesιi,D is defined so thatD ∩ S is reached with probability 1, independent of the starting
state. For alla ∈ D ∩ A we haveEιi,Ds0

[
mpIa
]
= P

ιi
s0

[Reach(D)] · EµD
s0

[
mpIa
]
, while for a < D ∩ A we haveEιi,Ds0

[
mpIa
]
= 0. Hence

∑m
i=1
∑

D∈BSCC(Cιi ) γi · P
ιi
s0

[Reach(D)] · Eιi,Ds0

[
mpIa
]
= E

ιi
s0

[
mpIa
]
. Since

∑m
i=1
∑

D∈BSCC(Cιi ) γi · P
ιi
s0

[Reach(D)] = 1, we apply Lemma 6
and get there are two memoryless deterministic single-BSCCstrategiesχ1, χ2 and 0≤ ν ≤ 1 such that

E
µD
s0

[
mpIa
]
= νE

χ1
s0

[
mpIa
]
+ (1− ν)Eχ2

s0

[
mpIa
]

which together with Lemma 8 implies that

E
µD
s
[
mp
]
=
∑

a∈A

r(a) · EµD
s

[
mpIa
]

=
∑

a∈A

r(a) ·
(
νE
χ1
s

[
mpIa
]
+ (1− ν)Eχ2

s

[
mpIa
])

= ν
∑

a∈A

r(a) · Eχ1
s

[
mpIa
]
+ (1− ν)

∑

a∈A

r(a) · Eχ2
s

[
mpIa
]

= νE
χ1
s
[
mp
]
+ (1− ν)Eχ2

s
[
mp
]

and

E
µD
s [hv] =

∑

a∈A

(r(a) − EµD
s
[
mp
]
)2 · E

µD
s

[
mpIa
]

=
∑

a∈A

(r(a) − EµD
s
[
mp
]
)2 · (νEχ1

s

[
mpIa
]
+ (1− ν)Eχ2

s

[
mpIa
]
)

= ν
∑

a∈A

(r(a) − EµD
s
[
mp
]
)2 · E

χ1
s

[
mpIa
]
+ (1− ν)

∑

a∈A

(r(a) − EµD
s
[
mp
]
)2 · E

χ2
s

[
mpIa
]

≥ ν
∑

a∈A

(r(a) − Eχ1
s
[
mp
]
)2 · E

χ1
s

[
mpIa
]
+ (1− ν)

∑

a∈A

(r(a) − Eχ2
s
[
mp
]
)2 · E

χ2
s

[
mpIa
]

= νE
χ1
s [hv] + (1− ν)Eχ2

s [hv]

Here the inequality follows from Lemma 7. So

(EµD
s
[
mp
]
,E
µD
s [hv]) ≥ ν(Eχ1

s
[
mp
]
,E
χ1
s [hv]) + (1− ν)(Eχ2

s
[
mp
]
,E
χ2
s [hv])

Finally, we show thatEχ1
s [hv] ≥ Eχ1

s [lv]. Sinceχ1 has a single BSCC, almost all runs have the same mean payoff. Hence,
E
χ1
s [hv] = Eχ1

s [lv].
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By Claim 2,

L ≥ dC · (E
µD
s
[
mp
]
,E
µD
s [hv]) + (1− dC) · (EµD′

s
[
mp
]
,E
µD′
s [hv])

≥ dC · ν · (E
χ1
s
[
mp
]
,E
χ1
s [lv]) + dC · (1− ν) · (E

χ2
s
[
mp
]
,E
χ2
s [lv])

+ (1− dC) · ν′ · (E
χ′1
s
[
mp
]
,E
χ′1
s [lv]) + (1− dC) · (1− ν′) · (E

χ′2
s
[
mp
]
,E
χ′2
s [lv])

and so by Lemma 6, there areπC, π
′
C ∈ {χ1, χ2, χ

′
1, χ
′
2} and a numberhC such that

L = (Eζs0

[
mp|RC

]
,E
ζ
s0

[lv|RC])

≥ hC · (EπC
s
[
mp
]
,EπC

s [lv]) + (1− hC) · (E
π′C
s
[
mp
]
,E
π′C
s [lv])

Define memoryless deterministic strategiesπ andπ′ in G so that for everys ∈ S anda ∈ A we haveπ(s)(a) := πC(s)(a) and
π′(s)(a) := π′C(s)(a) for s ∈ C ∩ S.

4) Proof of Equation (8):We have

(Eζs0

[
mp
]
,E
ζ
s0

[lv])

=
( ∑

C∈MEC(G)

P
ζ
s0[RC] · Eζs0

[
mp | RC

]
,
∑

C∈MEC(G)

P
ζ
s0[RC] · Eζs0[lv | RC]

)

≥
( ∑

C∈MEC(G)

Pσs0
[RC] ·hC·E

π
s[C] [mp] + Pσs0

[RC] ·(1−hC)·Eπ
′

s[C] [mp],

∑

C∈MEC(G)

Pσs0
[RC] ·hC·E

π
s[C] [lv] + Pσs0

[RC] ·(1−hC)·Eπ
′

s[C] [lv]
)

= (Eσs0

[
mp
]
,Eσs0

[lv])

Here s[C] is an arbitrary state ofC ∩ S.
5) Proof of Theorem 2:First, we show that if there isζ in G such that (Eζs0

[
mp
]
,E
ζ
s0

[lv]) ≤ (u, v), then there is a strategyρ
in G[π, π′] such that (Eρsin)

[
mpr1
]
,E
ρ
sin

[
mpr2
]
) ≤ (u, v). Consider the 3-memory stochastic update strategyσ from Proposition 2

satisfying (Eσs0

[
mp
]
,Eσs0

[lv]) ≤ (u, v). Define a memoryless strategyρ in G[π, π′] that mimicsσ as follows (we denote the only
memory element ofρ by •):

• ρ(sin, •)(default) = α(m1), ρ(sin, •)([π]) = α(m2), ρ(sin, •)([π′]) = α(m′2),
• ρ((s,m1), •)(a) = σn(s,m1)(a) · σu(a, s,m1)(m1) for all a ∈ A
• ρ((s,m1), •)(π) = σu(a, s,m1)(m2)
• ρ((s,m1), •)(π′) = σu(a, s,m1)(m′2)
• ρ((s,m2), •)(default) = ρ((s,m′2), •)(default) = 1

It is straightforward to verify that

(Eσs0

[
mp
]
,Eσs0

[lv]) = (Eρsin

[
mpr1
]
,E
ρ
sin

[
mpr2
]
) ≤ (u, v)

Second, we show that if there isρ′ in G[π, π′] satisfying (Eρ
′

sin

[
mpr1
]
,E
ρ′

sin

[
mpr2
]
) ≤ (u, v), then there is the desired 3-memory

stochastic update strategyσ in G. Moreover, we show that existence of suchσ is decidable in polynomial time and also that
the strategy is computable in polynomial time (if it exists).

By [4], there is a 2-memory stochastic update strategyσ′ for G[π, π′] such that

(Eσ
′

sin

[
mpr1
]
,Eσ

′

sin

[
mpr2
]
) ≤ (u, v)

Moreover, existence of suchσ′ is decidable in polynomial time and alsoσ′ is computable in polynomial time (if it exists).
We show how to transform, in polynomial time, the strategyσ′ to the desiredσ.

In [4], the strategyσ′ is constructed using a memoryless deterministic strategyξ on G[π, π′] as follows: The strategyσ′

has two memory elements, sayn1, n2. In n1 the strategyσ′ behaves as a memoryless randomized strategy. After updating
(stochastically) its memory element ton2, which may happenonly in a BSCC ofG[π, π′]ξ, the strategyσ′ behaves asξ and
no longer updates its memory. Note that ifσ′ changes its memory element while still being in states of theform (s,m1) then
from this moment on the second component is alwaysm1. However, such a strategy may be improved by moving to (s,m2)
(or to (s,m′2)) when its memory changes ton2 because the values of~r in states of the form (s,m1) are so large that moving to
any state withm2 or m′2 in the second component is better than staying in them. Obviously, there are only polynomially many
improvements of this kind and all of them can be done in polynomial time.

So we may safely assume that the strategyσ′ stays inn1 on states of{(s,m1) | s ∈ S}, i.e. behaves as a memoryless randomized
strategy on these states. We define the 3-memory stochastic update strategyσ on G with memory elementsm1,m2,m′2 which
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in the memory elementm1 mimics the behavior ofσ′ on states of the form (s,m1). Onceσ′ chooses the action [π] (or [π′])
the strategyσ changes its memory element tom2 (or to m′2) and starts playing according toπ (or to π′, resp.)

Formally, we define

• α(m1) = σ′n(sin, n1)(default), α(m1) = σ′n(sin, n1)([π]) andα(m1) = σ′n(sin, n1)([π′])
• σn(s,m1)(a) = σ′n((s,m1), n1)(a) /

∑
b∈Aσ

′
n((s,m1), n1)(b) for all a ∈ A

• σu(a, s,m1)(m1) =
∑

b∈Aσ
′
n((s,m1), n1)(b)

• σu(a, s,m1)(m2) = σ′n(a, (s,m1), n1)([π])
• σu(a, s,m1)(m′2) = σ′n(a, (s,m1), n1)([π′])

It is straightforward to verify that

(Eσs0

[
mp
]
,Eσs0

[lv]) = (Eσ
′

sin

[
mp
]
,Eσ

′

sin
[lv]) ≤ (u, v)

C. Proofs for Hybrid Variance

1) Proof of Proposition 4:We have

Eσs [lv] = Eσs

 limn→∞

1
n

n−1∑

i=0

(
r(Ai) −mp

)2


= Eσs

 limn→∞

1
n

n−1∑

i=0

(
r(Ai)2 − 2 · r(Ai) ·mp2 +mp2)



= Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)2

 − E
σ
s

 limn→∞

1
n

n−1∑

i=0

2 · r(Ai) ·mp

 + E
σ
s

 limn→∞

1
n

n−1∑

i=0

mp2



= Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)2

 − 2 · Eσs

 limn→∞
mp·

1
n

n−1∑

i=0

r(Ai)

 · E
σ
s

 limn→∞

1
n

n−1∑

i=0

mp2



= Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)
2

 − 2 · Eσs
[
mp2
]
+ Eσs

[
mp2
]

= Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)2

 − E
σ
s

[
mp2
]

and

Eσs [hv] = Eσs

 limn→∞

1
n

n−1∑

i=0

(
r(Ai(ω)) − Eσs

[
mp
])2


= Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)2

 − E
σ
s

 limn→∞

1
n

n−1∑

i=0

2 · r(Ai) · Eσs
[
mp
]
 + E

σ
s

 limn→∞

1
n

n−1∑

i=0

Eσs
[
mp
]2


= Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)2

 − 2 · Eσs
[
mp
]2
+ Eσs
[
mp
]2

= Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)
2

 − E
σ
s
[
mp
]2

and so

Vσs
[
mp
]
+ Eσs [lv] = Eσs

[
mp2
]
− Eσs
[
mp
]2
+ Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)
2

 − E
σ
s

[
mp2
]

= Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)2

 − E
σ
s
[
mp
]2
= Eσs [hv]

2) Obtaining 3-memory strategyσ.: Let us fix a MDPG = (S,A,Act, δ). We prove the following proposition.

Proposition 7. Let s0 ∈ S and u, v ∈ R. If there is a strategyζ satisfying

(Eζs0

[
mp
]
,E
ζ
s0

[hv]) ≤ (u, v);
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1s0 (s) +
∑

a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya + ys for all s ∈ S (18)

∑

s∈S

ys = 1 (19)

∑

s∈C

ys =
∑

a∈A∩C

xa +
∑

a∈A∩C

x′a for all C ∈ MEC(G) (20)

∑

a∈A

xa · δ(a)(s) =
∑

a∈Act(s)

xa for all s ∈ S (21)

∑

a∈A

x′a · δ(a)(s) =
∑

a∈Act(s)

x′a for all s ∈ S (22)

u =
∑

C∈MEC(G)


∑

a∈A∩C

xa · r(a) +
∑

a∈A∩C

x′a · r(a)

 (23)

v =
∑

C∈MEC(G)


∑

a∈A∩C

xa · (r(a) − u)2 +
∑

a∈A∩C

x′a · (r(a) − u)2

 (24)

xa ≥ 0 for all a ∈ A (25)

x′a ≥ 0 for all a ∈ A (26)

Fig. 5. SystemLζH of linear inequalities. Hereu andv are treated as constants (see Lemma 9). We define1s0 (s) = 1 if s= s0, and1s0 (s) = 0 otherwise.

then there exists a 3-memory strategyσ satisfying

(Eσs0

[
mp
]
,Eσs0

[hv]) ≤ (u, v).

Intuitively the proof will resemble the proof of Proposition 2, and given an arbitrary strategyζ with Eζs0

[
mp
]
= u, we will

mimic the proof for the local variance replacing the quantity (r(A j(ω)) − mp(ω))2 by (r(A j(ω) − u)2 appropriately. Formally,
Proposition 7 is a consequence of Lemma 9.

Lemma 9. Let us fix s0 ∈ S and u, v ∈ R.

1) Consider an arbitrary strategyζ such that(Eζs0

[
mp
]
,E
ζ
s0

[hv]) = (u, v). Then the system LζH (Figure 5) has a non-negative
solution.

2) If there is a non-negative solution for the system Lζ
H (Figure 5), then there is a 3-memory stochastic-update strategyσ

satisfying(Eσs0

[
mp
]
,Eσs0

[hv]) = (u, v).

We start with the proof of the first item of Lemma 9. We have

E
ζ
s0

[
mp
]
=
∑

C∈MEC(G)

P(RC) · Eζs0

[
mp | RC

]
and E

ζ
s0

[hv] =
∑

C∈MEC(G)

P(RC) · Eζs0
[hv | RC]

and thus 
∑

C∈MEC(G)

P(RC) · Eζs0

[
mp | RC

]
,
∑

C∈MEC(G)

P(RC) · Eζs0
[hv | RC]

 = (u, v) . (27)

Let C be a MEC and consider a frequency functionf on C. Given u and f , definemp[ f ] :=
∑

a∈C f (a) · r(a) and hv[ f , u] :=∑
a∈C f (a) · (r(a) − u)2.

Proposition 8. Let us fix a MEC C. There are two frequency functions fC : C → R and f′C : C → R on C, and a number
pC ∈ [0, 1] such that the following holds

pC · (mp[ fC], hv[ fC, u]) + (1− pC) · (mp[ f ′C], hv[ f ′C, u]) = (Eζs0

[
mp|RC

]
,E
ζ
s0

[hv|RC])

We first argue that Proposition 8 gives us a solution ofLζH . Indeed, givena ∈ A (or s ∈ S) denote byC(a) (or C(s)) the MEC
containinga (or s). For everya ∈ A put

xa = P(RC(a)) · pC(a) · fC(a)(a) and x′a = P(RC(a)) · (1− pC(a)) · f ′C(a)(a)

24



For every actiona ∈ A which does not belong to any MEC putxa = x′a = 0. (1) We have the following equality foru, i.e.,

u =
∑

C∈MEC(G)

P(RC) · Eζs0

[
mp | RC

]

=
∑

C∈MEC(G)

P(RC) · (pC ·mp[ fC] + (1− pC) ·mp[ f ′C])

=
∑

C∈MEC(G)

P(RC) · pC ·mp[ fC] +
∑

C∈MEC(G)

P(RC) · (1− pC) ·mp[ f ′C])

=
∑

C∈MEC(G)

P(RC) · pC ·
∑

a∈C

fC(a) · r(a) +
∑

C∈MEC(G)

P(RC) · (1− pC) ·
∑

a∈C

f ′C(a) · r(a)

=
∑

C∈MEC(G)

∑

a∈C

P(RC) · pC · fC(a) · r(a) +
∑

C∈MEC(G)

∑

a∈C

P(RC) · (1− pC) · f ′C(a) · r(a)

=
∑

C∈MEC(G)


∑

a∈C

xa · r(a) +
∑

a∈C

x′a · r(a)



and (2) the following equality forv:

v =
∑

C∈MEC(G)

P(RC) · Eζs0
[hv | RC]

=
∑

C∈MEC(G)

P(RC) · (pC · hv[ fC, u] + (1− pC) · hv[ f ′C, u])

=
∑

C∈MEC(G)

P(RC) · pC · hv[ fC, u] +
∑

C∈MEC(G)

P(RC) · (1− pC) · hv[ f ′C, u])

=
∑

C∈MEC(G)

P(RC) · pC ·
∑

a∈C

fC(a) · (r(a) − u)2 +
∑

C∈MEC(G)

P(RC) · (1− pC) ·
∑

a∈C

f ′C(a) · (r(a) − u)2)

=
∑

C∈MEC(G)

∑

a∈C

P(RC) · pC · fC(a) · (r(a) − u)2 +
∑

C∈MEC(G)

∑

a∈C

P(RC) · (1− pC) · f ′C(a) · (r(a) − u)2

=
∑

C∈MEC(G)


∑

a∈C

xa · (r(a) − u)2 +
∑

a∈C

x′a · (r(a) − u)2



The appropriate values forya, ys can be found in the same way as in the proof of [4, Proposition 2].
It remains to prove Proposition 8. As for the proof for local variance, we obtain the proposition from the following slightly

weaker version

Proposition 9. Let us fix a MEC C and letε > 0. There are two frequency functions fε : C→ [0, 1] and f′ε : C→ [0, 1], and
a number pε ∈ [0, 1] such that:

pε · (mp[ fε], hv[ fε, u]) + (1− pε) · (mp[ f ′ε ], hv[ f ′ε , u]) ≤ (Eζs0

[
mp
]
,E
ζ
s0

[hv]) + (ε, ε)

As before Proposition 9 implies Proposition 8 as follows: There is a sequenceε1, ε2, . . ., two functionsfC and f ′C, andpC ∈ [0, 1]
such that asn→ ∞

• εn→ 0
• fεn converges pointwise tofC
• f ′εn converges pointwise tof ′C
• pεn converges topC

It is easy to show thatfC as well asf ′C are frequency functions. Moreover, as

lim
n→∞

(Eζs0

[
mp
]
,E
ζ
s0

[hv]) + (εn, εn) = (Eζs0

[
mp
]
,E
ζ
s0

[hv])

and

lim
n→∞

pεn · (mp[ fεn], hv[ fεn, u]) + (1− pεn) · (mp[ f ′εn], hv[ f ′εn, u]) = pC · (mp[ fC], hv[ fC, u]) + (1− pC) · (mp[ f ′C], hv[ f ′C, u])

we obtain
pC · (mp[ fC], hv[ fC, u]) + (1− pC) · (mp[ f ′C], hv[ f ′C, u]) = (Eζs0

[
mp
]
,E
ζ
s0

[hv])
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a) Proof of Proposition 9.:The proof is exactly the same as proof of Proposition 6. Givenℓ, k ∈ Z we denote byAℓ,kH
the set of all runsω ∈ RC such that

(ℓ · ε, k · ε) ≤ (mp(ω), hv(ω)) < (ℓ · ε, k · ε) + (ε, ε)

Note that ∑

ℓ,k∈Z

P
ζ
s0

(Aℓ,kH |RC) · (ℓ · ε, k · ε) ≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[hv|RC])

By Lemma 6, there areℓ, k, ℓ′, k′ ∈ Z and p ∈ [0, 1] such thatPζs0
(Aℓ,kH |RC) > 0 andPζs0

(Aℓ
′,k′

H |RC) > 0 and

p · (ℓ · ε, k · ε) + (1− p) · (ℓ′ · ε, k′ · ε) ≤
∑

ℓ,k∈Z

P
ζ
s0

(Aℓ,kH |RC) · (ℓ · ε, k · ε) ≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[hv|RC]) (28)

Let us focus on (ℓ · ε, k · ε) and construct a frequency functionf on C such that

(mp[ f ], hv[ f , u]) ≤ (ℓ · ε, k · ε) + (ε, ε)

The construction is identical to the proof of the corresponding proposition for local variance.

Claim 3. For every runω ∈ RC there is a sequence of numbers T1[ω],T2[ω], . . . such that all the following limits are defined:

lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

r(A j(ω)) = mp(ω) and lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

(r(A j(ω)) − u)2 ≤ hv(ω)

and for every action a∈ A there is a number fω(a) such that

lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

Ia(A j(ω)) = fω(a)

(Here Ia(A j(ω)) = 1 if A j(ω) = a, and Ia(A j(ω)) = 0 otherwise.)
Moreover, for almost all runsω of RC we have that fω is a frequency function on C and that fω determines(mp(ω), hv(ω)),

i.e., mp(ω) = mp( fω) and hv(ω) ≥ hv( fω, u).

Proof: The proof is identical to the proof of Claim 1, we only substitute the equation (16) with

lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

(r(A j(ω)) − u)2 ≤ hv(ω) (16a)

and then instead of provinglv(ω) = lv[ fω] we use the equality

hv(ω) ≥ lim
i→∞

1
Ti[ω]

Ti [ω]∑

j=1

(r(A j(ω)) − u)2

= lim
i→∞

1
Ti[ω]

Ti [ω]∑

j=1

∑

a∈C

Ia(A j(ω)) · (r(a) − u)2

=
∑

a∈C

(r(a) − u)2 · lim
i→∞

1
Ti [ω]

Ti [ω]∑

j=1

Ia(A j(ω))

=
∑

a∈C

(r(a) − u)2 · fω(a)

= hv[ fω, u]

The desired result follows.
Now pick an arbitrary runω of Ak,ℓ

H such thatfω is a frequency function. Then

(mp( fω), hv( fω, u)) ≤ (mp(ω), hv(ω)) ≤ (ℓ · ε, k · ε) + (ε, ε)

Similarly, for ℓ′, k′ we obtain f ′ω such that

(mp( f ′ω), hv( f ′ω, u)) ≤ (mp(ω), hv(ω)) ≤ (ℓ′ · ε, k′ · ε) + (ε, ε)
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This together with equation (28) from page 26 gives the desired result:

p · (mp( fω), hv( fω, u)) + (1− p) · (mp( f ′ω), hv( f ′ω, u)) ≤ p · ((ℓ · ε, k · ε) + (ε, ε)) + (1− p) ·
(
(ℓ′ · ε, k′ · ε) + (ε, ε)

)

≤ (Eζs0

[
mp|RC

]
,E
ζ
s0

[hv|RC]) + (ε, ε)

This finishes the proof of the first item of Lemma 9.
We continue with the proof of the second item of Lemma 9. Assume that the systemLζH has a solution ¯ya, x̄a, x̄′a for every

a ∈ A. We define two memoryless strategiesκ andκ′ as follows: Givens ∈ S anda ∈ Act(s), we define

κ(s)(a) = x̄a /
∑

b∈Act(s)

x̄b and κ′(s)(a) = x̄′a /
∑

b∈Act(s)

x̄′b

respectively.
Using similar arguments as in [4] it can be shown that there isa 3-state stochastic update strategyξ with memory elements

m1,m2,m′2 satisfying the following: A run ofGξ starts ins0 with a fixed initial distribution on memory elements. Inm1 the
strategy plays according to a fixed memoryless strategy until the memory changes either tom2, or to m′2. In m2 (or in m′2), the
strategyξ plays according toκ (or according toκ′, resp.) and never changes its memory element. The key ingredient is that
for every BSCCD of Gκ we have that

P
ξ
s0

(switch to κ in D) =
∑

a∈D∩A

x̄a =: x̄D

and for every BSCCD′ of Gκ
′

we have that

P
ξ
s0

(switch toκ′ in D′) =
∑

a∈D′∩A

x̄′a =: x̄′D′

HerePξs0
(switch toκ in D′) (or Pξs0

(switch to κ′ in D′)) is the probaibility thatξ switches its state tom2 (or to m′2) in one of
the states ofD (or D′).

Given a BSCCD of Gξ, almost all runsω of Gξs0
that stay inD with the memory elementm2 have the frequency of

a ∈ D ∩ A equal to ¯xa/x̄D. Thusmp(ω) =
∑

a∈D∩A x̄a/x̄D · r(a). Similarly, if the BSCC isD′ and the memory element ism′2,
thenmp(ω) =

∑
a∈D′∩A x̄′a/x̄

′
D′ · r(a). Thus we have the following desired equalities: (1) Equality for u

E
ξ
s0

[
mp
]
=

∑

D is a BSCC ofGκ
P
ξ
s0

(switch to κ in D) ·
∑

a∈D∩A

x̄a/x̄D · r(a) +

+
∑

D′ is a BSCC ofGκ′
P
ξ
s0

(switch to κ′ in D′) ·
∑

a∈D′∩A

x̄′a/x̄
′
D′ · r(a)

=
∑

C∈MEC(G)

( ∑

a∈C∩A

x̄a · r(a) +
∑

a∈C∩A

x̄′a · r(a)
)

= u;

and (2) Equality forv

E
ξ
s0

[hv] =
∑

D is a BSCC ofGκ
P
ξ
s0

(switch toκ in D) ·
∑

a∈D∩A

x̄a/x̄D · (r(a) − Eξs0

[
mp
]
)2

+
∑

D′ is a BSCC ofGκ′
P
ξ
s0

(switch to κ′ in D′) ·
∑

a∈D′∩A

x̄′a/x̄
′
D′ · (r(a) − Eξs0

[
mp
]
)2

=
∑

D is a BSCC ofGκ
P
ξ
s0

(switch toκ in D) ·
∑

a∈D∩A

x̄a/x̄D · (r(a) − u)2

+
∑

D′ is a BSCC ofGκ′
P
ξ
s0

(switch to κ′ in D′) ·
∑

a∈D′∩A

x̄′a/x̄
′
D′ · (r(a) − u)2

=
∑

C∈MEC(G)


∑

a∈C∩A

x̄a · (r(a) − u)2 +
∑

a∈C∩A

x̄′a · (r(a) − u)2



= v;

The desired result follows.
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3) First item of Proposition 5 supposing finite-memory strategies exist:Let ζ be a strategy such that the following two
conditions hold:

(1) Eζs0

[
mp
]
= u ≤ u; (2) Eζs0

[hv] = v ≤ v.

By Proposition 7 without loss of generality the strategyζ is a finite-memory strategy. Sinceζ is a finite-memory strategy, the
frequencies are well-defined, and for an actiona ∈ A, let

f (a) ≔ lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[At = a]

denote the frequency of actiona. We will first show that settingxa ≔ f (a) for all a ∈ A satisfies Eqns. (12), Eqns. (13) and
Eqns. (14) ofLH .

Satisfying Eqns 12.To prove that Eqns. (12) are satisfied, it suffices to show that for alls ∈ S we have
∑

a∈A

f (a) · δ(a)(s) =
∑

a∈Act(s)

f (a).

We establish this below:

∑

a∈A

f (a) · δ(a)(s) =
∑

a∈A

lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[At = a] · δ(a)(s)

= lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

∑

a∈A

P
ζ
s0

[At = a] · δ(a)(s)

= lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[St+1 = s]

= lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[St = s]

= lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

∑

a∈Act(s)

P
ζ
s0

[At = a]

=
∑

a∈Act(s)

lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[At = a]

=
∑

a∈Act(s)

f (a) .

Here the first and the seventh equality follow from the definition of f . The second and the sixth equality follow from the
linearity of the limit. The third equality follows by the definition of δ. The fourth equality is obtained from the following:

lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[St+1 = s] − lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[St = s] = lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

(Pζs0
[St+1 = s] − Pζs0

[St = s])

= lim
ℓ→∞

1
ℓ

(Pζs0
[Sℓ+1 = s] − Pζs0

[S1 = s]) = 0

Satisfying Eqns 13.We will show that
∑

a∈A f (a) · r(a) = u.

∑

a∈A

r(a) · f (a) =
∑

a∈A

r(a) · lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[At = a] = lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

∑

a∈A

r(a) ·Pζs0
[At = a] = lim

ℓ→∞

1
ℓ

ℓ−1∑

t=0

E
ζ
s0

[r(At)] = u .

Here, the first equality is the definition off (a); the second equality follows from the linearity of the limit; the third equality
follows by linearity of expectation; the fourth equality involves exchanging limit and expectation and follows from Lebesgue
Dominated convergence theorem (see, e.g. [19, Chapter 4, Section 4]), since|r(At)| ≤W, whereW = maxa∈A |r(a)|. The desired
result follows.

Satisfying Eqns 14.We will now show the satisfaction of Eqns 14. First we have that

E
ζ
s0

[hv] = Eζs0

lim sup
ℓ→∞

1
ℓ

ℓ−1∑

t=0

(r(At) − u)2

 = E
ζ
s0

 limℓ→∞
1
ℓ

ℓ−1∑

t=0

(r(At) − u)2

 = lim
ℓ→∞

1
ℓ
E
ζ
s0


ℓ−1∑

t=0

(r(At) − u)2

 .
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The first equality is by definition; the second equality aboutexistence of limit follows from the fact thatζ is a finite-memory
strategy; and the final equality of exchange of limit and the expectation follows from Lebesgue Dominated convergence theorem
(see, e.g. [19, Chapter 4, Section 4]), since (r(At) − u)2 ≤ (2 ·W)2, whereW = maxa∈A |r(a)|. We have

lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

E
ζ
s0

[
(r(At) − u)2

]
= lim

ℓ→∞

1
ℓ

ℓ−1∑

t=0

(
E
ζ
s0

[
r2(At)

]
− 2 · u · Eζs0

[r(At)] + u2
)

= lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

E
ζ
s0

[
r2(At)

]
− 2 · u · lim

ℓ→∞

1
ℓ

ℓ−1∑

t=0

E
ζ
s0

[r(At)] + u2

=
∑

a∈A

r2(a) · f (a) − 2 · u ·
∑

a∈A

r(a) · f (a) + u2

=
∑

a∈A

r2(a) · f (a) −
(∑

a∈A

r(a) · f (a)
)2

The first equality is by rewriting the term within the expectation and by linearity of expectation; the second equality isby
linearity of limit; the third equality follows by the equality to show satisfaction of Eqns 13 (it follows from the equality for
Eqns 13 that limℓ→∞ 1

ℓ

∑ℓ−1
t=0 E

ζ
s0

[
r2(At)

]
=
∑

a∈A r2(a) · f (a) by simply considering the reward functionr2 instead ofr); and the
final equality follows from the equality to prove Eqns 13. Thus we have the following equality:

∑

a∈A

r2(a) · f (a) −
(∑

a∈A

r(a) · f (a)
)2
= lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

E
ζ
s0

[
(r(At) − u)2

]
= E

ζ
s0

[hv] = v ≤ v.

Now we have to set the values foryχ, χ ∈ A ∪ S, and prove that they satisfy the rest ofLH when the valuesf (a) are
assigned toxa. By Lemma 1 almost every run ofGζ eventually stays in some MEC ofG. For every MECC of G, let yC be
the probability of all runs inGζ that eventually stay inC. Note that

∑

a∈A∩C

f (a) =
∑

a∈A∩C

lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[At = a] = lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

∑

a∈A∩C

P
ζ
s0

[At = a] = lim
ℓ→∞

1
ℓ

ℓ−1∑

t=0

P
ζ
s0

[At ∈ C] = yC .

Here the last equality follows from the fact that limℓ→∞ P
ζ
s0

[Aℓ ∈ C] is equal to the probability of all runs inGζ that eventually
stay in C (recall that almost every run stays eventually in a MEC ofG) and the fact that the Cesàro sum of a convergent
sequence is equal to the limit of the sequence.

By the previous paragraph there isζ such thatPζs0
[RC] =

∑
a∈A∩C f (a), so we can defineya and ys in the same way as

done in [4, Proposition 2] (this solution is based on the results of [13]; the proof is exactly the same as the proof of [4,
Proposition 2], we only skip the part in which the assignmentto xas is defined). This completes the proof of the desired result.

4) Proof that Eqns 14 is satisfied byσ: We argue that the strategyσ from [4, Proposition 1] satisfies Eqns 14. We show
that for the strategyσ we have:Eσs [hv] = Eσs

[
mpr2

]
− Eσs

[
mp
]2. It follows immediately that Eqns 14 is satisfied. Sinceσ is

a finite-memory strategy, all the limit-superior can be replaced with limits. Then we use the the equality from Appendix C1
where we showed that

Eσs [hv] = Eσs

 limn→∞

1
n

n−1∑

i=0

r(Ai)2

 − E
σ
s
[
mp
]2

which is equal toEσs
[
mpr2

]
− Eσs
[
mp
]2.

5) Properties of the quadratic constraints of LH .: We now establish that the quadratic constraints ofLH (i.e., Eqns 14)
satisfies that it is anegative semi-definiteconstraint ofrank 1. Let us denote by~x the vector of variablesxa, and~r the vector
of rewardsr(a), for a ∈ A. Then the quadratic constraint of Eqns 14 is specified in matrix notation as:

∑
a∈A xa · r2(a)− ~xT ·Q · ~x,

where~xT is the transpose of~x, and the matrixQ is as follows:Qi j = r(i) · r( j). Indeed, we have~xT · Q · ~x = ~zT · ~x where
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~zi =
∑

k∈A xk · r(i) · r(k) and so

~xT · Q · ~x =
∑

i∈A

xi ·
∑

k∈A

xk · r(i) · r(k)

=

(∑

i∈A

(xir(i))2
)
+
∑

i∈A

xi ·
∑

k∈A,k,i

xk · r(i) · r(k)

=

(∑

i∈A

(xir(i))
2
)
+
∑

i∈A

∑

k<i

2 · xi · r(i) · xk · r(k)

=

(∑

i∈A

xir(i)
)2

where in the last but one equality we use an arbitrary order onA, and where the last equality follows by multinomial theorem.
The desired properties ofQ are established as follows:

• Negative semi-definite.We argue thatQ is a positive semi-definite matrix. A sufficient condition to prove thatQ is
positive semi-definite is to show that for all real vectors~y we have~yT · Q · ~y ≥ 0. For any real vector~y we have
~yT · Q · ~y = (

∑
a∈A ya · r(a))2 ≥ 0 (as the square of a real-number is always non-negative). Itfollows that Eqns 14 is a

negative semi-definite constraint.
• Rank of Q is 1.We now argue that rank ofQ is 1. We observe that the matrixQ with Qi j = r i · r j is the outer-product

matrix of ~r and~rT , where~r and~rT denote the vector of rewards and its transpose, respectively, i.e., Q = ~r · ~rT . SinceQ
is obtained from a single vector (and its transpose) it follows thatQ has rank 1.

D. Details for Section VI

Some of our algorithms will be based on the notion of almost-sure winning for reachability and coBüchi objectives.

Almost-sure winning, reachability and coBüchi objectives.An objectiveΦ defines a set of runs. For a setB ⊆ A of actions,
we (i) recall the reachability objectiveReach(B) that specifies the set of runsω = s1a1s2a2 . . . such that for somei ≥ 0 we
haveai ∈ B (i.e., some action fromB is visited at least once); and (ii) define the coBüchi objective coBuchi(B) that specifies
the set of runsω = s1a1s2a2 . . . such that for somei ≥ 0 for all j ≥ i we havea j ∈ B (i.e., actions not inB are visited finitely
often). Given an objectiveΦ, a states is analmost-surewinning state for the objective if there exists a strategyσ (called an
almost-sure winning strategy) to ensure the objective withprobability 1, i.e.,Pσs [Φ] = 1. We recall some basic results related
to almost-sure winning for reachability and coBüchi objectives.

Theorem 5 ([7], [8]) . For reachability and coBüchi objectives whether a state isalmost-sure winning can be decided in
polynomial time (in time O((|S| · |A|)2)) using discrete graph theoretic algorithms. Moreover, both for reachability and coBüchi
objectives, if there is an almost-sure winning strategy, then there is a memoryless pure almost-sure winning strategy.

Basic facts.We will also use the following basic fact aboutfinite Markov chains. Given a Markov chain, and a states:
(i) (Fact 1). The local variance is zero iff for every bottom scc reachable froms there exists a reward valuer∗ such that all
rewards of the bottom scc isr∗. positive. (ii) (Fact 2). The hybrid variance is zero iff there exists a reward valuer∗ such that
for every bottom scc reachable froms all rewards of the bottom scc isr∗. (iii) (Fact 3). The global variance is zero iff there
exists a numbery such that for every bottom scc reachable froms the expected mean-payoff value of the bottom scc isy.

1) Zero Hybrid Variance:We establish the correctness of our algorithm with the following lemma.

Lemma 10. Given an MDP G= (S,A,Act, δ), a starting state s, and a reward function r, the following assertions hold:

1) If β is the output of the algorithm, then there is a strategy to ensure that the expectation is at mostβ and the hybrid
variance is zero.

2) If there is a strategy to ensure that the expectation is at most β∗ and the hybrid variance is zero, then the outputβ of
the algorithm satisfies thatβ ≤ β∗.

Proof: The proofs of the items are as follows:

1) If the output of the algorithm isβ, then considerA′ to be the set of actions with rewardβ. By step (2) of the algorithm
we have that there exists an almost-sure winning strategy for the objectivecoBuchi(A′), and by Theorem 5 there exists a
memoryless pure almost-sure winning strategyσ for the coBüchi objective. Sinceσ is an almost-sure winning strategy
for the coBüchi objective, it follows that in the Markov chain Gσs every bottom sccC reachable froms consists of reward
β only. Thus the expectation given the strategyσ is β, and by Fact 2 for Markov chains the hybrid variance is zero.

2) Consider a strategy to ensure that the expectation is at most β∗ with hybrid variance zero. By the results of Proposition 7
there is a finite-memory strategyσ to ensure expectationβ∗ with hybrid variance zero. Given the strategyσ, if there
exists an actiona with reward other thanβ∗ that appear in a bottom scc, then the hybrid variance is greater than zero
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Algorithm 1: Zero Hybrid Variance

Input : An MDP G = (S,A,Act, δ), a starting states, and a reward functionr.
Output: A reward valueβ or NO.
1. Sort the reward valuesr(a) for a ∈ A in an increasing orderβ1 < β2 < . . . < βn;
2. i := 1;
3. repeat

3.1. Let Ai be the set of actions with rewardβi ;
3.2. if there exists an almost-sure winning strategy forcoBuchi(Ai)

return βi ;
3.3 if i = n

return NO;
3.4 i := i + 1;

(follows from Fact 2 for Markov chains). Thus every bottom scc in Gσs that is reachable froms consists of rewardβ∗

only. Henceσ is also an almost-sure winning strategy froms for the objectivecoBuchi(A∗), whereA∗ is the set of
actions with rewardβ∗. Let β∗ = β j , becauseβ j satisfies the requirement of step (2) of the algorithm, we getthat the
output of the algorithm is a numberβ ≤ β∗.

The desired result follows.
For reader’s convenience, a formal description of the algorithm is given as Algorithm 1.
2) Zero Local Variance:For a states, let α(s) denote the minimal expectation that can be ensured along with zero local

variance.
Our goal is to show thatβ(s) = α(s). We first describe the two-step computation ofβ(s).

1) Compute the set of statesU such that there is an almost-sure winning strategy for the objective Reach(T).
2) Consider the sub-MDP ofG induced by the setU which is described as follows: (U,A,ActU , δ) such that for alls ∈ U

we haveActU(s) = {a ∈ Act(s) | for all s′, if δ(a)(s′) > 0, then s′ ∈ U}. In the sub-MDP compute the minimal expected
payoff for the cumulative reward, and this computation is similar to computation of optimal values for MDPs with
reachability objectives and can be achieved in polynomial time with linear programming.

Note that by construction every new actionas has negative reward and all other actions have zero reward. Amemoryless
pure almost-sure winning strategy for a states in U to reachT ensures that the expected cumulative reward is negative, and
hencêβ(s) < 0 for all s ∈ U. Also observe that ifU is left, then almost-sure reachability toT cannot be ensured. Hence any
strategy that ensures almost-sure reachability toT must ensure thatU is not left. We now claim that any memoryless pure
optimal strategy in the sub-MDP for the cumulative reward also ensures almost-sure reachability toT. Consider a memoryless
pure optimal strategyσ for the cumulative reward. Since every state inTS is an absorbing state (state with a self-loop) every
bottom sccC in the Markov chain is either contained inTS or does not intersect withTS. If there is a bottom sccC that does
not intersect withTS, then the expected cumulative reward in the bottom scc is zero, and this is a contradiction thatσ is an
optimal strategy and for alls ∈ U we havêβ(s) < 0. It follows that every bottom scc in the Markov chain is contained inTS

and hence almost-sure reachability toT is ensured. Hence it follows that̂β(s) can be computed in polynomial time, and thus
β(s) can be computed in polynomial time. In the following two lemmas we show thatα(s) = β(s).

Lemma 11. For all states s we haveα(s) ≥ β(s).

Proof: We only need to consider the case when froms zero local variance can be ensured. Consider a strategy thatensures
expectationα(s) along with zero local variance, and by the results of Proposition 2 there is a witness finite-memory strategy
σ∗. Consider the Markov chainGσ

∗

s . Consider a bottom sccC of the Markov chain reachable froms and we establish the
following properties:

1) Every reward in the bottom scc must be the same. Otherwise the local variance is positive (by Fact 1 for Markov chains).
2) Let r∗ be the reward of the bottom scc. We claim that for all statess′ that appears in the bottom scc we haveβ(s′) ≤ r∗.

Otherwise ifβ(s′) > r∗, playing according the strategyσ in the bottom scc froms′ we ensure zero hybrid variance with
expectationr∗ contradicting thatβ(s′) is the minimal expectation along with zero hybrid variance.

It follows that in every bottom sccC of the Markov chain the rewardr∗ of the bottom scc satisfy thatr∗ ≥ β(s′), for everys′

that appears inC. Also observe that the strategyσ∗ ensures almost-sure reachability to the setTS of states where zero hybrid
variance can be ensured. We construct a strategyσ in MDP G as follows: the strategy plays asσ∗ till a bottom scc is reached,
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and as soon as a bottom sccC is reached at states′, the strategy inG chooses the actionas′ to proceed to the states′. The
strategy ensures that the cumulative reward inG is at mostα(s) − M, i.e.,α(s) − M ≥ β̂(s). It follows thatα(s) ≥ β(s).

Lemma 12. For all states s we haveα(s) ≤ β∗(s).

Proof: Consider a witness memoryless pure strategyσ∗ in G that achieves the optimal cumulative reward value. We
construct a witness strategyσ for zero local variance inG as follows: play asσ∗ till the setT is reached (note thatσ∗ ensures
almost-sure reachability toT), and afterT is reached, if a states is reached, then switch to the memoryless pure strategy from
s to ensure expectation at mostβ(s) with zero hybrid variance. The strategyσ ensures that every bottom scc of the resulting
Markov chain consists of only one reward value. Hence the local variance is zero. The expectation given strategyσ is at most
β∗(s). Hence the desired result follows.

3) Zero Global Variance:The following lemma shows that in a MEC, any expectation in the interval is realizable with zero
global variance.

Lemma 13. Given an MDP G= (S,A,Act, δ), a starting state s, and a reward function r, the following assertions hold:

1) If ℓ is the output of the algorithm, then there is a strategy to ensure that the expectation is at mostℓ and the global
variance is zero.

2) If there is a strategy to ensure that the expectation is at most ℓ∗ and the global variance is zero, then the outputℓ of
the algorithm satisfies thatℓ ≤ ℓ∗.

Proof: The proof of the items are as follows:

1) If the output of the algorithm isℓ, then considerC to be the set of MEC’s whose interval containsℓ. Let A′ =
⋃

C j∈C
C j .

By step (4)(b) of the algorithm we have that there exists an almost-sure winning strategy for the objectiveReach(A′), and
by Theorem 5 there exists a memoryless pure almost-sure winning strategyσR for the reachability objective. We consider
a strategy as follows: (i) playσR until an end-component inC is reached; (ii) onceA′ is reached, consider a MECC j that
is reached and switch to the memoryless randomized strategyσℓ of Lemma 2 to ensure that every bottom scc obtained
in C j by fixing σℓ has expected mean-payoff exactlyℓ (i.e., it ensures expectationℓ with zero global variance). Sinceσ
is an almost-sure winning strategy for the reachability objective to the MECs inC, and once the MECs are reached the
strategyσℓ ensures that every bottom scc of the Markov chain has expectation exactlyℓ, it follows that the expectation
is ℓ and the global variance is zero.

2) Consider a strategy to ensure that the expectation is at most ℓ∗ and the global variance zero. By the results of Theorem 1
there is a finite-memory strategyσ to ensure expectationℓ∗ with global variance zero. Given the strategyσ, consider
the Markov chainGσs . Let Ĉ = {Ĉ | Ĉ is a bottom scc reachable froms in Gσs }. Since the global variance is zero and
the expectation isℓ∗, every bottom scĉC ∈ Ĉ must have that the expectation is exactlyℓ∗. Let

C = {C | C is a MEC and there existŝC ∈ Ĉ such that the associated end component
of Ĉ is contained inC}.

For everyC ∈ C we haveℓ∗ ∈ [αC, βC], where [αC, βC] is the interval ofC. Moreover, the strategyσ is also a
witness almost-sure winning strategy for the reachabilityobjectiveReach(A′), whereA′ =

⋃
C∈CC. Let ℓ′ = min{αC |

ℓ is the minimal expectation ofC ∈ C}. Since for everyC ∈ C we haveℓ∗ ∈ [αC, βC], it follows that ℓ′ ≤ ℓ∗. Observe
that if the algorithm checks the valueℓ′ in step (4) (sayℓ′ = ℓi), then the condition in step (4)(3) is true true, as
A′ ⊆

⋃
C j∈Ci

C j andσ will be a witness almost-sure winning strategy to reach
⋃

C j∈Ci
C j . Thus the algorithm must retrun

a valueℓ ≤ ℓ′ ≤ ℓ∗.

The desired result follows.
The above lemma ensures the correctness and the complexity analysis is as follows: (i) the MEC decomposition for MDPs

can be computed in polynomial time [6], [7] (hence step 1 is polynomial); (ii) the minimal and maximal expectation can
be computed in polynomial time by linear programming to solve MDPs with mean-payoff objectives [18] (thus step 2 is
polynomial); and (iii) sorting (step 3) and deciding existence of almost-sure winning strategies for reachability objectives can
be achieved in polynomial time [7], [8]. It follows that the algorithm runs in polynomial time.

For reader’s convenience, the formal description of the algorithm is given as Algorithm 2.
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Algorithm 2: Zero Global Variance

Input : An MDP G = (S,A,Act, δ), a starting states, and a reward functionr.
Output: A reward valueβ or NO.
1. Compute the MEC decomposition of the MDP and let the MECs beC1,C2, . . . ,Cn.
2. For every MECCi compute the minimal expectationαCi and the maximal

expectationβCi that can be ensured in the MDP induced by the MECCi ;
3. Sort the valuesαCi in a non-decreasing orderℓ1 ≤ ℓ2 ≤ . . . ≤ ℓn;
4. i := 1;
5. repeat

5.1. LetCi = {C j | αC j ≤ ℓi ≤ βC j } be the MEC’s whose interval containsℓi ;
5.2. Let Ai =

⋃
C j∈Ci

C j be the union of the MEC’s inCi ;
5.3. if there exists an almost-sure winning strategy forReach(Ai)

return ℓi ;
5.4 if i = n

return NO;
5.5 i := i + 1;
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