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Abstract Interactions between an organism and its environment are commonly
treated in the framework of Markov Decision Processes (MDP). While standard
MDP is aimed at maximizing expected future rewards (value), the circular flow of
information between the agent and its environment is generally ignored. In partic-
ular, the information gained from the environment by means of perception and the
information involved in the process of action selection are not treated in the stan-
dard MDP setting. In this paper, we focus on the control information and show how
it can be combined with the reward measure in a unified way. Both of these mea-
sures satisfy the familiar Bellman recursive equations, and their linear combination
(the free-energy) provides an interesting new optimization criterion. The tradeoff
between value and information, explored using our INFO-RL algorithm, provides a
principled justification for stochastic (soft) policies. We use computational learn-
ing theory to show that these optimal policies are also robust to uncertainties in the
reward values.

1 Introduction

Modeling an agent’s interaction with the environment is commonly treated in the
framework of Markov Decision Processes: given a statistical model of the environ-
ment which includes transition and rewarding rules, the agent is expected to find an
optimal policy which will maximize its future accumulated rewards [8].
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While this framework is rather general, the explicit flow of information between
the agent and its environment is ignored. This circular flow of information (also
referred in the literature as the perception-action cycle [4]) includes two terms: the
information gained from the environment in response to the agent’s actions and the
control information associated with the decisions the agent make. The first term
corresponds to the flow of information from the environment to the agent (sensory
perception) and the second term corresponds to the flow of information from the
agent back to the environment (by means of action selection).

In this work we focus mainly on the control information term (presented in Sec-
tion 2). We show how this information measure can be treated side-by-side with tra-
ditional value measures used in control theory. This treatment gives rise to a tradeoff
between value and information, which differs from standard MDP as the informa-
tion term is an explicit function of the unknown policy itself [10]. Here we develop
this framework further. In Section 3 we show that this new optimization problem can
be solved by dynamic programming with global convergence to a unique optimum,
using our INFO-RL algorithm. In a special setting of deterministic states-transition
model we show that the problem reduces to a simple linear form. We illustrate our
approach on a simple grid-world navigation task in Section 4.

Moreover, trading value and information is not restricted to problems where in-
formation explicitly carries a price tag. In Section 5 we consider a setting, in which
the exact parameters of the MDP are not fully known. Utilizing recent theorems
from computational learning theory [6] we show how the control information actu-
ally serves as the proper regularization term leading to a more robust policy.

Our approach is related to other algorithms that combine information theoretic
functions with optimal control [3, 11, 5], but its setting and scope are different. In
our case the information theoretic components, quantifying the information flow
between the agent and its environment, serves as an integral part of the reward that
drives the action selection. Treating information quantities thus allows us to explore
the tradeoff between value and information in an explicit principled way.

2 Preliminaries

This section presents our notation and introduces the control information term and
its motivation.

A word about notations, we use Ex|y [·] to denote expectations with respect to the
distribution of x given y.

2.1 Markov Decision Processes

A finite Markov decision process (MDP) is defined by a tuple 〈S,A,R,P〉 where:
S = {1, ...,n} is a finite set of n states;A is a finite set of actions; R is a scalar reward
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function, such that R(s,a) represents the immediate reward obtained in state s after
taking action a; and P is a Markovian transition model, where Ps,a (s′) represents the
probability of transition to state s′ when taking action a at state s. The agent chooses
action a in state s according to a stationary probability πs (a), which is known as the
agent’s policy.

In this work, we focus on a setting where the aim is to reach some terminal state
with maximum expected rewards. This is known in the literature as the ‘stochastic
shortest path’ or ‘first exit’ problem. To this aim, we introduce a new terminal state
sgoal which is an absorbing state, Psgoal ,a

(
sgoal

)
= 1 for all a ∈A. We denote the set

of MDP states including this terminal state by S+ =
{

1,2, ...,n,sgoal
}

. We assume
here that all ‘rewards’ are negative (i.e., ‘costs’): R

(
sgoal ,a

)
< 0. for all a∈A, s∈S

and that the absorbing state is ‘cost free’, R
(
sgoal ,a

)
= 0.

We define a proper policy as a policy with the following property: there is a
positive number m < ∞, such that for any initial state, the probability of reaching
the terminal state after at most m steps is some ε > 0. In particular, this guarantees
that we reach the terminal state sgoal with probability one after finitely many steps,
regardless of the initial state.

The value function of a policy π is defined as the expected accumulated rewards
for executing π starting from state s0,

Vπ (s0) = lim
T→∞

E

[
T−1∑
t=0

R(st ,at)

]
(1)

where the expectation is taken with respect to the probability of all future trajecto-
ries, starting in s0 ∈ S and executing the stationary policy π thereafter,

Pr(a0,s1,a1,s2, ...|s0) =
∏
t≥0

πst (at)Pst ,at (st+1) (2)

Note that Vπ

(
sgoal

)
= 0 under any policy π , as the terminal state is ‘cost free’.

The optimal value function, V ∗ (s) = maxπ Vπ (s), is defined as the maximal
achievable value (for each state s) by any stationary policy. This optimal value func-
tion is the unique fixed-point solution of Bellman’s optimality criterion [1],

V ∗ (s) = max
πs(·)

∑
a

πs (a)
∑

s′
Ps,a
(
s′
)[

R(s,a)+V ∗
(
s′
)]

= max
a

[
R(s,a)+

∑
s′∈S

Ps,a
(
s′
)

V ∗
(
s′
)]

In this case, a deterministic optimal policy π∗ can be obtained by acting greedily
with respect to V ∗: at each state s the selected action maximizes the optimal states-
actions value function Q∗ (s,a),
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Q∗ (s,a) = R(s,a)+
∑
s′∈S

Ps,a
(
s′
)

V ∗
(
s′
)

π
∗
s (a) =

{
1 a = argmaxa′Q∗ (s,a′)
0 otherwise

2.2 Control information

We consider scenarios where the controller and the actuator are separated by some
communication channel. This could be transmitting radio signals to a distant robot
or sending control commands from the brain to the muscles through the nervous
system. Sending information through a channel doesn’t come free, and an optimal
policy should take these communication costs into account.

We use information theory to quantify the expected (information) cost for exe-
cuting policy π in state s ∈ S as,

∆ I (s) =
∑

a

πs (a) log
πs (a)
ρs (a)

and define ∆ I = 0 at the terminal state.
This measure is the relative entropy at state s between the controller’s policy

πs (a) and some default policy ρs (a). This default policy could represent a naive
policy used by the actuator in the absence of information from the controller. With-
out loss of generality we set ρs (a) to be uniformly distributed over the available
actions at state s. This measure, ∆ I (s), corresponds to the minimal number of bits
required to describe the outcome of the random variable a ∼ πs (·). It also corre-
sponds to the minimal capacity of a communication channel (between the controller
and the actuator) capable of transmitting this control without an error [2]. Thus, it
serves here as a measure for the cost of control. For example, when only two ac-
tions are available, a deterministic control (such as ‘turn left here’) ‘costs’ ∆ I = 1
bit, while executing a ‘random walk’ control is essentially free, ∆ I = 0. It follows
that sending deterministic control is more expensive then sending vague (stochastic)
control through the communication channel. In cases where different actions result
in little change in the expected value – stochastic control might suffice.

In analogy with the value function Vπ (s0), we define the total control information
involved in executing policy π starting from s0,
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Iπ (s0) = lim
T→∞

E
[
∆ I (st)

]
(3)

= lim
T→∞

E

[
T−1∑
t=0

log
πst (at)

ρst (at)

]
(4)

= lim
T→∞

E
[

log
Pr(a0,a1, ...,aT−1|s0;π)

Pr(a0,a1, ...,aT−1|s0;ρ)

]
(5)

with the expectation taken with respect to all future trajectories as in Eq. (2), and
Iπ = 0 at the terminal state.

Deterministic policies, like those resulting from maximizing the value function
Vπ alone in the standard MDP framework (acting greedily with respect to the value
function), are usualy expensive in terms of the control information Iπ . The tradeoff
between these two quantities is the subject of our next section.

3 Trading value and information

We define optimal policies as policies that achieve maximal value given a constraint
on the control information. In this way, optimal policies reflect a balance between
maximizing expected rewards (value) and minimizing the information cost involved
in control. To this aim we define a free-energy function and show how it can be
used to derive optimal policies and explore the tradeoff between value and control
information.

3.1 Free-energy formulation

Borrowing terminology from statistical mechanics, we define a free-energy function
Fπ (s0;β ) that combines both the value term Vπ (s0) and our information term Iπ (s0),

Fπ (s0;β ) = Iπ (s0)−βVπ (s0)

= lim
T→∞

E
T−1∑
t=0

[
log

πst (at)

ρst (at)
−βR(st ,at)

]
with the expectation taken with respect to all future trajectories as in Eq. (2), and
Fπ = 0 at the terminal state. The parameter β > 0 controls the tradeoff between
information and value.

In practice, by minimizing the free-energy with respect to the policy π for a given
β > 0, we solve the following constrained optimization problem. Out of all policies
with control information below some threshold, find the policy achieving maximal
value,

max
π

Vπ (s0) s.t. Iπ (s0)≤ threshold
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This formulation is similar to the one used in rate-distortion theory (RDT) in
information theory (c.f., Chapter 13 of [2]) with the expected value replacing the
expected block distortion.

In analogy with the value function, the free-energy can also be shown to satisfy
Bellman’s optimality equation as suggested in the following.

Theorem 1. The optimal free-energy vector F∗ (s;β ) satisfies Bellman’s equation,
F∗ = BF∗, where the mapping B : Rn 7→ Rn is defined as follows,

[BF ] (s) = min
πs(·)

∑
a∈A

πs (a)

[
log

πs (a)
ρs (a)

−βR(s,a)+
∑
s′∈S

Ps,a
(
s′
)

F
(
s′;β

)]
(6)

Furthermore, F∗ is the unique solution of this self-consistent equation.

The proof of this theorem is given in the appendix. Following the theorem, we
use standard dynamic programming to solve the modified Bellman’s equation. In
practice, we start from F0 (a zeros vector) and iteratively apply the mapping B until
convergence to the unique fixed point F∗ (s;β ),

Fk+1 (s;β ) = [BFk] (s) , k = 0,1, ... (7)

Lemma. Applying the mapping B on a vector F ∈ Rn is equivalent to,

[BF ] (s) =− logZ (s;β ) (8)

where Z (s;β ) is the partition function,

Z (s;β ) =
∑

a

ρs (a)exp
[
βR(s,a)−Es′|s,aF

(
s′;β

)]
Proof. The minimization in the mapping B is over the set of normalized conditional
distributions. For this purpose, we introduce the following Lagrangian,

L [πs (·)] =
∑

a

πs (a)

[
log

πs (a)
ρs (a)

−βR(s,a)+
∑

s′
Ps,a
(
s′
)

F
(
s′;β

)]
+λs

∑
a

πs (a)

taking the derivative of L with respect to πs (a) for a given a and s we obtain,

δL
δπs (a)

= log
πs (a)
ρs (a)

−βR(s,a)+Es′|s,aF
(
s′;β

)
+λs +1

and setting the derivative to zero we have,

πs (a) =
ρs (a)

Z (s;β )
exp
[
βR(s,a)−Es′|s,aF

(
s′;β

)]
Z (s;β ) =

∑
a

ρs (a)exp
[
βR(s,a)−Es′|s,aF

(
s′;β

)]
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Algorithm 1 INFO-RL (S,A,P,R,ρ,β )
initialize F (s)← 0, ∀s ∈ S
repeat

for s = 1 to n do
Z (s;β )←

∑
a ρs (a)eβR(s,a)−Es′ |s,aF(s′;β)

F (s;β )←− logZ (s;β )
end for

until F has converged (F∗← F)
for each a ∈A,s ∈ S

π∗ (a|s)← ρs(a)
Z(s;β ) exp

[
βR(s,a)−Es′|s,aF∗ (s′;β )

]
return π∗

where Z (s;β ) is a partition function. Substituting the solution back in the La-
grangian establishes the Lemma.

Finally, we introduce our INFO-RL algorithm. For a given MDP model and a
tradeoff parameter β > 0, it calculates F∗ by iterations of the Bellman equation, and
returns the optimal policy π∗.

Due to the explicit non-linear dependence of the free-energy function on π , the
solutions of this optimization problem are stochastic. This result of stochastic solu-
tions is similar in nature to the results obtained in other information minimization
problems like RDT [2] and the information-bottleneck method [9].

3.2 The value-information curve

The tradeoff between value and information can be explored by solving the opti-
mization problem for different values of β > 0. The solutions form a concave curve
in the value-information plane (Fig. 1, left panel). This result is similar to the con-
vexity of the rate-distortion function in RDT [2].

The tradeoff curve is the set of all solutions to the constraint optimization prob-
lem. It separates the plane into two regions: above the curve is the non-achievable
region, where there is no corresponding policy to satisfy the constraints; below the
curve are all sub-optimal solutions that achieve less value with the same level of
control information. The rightmost point along the curve (β → ∞) represents the
maximal value any policy can achieve and the minimal level of control information
required to achieve that value.

Generally, the tradeoff between information and value is far from being linear,
allowing agents to find policies that compromise very little expected value while
being much cheaper in terms of the control information.
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Fig. 1 Trading value and information in a 10×10 grid world example. An agent is required to reach
the goal (marked by a white star) starting from the top-left corner of the grid, without bumping into
the walls. Left: The tradeoff curve calculated for this problem (using the INFO-RL algorithm with
different tradeoff values). Each point along the curve represents a solution (an optimal policy) to
the constrained optimization problem, achieving the maximal expected value Vπ for the specified
level of control information Iπ . Right: Four explicit solutions (optimal policies) are shown for
control information levels of Iπ = 30, 24, 20 and 2 bits (a-d). These policies are depicted by black
arrows, with each arrow representing the probability of taking action a∈{↑,↗,→, ...} at a location
s along the grid. Colors represent the probability density of the agent’s position along the grid as
induced by its policy.

3.3 Deterministic environments

Consider the special case where the states-transition function of the MDP is deter-
ministic. In this particular case, the optimization problem takes a simple linear form
as shown below. Let xs,a denote the state to which the agent transfers after taking
action a in state s,

Ps,a
(
s′
)
=

{
1 s′ = xs,a

0 otherwise

Proposition. The update step in the INFO-RL algorithm takes the following linear
form,

Zk+1 (s;β ) =
∑
s′∈S

Φs,s′ (β )Zk
(
s′;β

)
where the n×n matrix Φ is defined as,

Φs,s′ (β ) =

{∑
a ρs (a)eβR(s,a), s′ = xs,a

0 otherwise

Proof. Since Ps,a (s′)∈ {0,1}, we have that Es′|s,aF (s′;β ) =F (xs,a;β ). Substituting
Φ in the update rule of Z establishes the proposition,
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Zk+1 (s;β ) =
∑

a

ρs (a)eβR(s,a) e−Fk+1(xs,a;β)

=
∑

s′
Φs,s′ (β )Zk (xs,a;β )

The problem of solving a nonlinear set of equations, F∗ = BF∗, thus reduces
to solving a set of linear equations Z = ΦZ, in resemblance to the Z-LEARNING
algorithm given in [11]. Furthermore, in many problems the states of the MDP are
far from being fully connected resulting in a sparse matrix Φ .

4 Grid world example

In order to demonstrate our formalism we proceed with an illustrative example.
We explore trading expected value and control information in a simple grid world
problem.

In this setting, states represent the agent’s location on a grid with a single state
denoting the goal. In each step the agent chooses from eight actions correspond-
ing to eight possible directions A = {↑,↗,→, ...}. The states-transition function
is deterministic (as in Section 3.3): the agent is transferred to an adjacent grid cell
according to its action, unless it attempts to move into a wall. The agent receives a
negative reward of R = −1 on each step in order to favor short paths and a punish-
ment of R =−100 for an attempt to move into a wall.

Each deterministic control (such as “go west”) adds log πs(a)
ρs(a)

= log 1
1/8 = 3 bits

to the total control information. As shown in Figure 1 (right panel a), a deterministic
policy can lead the agent to the goal in ten steps. This, however, requires 10×3= 30
bits of control information (see point a on the tradeoff curve). What happens when
we restrict the control information to lower values?

We calculated the full value-information tradeoff by applying our INFO-RL algo-
rithm for various values of the tradeoff parameter β . The resulting tradeoff curve is
shown in Figure 1 (left). Each point along the curve represents an optimal solution
π∗ of the constraint optimization problem for a specific value of β . It represents
the maximal expected value that can be achieved for each and every level of con-
trol complexity. Four such solutions are presented explicitly. Panel a shows the case
of β → ∞ corresponding to the maximum possible expected value (Vmax = −10).
Panels b-d correspond to solutions obtained for decreasing values of β . As β → 0
the policy becomes uniform over actions (i.e., random walk policy). Executing this
random walk policy will eventually reach the goal, but with an expected value of
V <−15,000 (not shown).

The path through the narrow corridor is indeed the shortest. However, it requires
costly deterministic instructions in order not to bump into the walls. Constraining the
control complexity to lower values (by decreasing β ) favors the longer and ‘safer’
path.
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5 Robustness

In settings with only partial knowledge of the world, the control information
emerges as a natural regularization term to improve the robustness of the policy
to sample fluctuations.

We explore a scenario in which the rewards are drawn from a state-dependent dis-
tribution r ∼ Ps (r) which is unknown to the agent. After a learning phase, in which
the agent collects a sample of m realizations of each r (s), it constructs an empir-
ical (and unbiased) estimate R̂(s) = 1

m
∑

i ri (s), of the expected reward function
R(s) = Er|s [r]. Thus, the agent doesn’t have access to the underlying distribution
of the rewards, but only to a noisy estimate of it based on its experience. A policy
chosen to maximize the value alone may suffer from over-fitting with respect to the
noisy model, leading to inferior performance in the real world.

We use the probably approximately correct (PAC)-Bayesian approach to quan-
tify the ability to learn a good policy from a finite sample. PAC-Bayesian bounds
are a generalization of the Occams razor bound for algorithms which output a dis-
tribution over classifiers rather than just a single classifier, and are thus suitable for
our analysis. We begin by recalling the PAC-Bayesian bound [6].

Theorem 2. Let x1, ..,xm ∈ X be a set of i.i.d samples from a distribution D over
X . Also, let Q be a distribution on a set H and let l :H×X 7→ [0,1] be a bounded
loss function. Under these conditions, it holds with a probability of at least 1− δ

over the choice of the sample x1, ..,xm that for any distribution P overH,

D̃KL [l (P,x1, ...,xm)‖l (P,D) ] ≤ DKL [P‖Q ]+ log(2m/δ )

m−1

where l (P,x1, ...,xm) = Eh∼P
[ 1

m
∑m

i=1 l (h,xi)
]

is considered an empirical loss and
l (P,D) = Eh∼P,x∼D [l (h,x)] is considered a generalization loss.

We use the notation D̃KL [a‖b ] for scalars a,b ∈ [0,1] to denote the Kullback-
Leibler (KL) divergence between two Bernoulli distributions with parameters a and
b.

To utilize the PAC-Bayesian approach in our framework, we make the following
assumptions. Let H = {A×S}∞ be the class of possible trajectories. The agent’s
policy πs (a) and the states-transition probabilities Ps,a (s′) induce some distribu-
tion P over H, for a given initial state s0. Similarly, the default policy ρs (a) and
Ps,a (s′) induce another distribution over H, denoted by Q. Finally, we note that the
KL-divergence between these two distributions is, by construction, our control in-
formation term (Eq. 3):
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DKL [P||Q] = lim
T→∞

E
[

log
Pr(a0,s1,, ..,sT |s0;π)

Pr(a0,s1, ..,sT |s0;ρ)

]
= lim

T→∞
E

[
T−1∑
t=0

log
πst (at)

ρst (at)

]
= Iπ (s)

where the expectation is taken with respect to Pr(a0,s1,, ..,sT |s0;π).

Theorem 3. Suppose an agent has an a-priori stochastic policy ρs (a). If the agent
collects an empirical sample of rewards as described above (with m samples per
reward), it holds with a probability of at least 1−δ that for any new proper policy
πs (a) and initial state s0,

D̃KL
[
V̂π (s0)‖Vπ (s0)

]
≤ Iπ (s0)+ log(2m/δ )

m−1

where Iπ is defined as in Eq. (3) and

Vπ (s0) = lim
T→∞

E

[
T∑

t=1

R(st)

]

V̂π (s0) = lim
T→∞

E

[
T∑

t=1

R̂(st)

]

with the expectations taken with respect to Pr(a0,s1,, ..,sT |s0;π).

The theorem tells us the following. Without any regularization, a policy that max-
imizes the rewards alone (based on the empirical data) might be very costly in terms
of its control information Iπ (see Section 2.2). As a result, the bound in the theo-
rem will be loose and the true expected reward Vπ might be much smaller than the
empirical reward V̂π which was maximized (i.e., low generalization). On the other
hand, if the chosen policy is such that P and Q are very similar then the bound in
the theorem will be tight (low control information). Nevertheless, both V̂π and Vπ

might still be similarly low. Thus, the theorem implies that in order to find a policy
with maximal expected reward Vπ , one should explore the tradeoff between maxi-
mizing the reward based on the empirical data (i.e., make V̂π as large as possible),
and minimizing the control information Iπ (i.e., reducing the divergence between P
and Q). This can be done in practice using the INFO-RL algorithm as demonstrated
in the following..

To illustrate this idea, we used a simple 20×20 grid world that the agent needs to
cross with a ‘mine field’ of size 12×12 situated in the middle. Stepping on a mine is
punished by r =−20 with probability of 50%. In this setting, the preferred solution
should be to bypass the ‘mine field’. We sample one realization from r (s) for s ∈ S
and use it to construct an unbiased estimate of the reward function R̂(s). Based on
this estimate, an optimal policy is calculated using the INFO-RL algorithm for differ-
ent values of β . With β →∞, where the focus is on maximizing the value alone, the
resulting policy passes through the ‘mine field’ (in between sampled mines). This is
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far from being a good solution in the real world, as the entire field is dangerous. As
we set β to lower values, the information term regularizes the solutions, resulting in
better policies (see Fig. 2).

6 Discussion

Information processing and control are known to be related, at least since Shan-
non’s 1959 Rate-Distortion theory paper [7]. In this work we establish a direct link
between information and control by combining an information theoretic measures
within the MDP formulation. We explore the tradeoff between value and informa-
tion explicitly by solving an optimization problem for optimal planning under infor-
mation constraints. The suggested INFO-RL algorithm for solving the optimization
problem is shown to converge to the global fixed-point solution. Furthermore, in the
case of deterministic state-transitions, the problem is shown to take a very simple
linear form.

Demonstrating the algorithm in a simple grid-world problem we show how
stochastic policies can dramatically reduce the control information while main-

Fig. 2 Robustness of the INFO-RL policies under a partial knowledge of the MDP parameters. An
agent is required to cross a 20×20 grid world with a dangerous 12×12 ‘mine field’ in the center.
The locations of mines are unknown to the agent, which can only utilize an empirical estimate of
the reward function to plan ahead (see Section 5 for details). Left: The tradeoff curve calculated
for this problem based on the underlying reward function (unavailable to the agent) is shown as a
solid line. The curve is calculated based on the (noisy) empirical estimate of the reward function,
shown as a dashed line. It shows the over-training at high control information levels with respect to
the expected value under the ‘full’ model of the MDP. Right: Two optimal policies (with respect to
the noisy estimate) are shown, with the probability density of the agent’s position along the grid in
grayscale. The sample of the ‘mines’ used to build the empirical estimate of the reward is indicated
by stars. The solution in b is clearly better than the one in a in terms of the expected value (i.e.,
more robust to the noisy estimate of the underlying reward function).
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taining close to maximal values. Stochastic policies can also be addressed by us-
ing the softmax action selection [8]. In contrast with our optimization principle,
the softmax policy is constructed in two independent steps: first a maximal value
solution Q∗ (s,a) is calculated; only then the softmax policy is calculated through
πs (a) ∝ eQ∗(s,a)/β , which results in a ‘softer’ version of the deterministic maximal
value solution.

Finally, we use the PAC-Bayesian generalization theorem to show that the solu-
tions are robust to sample fluctuations of the rewards, by providing a better general-
ization to the training episode sample.

This work is focused on the control term of the circular flow of information
between the agent and its environment. Treatment of the complementary term, the
information gained from the environment, is subject to ongoing work and will be
published separately.

Appendix

Proof of Theorem 1

Our proof follows [1]. We begin with some preliminary results. We introduce the
mapping Tπ : Rn 7→ Rn,

[Tπ F ] (s) =
∑
a∈A

πs (a)

[
log

πs (a)
ρs (a)

−βR(s,a)+
∑
s′∈S

Ps,a
(
s′
)

F
(
s′
)]

(9)

and we define the matrix Pπ (indexed by s,s′ ∈ S) and the vector gπ (indexed by
s ∈ S),

Pπ

(
s,s′
)
=
∑

a

Ps,a
(
s′
)

πs (a)

gπ (s) =
∑

a

πs (a)
[

log
πs (a)
ρs (a)

−βR(s,a)
]

to rewrite Eq. (9) in compact vector notation,

Tπ F = gπ +Pπ F (10)

and the free-energy of a policy π as,

Fπ = lim
k→∞

T k
π F0 = lim

N→∞

N∑
k=0

Pk
π gπ (11)

where F0 denotes a zeros vector, and high superscripts k indicate raising to the power
of k.
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From the definition of proper policy we have that for any proper policy π and
any vector F ,

lim
k→∞

Pk
π F = 0 (12)

Assumption. There exists at least one proper policy. Furthermore, for every im-
proper policy π , the corresponding vector Fπ (s) is ∞ for at least one state s.

In the case that the policy is improper, there is at least one initial state from which
the trajectory will never reach the terminal state, and thus we assume that the infinite
sum diverges.

Proposition 4. For a proper policy π , the associated free-energy vector Fπ satisfies,

lim
k→∞

[
T k

π F
]
(s) = Fπ (s) , s = 1, ...,n (13)

for every vector F. Furthermore, Fπ = Tπ Fπ , and Fπ is the unique solution of this
equation.

Proof. By an induction argument, we have for all F ,

T k
π F = Pk

π F +

k−1∑
t=0

Pt
π gπ , k ≥ 1 (14)

and using Eq. (12) and Eq. (11) we get,

Fπ = lim
k→∞

T k
π F = 0+ lim

k→∞

k−1∑
t=0

Pt
π gπ (15)

Also, we have by definition,

T k+1
π F = gπ +Pπ T k

π F (16)

and by taking the limit as k→ ∞, we obtain,

Fπ = gπ +Pπ Fπ = Tπ Fπ (17)

Finally, to show uniqueness, note that if F = Tπ F , then we have F = T k
π F for all

k, and so,
F = lim

k→∞
T k

π F = Fπ (18)

Proposition 5. A stationary policy π satisfying,

F (s)≥ (Tπ F)(s) , s = 1, ...,n

for some vector F, is proper.

Proof. By Eq. (14) and the proposition’s hypothesis, we have that,
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F ≥ Tπ F ≥ T k
π F = Pk

π F +

k−1∑
t=0

Pt
π gπ (19)

If π was not proper, then by the assumption, some components of the sum in the
right-hand side of the above relation will diverge to ∞ as k→ ∞, which is a contra-
diction.

Recall the mapping B : Rn 7→ Rn on F (see Theorem 1 and Eq. 9),

[BF ] (s) = min
πs(·)

[Tπ F ] (s)

The following proposition establishes the uniqueness of the solution.

Proposition 6. The equation, F = BF, has at most one fixed point solution.

Proof. If F and F ′ are two fixed points, then we select π and π ′ such that,

πs (·) = argmin
µs(·)

[
Tµ F

]
(s) (20)

π
′
s (·) = argmin

µs(·)

[
Tµ F ′

]
(s)

By this construction, Tπ F = F and Tπ ′F ′ = F ′. By Proposition 5 we have that
both π and π ′ are proper, and by Proposition 4 we have that F = Fπ and F ′ = Fπ ′ .
Also, we have,

F = BF = BkF ≤ T k
π ′F , k ≥ 1

taking k→ ∞ and using Prop, 4, we obtain,

F ≤ lim
k→∞

T k
π ′F = Fπ ′ = F ′ (21)

Similarly, F ′ ≤ F , showing that F = F ′ and that F =BF has at most one fixed point.

Lastly, we show that the optimal free-energy vector F∗ = minπ Fπ satisfies Bell-
man’s equation, assuming that a proper optimal policy π∗ indeed exists.

Proposition 7. The optimal free-energy vector F∗ satisfies F∗ = BF∗.

Proof. Let π∗ denote the optimal proper policy,

π
∗ = argmin

π
Fπ

consequently, for any policy π we have, F∗ ≤ Fπ . Applying the mapping B on F∗

we have,
BF∗ = min

π
Tπ F∗ ≤ Tπ∗F∗ = F∗ (22)

Next, we select a policy µ such that Tµ F∗ = BF∗, and using Eq. (22) we have
that F∗ ≥ BF∗ = Tµ F∗. Thus for any k ≥ 1 we have F∗ ≥ T k

µ F∗, and taking k→ ∞

we have by Proposition 4,
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F∗ ≥ lim
k→∞

T k
µ F∗ = Fµ

and because F∗ ≤ Fπ for any policy π , we have that F∗ = Fµ . Lastly, by the con-
struction of µ we have,

F∗ = Fµ = Tµ Fµ = Tµ F∗ = BF∗

Finally, Proposition 6 and 7 establishes Theorem 1.
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