Deep Learning and Neural Nets

Will Stanton

Data Science and Business Analytics Meetup, May 28, 2014

Return Path

- Worldwide leader in email intelligence
- Collect and aggregate enormous amounts of email data, including raw text data
- Help receivers improve spam filtering with whitelists, blacklist, reputation scoring
- Help senders improve their email sending program
- Great place to work!

Supervised/Unsupervised Learning

- Supervised learning (classification/regression): start with a training set of labeled observations (x1, y1), ..., (x_N, y_N), where x's are inputs, y's are outputs
 - Create algorithm to "learn" pattern from observations to make predictions on new inputs (like generalized curve-fitting)
 - Example: given a labeled training set of pictures of dogs and other animals, create an algorithm to recognize pictures of dogs
- Unsupervised learning (clustering, feature extraction, dimensionality reduction): automatically find patterns, groupings, useful variables in an unlabeled dataset
 - Example: given an unlabeled set of pictures of animals, create an algorithm to automatically distinguish between different types of animals
- Supervised learning is typically easier
 - o **BUT** you need a labeled training set, often a BIG one

How to train a learning algorithm

- 1. Initialize *parameters* of model
- 2. Run data through algorithm
- 3. Compute *cost function* based on model run-through
 - Supervised learning: cost function computed based on how close model output is to training set labels
 - i. Example: RMSE = sqrt(mean((outputs labels)^2))
 - b. Unsupervised learning: usually problem-specific
 - i. Example: how well-separated are the clusters?
- 4. Adjust the parameters to reduce the value of the cost function
 - a. Usual method: gradient descent
- 5. Repeat the process until the cost function reaches a *threshold* (usually defined by the *gradient* of the cost function being *small*)

Gradient descent

- Gradient descent: adjust parameters of cost function according to direction of gradient
- **Gradient:** If f is a function of N parameters $w_1, w_2, ..., w_N$, then the gradient of f is the vector **grad** $f = [\partial f/(\partial w_1), ..., \partial f/(\partial w_N)]$, where $\partial f/(\partial w_i)$ is the rate of change of f with respect to a change in the variable $w_i c$ called the partial derivative of f with respect to w_i

Cost function at a minimum grad f = 0 (does *not* work the other way!!)

What is a Neural Network?

- Artificial Neural Networks are machinelearning algorithms (loosely) based on the human brain
- Network of nodes ("neurons") that perform computations
- Can be used for supervised or unsupervised learning

A simple neural net

- Inputs enter first hidden layer "neurons", and are transformed by activation function, then
- 2. passed to second hidden layer, and transformed again by activation function, then passed to **output layer**
- 3. **Cost function** calculated based on outputs
- 4. **Parameters** of activation function adjusted to reduce value of cost function (*gradient descent*)
- Process repeated until gradient reaches small enough tolerance

Activation and Cost Functions

- Activation Function (one at each node of each hidden layer):
 - o logistic function: $f(x) = 1/(1 + \exp(-x))$
 - $x = w_1 x_1 + w_2 x_2 + ... + w_n x_n$ (weighted sum of inputs from previous layer)
 - parameters: w_1, ..., w_n
 - o ReLU (rectified linear units): approx. linear combo of logistic functions
 - prevents local minimum problem in gradient descent (more later)

Cost Function:

- Supervised learning (classification, regression): often RMSE = sqrt (mean((outputs - labels)^2))
- Unsupervised learning (clustering, feature extraction): problem specific

What is Deep Learning?

- Deep learning is a collection of methods based on training neural nets with many hidden layers
- Advantages:
 - State of the art for machine translation, image recognition, speech recognition tasks
 - Accurate at classification and regression (supervised learning) with much smaller *labeled* training sets than typical ML algorithms
 - Automatically *learns* useful features of dataset
- Disadvantages:
 - Slow to train
 - Prone to overfitting
 - o Prone to *local minimum problem*

Feature learning

- A feature of a dataset is a carefully-selected combination of the original variables
 - Ex: edges or colors in a collection of nature pictures
 - Ex: noses or eyes in a collection of pictures of faces
 - o Ex: meaningful, common phrases in a collection of documents
 - Ex: chords or repeated rhythms in a collection of songs
- ML algorithms work better when you feed in the *right* features to the training algorithm
- The problem: typically, humans have to engineer useful features by hand
- The solution: deep learning algorithms (just like our brain) learn useful features automatically

Layered feature representations

- In the human brain, images are represented as a distributed, multi-layered, feature representation
 - Humans see features, not just pixels

One learning algorithm hypothesis

- Sight, hearing, touch all seem to use the same distributed multi-layered feature representation learning algorithm
- How do we know?
 - Experiments "rewiring" the vision and sound centers of animal brains
 - In humans: "seeing" with your tongue, feeling the direction North
- Deep learning neural nets perform well on image recognition, speech recognition, text processing, etc.
 - Same architecture, same algorithm, same results -- on different tasks!

How does deep learning work?

- Modeled after multi-layer, distributed feature representation in brain
- Multiple hidden layers in neural nets
 - Each layer *learns* a new feature representation of previous layer (ie. pixels -> edges -> shapes -> typical face types)
 - uses an autoencoder or Restricted Boltzmann Machine (more on this later)
 - Feature representation is learned one layer at a time, starting with the simplest representation (pixels -> edges)
 - called layerwise pre-training

Autoencoders

- An autoencoder is a neural network that attempts to learn an efficient, distributed, feature representation of its inputs
 - tries to learn a new encoding c(x) of the input x
 - Cool aside: an autoencoder with a *linear* activation function does the same transformation as PCA

Layerwise pre-training

- Each hidden layer of a deep neural net is itself an autoencoder
- At each layer, a new representation of the inputs from previous layer is learned
- This automatically *learns* useful features from dataset

Why does deep learning work?

- The features deep-learning networks automatically learn are often much more useful than human-engineered features (and take much less work to create)
- Useful features means
 - Faster training time
 - Fewer examples needed for training (smaller training set)
 - Easier to recognize similar examples, distinguish different examples
- Ex: a child only needs to see a few trucks before learning the typical features of a truck
 - Can generalize the feature representation of "truck" to bulldozers and army tanks, and even see the relationship to planes or boats
 - Deep learning neural nets attempt to do essentially the same thing

The local minimum problem

- grad f = 0 does not imply f is at a global minimum!
- Why: a cost function could have multiple local minima
- Training can get stuck at a local minimum that is not a global minimum if the gradient gets really small, because:
 - parameters are adjusted less when the gradient is small
 - algorithm is stopped when the gradient reaches small enough tolerance
- Why is this bad?
 - Algorithm is not as accurate as it could be if the cost function is not as low as it could be

ReLU

- Deep learning is prone to local minimum problem
 - o can get "stuck" at a low point of the gradient of the cost function
- Problem: *logistic* activation function has very *small* gradient (rate of change) for small values of x
- Solution: instead of using *tanh* function, use activation function called

ReLU: "rectified linear units"

$$f(x) = max(0,x)$$

Gradient of ReLU function does *not* get too small for small *x*

Overfitting

Overfitting: overfitting occurs when a machine-learning algorithm fits "too
well" to the training set, and does not generalize well to new data

Example:

Line plus random Gaussian noise

$$y = x + \mathbf{p}$$

$$\mathcal{V} \sim \mathcal{N}(0,1)$$

The *real* pattern is just a straight line. An *overfit* ML algorithm learns a pattern that is *simply not there!*

Preventing overfitting

- Cause: too many variables for the dataset
 - Ex: Fitting a 100-variable linear model to a dataset with only 3 relevant variables
- Solution: choose a number of variables appropriate to modeling task
- Cause: modeling algorithm too complicated for the dataset
 - Ex: Fitting a complex deep neural net to a linear dataset
- Solution: Test multiple types of modeling algorithms. Select model
 hyperparameters (like number of nodes of a neural network or number of
 variables in a tree-based model) with a tuning grid
- Specific to neural nets: dropout methods

Dropout

- Deep learning neural nets prone to *overfitting*
 - May learn features that are *not* important
 - Ex: may learn the logo "Ford" if looking at lots of trucks

- Solution: *dropout*
 - Randomly leave out neurons on each training example during training

Works by not adjusting parameters *too much* on any given training example

The state of the art

- For supervised learning problems, "traditional" deep learning (from 2006 up until a few years ago) used layerwise unsupervised pre-training
 - Using ReLU and Dropout, it is possible to train deep learning models faster and more accurately, without using unsupervised pre-training
 - Caveat: you typically need a *lot* of training data for this to work
- Deep learning at (very) large scale: lots of top experts have moved to industry to implement deep learning for huge data business problems
 - Geoffrey Hinton works at Google
 - Yann LeCun works at Facebook
 - Andrew Ng works at Baidu
- Deep learning is getting easier to implement
 - Better documentation, better software libraries, Amazon GPU clusters, etc.

When to use deep learning

- When to use deep learning:
 - Complex, cognitive tasks with latent deep structure
 - Machine translation, image recognition, speech recognition, feature selection from a complex dataset
- When not to use deep learning:
 - Typical machine-learning tasks without deep structure: risk of overfitting
 - Deep learning is still difficult to implement compared to simpler methods

Implementing Deep Learning

- Python libraries: theano and pylearn2
- theano: a high-performance computing and computer-algebra system library
 - o includes GPU computing functionality
- *pylearn2*: contains methods for training deep neural nets (uses *theano* for computation)
- Check out http://deeplearning.net

Questions?

- Thanks for listening, and thanks for inviting me to speak!
- Find me on my personal website: http://williamgstanton.com
- Connect with me on LinkedIn