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Return Path

● Worldwide leader in email intelligence
● Collect and aggregate enormous amounts of 

email data, including raw text data
● Help receivers improve spam filtering with 

whitelists, blacklist, reputation scoring
● Help senders improve their email sending 

program
● Great place to work!



Supervised/Unsupervised Learning
● Supervised learning (classification/regression): start with a training set of 

labeled observations (x1, y1), …, (x_N, y_N), where x’s are inputs, y’s are outputs
○ Create algorithm to “learn” pattern from observations to make predictions on 

new inputs (like generalized curve-fitting)
■ Example: given a labeled training set of pictures of dogs and other 

animals, create an algorithm to recognize pictures of dogs
● Unsupervised learning (clustering, feature extraction, dimensionality 

reduction): automatically find patterns, groupings, useful variables in an unlabeled 
dataset
○ Example: given an unlabeled set of pictures of animals, create an algorithm to 

automatically distinguish between different types of animals
● Supervised learning is typically easier

○ BUT you need a labeled training set, often a BIG one



How to train a learning algorithm
1. Initialize parameters of model
2. Run data through algorithm
3. Compute cost function based on model run-through

a. Supervised learning: cost function computed based on how close 
model output is to training set labels
i. Example: RMSE = sqrt(mean((outputs - labels)^2))

b. Unsupervised learning: usually problem-specific
i.  Example: how well-separated are the clusters?

4. Adjust the parameters to reduce the value of the cost function
a. Usual method: gradient descent

5. Repeat the process until the cost function reaches a threshold (usually 
defined by the gradient of the cost function being small)



Gradient descent
● Gradient descent: adjust parameters of cost function according to 

direction of gradient
● Gradient: If f is a function of N parameters w_1, w_2, …, w_N, then the 

gradient of f is the vector grad f = [ ∂f/(∂w_1), … , ∂f/(∂w_N)  ], where       
∂f/(∂w_i) is the rate of change of f with respect to a change in the variable 
w_i – called the partial derivative of f with respect to w_i

Cost function at a minimum 
              grad f = 0 (does not work 
the other way!!)



What is a Neural Network?

● Artificial Neural Networks are machine-
learning algorithms (loosely) based on the 
human brain

● Network of nodes (“neurons”) that perform 
computations

● Can be used for supervised or unsupervised 
learning



A simple neural net
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1. Inputs enter first hidden layer 
“neurons”, and are transformed 
by activation function, then

2. passed to second hidden layer, 
and transformed again by 
activation function, then passed 
to output layer

3. Cost function calculated based 
on outputs

4. Parameters of activation function 
adjusted to reduce value of cost 
function (gradient descent)

5. Process repeated until gradient 
reaches small enough tolerance
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x = (x1, x2, x3) Output 
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Activation and Cost Functions
● Activation Function (one at each node of each hidden layer): 

○ logistic function: f(x) = 1/(1 + exp(-x)) 
■ x = w_1 x_1 + w_2 x_2 + … + w_n x_n (weighted sum of inputs 

from previous layer)
■ parameters: w_1, …, w_n

○ ReLU (rectified linear units): approx. linear combo of logistic functions
■ prevents local minimum problem in gradient descent (more later)

● Cost Function:
○ Supervised learning (classification, regression): often RMSE = sqrt

(mean((outputs - labels)^2))
○ Unsupervised learning (clustering, feature extraction): problem specific



What is Deep Learning?
● Deep learning is a collection of methods based on training neural nets with 

many hidden layers
● Advantages: 

○ State of the art for machine translation, image recognition, speech 
recognition tasks

○ Accurate at classification and regression (supervised learning) with 
much smaller labeled training sets than typical ML algorithms

○ Automatically learns useful features of dataset
● Disadvantages: 

○ Slow to train
○ Prone to overfitting
○ Prone to local minimum problem



Feature learning
● A feature of a dataset is a carefully-selected combination of the original 

variables 
○ Ex: edges or colors in a collection of nature pictures
○ Ex: noses or eyes in a collection of pictures of faces
○ Ex: meaningful, common phrases in a collection of documents
○ Ex: chords or repeated rhythms in a collection of songs

● ML algorithms work better when you feed in the right features to the 
training algorithm

● The problem: typically, humans have to engineer useful features by hand
● The solution: deep learning algorithms (just like our brain) learn useful 

features automatically



Layered feature representations
● In the human brain, images are represented as a distributed, multi-layered, 

feature representation 
○ Humans see features, not just pixels

Pixels

EdgesCollection of faces Shapes
Typical facial types 
(features)

*Each layer is made up 
of combinations of the 
previous layer, using 
multiple nodes 
(distributed, multi-
layered)*



One learning algorithm hypothesis
● Sight, hearing, touch all seem to use the same distributed multi-layered 

feature representation learning algorithm
● How do we know?

○ Experiments “rewiring” the vision and sound centers of animal brains
○ In humans: “seeing” with your tongue, feeling the direction North

● Deep learning neural nets perform well on image recognition, speech 
recognition, text processing, etc.
○ Same architecture, same algorithm, same results -- on different tasks!



How does deep learning work?
● Modeled after multi-layer, distributed feature representation in brain
● Multiple hidden layers in neural nets

○ Each layer learns a new feature representation of previous layer (ie. 
pixels -> edges -> shapes -> typical face types)
■ uses an autoencoder or Restricted Boltzmann Machine (more on 

this later)
○ Feature representation is learned one layer at a time, starting with the 

simplest representation (pixels -> edges)
■ called layerwise pre-training



Autoencoders
● An autoencoder is a neural network that attempts to learn an efficient, 

distributed, feature representation of its inputs
○ tries to learn a new encoding c(x) of the input x
○ Cool aside: an autoencoder with a linear activation function does the 

same transformation as PCA
x c(x)

Input
Hidden layer 
(transformation)

Output (new 
representation)



Layerwise pre-training

● Each hidden layer of a deep neural net is 
itself an autoencoder 

● At each layer, a new representation of the 
inputs from previous layer is learned

● This automatically learns useful features 
from dataset



Why does deep learning work?
● The features deep-learning networks automatically learn are often much 

more useful than human-engineered features (and take much less work to 
create)

● Useful features means
○ Faster training time
○ Fewer examples needed for training (smaller training set)
○ Easier to recognize similar examples, distinguish different examples

● Ex: a child only needs to see a few trucks before learning the typical 
features of a truck
○ Can generalize the feature representation of “truck” to bulldozers and 

army tanks, and even see the relationship to planes or boats
○ Deep learning neural nets attempt to do essentially the same thing



The local minimum problem
● grad f = 0 does not imply f is at a global minimum!
● Why: a cost function could have multiple local minima
● Training can get stuck at a local minimum that is not a 

global minimum if the gradient gets really small, 
because:

■ parameters are adjusted less when the 
gradient is small

■ algorithm is stopped when the gradient 
reaches small enough tolerance

● Why is this bad?
○ Algorithm is not as accurate as it could be if the 

cost function is not as low as it could be

Local 
minimum Global 

minimum



ReLU
● Deep learning is prone to local minimum problem

○ can get “stuck” at a low point of the gradient of the cost function
● Problem: logistic activation function has very small gradient (rate of 

change) for small values of x
● Solution: instead of using tanh function, use activation function called 

ReLU: “rectified linear units”
f(x) = max(0,x)

Gradient of ReLU function 
does not get too small for 
small x



Overfitting
● Overfitting: overfitting occurs when a machine-learning algorithm fits “too 

well” to the training set, and does not generalize well to new data
● Example: 

x

y

y = x + v
v ~ N (0,1) 

Line plus random 
Gaussian noise

The real pattern is just a straight line. 
An overfit ML algorithm learns a
pattern that is simply not there!



Preventing overfitting
● Cause: too many variables for the dataset

○ Ex: Fitting a 100-variable linear model to a dataset with only 3 relevant 
variables

● Solution: choose a number of variables appropriate to modeling task
● Cause: modeling algorithm too complicated for the dataset

○ Ex: Fitting a complex deep neural net to a linear dataset
● Solution: Test multiple types of modeling algorithms. Select model 

hyperparameters (like number of nodes of a neural network or number of 
variables in a tree-based model) with a tuning grid 

● Specific to neural nets: dropout methods 



Dropout
● Deep learning neural nets prone to overfitting

○ May learn features that are not important 
■ Ex: may learn the logo “Ford” if looking at lots of trucks

● Solution: dropout 
○ Randomly leave out neurons on each training example during training

● Works by not adjusting parameters too much on any given training 
example
 



The state of the art
● For supervised learning problems, “traditional” deep learning (from 2006 up 

until a few years ago) used layerwise unsupervised pre-training
○ Using ReLU and Dropout, it is possible to train deep learning models 

faster and more accurately, without using unsupervised pre-training
■ Caveat: you typically need a lot of training data for this to work

● Deep learning at (very) large scale: lots of top experts have moved to 
industry to implement deep learning for huge data business problems
○ Geoffrey Hinton works at Google
○ Yann LeCun works at Facebook
○ Andrew Ng works at Baidu

● Deep learning is getting easier to implement
○ Better documentation, better software libraries, Amazon GPU clusters, 

etc.



When to use deep learning
● When to use deep learning:

○ Complex, cognitive tasks with latent deep structure
■ Machine translation, image recognition, speech recognition, 

feature selection from a complex dataset
● When not to use deep learning:

○ Typical machine-learning tasks without deep structure: risk of 
overfitting
■ Deep learning is still difficult to implement compared to simpler 

methods



Implementing Deep Learning

● Python libraries: theano and pylearn2
● theano: a high-performance computing and 

computer-algebra system library
○ includes GPU computing functionality

● pylearn2: contains methods for training deep 
neural nets (uses theano for computation)

● Check out http://deeplearning.net

http://deeplearning.net


Questions?

● Thanks for listening, and thanks for inviting 
me to speak!

● Find me on my personal website: http:
//williamgstanton.com

● Connect with me on LinkedIn

http://williamgstanton.com
http://williamgstanton.com
http://williamgstanton.com

