Machine Learning

Distributed TensorFlow with MPI


Machine Learning and Data Mining (MLDM) algorithms are becoming increasingly important in analyzing large volume of data generated by simulations, experiments and mobile devices. With increasing data volume, distributed memory systems (such as tightly connected supercomputers or cloud computing systems) are becoming important in designing in-memory and massively parallel MLDM algorithms. Yet, the majority of open source MLDM software is limited to sequential execution with a few supporting multi-core/many-core execution.