Reinforcement Learning

Reinforcement Learning under Partial Observability Guided by Learned Environment Models

June, 2022

Abstract

In practical applications, we can rarely assume full observability of a system's environment, despite such knowledge being important for determining a reactive control system's precise interaction with its environment. Therefore, we propose an approach for reinforcement learning (RL) in partially observable environments. While assuming that the environment behaves like a partially observable Markov decision process with known discrete actions, we assume no knowledge about its structure or transition probabilities.

Reinforcement Learning for Precision Oncology

September, 2021

Summary

The accelerating merger of information technology and cancer research heralds the advent of novel methods and models for clinical decision making in oncology. Reinforcement learning—as one of the major subspecialties in machine learning—holds the potential for the development of high-performance decision support tools. However, many recent studies of reinforcement learning in oncology suffer from common shortcomings and pitfalls that need to be addressed for the development of safe, interpretable and reliable algorithms for future clinical practice.

Pages