Rethinking Streaming Machine Learning Evaluation
On 14 Sep, 2022 By admin 0 Comments
May, 2022
Abstract
While most work on evaluating machine learning (ML) models focuses on computing accuracy on batches of data, tracking accuracy alone in a streaming setting (i.e., unbounded, timestamp-ordered datasets) fails to appropriately identify when models are performing unexpectedly. In this position paper, we discuss how the nature of streaming ML problems introduces new real-world challenges (e.g., delayed arrival of labels) and recommend additional metrics to assess streaming ML performance.
Resource Type: