
Comment: Understanding Simpson’s Paradox
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I thank the editor, Ronald Christensen, for the opportunity
to discuss this important topic and to comment on the article
by Armistead. Simpson’s paradox is often presented as a com-
pelling demonstration of why we need statistics education in
our schools. It is a reminder of how easy it is to fall into a web
of paradoxical conclusions when relying solely on intuition, un-
aided by rigorous statistical methods. In recent years, ironically,
the paradox assumed an added dimension when educators be-
gan using it to demonstrate the limits of statistical methods, and
why causal, rather than statistical considerations are necessary
to avoid those paradoxical conclusions (Wasserman 2004; Arah
2008; Pearl 2009, pp. 173–182).

My comments are divided into three parts. First, I will give a
brief summary of the history of Simpson’s paradox and how it
has been treated in the statistical literature in the past century.
Next, I will ask what is required to declare the paradox “re-
solved,” and argue that modern understanding of causal infer-
ence has met those requirements. Finally, I will answer specific
questions raised in Armistead’s article and show how the reso-
lution of Simpson’s paradox can be taught for fun and progress.

1. THE HISTORY

Simpson’s paradox refers to a phenomenon whereby the as-
sociation between a pair of variables (X, Y ) reverses sign upon
conditioning of a third variable, Z, regardless of the value taken
by Z. If we partition the data into subpopulations, each repre-
senting a specific value of the third variable, the phenomenon
appears as a sign reversal between the associations measured
in the disaggregated subpopulations relative to the aggregated
data, which describes the population as a whole.

Edward H. Simpson first addressed this phenomenon in a
technical article in 1951, but Karl Pearson et al. in 1899 and
Udny Yule in 1903 had mentioned a similar effect earlier. All
three reported associations that disappear, rather than reversing
signs upon aggregation. Sign reversal was first noted by Cohen
and Nagel (1934) and then by Blyth (1972) who labeled the
reversal “paradox,” presumably because the surprise that asso-
ciation reversal evokes among the unwary appears paradoxical
at first.

Chapter 6 of my book Causality (Pearl 2009, p. 176) remarks
that, surprisingly, only two articles in the statistical literature
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attribute the peculiarity of Simpson’s reversal to causal interpre-
tations. The first is Pearson, Lee, and Bramley-Moore (1899), in
which a short remark warns us that correlation is not causation,
and the second is Lindley and Novick (1981) who mentioned the
possibility of explaining the paradox in “the language of cau-
sation” but chose not to do so “because the concept, although
widely used, does not seem to be well defined” (p. 51). My
survey further documents that, other than these two exceptions,
the entire statistical literature from Pearson, Lee, and Bramley-
Moore (1899) to the 1990s was not prepared to accept the idea
that a statistical peculiarity, so clearly demonstrated in the data,
could have causal roots.1

In particular, the word “causal” does not appear in Simpson’s
article, nor in the vast literature that followed, including Blyth
(1972), who coined the term “paradox,” and the influential writ-
ings of Agresti (1983), Bishop, Fienberg, and Holland (1975),
and Whittemore (1978).

What Simpson did notice though, was that depending on
the story behind the data, the more “sensible interpretation”
(his words) is sometimes compatible with the aggregate popu-
lation, and sometimes with the disaggregated subpopulations.
His example of the latter involves a positive association be-
tween treatment and survival both among males and females
which disappears in the combined population. Here, his “sensi-
ble interpretation” is unambiguous: “The treatment can hardly
be rejected as valueless to the race when it is beneficial when
applied to males and to females.” His example of the former
involved a deck of cards, in which two independent face types
become associated when partitioned according to a cleverly
crafted rule (see Hernán, Clayton, and Keiding 2011). Here,
claims Simpson, “it is the combined table which provides what
we would call the sensible answer.” This key observation re-
mained unnoticed until Lindley and Novick (1981) replicated
it in a more realistic example which gave rise to reversal. The
idea that statistical data, however large, are insufficient for de-
termining what is “sensible,” and that it must be supplemented
with extra-statistical knowledge to make sense was considered
heresy in the 1950s.

Lindley and Novick (1981) elevated Simpson’s paradox to
new heights by showing that there was no statistical criterion
that would warn the investigator against drawing the wrong con-
clusions or indicate which data represented the correct answer.

1 This contrasts the historical account of Hernán, Clayton, and Keiding (2011)
according to which “Such discrepancy [between marginal and conditional as-
sociations in the presence of confounding] had been already noted, formally
described and explained in causal terms half a century before the publication of
Simpson’s article...” Simpson and his predecessor did not have the vocabulary
to articulate, let alone formally describe and explain causal phenomena.
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Figure 1. Graphs demonstrating the insufficiency of chronological
information. In models (c) and (d), Z may occur before or after the
treatment, yet the correct answer remains invariant to this timing: we
should not condition on Z in model (c), and we should condition on Z
in model (d). In both models, Z is not affected by the treatment.

First, they showed that reversal may lead to difficult choices in
critical decision-making situations:

The apparent answer is, that when we know that the gender
of the patient is male or when we know that it is female we do
not use the treatment, but if the gender is unknown we should
use the treatment! Obviously that conclusion is ridiculous.
(Novick 1983, p. 45)

Second, they showed that, with the very same data, we should
consult either the combined table or the disaggregated tables,
depending on the context. Clearly, when two different contexts
compel us to take two opposite actions based on the same data,
our decision must be driven not by statistical considerations, but
by some additional information extracted from the context.

Third, they postulated a scientific characterization of the
extra-statistical information that researchers take from the con-
text, and which causes them to form a consensus as to which
table gives the correct answer. That Lindley and Novick opted
to characterize this information in terms of “exchangeability”
rather than causality is understandable;2 the state of causal lan-
guage in the 1980s was so primitive that they could not express
even the simple yet crucial fact that gender is not affected by
the treatment.3 What is important though, is that the example
they used to demonstrate that the correct answer lies in the ag-
gregated data, had a totally different causal structure than the
one where the correct answer lies in the disaggregated data.
Specifically, the third variable (Plant Height) was affected by
the treatment (Plant Color) as opposed to gender which is a pre-
treatment confounder. (See an isomorphic model in Figure 1(b),
where blood-pressure replacing plant-height.4)

More than 30 years have passed since the publication of Lind-
ley and Novick’s article, and the face of causality has changed
dramatically. Not only do we now know which causal structures

2 Lindley later regretted that choice (Pearl 2009, p. 384), and indeed, his
treatment of exchangeability was guided exclusively by causal considerations
(Meek and Glymour 1994).

3 Statistics teachers would enjoy the challenge of explaining how the sentence
“treatment does not change gender” can be expressed mathematically. Lindley
and Novick tried, unsuccessfully of course, to use conditional probabilities.

4 Interestingly, Simpson’s examples also had different causal structure; in
the former, the third variable (gender) was a common cause of the other two,
whereas in the latter, the third variable (paint on card) was a common effect of
the other two (Hernán, Clayton, and Keiding 2011). Yet, although this difference
changed Simpson’s intuition of what is “more sensible,” it did not stimulate his
curiosity as a fundamental difference, worthy of scientific exploration.

would support Simpson’s reversals, we also know which struc-
ture places the correct answer with the aggregated data or with
the disaggregated data. Moreover, the criterion for predicting
where the correct answer lies (and, accordingly, where human
consensus resides) turns out to be rather insensitive to temporal
information, nor does it hinge critically on whether or not the
third variable is affected by the treatment. It involves a sim-
ple graphical condition called “back-door” (Pearl 1993) which
traces paths in the causal diagram and assures that all spurious
paths from treatment to outcome are intercepted by the third
variable. This will be demonstrated in the next section, where
we argue that, armed with these criteria, we can safely proclaim
Simpson’s paradox “resolved.”

2. A PARADOX RESOLVED

Any claim to a resolution of a paradox, especially one that has
resisted a century of attempted resolution must meet certain cri-
teria. First and foremost, the solution must explain why people
consider the phenomenon surprising or unbelievable. Second,
the solution must identify the class of scenarios in which the
paradox may surface and distinguish it from scenarios where
it will surely not surface. Finally, in those scenarios where the
paradox leads to indecision, we must identify the correct answer,
explain the features of the scenario that lead to that choice, and
prove mathematically that the answer chosen is indeed correct.
The next three subsections will describe how these three require-
ments are met in the case of Simpson’s paradox and, naturally,
will proceed to convince readers that the paradox deserves the
title “resolved.”

2.1 Simpson’s Surprise

In explaining the surprise, we must first distinguish between
“Simpson’s reversal” and “Simpson’s paradox;” the former be-
ing an arithmetic phenomenon in the calculus of proportions,
the latter a psychological phenomenon that evokes surprise and
disbelief. A full understanding of Simpson’s paradox should
explain why an innocent arithmetic reversal of an association,
albeit uncommon, came to be regarded as “paradoxical,” and
why it has captured the fascination of statisticians, mathemati-
cians, and philosophers for over a century (though it was first
labeled “paradox” by Blyth 1972).

The arithmetics of proportions has its share of peculiarities,
no doubt, but these tend to become objects of curiosity once they
have been demonstrated and explained away by examples. For
instance, naive students of probability may expect the average
of a product to equal the product of the averages but quickly
learn to guard against such expectations, given a few counterex-
amples. Likewise, students expect an association measured in
a mixture distribution to equal a weighted average of the indi-
vidual associations. They are surprised, therefore, when ratios
of sums, (a + b)/(c + d), are found to be ordered differently
than individual ratios, a/c and b/d .5 Again, such arithmetic

5 In Simpson’s paradox, we witness the simultaneous orderings: (a1 +
b1)/(c1 + d1) > (a2 + b2)/(c2 + d2), (a1/c1) < (a2/c2), and (b1/d1) <

(b2/d2).
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peculiarities are quickly accommodated by seasoned students
as reminders against simplistic reasoning.

In contrast, an arithmetic peculiarity becomes “paradoxical”
when it clashes with deeply held convictions that the pecular-
ity is impossible, and this occurs when one takes seriously the
causal implications of Simpson’s reversal in decision-making
contexts. Reversals are indeed impossible whenever the third
variable, say age or gender, stands for a pretreatment covari-
ate because, so the reasoning goes, no drug can be harmful to
both males and females yet beneficial to the population as a
whole. The universality of this intuition reflects a deeply held
and valid conviction that such a drug is physically impossible.
Remarkably, such impossibility can be derived mathematically
in the calculus of causation in the form of a “sure-thing” theorem
(Pearl 2009, p. 181):

An action A that increases the probability of an event B in
each subpopulation (of C) must also increase the probability
of B in the population as a whole, provided that the action
does not change the distribution of the subpopulations.6

Thus, regardless of whether effect size is measured by the
odds ratio or other comparisons, regardless of whether Z is a
confounder or not, and regardless of whether we have the correct
causal structure on hand, our intuition should be offended by
any effect reversal that appears to accompany the aggregation
of data.

I am not aware of another condition that rules out effect
reversal with comparable assertiveness and generality, requiring
only that Z not be affected by our action, a requirement satisfied
by all treatment-independent covariates Z. Thus, it is hard, if not
impossible, to explain the surprise part of Simpson’s reversal
without postulating that human intuition is governed by causal
calculus together with a persistent tendency to attribute causal
interpretation to statistical associations.

2.2 Which Scenarios Invite Reversals?

Attending to the second requirement, we need first to agree
on a language that describes and identifies the class of scenarios
for which association reversal is possible. Since the notion of
“scenario” connotes a process by which data is generated, a suit-
able language for such a process is a causal diagram, as it can
simulate any data-generating process that operates sequentially
along its arrows. For example, the diagram in Figure 1(a) can
be regarded as a blueprint for a process in which Z = Gender
receives a random value (male or female) depending on the gen-
der distribution in the population. The treatment is then assigned
a value (treated or untreated) according to the conditional dis-
tribution P (treatment|male) or P (treatment | female). Finally,
once gender and treatment receive their values, the outcome
process (recovery) is activated and assigns a value to Y using
the conditional distribution P (Y = y|X = x,Z = z). All these
local distributions can be estimated from the data. Thus, the sci-
entific content of a given scenario can be encoded in the form of

6 The no-change provision is probabilistic; it permits the action to change the
classification of individual units so long as the relative sizes of the subpopula-
tions remain unaltered.
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Figure 2. Simpson’s reversal can be realized in models (a), (b), and
(c) but not in (d), (e), or (f).

a directed acyclic graph (DAG), capable of simulating a set of
data-generating processes compatible with the given scenario.

The theory of graphical models (Pearl 1988; Lauritzen 1996)
can tell us, for a given DAG, whether Simpson’s reversal is
realizable or logically impossible in the simulated scenario. By
a logical impossibility, we mean that for every scenario that
fits the DAG structure, there is no way to assign processes to
the arrows and generate data that exhibit association reversal as
described by Simpson.

For example, the theory immediately tells us that all struc-
tures depicted in Figure 1 can exhibit reversal, while in Figure 2,
reversal can occur in (a), (b), and (c), but not in (d), (e), or (f).
That Simpson’s paradox can occur in each of the structures in
Figure 1 follows from the fact that the structures are observa-
tionally equivalent; each can emulate any distribution generated
by the others. Therefore, if association reversal is realizable in
one of the structures, say (a), it must be realizable in all struc-
tures. The same consideration applies to graphs (a), (b), and (c)
of Figure 2, but not to (d), (e), or (f) which are where the X, Y

association is collapsible over Z.

2.3 Making the Correct Decision

We now come to the hardest test of having resolved the para-
dox: proving that we can make the correct decision when re-
versal occurs. This can be accomplished either mathematically
or by simulation. Mathematically, we use an algebraic method
called “do-calculus” (Pearl 2009, p. 85–89) which is capable
of determining, for any given model structure, the causal ef-
fect of one variable on another and which variables need to be
measured to make this determination.7 Compliance with do-
calculus should then constitute a proof that the decisions we
made using graphical criteria is correct. Since some readers of
this article may not be familiar with the do-calculus, simula-
tion methods may be more convincing. Simulation “proofs” can
be organized as a “guessing game,” where a “challenger” who
knows the model behind the data dares an analyst to guess what
the causal effect is (of X on Y) and checks the answer against

7 When such determination cannot be made from the given graph, as is the
case in Figure 2(b), the do-calculus alerts us to this fact.

10 Interdisciplinary
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the gold standard of a randomized trial, simulated on the model.
Specifically, the “challenger” chooses a scenario (or a “story”
to be simulated), and a set of simulation parameters such that
the data generated would exhibit Simpson’s reversal. He then
reveals the scenario (not the parameters) to the analyst. The an-
alyst constructs a DAG that captures the scenario and guesses
(using the structure of the DAG), whether the correct answer
lies in the aggregated or disaggregated data. Finally, the “chal-
lenger” simulates a randomized trial on a fictitious population
generated by the model, estimates the underlying causal effect,
and checks the result against the analyst’s guess.

For example, the back-door criterion instructs us to guess
that in Figure 1, in models (b) and (c) the correct answer is
provided by the aggregated data, while in structures (a) and (d)
the correct answer is provided by the disaggregated data. We
simulate a randomized experiment on the (fictitious) population
to determine whether the resulting effect is positive or negative,
and compare it with the associations measured in the aggregated
and disaggregated population. Remarkably, our guesses should
prove correct regardless of the parameters used in the simulation
model, as long as the structure of the simulator remains the
same.8 This explains how people form a consensus about which
data is “more sensible” (Simpson 1951) prior to actually seeing
the data.

This is a good place to explain how the back-door criterion
works, and how it determines where the correct answer resides.
The principle is simple: the paths connecting X and Y are of two
kinds, causal and spurious. Causative associations are carried
by the causal paths, namely, those tracing arrows directed from
X to Y . The other paths carry spurious associations and need to
be blocked by conditioning on an appropriate set of covariates.
All paths containing an arrow into X are spurious paths and need
to be intercepted by the chosen set of covariates.

When dealing with a singleton covariate Z, as in the Simp-
son’s paradox, we need to merely ensure that

1. Z is not a descendant of X, and
2. Z blocks every path that ends with an arrow into X.

(Extensions for descendants of X are given in Pearl (2009, p.
338), Shpitser, VanderWeele, and Robins (2010), and Pearl and
Paz (2013)).

The operation of “blocking” requires a special handling of
“collider” variables, which behave oppositely to arrow-emitting
variables. The latter block the path when conditioned on, while
the former block the path when they and all their descendants are
not conditioned on. This special handling of “ colliders” reflects
a general phenomenon known as Berkson’s paradox (Berkson
1946), whereby observations on a common consequence of two
independent causes render those causes dependent. For example,
the outcomes of two independent coins are rendered dependent
by the testimony that at least one of them is a tail.

Armed with this criterion we can determine, for example,
that in Figures 1(a) and (d), if we wish to correctly estimate the
effect of X on Y , we need to condition on Z (thus blocking the

8 By “structure” we mean the list of variables that need be consulted in com-
puting each variable Vi in the simulation.

1
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Z

Z
Z
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Figure 3. A multistage Simpson’s paradox machine. Commulative
conditioning in the order (Z1, Z2, Z3, Z4, Z5) creates reversal at each
stage, with the correct answers alternating between disaggregated and
aggregated data.

back-door path X ← Z → Y ). We can similarly determine that
we should not condition on Z in Figures 1(b) and (c). The former
because there are no back-door paths requiring blockage, and
the latter because the back-door path X ← ◦ → Z ← ◦ → Y

is blocked when Z is not conditioned on. The correct deci-
sions follow from this determination; when conditioning on Z
is required, the Z-specific data carry the correct information.
In Figure 2(c), for example, the aggregated information carries
the correct information because the spurious (noncausal) path
X → Z ← Y is blocked when Z is not conditioned on. The
same applies to Figures 2(a) and 1(c).

Finally, we should remark that in certain models the correct
answer may not lie in either the disaggregated or the aggregated
data. This occurs when Z is not sufficient to block an active back-
door path as in Figure 2(b); in such cases, a set of additional
covariates may be needed, which takes us beyond the scope of
this note.

The model in Figure 3 presents opportunities to simulate
successive reversals, which could serve as an effective (and
fascinating) instruction tool for introductory statistics classes.
Here, we see that to block the only unblocked back-door path
X ← Z1 → Z3 → Y , we need to condition on Z1. This means
that, if the simulation machine is set to generate association
reversal, the correct answer will reside in the disaggregated,
Z1-specific data. If we further condition on a second variable,
Z2, the back-door path X ← ◦ → Z2 ← Z3 → Y will become
unblocked, and a bias will be created, meaning that the correct
answer lies with the aggregated data. Upon further conditioning
on Z3 the bias is removed and the correct answer returns to the
disaggregated, Z3-specific data.

Note that in each stage, we can set the numbers in the simula-
tion machine so as to generate association reversal between the
preconditioning and post-conditioning data. Note further that at
any stage of the process we can check where the correct answer
lies by subjecting the population generated to a hypothetical
randomized trial.

3. ARMISTEAD’S CRITIQUE

Armistead does not disagree with the technical points pre-
sented above and rightly so; they are backed by sound mathemat-
ical proofs. The main point of contention seems to be whether
the disaggregated data are still valuable, when the correct an-
swer lies with the aggregated data (as in Figures 1(a) and (c)).
On this issue, Armistead says:
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Whether causal or not, third variables can convey critical in-
formation about a first order relationship, study design, and
previously unobserved variables. Any conditioning on non-
trivial third variable that produces Simpson’s Paradox should
be carefully examined before either the aggregated or the dis-
aggregated findings are accepted, regardless of whether the
variable is thought to be causal.

I agree with the general thrust of this paragraph. Every vari-
able can indeed “convey critical information” if such informa-
tion is needed for answering the investigator’s research question.
But in our examples, we asked not whether the third variable
conveys information about study design or other interesting sub-
jects; we asked whether it would help us estimate the total effect
of X on Y . In the context of this query, the answer is: NO; the
aggregated (or disaggregated) findings can be accepted without
further examination.

When we endeavor to ask other queries, other than total treat-
ment effects, intermediate variables can of course provide useful
information. For example, when we ask about the role of blood
pressure in mediating the effect of treatment on recovery (as
in Section 4) a whole set of mediation analytic techniques can
be brought to bear on the question (e.g., VanderWeele 2009;
Imai, Keele, and Yamamoto 2010; Pearl 2013) which aims to
assess direct and indirect effects as formulated in Pearl (2001)
and Robins and Greenland (1992). If, on the other hand, we
ask questions about how the third variable (e.g., blood pressure)
can help estimate treatment effects in the presence of unmea-
sured confounders, another set of tools is brought into consid-
eration (see Pearl 1995). But when our query is “Which drug
is more effective?” (assuming no unmeasured confounders, as
in Figure 1(b)), the answer is unequivocal: “Ignore blood pres-
sure.”

Finally, I also agree with the spirit of Armistead’s statement:

Any conditioning on nontrivial third variable that produces
Simpson Paradox should be carefully examined before either
the aggregated or the disaggregated findings are accepted,
regardless of whether the variable is thought to be causal.

I must point out, however, that we can do better than “carefully
examine” the third variable. Modern tools of causal analysis now
permit us to determine mathematically whether the aggregated
or disaggregated findings should be accepted.9 Specifically, in
the blood-pressure example, mathematical analysis dictates that
the aggregated findings give the correct answer to our specific
research question, which is precisely what “careful examina-
tion” aims to accomplish. Armistead is correct in stating that
this holds regardless of whether one categorizes “blood pres-
sure” as causal or noncausal variable; what matters is the causal
relationships of the third variable to other variables in the anal-
ysis, as portrayed in the diagram. Indeed, in Figure 1(c), for
example, the third variable Z is not affected by the treatment,
and still, it should not be controlled for; the aggregated finding
should be accepted.

9 Expressions such as “should be carefully examined” were used by statisti-
cians in the precausal era to convey helplessness in handling causal questions.

4. CONCLUSIONS

I hope that playing the multistage Simpson’s guessing game
(Figure 3) would convince readers that we now understand most
of the intricacies of Simpson’s paradox, and we can safely title
it “resolved.”
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Comment

Ronald CHRISTENSEN

I discuss predicting outcomes and the roles of causation and
sampling design.

KEY WORDS: Causal models; Logistic; Logit; Loglinear; Pre-
diction.

1. INTRODUCTION

In Dr. Armistead’s examination of Simpson’s paradox, there
are three medical (agricultural) variables: an outcome variable
recovery (yield), and two other variables: treatment (color) and
one, but not both, of sex or blood pressure [BP] (height). Note
that BP is assumed to be measured after treatments have been
applied. The data are reproduced in Table 1. Simpson’s paradox
is that the treatment outperforms the control in the combined
table which contradicts both the male and female tables.

Although I agree with the author that the data may have other
uses, I will focus on predicting outcomes as well as the roles of
causation and sampling design. For these data and the medical
interpretations, one hopes to be in the population that recovers
most frequently, and one makes choices that are consistent with
that goal. With sex as the third medical variable, one hopes to
be male, but that is not a choice, and regardless of sex, one
chooses the control rather than the treatment. With BP as the
third variable, one hopes to be in the normal group and chooses
the control. However, in this medical version of Simpson’s para-
dox, if one finds they are in the low BP group, a person would be
well advised to switch to the treatment in the hope that it might
put them into the normal group. In the agriculture version of the

Ronald Christensen, Department of Mathematics and Statistics, University of
New Mexico, Mexico (E-mail: fletcher@stat.unm.edu). I would like to thank Joe
Cavanaugh, who acted as editor on this discussion, for his valuable comments.
Also, I would like to dedicate this discussion to Dennis Lindley who recently
passed away.

data, after choosing to plant black seeds (medical: control), and
discovering that the plant is short (medical: low BP), one cannot
go back and change the seed to being white in the hope that it
becomes tall.

You can only make predictive choices based on the variables
that are observed at the time the choice must be made. If predic-
tive information is generally available but currently unobserved
for the case to be predicted, it is wise to base decisions on an
appropriate prior distribution for those unobserved variables. In
other words, use an aggregated table that aggregates using the
prior weights for the unobserved variables. Dr. Armistead illus-
trated this sort of aggregation for the observed variable sex using
50/50 weights. Weighting is discussed in much more detail in
Section 3.

In the medical examples, it remains an article of faith that
results on a new patient will be represented by the results of
the data, that is, that the new patient is from the same popula-
tion from which the data were sampled. Are patients assigned
treatments? Assigning treatments creates two subpopulations to
consider. Or do patients choose their treatments? Some treat-
ments may be much more palatable to males than females. In
these data, males got the treatment at a rate of three to one,
whereas women got the control at a rate of three to one. Less
faith seems needed in the agricultural example, only that the
new plant is from the same populations sampled for the data.

2. CAUSATION

Christensen (1997, p. 212) argued somewhat contro-
versially—see Spirtes, Glymour, and Scheines (2000)—that
causation cannot be inferred from data analysis. Of course, given
a collection of causal models, data analysis can help determine
the better models.

In the medical version of the paradox relating recovery, an
assigned treatment, and BP there are three self-evident causal
models: treatment causes both recovery and BP.

© 2014 American Statistical Association DOI: 10.1080/00031305.2014.876832 The American Statistician, February 2014, Vol. 68, No. 1 13
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