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Abstract

We formulate a new notion of softmax temporal
consistency that generalizes the standard hard-
max Bellman consistency usually considered in
value based reinforcement learning (RL). In par-
ticular, we show how softmax consistent action
values correspond to optimal policies that maxi-
mize entropy regularized expected reward. More
importantly, we establish that softmax consistent
action values and the optimal policy must satisfy
a mutual compatibility property that holds across
any state-action subsequence. Based on this ob-
servation, we develop a new RL algorithm, Path
Consistency Learning (PCL), that minimizes the
total inconsistency measured along multi-step
subsequences extracted from both on and off pol-
icy traces. An experimental evaluation demon-
strates that PCL significantly outperforms strong
actor-critic and Q-learning baselines across sev-
eral benchmark tasks.

1. Introduction

Model-free RL aims to acquire an effective behavior policy
through trial and error interaction with a black box envi-
ronment. The goal is to optimize the quality of an agent’s
behavior policy, in terms of the total expected discounted
reward. Model-free RL has a myriad of applications in
games (Tesauro, 1995; Mnih et al., 2015), robotics (Kober
et al., 2013; Levine et al., 2016), and marketing (Li et al.,
2010; Theocharous et al., 2015), to name a few.

The two dominant approaches to developing model-free
RL algorithms have been value based and policy based.
Although these approaches have typically been considered
distinct, recent work (Norouzi et al., 2016; O’Donoghue
et al.,, 2017) has begun to relate the two by posing en-
tropy regularized expected reward as the target objec-
tive (Williams & Peng, 1991). Given entropy regulariza-
tion, the optimal policy 7* assigns a probability to an action
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sequence that is proportional to the exponentiated total re-
ward received. In particular, given an episode of states, ac-
tions and rewards, (S, ag, 70, ..., ST—1,aT—1,7T—1,5T),
where s is a terminal state, the optimal policy 7* satisfies,
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where 7 > 0 is an entropy regularization coefficient. Un-

fortunately, such results have only been established thus far
for undiscounted finite horizon tasks.

This paper further develops a connection between value
and policy based RL by introducing a new notion of tempo-
ral difference consistency in the presence of discounted en-
tropy regularization, which not only allows extension to the
infinite horizon case, but also reveals surprisingly strong
new properties. Consider a transition where a state action
pair (s, a) is followed by” a state s’. The literature cur-
rently considers two primary notions of temporal consis-
tency, which we refer to as average (2) and hard-max (3)
consistency respectively:

Qﬂ-(saa) - T(s,a)+’7Eﬂ'(a’\s’)Qﬂ(s/aa/)7 (2)
Q(s.0) = r(s.a) brmax@(a) . 3

Here 0 < ~ < 1 is the reward discount factor. The con-
straint (2) applies to any policy 7 and serves as the basis of
the on-policy one-step expected SARSA (Rummery & Ni-
ranjan, 1994; Singh & Sutton, 1996) and actor-critic (Mnih
et al., 2016) algorithms; while the constraint (3) only ap-
plies to a maximum reward policy and is the basis of the
off-policy Q-learning algorithm (Watkins, 1989).

Given ~v-discounted entropy regularization, we formulate
a new notion of softmax temporal consistency for optimal
Q-values as:

Q(s,0) =r(s,a)+yrlog Y exp(Q"(s',a')/7). (4)

Note that as 7 — 0 the standard hard-max consistency (3)
is recovered as a special case. For finite action spaces and

2 To simplify matters, we focus on environments with a defer-
ministic transition from (s, a) to s’. Such transitions may depend
on a shared random seed, applicable to a wide range of tasks.
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discrete state spaces, given a deterministic state transition
function, we prove that a unique solution Q* to the softmax
consistency constraint (4) must exist. Further, we show
that the policy 7*(a | s) x exp(Q*(s,a)/7) defined from
(" maximizes entropy regularized expected discounted re-
ward. Crucially, this notion of softmax consistency can be
extended beyond single step backups to derive multi-step
path-wise consistency constraints on arbitrary trajectories,
in contrast to the standard hard-max consistency (3).

Based on these developments, we propose a new RL al-
gorithm, Path Consistency Learning (PCL), that optimizes
a policy by minimizing the path-wise temporal inconsis-
tency on a set of on and off policy traces. PCL iteratively
fits both a parameterized policy and a state value func-
tion (implicitly Q-values), bridging the gap between value
and policy based methods. Unlike algorithms using Q"-
values, the proposed approach seamlessly combines on-
policy and off-policy traces. Unlike algorithms based on
hard-max consistency and ()°-values, the proposed formu-
lation easily generalizes to multi-step backups on arbitrary
paths, while maintaining proper regularization and consis-
tent mathematical justification. We assess the effectiveness
of PCL on a suite of RL benchmarks, and we find that it
significantly outperforms a strong actor-critic and a strong
Q-learning baseline.

In summary, the main contributions of this paper include:

e A complete characterization of softmax temporal con-
sistency,® which generalizes the commonly used hard-
max Bellman consistency.

e A proof that Q-values satisfying softmax temporal
consistency directly determine the optimal policy that
maximizes entropy regularized expected discounted
reward.

o Identification of a new multi-step path-wise softmax
consistency property that relates the optimal Q-values
at the end points of any path to the log-probabilities
of the optimal policy along actions of that path.

e An effective RL algorithm, Path Consistency Learn-
ing, that exploits multi-step path-wise consistency and
combines elements of value and policy based RL.

e Strong experimental results versus current actor-critic
and Q-learning baselines.

2. Notation and Background

We model an agent’s policy by a parametric distribution
my over a finite set of actions. At iteration ¢, the agent
encounters a state s; and performs an action a; sampled
from mp(a | s;). The environment then returns a scalar

3 We use the term softmax to refer to the log-sum-exp function,
and soft indmax to refer to the normalized exponential function
corresponding to the (regrettably misnamed) “softmax activation
function” that produces a vector of multinomial probabilities.

reward 7; and transitions to the next state s;41. To sim-
plify matters, we restrict attention to deterministic envi-
ronments, where the per-step reward r; and the next state
S¢y1 are given by deterministic functions conditioned on
a latent variable h (e.g., a random seed, unknown to the
agent), i.e., 1y = r(sg,ar | h), and sgp1 = f(s,a¢ | h)
for functions r and f. Note that most RL benchmarks in-
cluding Atari games fall into this category. Thus the la-
tent variable h determines the set of states S(h) including
the initial state so(h) and the set of transitions F(h) =
{(s,a,8") | 8 = f(s,a | h)}. For clarity of exposition,
we focus on finite horizon environments in the main body
of the paper, whereby S(h) and E(h) constitute vertices
and edges in a directed acyclic graph. That said, all theo-
rems and corollaries presented in the paper hold in the in-
finite horizon case, as proved in the Appendix. We denote
L(h) ={s € S(h) | Va,Vs' € S(h),(s,a,s') & E(h)} as
the set of terminal states in the graph.

For brevity, we henceforth drop A from our notation and
assume that it is implicitly included. We will denote a tra-
jectory in the graph as s1.; = (s1,a1,...,at—1,5t). We
denote a trajectory of length ¢ — 1 sampled from my starting
at s1 (not necessarily the initial state sg) as s1.; ~ mg(S1.:¢)-
Note that mg(s1.¢) = Hf;} mg(a; | si). A trajectory sam-
pled from 7y at s1, continuing until termination at sy € L,
is denoted s1.7 ~ mp(s1.). When used in an expecta-
tion over paths, we omit the sampling distribution 7g(-) for
brevity, but unless otherwise specified, all expectations are
with respect to trajectories sampled from 7.

The two common definitions of action values, Q™ and Q°,
have already been established in (2) and (3). However, it is
also convenient to introduce state value functions, defined
for the expected and hard-max cases respectively as

V(s)
Vo(s)

Ew(a|s)Qﬂ—(s7a) ) %)
max Q°(s, a) . (©6)

The expected value function V™ is used in SARSA and
actor-critic algorithms, while the hard-max value function
V7 serves as the basis of Q-learning and its many variants.

In particular, the actor-critic algorithm (Mnih et al., 2016)
maintains an estimate of V'™ to estimate the future expected
rewards beyond a certain state. This allows for estimating
the value of one or several actions without rolling out an
entire trajectory until termination. In addition, V'™ is used
as a baseline to reduce the variance of gradients.

The Q-learning algorithm (Watkins, 1989) exploits the fact
that the hard-max consistent Q-values, denoted (Q°, induce
a policy with maximal expected reward, where at each state
s one chooses an action with largest Q°(s,a). The Q-
learning algorithm then minimizes one-step hard-max in-
consistencies induced by a Q-value approximator Q4 (s, a).
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3. Softmax Temporal Consistency

We begin our formulation of softmax temporal consistency
with a simple motivating example. Suppose an agent is at
some state s and faces n possible actions {aq,...,a,},
each yielding an immediate reward in {ry,...,r,} and
leading to a successor state in {s1,...,s,}, where each
successor has an associated estimate of future value (i.e.,
state values) {vy,...,v,}. Consider the problem of in-
ferring the current state value vy assuming that a policy 7
has been locally optimized for the next action choice. In
particular, we face a problem of optimizing 7 subject to
0 < m(a;) < 1land ), m(a;) = 1 to maximize some ob-
jective. As we will see, different choices of objective lead
to different forms of temporal consistency defining vg.

First, consider the standard expected reward objective:

n

Owir() =Y m(ai)(ri +7v5), Q)

i=1

where we suppose we have access to the Oyg-optimal state
values at the successors {v,...,v>}. In this context, the
optimal policy 7° is a one-hot distribution with a proba-
bility of 7°(a,,) = 1 at an action a,, with maximal re-
turn, i.e.,, m = argmax,(r; + yv{), and zero elsewhere.
Accordingly, the Oyr-optimal state value of sy based on
{vg,...,v5} is given by

vy = OMr(7°) = max(r; + yv7). 8)

Alternatively, one can consider an entropy regularized ex-
pected reward objective:

Ognr(m) = Z m(ai)(r; +yv; — Tlogm(ai)), (9

i=1
where we have access to the Ognr-optimal state values
{v*,...,vx}. It follows* that 7*(a;) oc exp{(r; +
~v})/7}, which, substituting back into the objective, yields

vy = Opnr () = TlOgZeXp{(ri +;)/7}h. (10)

i=1

This gives an intuitive definition of state values based on a
softmax function that generalizes the hard-max state values
defined above. The connection between this formulation of
v; and softmax Q-values defined in (4) is straightforward.

Crucially, exp{v{/7} also serves as the normalization con-
stant for 7* at sg:

ooy exp{(ri +v)/7}
T = T an

4 The Ognr () objective is simply a 7-scaled, constant-shifted
KL-divergence between 7 and 7" (a;) o< exp{(r: + yv;)/7}.

Manipulation of (11) by taking log of both sides, results in
the following relationship between the optimal state value
v, the optimal state values for each successor state v}, and
the log-probabilities of the optimal policy:

vy = —7logm*(a;) + i + yvi . (12)

This relationship between optimal state values and the op-
timal policy can in fact be extended beyond a single step to
a multi-step consistency. We will use the multi-step path-
wise consistency to propose an RL algorithm that fits both
policy and value estimates simultaneously.

We will develop these preliminary findings more generally
below. In particular, we will define V* in terms of Q* to
match the definition of vj above. We will then express
Ognr for the more general sequential decision making case.
Subsequently we will state the relationships between V*
and the optimal policy of Opnr and note that the simple
single-step identity stated in (12) is easily extended to a
multi-step path-wise identity. Finally, we present an RL al-
gorithm that fits a parameterized policy and value estimate
to satisfy path-wise consistencies.

Note that the preceding logic can provide a basis for an
inductive proof of the claims that follow in a finite horizon
setting, although in the Appendix our proofs hold for the
general infinite horizon setting.

3.1. Softmax Values

The softmax Q-value generalization of the hard-max Q°
has already been presented in (4). Analogous to the fact
that the expected and hard-max Q-values both have natural
definitions of state value, so does the softmax Q-value. We
define the softmax state value function as

V*(s) = TlogZeXp{Q*(s,a)/T}. (13)

Note that this definition is equivalent to the one presented
more simply in (10), since Q*(s,a) = r(s,a) + yV*(s').
That is, one may recursively define V* as

V*(s) = TlogZexp{(r(s, a) +yV*(s)) /. (14)
3.2. Discounted Entropy Regularization

We next present Ognr in full generality. To account for
discounting, we define a y-discounted entropy

T—-1
H7(s1,m9) = . | Y 7" Hogma(asls;)
=1

We propose the following objective for optimizing 7g:

Ognt(50,0) = Egy. [R(s0.:7)] + TH (50, m9),  (15)
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where R(8p.n) = Z?:_Om_l Y1 (Smais Gmai) and T is a
user-specified temperature parameter. Optimizing this ob-
jective for s is equivalent to optimizing Ognr(s1,0) for
all s; € S. Rather than only maximizing the expected
sum of future rewards, this objective maximizes the ex-
pected sum of future discounted rewards and 7-weighted
log-probabilities.

In the case of v = 1 this is equivalent to the entropy regu-
larizer proposed in Williams & Peng (1991). While this ob-
jective is only a small modification of the maximum-reward
objective, it alters the optimal policy 77* from a one-hot dis-
tribution on the maximal-reward path to a smoother distri-
bution that assigns probabilities to all trajectories commen-
surate with their reward.

3.3. Consistency of Optimal Values and Policy

This section presents a general characterization of the con-
nection between the optimal policy of Ognt With the soft-
max consistent Q-values. The first observation is that the
optimal policy 7* satisfies the same strong property given
in (12) but now in the more general sequential decision
making case. In particular, the optimal state value and op-
timal policy satisfy a strong form of local consistency for
every state-action-successor tuple.

Theorem 1. The optimal policy 7* for Ogyr(so, 8) and the
state values V* defined in (13) satisfy

V*(s) = —tlogn*(als) + r(s,a) +yV*(s'), (16)

forany (s,a,s') € E.

Proof. All theorems and corollaries are proved in the Ap-
pendix. [

This result also allows us to characterize 7w* in terms of QQ*.

Corollary 2. The optimal policy m* may be given in terms
of the softmax Q-values Q* as

" (als) = exp{(Q"(s,a) = V*(s))/7}.

Next, we make the key observation that the form of one-
step temporal consistency identified in Theorem 1 can in
fact be extended to any sequence of state-action-successor
tuples. That is, the softmax state values at the start and
end state of any trajectory can be related to the rewards and
optimal log-probabilities along that trajectory.

Corollary 3. Given the optimal 7™ for Ogyr(so,0) and

the corresponding value mapping V*, then every trajectory

S1.¢ satisfies
-V (Sl) +

YV (s1) + R(s14) — TG(s1.4,7%) = 0,

where

n—m-—1

G(Smmﬂg Z

=0

log g (@mti|Smti)-

Importantly, the converse of Theorem 1 also holds, which
opens the door to using path-wise consistency as the foun-
dation for an objective for learning parameterized policy
and value estimates.

Theorem 4. If a policy mg and a value function Vy satisfy
the consistency property (16) for all tuples (s,a,s’) € E,
thenmg = * and Vg = V™.

3.4. A Path-wise Objective

These properties of the optimal policy and softmax state
values lead us to propose a natural path-wise objective for
training a parameterized w9 and V5. We define the consis-
tency error for a trajectory si.; under mg, Vy as

Co,p(51:0) = =Vip(s1) + 7" Vo (se)+
R(s1.4) — 7G(s1.4,m0). (17)

This definition may be extended to trajectories that ter-
minate before step ¢ by considering all rewards and log-
probabilities after a terminal state as O.

Then we may define a minimizing objective for every tra-
jectory as

1
Opcr(s1:4,6, 8) = 5Co.0(s1:0)" (18)

The gradients of this objective lead us to the following up-
dates for 6 and ¢:

AG x Cg 4(51:4)VoG(51:4, T9), (19)

A¢ oc Cpp(s1:) (VoVo(s1) =77 Ve Vi(si)) . (20)

3.5. Path Consistency Learning

Given the path-wise objectives proposed above and their re-
sulting parameter updates, we propose a new RL algorithm
we call Path Consistency Learning (PCL). Unlike actor-
critic variants, PCL utilizes both on-policy and off-policy
trajectory samples and uses the two sampling methods to
optimize a path-wise consistency. Unlike Q-learning vari-
ants, PCL optimizes towards a consistency that holds path-
wise and not only on single steps. The pseudocode of PCL
is presented in Algorithm 1. Given a rollout parameter d, at
each iteration, PCL samples a batch of on-policy trajecto-
ries and computes the corresponding parameter updates for
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Algorithm 1 Path Consistency Learning
Input: Environment ENV, learning rates 1,74, dis-
count factor +, rollout d, number of steps IV, replay
buffer capacity B, prioritized replay hyperparameter c.
function Gradients(sg.7)
// Recall G(84.444,m9) is a discounted sum of log-
probabilities from s; to Sy 4.
Compute Af = Zf:_()l O@,¢(St:t+d)V9G(5t:t+da 71'9).
Compute A¢p =
Y120 Cop(suiva) (VoValse) = 1IVVo(si1a).
Return AG, A¢
end function
Initialize 6, ¢.
Initialize empty replay buffer RB(«).
fori=0to N —1do
Sample sg.7 ~ 7o (8p.) on ENV.
A6, A¢ = Gradients(so.T).
Update 6 < 0 + n,.A#.
Update ¢ < ¢ + 1y Ad.
Input sg.7 into RB with priority R (so.7).
If [RB| > B, remove episodes uniformly at random.
Sample sg.7 from RB.
A6, A¢ = Gradients(so.T).
Update 6 < 0 + n,A#.
Update ¢ < ¢ + npAd.
end for

each d-length sub-trajectory. PCL also takes advantage of
off-policy trajectories by maintaining a replay buffer. We
found it beneficial to sample replay episodes using a distri-
bution proportional to exponentiated reward mixed with a
uniform distribution, although we did not exhaustively op-
timize this sampling technique. Specifically, we sample an
episode sg.r from the replay buffer of size B with prob-
ability 0.1/B + 0.9 - exp(aR'(so.7))/Z, where we use a
discount of 1 on the sum rewards, Z is a normalizing factor,
and « is a fixed hyperparameter.

While we focused our experiments on environments with
relatively short episodes (length at most 100), in environ-
ments with longer episodes the algorithm may be altered to
be applied on sub-episodes of manageable length. It may
also be beneficial to use multiple rollout lengths d and op-
timize consistency at multiple scales, although we did not
explore this.

3.6. Comparison to Other Algorithms

A reader familiar with advantage-actor-critic (Mnih et al.,
2016) (A2C and its asynchronous analogue A3C) should
already notice the similarities between our updates and
those of actor-critic. Actor-critic takes advantage of the
expected value function V'™ to reduce the variance of pol-
icy gradient updates for maximizing expected reward. As

in PCL, two models are trained concurrently: an actor 7y
that determines the policy and a critic V; that is trained to
estimate V™. A fixed rollout parameter d is chosen and
the discounted future reward of a trajectory s1.7 ~ 7o (51.)
is estimated as R(s1.4+1) +7Vy(8441). The advantage of
a trajectory s1.7 is defined as

Ag g(s1:at1) = =Vs(s1) + 7 Va(sar1) + R(s1.a41),

where in the case of the trajectory terminating before step
sq+1 one considers all rewards after a terminal state as 0.
Many variants of actor-critic focus on modifications to this
advantage estimate to reduce its variance when sy.441 iS
sampled from 7y (Schulman et al., 2016).

The actor-critic updates for 6 and ¢ may be written in terms
of the advantage:

T-1
AO x ESO:T Z A97¢(S,‘;i+d)V9 log W@(ai|5i)] y (21)
=0
T-1
A¢ X ESO:T Z A97¢(Si;i+d)V¢V¢(Si) (22)
=0

These updates exhibit a striking similarity to the updates
expressed in (19) and (20). Indeed, we may interpret
Co.4(s1:¢) as a sort of advantage of a trajectory, and the
update in (19) pushes the log-probabilities of the actions
on that trajectory in the direction of the advantage.

However, one difference is that the actor-critic definition
of advantage Ay 4(s1.4) is a measure of the advantage of
the trajectory s;., compared to the average trajectory cho-
sen by my starting from s; in terms of reward. By con-
trast, Cg,¢(81;t) can be seen as measuring the advantage
of the rewards along the trajectory compared to the log-
probability of the policy my. At the optimal policy, when
the log-probability of the policy is proportional to rewards,
this measure of advantage will be 0 on every trajectory,
which is not the case for Ag (s1:¢)-

It is also important to note that V, is no longer an esti-
mate of expected future reward under the current policy. In
actor-critic, it is essential that V;; track the non-stationary
target 1V in order to achieve suitable variance reduction.
While in PCL V*(s) is the value of Opnr(s, 7*), during
training V3, need not be interpreted as a value dependent on
the current policy .

Moreover, in actor-critic the expectations in (21) and (22)
need to be estimated via Monte Carlo sampling from 7. In
PCL, there is no such condition.

We may also compare PCL to hard-max temporal consis-
tency RL algorithms, such as Q-learning (Watkins, 1989).
Note that these hard-max consistencies only apply on a sin-
gle step, while the temporal consistencies we consider ap-
ply to trajectories of any length. While some have proposed
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using multi-step backups for hard-max Q-learning (Peng &
Williams, 1996; Mnih et al., 2016), such an approach is not
theoretically sound, since the rewards received after a non-
optimal action do not relate to the hard-max Q-values Q°.
Therefore, one can interpret the notion of temporal consis-
tency we propose as the proper generalization of the one-
step temporal consistency given by hard-max Q-values.

4. Related Work

There has been a surge of recent interest in using neural
networks for both value and policy based reinforcement
learning (e.g., Mnih et al. (2013); Schulman et al. (2015);
Levine et al. (2016); Silver et al. (2016)). We highlight sev-
eral lines of work that are most relevant to this paper.

Recent work has noted some connections between value
and policy based RL (Norouzi et al., 2016; O’Donoghue
et al., 2017; Nachum et al., 2017), when an entropy regu-
larized objective is considered. In particular, O’Donoghue
et al. (2017) show that one can interpret policy based meth-
ods as a form of advantage function learning. They provide
an analysis relating the optimal policy to the hard-max Q-
values in the limit of 7 = 0, and thus propose to augment
the actor-critic objective with offline updates that minimize
a set of single-step hard-max Bellman errors. Accordingly,
they combine (2) and (3) to propose a method called PGQ
(policy gradient + Q-learning). By contrast, we extend the
relationship to 7 > 0 by exploiting a notion of softmax
consistency of Q-values (4). This exact softmax consis-
tency has previously been considered by Ziebart (2010) in
the context of continous control. In this work however, we
highlight its significance as it gives rise to a notion of multi-
step path-wise consistency.

The key idea of including a maximum entropy regularizer
to encourage exploration is common in RL (Williams &
Peng, 1991; Mnih et al., 2016) and inverse RL (Ziebart
et al., 2008). Our proposed discounted entropy penalty
generalizes the approach originally proposed in (Williams
& Peng, 1991) beyond v = 1, enabling applicability to
infinite horizon problems. Previous work has extensively
studied other exploration strategies including predictive er-
ror (Stadie et al., 2015), count based exploration (Belle-
mare et al., 2016), information theoretic notions of curios-
ity (Singh et al., 2004; Schmidhuber, 2010), and under-
appreciated reward exploration (Nachum et al., 2017). We
note that these methods often modify the reward function of
an underlying MDP to include an exploration bonus. This
can be easily coupled with our approach here.

Our proposed PCL algorithm bears some similiarity to
multi-step Q-learning (Peng & Williams, 1996), which
rather than minimizing one-step hard-max Bellman error,
optimizes a Q-value function approximator by unrolling the

trajectory for some number of steps before using a hard-
max backup. While this method has shown some empirical
success (Mnih et al., 2016), its theoretical justification is
lacking, since rewards received after a non-optimal action
do not relate to the hard-max Q-values (Q° anymore. On the
other hand, our algorithm incorporates the log-probabilities
of the actions on a multi-step rollout, which is crucial for
our softmax consistency.

Some other similar notions of soft temporal consistency
have been previously discussed in the RL literature.
Littman (1996) and Azar et al. (2012) use a Boltzmann
weighted average operator. This operator is used by Azar
et al. (2012) to propose an iterative algorithm converging to
the optimal maximum reward policy inspired by the work
of Kappen (2005); Todorov et al. (2016). While they use
the Boltzmann weighted average, they briefly mention that
a softmax (log-sum-exp) operator would have similar the-
oretical properties. More recently Fox et al. (2016) use
a log-weighted-average-exp and Asadi & Littman (2016)
propose a mellowmax operator, defined as log-average-
exp. These log-average-exp operators share a similar non-
expansion property with ours, and their proofs of non-
expansion are very related. Additionally it is possible to
show that when restricted to an infinite horizon setting, the
fixed point of the mellowmax operator is a constant shift
of our @*. In all of these cases, the proposed training al-
gorithm optimizes a single-step consistency unlike PCL,
which optimizes a multi-step consistency. Moreover, these
papers do not present a clear relationship between the ac-
tion values at the fixed point and the entropy regularized
expected reward objective, which was the key to our for-
mulation and algorithmic development.

Finally, there has been a considerable amount of work in re-
inforcement learning using off-policy data to design more
sample efficient algorithms. Broadly, these methods can be
understood as trading off bias (Sutton et al., 1999; Silver
etal., 2014; Lillicrap et al., 2016; Gu et al., 2016) and vari-
ance (Precup, 2000; Munos et al., 2016). Previous work
that has considered multi-step off-policy learning has typi-
cally used a correction (e.g., via importance-sampling (Pre-
cup et al.,, 2001) or truncated importance sampling with
bias correction (Munos et al., 2016), or eligibility traces
(Precup, 2000)). By contrast, our method defines an un-
biased consistency for an entire trajectory applicable to on
and off policy data. That said, an empirical comparison be-
tween all of these methods and PCL is an interesting avenue
for future work.

5. Experiments

We evaluated PCL across several different tasks and com-
pared it to an A3C implementation based on Mnih et al.
(2016) and a double Q-learning with prioritized experience
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Figure 1. The results of PCL against the two baselines A3C and
DQN. Each plot shows average reward across 5 randomly seeded
training runs (10 for Synthetic Tree) after choosing optimal hy-
perparameters. We also show the single standard deviation error
clipped at the min and max. The x-axis is number of training it-
erations. PCL exhibits comparable performance to A3C in some
tasks, but clearly outperforms it on the more challenging tasks.
Across all tasks, the performance of DQN is worse than PCL.

replay implementation based on Schaul et al. (2016).

5.1. A Synthetic Environment

As an initial testbed, we developed a simple synthetic envi-
ronment. The environment is defined by a binary decision
tree of depth 20. For each training run, the reward on each

edge is sampled uniformly from [—1, 1] and subsequently
normalized so that the maximal reward trajectory has total
reward 20. We trained using a fully-parameterized model:
for each node s in the decision tree there are two parameters
to determine the logits of mg(—|s) and one parameter to de-
termine Vi (s). In the Q-learning implementation only two
parameters per node s are needed to determine Q (s, —).

5.2. Algorithmic Tasks

For more complex environments, we evaluated PCL and
the two baselines on the algorithmic tasks from the Ope-
nAI Gym library (Brockman et al., 2016). This library pro-
vides six tasks, in rough order of difficulty: Copy, Dupli-
catedInput, RepeatCopy, Reverse, ReversedAddition, and
ReversedAddition3. In each of these tasks, an agent oper-
ates on a grid of characters or digits, observing one charac-
ter or digit at a time. At each time step, the agent may move
one step in any direction and optionally write a character or
digit to output. A reward is received on each correct emis-
sion. The agent’s goal for each task is:

e Copy: Copy a 1 x n sequence of characters to output.

e DuplicatedInput: Deduplicate a 1 x n sequence of
characters.

e RepeatCopy: Copy a 1 x n sequence of characters
first in forward order, then reverse, and finally forward
again.

e Reverse: Copy a 1 x n sequence of characters in re-
verse order.

e ReversedAddition: Observe two ternary numbers in
little-endian order via a 2 X n grid and output their
sum.

e ReversedAddition3: Observe three ternary numbers
in little-endian order via a 3 x n grid and output their
sum.

These environments have an implicit curriculum associ-
ated with them. To observe the performance of our algo-
rithm without curriculum, we also include a task “Hard Re-
versedAddition” which has the same goal as ReversedAd-
dition but does not utilize curriculum.

For these environments, we parameterized the agent by
a recurrent neural network with LSTM (Hochreiter &
Schmidhuber, 1997) cells of hidden dimension 128.

Our algorithm is easily amenable to the incorporation of
expert trajectories. Thus, for the algorithmic tasks we also
experimented with seeding the replay buffer with 10 ran-
domly sampled expert trajectories. During training we en-
sured that these trajectories are not be removed from the
replay buffer and always have maximal priority.

5.3. Results

We present the results of each of the three variants (PCL,
A3C, DQN) in Figure 1. After finding the best hyper-
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Figure 2. The results of PCL and PCL augmented with a small
number of expert trajectories on the four hardest algorithmic
tasks. We see that incorporating expert trajectories greatly im-
proves performance.

parameters (see Section 5.4), we plot the average reward
over training iterations for five randomly seeded runs. For
the Synthetic Tree environment, the same protocol is per-
formed but with ten seeds shared across variants.

The gap between PCL and A3C is hard to discern in some
of the more simple tasks such as Copy, Reverse, and Re-
peatCopy. However, a noticeable gap exists in the Syn-
thetic Tree and DuplicatedInput results and more signifi-
cant gaps are clear in the harder tasks: ReversedAddition,
ReversedAddition3, and Hard ReversedAddition. Across
all the experiments, it is clear that the prioritized DQN per-
forms worse than PCL. These results show the viability of
PCL as an RL algorithm that can be competitive and in
some cases significantly improve upon strong baselines.

We present the results of PCL along with PCL augmented
with expert trajectories in Figure 2. We observe that the
incorporation of expert trajectories helps a considerable
amount. Despite the number of expert trajectories we pro-
vide being small (10) compared to the batch size (400),
their inclusion in the training process significantly im-
proves the agent’s performance. Incorporating expert tra-
jectories in PCL is relatively trivial compared to the spe-
cialized methods developed for other policy based algo-
rithms. While we did not compare to other algorithms that
take advantage of expert trajectories, this success shows the
promise of using path-wise consistencies. The ability of
PCL to easily incorporate expert trajectories is a very de-
sirable property in real-world applications such as robotics.

5.4. Implementation Details

For our hyperparameter search, we found it simple to pa-
rameterize the critic learning rate in terms of the actor
learning rate as n, = C'n,, where C'is the critic weight.

For the Synthetic Tree environment we used a batch
size of 10, rollout of d = 3, discount of v =
1.0, and a replay buffer capacity of 10,000. We
fixed the o parameter for PCL’s replay buffer to 1
and used ¢ = 0.05 for DQN. To find the opti-
mal hyperparameters, we performed an extensive grid
search over actor learning rate n, € {0.01,0.05,0.1};
critic weight C € {0.1,0.5,1}; entropy regular-
izer 7 € {0.005,0.01,0.025,0.05,0.1,0.25,0.5,1.0}
for A3C, PCL; and « € {0.1,0.3,0.5,0.7,0.9},5 €
{0.2,0.4,0.6,0.8,1.0} for DQN replay buffer parameters.
We used standard gradient descent for optimization.

For the algorithmic tasks we used a batch size of 400,
rollout of d = 10, a replay buffer of capacity 100,000,
ran using distributed training with 4 workers, and fixed
the actor learning rate 7, to 0.005, which we found to
work well across all variants. To find the optimal hyper-
parameters, we performed an extensive grid search over
discount v € {0.9,1.0}, a € {0.1,0.5} for PCL’s re-
play buffer; critic weight C' € {0.1,1}; entropy reg-
ularizer 7 € {0.005,0.01,0.025,0.05,0.1,0.15}; a €
{0.2,0.4,0.6,0.8}, 8 € {0.06,0.2,0.4,0.5,0.8} for the
prioritized DQN replay buffer; and also experimented with
exploration rates ¢ € {0.05,0.1} and copy frequencies
for the target DQN, {100, 200, 400, 600}. In these experi-
ments, we used the Adam optimizer (Kingma & Ba, 2015).

All experiments were
flow (Abadi et al., 2016).

implemented using Tensor-

6. Conclusion

We study the characteristics of the optimal policy and state
values for a maximum reward objective in the presence of
discounted entropy regularization. We prove interesting
softmax consistency relations between the optimal policy
and optimal state values, which generalize hard-max Bell-
man consistency in the absence of entropy. The softmax
consistency leads us to develop Path Consistency Learn-
ing (PCL), an RL algorithm that has a flavor similar to both
actor-critic in that it maintains and jointly learns a model of
the state values and a model of the policy, and Q-learning
in that it minimizes a measure of temporal inconsistency.
Unlike standard RL algorithms, PCL applies to both on-
policy and off-policy trajectory samples. Further, one-step
softmax consistency naturally generalizes to a multi-step
path-wise consistency, which is employed by PCL. Empiri-
cally, PCL exhibits a significant improvement over baseline
methods across several algorithmic benchmarks.
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A. Proofs

Here, we provide a proof of the main path consistency theorems. We first establish the basic results for a simple one-shot
decision making setting. These initial results will be useful in the proof of the general infinite horizon setting.

For the more general infinite horizon setting, we introduce and discuss the entropy regularized expected return O gy and
define a “softmax” operator 3* (analogous to the Bellman operator for hard-max Q-values). We then show the existence
of a unique fixed point V* of 3*, by establishing that the softmax Bellman operator (13*) is a contraction under the infinity
norm. We then aim to relate V* to the optimal value of the entropy regularized expected reward objective Ognt Which
we term V. We are able to show that V* = V', as expected. Subsequently, we present a policy determined by V*
which satisfies V*(s) = Ogpnr(s, 7*). Then given the characterization of 7* in terms of V*, we establish the consistency
property stated in Theorem 1 of the main text. Finally, we show that a consistent solution is optimal by satisfying the KKT
conditions of the constrained optimization problem (establishing Theorem 4 of the main text).

A.1. Basic results for one-shot entropy regularized optimization

For 7 > 0 and any vector q € R", n < oo, define the scalar valued function F; (the “softmax”) by

F,(q) = 7log (Z eq”/T> (23)
a=1

and define the vector valued function f, (the “soft indmax”) by

/T
£, _ = ela-Fr(@)/7 24
(a) STl e (24)
where the exponentiation is component-wise. It is easy to verify that f. = VF.. Note that f . maps any real valued vector
to a probability vector. We denote the probability simplex by A = {m : w > 0,1-7 = 1}, and denote the entropy function
by H(w) = —m - log .

Lemma 5.
Fr(q) = max{m-q+7H(m) | (25)
=f.(q)-q+7H(f(q)) (26)

Proof. First consider the constrained optimization problem on the right hand side of (25). The Lagrangian is given by
L=m (q—7logmw)+ A(1 —1-m), hence VL = q — 7logm — 7 — X\. The KKT conditions for this optimization
problems are the following system of n + 1 equations

1-w=1 27)
Tlogm=q—v (28)

for the n + 1 unknowns, 7 and v, where v = A 4 7. Note that for any v, satisfying (28) requires the unique assignment
7 = exp((q — v)/7), which also ensures 7= > 0. To subsequently satisfy (27), the equation 1 = > exp((¢a — v)/7) =
e v/ > o €xp(qa/T) must be solved for v; since the right hand side is strictly decreasing in v, the solution is also unique
and in this case given by v = F.(q). Therefore # = f,(q) and v = F.(q) provide the unique solution to the KKT
conditions (27)-(28). Since the objective is strictly concave, 7w must be the unique global maximizer, establishing (26). It
is then easy to show F,(q) = f.(q) - q + 7H(f-(q)) by algebraic manipulation, which establishes (25). O

Corollary 6 (Optimality Implies Consistency). If v* = magc{ﬂ' -q+71H (7r)} then
S
V" =gq, — Tlogm, foralla, (29)
where w* = f.(q).

Proof. From Lemma 5 we know v* = F.(q) = * - (q — 7log w*) where w* = f,(q). From the definition of f, it also
follows that log 7* = (¢, — F-(q))/ for all a, hence v* = F,(q) = ¢, — 7 log 7 for all a. O
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Corollary 7 (Consistency Implies Optimality). Ifv € R and 7 € A jointly satisfy
v=gq, —Tlogm, foralla, (30)
then v = F,(q) and m = £.(q); that is, ™ must be an optimizer for (25) and v is its corresponding optimal value.

Proof. Any v and w € A that jointly satisfy (30) must also satisfy the KKT conditions (27)-(28); hence 7 must be the
unique maximizer for (25) and v its corresponding objective value. O

Although these results are elementary, they reveal a strong connection between optimal state values (v), optimal action
values (q) and optimal policies (7r) under the softmax operators. In particular, Lemma 5 states that, if q is an optimal
action value at some current state, the optimal state value must be v = F’.(q), which is simply the entropy regularized
value of the optimal policy, = = f,(q), at the current state.

Corollaries 6 and 7 then make the stronger observation that this mutual consistency between the optimal state value, optimal
action values and optimal policy probabilities must hold for every action, not just in expectation over actions sampled from
7r; and furthermore that achieving mutual consistency in this form is equivalent to achieving optimality.

Below we will also need to make use of the following properties of F.

Lemma 8. For any vector q,

Fr(q) = Sup{p~q77p~10gp}- (31)
PEA

Proof. Let F} denote the conjugate of F’-, which is given by
F:(p) =sup{a-p - Fr(a)} =7p-logp (32)
a

forp € dom(F}) = A. Since F; is closed and convex, we also have that . = F** (Borwein & Lewis, 2000, Section 4.2);
hence

Fr(a) = sup{a-p~ F(p)}. (33)
P

O

Lemma 9. For any two vectors q(l) and q(2),

Fr(aV) - Fr(a®) < max{q(h — ¢}, (34)
Proof. Observe that by Lemma 8
Fr(qW) = Fr(q®) = sup {q b.plt F*(p“))}— sup {q@) p? — F:(p(z))} (35
pMeAa p@cA
= sw { it {a®-p" —a®pC () - F(67))}] (36)
p<1)e p@eA
< sup {p(l q(l) q®? ))} by choosing p? = p™") (37)
pMeA
< Inax{qé ) — q((f)}. (38)
O
Corollary 10. F, is an co-norm contraction; that is, for any two vectors V) and q,
Fr(aV) = Fr(@®)] < la - a?lac (39)

Proof. Immediate from Lemma 9. O
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A.2. Preliminaries

Although some of the results in the main body of the paper are expressed in terms of finite horizon problems, we will prove
that all the desired properties hold for the more general infinite horizon case; the application to the finite horizon case is
then immediate. We continue to assume deterministic dynamics, that the action space is finite, and that the state space is
discrete.

To make the proofs clearer, we introduce some additional definitions and slightly alter the notation. Since the state s’
reached after taking action a in state s is uniquely specified in a deterministic environment, we will denote it by s’ = [s, a].

For any policy 7, define the entropy regularized expected return by

V™ (s1) = Opnt(k: ™) = Brapsiinns) | D7 (M(Skepis arsi) — 7108 (ki Shi)) (40)
i=0

We will find it convenient to also work with the on-policy Bellman operator defined by

(B™V)(s) = m(=|s) - (qs — Tlogm(—]s)), ~ where (41)

gs.a =7(s,a) +vV([s,a)) 42)

for each state s and action a, where q, denotes a vector values over choices of a for a given s, and 7(—, s) denotes the
vector of conditional action probabilities specified by 7 at state s.

Lemma 11. For any policy  and state sy, VT (sk) satisfies the recurrence

V7 (51) = En(ay o) | (58 @) + 77 ([ 00]) = 7 log m(axsi) 43)
=m(=lsk) - (@I, = Tlogm(~|s))  where &7, =r(s,a) + 7V ([s,al) (44)
= (BTV7)(s8). (45)

Moreover, B™ is a contraction mapping.
Proof. By the definition of V™ (s;,) in (40) we have
V™ (5k) = En(arsisi) [T(Smak) — 7 log m(ak|sk)
e .
+7 Y Y (r(sk14gs arpreg) — Tlogm(arsagy 3k+1+j))] (46)
§=0

= Er(ap|sn) [T(Sk,ak) — 7log m(ak|sk)

+ Vo (an s 158 12000) [ivj (r(Sk4145> Whr145) — T10G T(Aky145|Skr145)) Skt = [Sks ak]”
]:0 47)
= Er(arlse) [T(Sk’ ay) — T log m(a|sk) + YV ([sk, ak})] (48)
= m(—|sx) - (af, — 7logm(—|sk)) (49)
= (B™V7™)(sk). (50)

The fact that B™ is a contraction mapping follows directly from standard arguments about the on-policy Bellman operator
(Tsitsiklis & Van Roy, 1997). O

Note that this lemma shows V7 is a fixed point of the corresponding on-policy Bellman operator 5™.
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Lemma 12. For any =, the on-policy Bellman operator is monotonic: if V1) > V) then BV > BTV (),

Proof. Assume V(! > V(2) and note that for any state s

(BV®)(s) = (BVW)(5) = y(~ls) - (VP ([s,a]) = VI ([s,a])) (51
<0 since it was assumed that V(2) < V(1) (52)
O

A.3. Proof of main optimality claims
Define the optimal value function by

V1(s) = max Ognr(s, ) = max V™ (s) for all s. (53)

For 7 > 0, define the softmax Bellman operator B* by
(B*V)(s) = Tlog ) exp((r(s, a) + 7V ([s,a]))/7) (54)
= FT(qS)a where g5, =r(s,a) + 7YV ([s,a]) foralla. (55)
Lemma 13. For v < 1, the fixed point of the softmax Bellman operator, V* = B*V*, exists and is unique.

Proof. First observe that the softmax Bellman operator is a contraction in the infinity norm. That is, consider two value
functions, V() and V(?), and define ||V || = max,cgs |V (s)|. We then have

HB*V(U B B*V(Z)Hw  max ‘(B*Vm)(s) _ (B*V(Q))(s)‘ (56)

Fr(alV) - Fr(a)] (57)

= max
s

by Corollary 10 (58)

< max max ’qglg — qu
s a ’ ’

= ymax max ‘V(l)([&a]) - V(z)([&a])‘ (59)
§7HV(1) —V@)H < Hv<1> —V@)H ify < 1. (60)
The existence and uniqueness of V* then follows from the contraction map fixed-point theorem (Bertsekas, 1995). O

Lemma 14. For any , if V. > B*V then V > (B™)*V for all k.

Proof. Observe for any s that the assumption implies

V(s) = (B"V)(s) (61)
= max 7(als)(r(s,a) + vV ([s,a]) — Tlog7(als)) (62)
T(—|s)eA -
> > w(als)(r(s,a) + 7V ([s,a]) — 7log w(als)) (63)
= (B"V)(s)- (64)
The result then follows by the monotonicity of 5™ (Lemma 12). O

Corollary 15. Forany =, if V > B*V then V. > V™.

Proof. Consider an arbitrary state s. From Lemma 11 we know that V™ is a fixed point of B™. Since B” is a con-
traction map, we must have limsup,_,., ((B™)*V)(s) = V™(s). But from the assumption on V, we also have

V(s) > ((B™):V) (s) for all k, by Lemma 14; hence V(s) > V7 (s). O
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Next, given the existence of V*, we define a specific policy 7* as follows
7 (—|s) = f-(q5), where (65)
5,0 = 7(s,0) + V" ([s, a]). (66)

Note that we are simply defining 77* at this stage and have not as yet proved it has any particular properties; but we will see
shortly that it is, in fact, an optimal policy.
Lemma 16. V* = V™ ; that is, for m* defined in (65), V* gives its entropy regularized expected return from any state.

Proof. We establish the claim by showing BV™ =V™ . In particular, for an arbitrary state s consider

BV )(s) = Fr(@] ) by (55) 67)
=7*(—|s)- (@ — Tlogm*(—|s)) by Lemma 5 (68)

=V (s) by Lemma 11. (69)

O

Theorem 17. The fixed point of the softmax Bellman operator is the optimal value function: V* = V.

Proof. Since V* > B*V* (in fact, V* :~B*V*) we have V* > V™ for all by Corollary 15, hence V* > VT, Next
observe that by Lemma 16 we have VT > V7™ = V*, Finally, by Lemma 13, we know that the fixed point V* = B*V* is
unique, hence VI = V*.

O

Corollary 18 (Optimality Implies Consistency). The optimal state value function V* and optimal policy m* satisfy
V*(s) =r(s,a) +yV*([s,a]) — Tlogm*(al|s) for every state s and action a.

Proof. First note that

Goa =7(s,a) + V7 ([s,a) by (66) (70)
=r(s,a) +yV™ ([s,a]) by Lemma 16 (71)
=i, by (42). (72)
Then observe that for any state s,
V*(s) = Fr(a3) by (55) (73)
= FT(q’ST*) from above (74)
™ (=]s) - (¥ — Tlog7*(—]|s)) by Lemma 5 (75)
= qfa — 7 log " (als) for all a by Corollary 6 (76)
=qs, — Tlogm*(als) from above. a7
O

Corollary 19 (Consistency Implies Optimality). If V and m satisfy V(s) = r(s,a) + vV ([s,a]) — 7logw(als) for all s
and a, then V. =V* and m = 7*.

Proof. We will show that satisfying the constraint for every s and a implies B*V = V; it will then immediately follow
that V = V* and 7 = 7* by Lemma 13. Let g5 , = (s, a) + vV ([s, a]). Consider an arbitrary state s, and observe that

(B*V)(s) = F:(a,) by (55) (78)
= gleai({w -(qy — Tlog ) } by Lemma 5 (79)
= (s, — Tlogm(als) forall a by Corollary 7, since V and 7 are consistent (80)
=V(s) by Corollary 7. (81)

O
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A.4. Proof of Theorem 1 from Main Text

Proof. Consider the policy 7* defined in (65). From Corollary 16 we know that V™ = V* and from Theorem 17 we
know V* = VT, hence VT = V7. that is, 7 is the optimizer of Ognr(s, ) for any state s (including sg). Therefore, this
must be the same 7* as considered in the premise of Theorem 1. The assertion (16) in Theorem 1 then follows directly
from Corollary 18. O

A.5. Proof of Corollary 2 from Main Text

Proof. From (13) and (4) we have that V*(s) = F;(q;) where ¢} , matches the definition given in (66). We have already
established in the proof of Theorem 1 that the optimal policy 7* satisfies the definition given in (65). The claim then
follows immediately. ]

A.6. Proof of Corollary 3 from Main Text
Proof. We prove the claim
—V*(s1) + 4"V (s) + R(s1.4) — TG (514, 7°) =0 (82)

for all t > 1 by induction on ¢. For the base case, consider ¢ = 1 and observe that R”(s1.;) = 0 and G”(s1.1,7*) = 0,
hence (82) reduces to —V*(s1) + V*(s1) = 0.

For the induction hypothesis (IH), assume
—V*(s1) + 772V (s¢-1) + R(s1:4-1) — TG (5141, %) = 0. (83)

Then consider the left hand side of (82):

— V*(s1) + 7 7V (s¢) + R(s1:¢) — TG (514, ) (84)
= —V*(s1) +7"72V*(si-1) + R(s1.4-1) — TG(51.4—1,7") (85)

+ ATV (5) = VTV (s01) T 2 (se1, a01) — 7Y T2 log T (a1 8¢ 1) (86)

=772 (’YV*(St) = V*(st-1) +r(st-1,a1-1) — 7log 7r*((lt—1|=9t—1)) bythe IH  (87)

=0; (88)

where the last step follows because V* and 7* satisfy the consistency property:
V*(si—1) = r(st—1,a1-1) + YV*(s¢) — T log m* (a1—1]$¢—1) (89)
for all s;_; and a;_1, such that s; = [s;_1, as—1]. O

A.7. Proof of Theorem 4 from Main Text

Proof. Consider a policy mg and value function V that satisfy the consistency property Vy(s) = r(s,a) + vVy([s, a]) —
Tlog mg(als) for all s and a, where s’ = [s, a]. Then by Corollary 19, we must have Vy = V* and mp = 7*. O



