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ABSTRACT
Disinformation refers to false information deliberately spread to
influence the general public, and the negative impact of disinfor-
mation on society can be observed for numerous issues, such as
political agendas and manipulating financial markets. In this paper,
we identify prevalent challenges and advances related to automated
disinformation detection from multiple aspects, and propose a com-
prehensive and explainable disinformation detection framework
called DISCO. It leverages the heterogeneity of disinformation and
addresses the prediction opaqueness. Then we provide a demon-
stration of DISCO on a real-world fake news detection task with
satisfactory detection accuracy and explanation. The demo video 1

and source code 2 of DISCO is now publicly available. We expect
that our demo could pave the way for addressing the limitations of
identification, comprehension, and explainability as a whole.

CCS CONCEPTS
• Information systems→Webmining; • Security and privacy
→ Human and societal aspects of security and privacy.
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1 INTRODUCTION
Disinformation (e.g., fake news) is fabricated to mislead the general
public. Historically, disinformation campaigns often took the form
of government propaganda with edited newsreels, and the cost
of creation and distribution required a funded and coordinated
effort. However, with the recent rise of accessible and low-cost
computational methods for text manipulation and the broad access
to public information channels via the worldwide web, society now
finds itself inundated with disinformation that is resulting in large-
scale negative societal impacts. Negative effects include but are not
limited to, fake news deliberately misleads readers to accept false
or biased information for further political agendas or manipulate
financial markets; furthermore, fake news also downgrades the
credibility of real news and hinders people’s ability to distinguish
factual information from disinformation [17].

Two main challenges hinder disinformation-related research.
Firstly, a characteristic of the spread and creation of disinformation
is the co-existence of multiple types of heterogeneous features,
which introduces ambiguous factors that could potentially cam-
ouflage disinformation from real information. To be more specific,
even a single word can have different semantic meanings in differ-
ent contexts [14, 15]. For example, "Apple" in the food corpus means
a kind of fruit, while it stands for the company in the high-tech cor-
pus. Secondly, interpretability is another key to understanding the
logic of prediction or classification systems to further build human-
machine trust in results and improve detection accuracy [16]. While
pioneering state-of-the-art algorithms have been proposed to de-
tect disinformation, many of these models are black-box in nature
and lack interpretable mechanisms for explaining why information
has been flagged as false. Take fake news as an example, not every
sentence in fake news is false. It is critical to specify guidelines for
improving the existing model in an explainable way. For instance,
to distinguish the importance of different sentences in determin-
ing the detection decision [16]. As such, there is a critical need
for the new technology that can support disinformation detection
both accurately and efficiently (at an early stage before widespread
propagation), and in a way that is understandable by both domain
experts and the general public.

Contribution. The main contributions of the paper can be sum-
marized as follows. (1) We propose a comprehensive computational
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Figure 1: System Architecture of DISCO.

framework for disinformation, named DISCO. To be specific, DISCO
models the heterogeneity of disinformation comprehensively with
graph machine learning techniques, such that the heterogeneity
can be positively leveraged to solve challenges for detection and
explanation. (2) We develop an online demo for visualizing the
detection and the explanation result of DISCO. (3) We design the
real-world experiment with 48,000+ fake and real news articles, and
DISCO could achieve 97% accuracy with very low variance.

Demonstration. The online demo 3 of DISCO is programmed
by Python and allows open interactions with users. The functions
of the demo include (1) output the real and fake probabilities of
a piece of suspect information; (2) output the misleading degree
of each word in the input text and their rankings. A user-guide
introduction video of the DISCO demo is also online 4 now.

2 SYSTEM ARCHITECTURE
The online demo of DISCO has two main parts, front-end, and back-
end, as shown in Figure 1. The front-end (1) accepts and passes the
user open query (i.e., a suspect piece of information) to the back-end,
and (2) receives and shows the detection decision and misleading
words rankings from the back-end. The back-end is supported by
the graph machine learning techniques, which is responsible for
identifying the input information and making the corresponding
explanation by (1) building the word graph for the input article
(2) extracting the geometric feature of that graph; (3) predicting
whether the input article is real or fake; and (4) ranking each word
in that text based on the misleading degree. Then the back-end
returns all results to the front-end for users. The theoretical details
of how these four sequential functions inside the back-end get
realized are discussed in the next section.

3 THEORETICAL DETAILS
The back-end side of our DISCO demo is based on graph machine
learning techniques, such that an article can be represented as an
embedding vector, and the disinformation detection problem is
converted into a graph classification problem. First of all, an input
article is modeled by a word graph (Subsection 3.1). Second, the
entire graph is represented by an embedding vector (Subsection
3.2). Third, the graph-level embedding vector goes into a neural

3https://github.com/DongqiFu/DISCO
4https://drive.google.com/file/d/1Nhw1veqjIN9SBz1RLJPDTRVTHuknfjHl

network to get the predictions in terms of the fake news probability
and real news probability (Subsection 3.3). Fourth, each word in the
article (i.e., each node in the built word graph) is masked under the
same graph topological constraint to see each word’s contribution
towards the input article prediction (Subsection 3.4).

3.1 Building Word Graphs
To build a word graph 𝐺 (i.e., upper right corner in Figure 1) for
an input news article, we follow [12] such that each word in the
article stands for a unique node and an edge is established if two
words co-occur in a window of 𝑘 text units. In our demonstration,
we set 𝑘 = 3. Take "I eat an apple" as an example, and then the
edges could be {I-eat, I-an, eat-an, eat-apple, an-apple} with stop
words kept and edges undirected. Beyond [12], we assign each node
𝑖 in graph 𝐺 with its own node feature vector 𝒙𝑖 ∈ R1×𝑑 , and 𝒙𝑖
that can be retrieved from the word embedding vector of the large-
scale pre-trained NLP model, like Bert [6] or Word2Vec [13]. In our
demonstration, we adopt a large-scale pre-trained Word2Vec from
Google 5 that is pre-trained on a 3 million distinct words corpus,
and each word embedding vector is 300-dimensional (i.e., 𝑑 = 300).

3.2 Geometric Feature Extraction
Suppose there are 𝑛 different words in an article, then we can
construct a word graph𝐺 with 𝑛 nodes as mentioned above. Given
the input node feature matrix 𝑿 ∈ R𝑛×𝑑 (i.e., 𝑋 (𝑖, :) = 𝒙𝑖 ), the
node hidden representation vector 𝒉𝑖 ∈ R1×𝑑 , 𝑖 ∈ {1, . . . , 𝑛}, can
be obtained by

𝒉𝑖 = 𝒑⊤
𝑖 𝑿 (1)

where 𝒑𝑖 ∈ R𝑛×1 is the personalized PageRank vector with node 𝑖
as the seed node and can be expressed as follows

𝒑𝑖 = 𝛼𝑨𝑫−1𝒑𝑖 + (1 − 𝛼)𝒓 (2)

where 𝑨 and 𝑫 are adjacency and degree matrices of word graph
𝐺 , 𝛼 ∈ [0, 1] is the teleportation probability (e.g., 𝛼 = 0.85 in our
demo), and 𝒓 ∈ R𝑛×1 is the personalized vector with 𝑟 (𝑖) = 1 and
other entries are 0s.

With this geometric feature extraction, the heterogeneous se-
mantic meanings of words are jointly modeled. To be more specific,
𝒑𝑖 encodes the stationary distribution of random walks starting
from node 𝑖 , it can be interpreted as the relevant weights of other
nodes (i.e., words) to the seed node (i.e., selected word) in this graph
𝐺 (i.e., input news article). Our input node feature 𝒙𝑖 is general be-
cause it is distilled by pre-trained models from a large-scale corpus
like Wikipedia. Thus, according to Eq. 1, 𝒙𝑖 is in-depth specialized
by 𝒉𝑖 , which means the meaning of a selected word is specialized
by its neighbor words in the scope of this input article.

Then, to obtain the graph-level (i.e., document-level) hidden
representation 𝒖 ∈ R1×𝑑 for the word graph 𝐺 (i.e., input news
article), we read out all word-level hidden representations 𝒉𝑖 as
follows

𝒖 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 (𝒉𝑖 | 𝑖 ∈ {1, . . . , 𝑛}) (3)
where the 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 function is permutation-invariant and could be
instanced by graph pooling layers, such as mean pooling or average
pooling [18, 21].

5https://code.google.com/archive/p/word2vec/
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Figure 2: User Interface of DISCO. The left-hand side is the text area to receive open queries from users, the upper right-hand
side is the real-time process monitor of DISCO, and the lower right-hand side is the prediction and explanation result.

This geometric feature extraction is not only effective because it
replaces the traditional message-passing scheme of graph neural
networks with the stationary distribution based aggregation [5, 11];
but is also efficient, which means the new stationary distribution
can be fast tracked when the graph topology changes [7–10], e.g.,
in this demo, we mask several nodes in the word graph. These two
merits pave the way for our explanation function of DISCO.

3.3 Neural Detection
The loss function of the proposed DISCO model is deployed on the
representation vector 𝒖 𝑗 against the label information 𝒚 𝑗 (e.g., fake
or real) of the 𝑗-th news article. To realize this, we need to call a
neural network N to transform each 𝒖 𝑗 into 𝒛 𝑗 . For instance, the
cross-entropy between these two is expressed as follows

L = −
∑︁
𝑗

𝒚 𝑗 ln 𝒛 𝑗 (4)

where 𝒛 𝑗 ∈ R1×𝑞 is the final output of neural network N w.r.t 𝒖 𝑗 ,
and 𝒚 𝑗 ∈ R1×𝑞 denotes the ground truth label of the entity 𝑗 .

Benefiting from our geometric feature extraction scheme, the
deployment of neural network N can be model-agnostic [5, 8, 11],
which means the feature extraction is independent of the neural
detection, and we can apply various kinds of neural networks ac-
cording to different settings. For example, in our online demo, we
instance N with a simple 32*2 multi-layer perceptron (MLP) for
achieving effective performance, as shown in Figure 2. Addition-
ally, we also provide the contextual multi-armed bandits in the
exploitation-exploration dilemma [3, 4].

3.4 Explanation of Misleading Words
Given an article is detected as fake or real, each word has different
contributions to this decision. For example, some words help dis-
information camouflage and hider the detection to detect it. After

removing such words in that article, the decision can be more deter-
ministic, i.e., the corresponding prediction probability increases. In
this paper, we call these words "misleading words". Next, we explain
how our DISCO could explain each word’s misleading degree.

We can choose to mask any nodes in the word graph 𝐺 𝑗 to see
their contributions to the final representation 𝒛 𝑗 , to further see to
what extent the prediction is changed. Therefore, we can knowwhat
factors make DISCO dictate such a prediction, which is especially
helpful for misclassified cases. Technically, masking nodes and
edges without re-training the model from scratch relies on our
proposed Eq. 1 and Eq. 3, where 𝒑𝑖 is the stationary distribution of
seed node 𝑖 on graph 𝐺 . When we need to mask a certain node in
graph 𝐺 and change it into 𝐺 ′, the new stationary distribution 𝒑′

𝑖
can be fast and accurately tracked only with the topology changes
but without the neural network parameters fine-tuning [8].

In Eq. 2, we use 𝑴 = 𝑨𝑫−1 ∈ R𝑛×𝑛 to denote the column-
stochastic transition matrix. When a certain node is masked (i.e., its
adjacent edges are deleted), the graph topology will change from
𝑴 to 𝑴 ′, and the new stationary distribution 𝒑′

𝑖
of each node 𝑖

needs to be tracked. To obtain each 𝒑′
𝑖
, the core idea is to push

out the previous probability distribution score from the changed
part to the residual part of the graph 𝐺 , and then add the pushed
out distribution 𝒑

𝑝𝑢𝑠ℎ𝑜𝑢𝑡

𝑖
back to the previous distribution 𝒑𝑖 to

finally obtain the new distribution 𝒑′
𝑖
. The tracking process can be

described as follows

𝒑
𝑝𝑢𝑠ℎ𝑜𝑢𝑡

𝑖
= 𝛼 (𝑴 ′ −𝑴)𝒑𝑖 (5)

and

𝒑′
𝑖 = 𝒑𝑖 +

∞∑︁
𝑘=0

(𝛼𝑴 ′)𝑘 𝒑
𝑝𝑢𝑠ℎ𝑜𝑢𝑡

𝑖
(6)

where 𝒑
𝑝𝑢𝑠ℎ𝑜𝑢𝑡

𝑖
denotes the distribution score that needs to be

pushed out on the residual graph due to the updated edges, and 𝒑′
𝑖

denotes the tracked new distribution. The above pushout process



Table 1: Fake News Detection Accuracy Comparison of Different Initialization of DISCO

Ratio of Testing Samples
MLP Settings 10% 15% 20% 25% 30% 35% 40%

hidden dim = 64, # layers = 1 0.8022 ± 0.2334 0.8442 ± 0.2231 0.8452 ± 0.2195 0.7970 ± 0.2333 0.7952 ± 0.2314 0.7522 ± 0.2403 0.7509 ± 0.2386
hidden dim = 64, # layers = 2 0.9361 ± 0.1424 0.9339 ± 0.1451 0.9809 ± 0.0029 0.9341 ± 0.1437 0.9346 ± 0.1434 0.8425 ± 0.2197 0.8861 ± 0.1905
hidden dim = 32, # layers = 2 0.9800 ± 0.0049 0.9797 ± 0.0015 0.9793 ± 0.0032 0.9778 ± 0.0022 0.9786 ± 0.0013 0.9766 ± 0.0012 0.9765 ± 0.0019

can be proved to converge to the exact stationary distribution of the
new graph through sufficient cumulative power iterations [19, 20].

After we get each new𝒑′
𝑖
, according to Eq. 1 and Eq. 3, we can get

the new graph-level hidden representation 𝒖 ′ and final representa-
tion 𝒛′ without fine-tuning neural network N. Then the difference
between the correct prediction probability of 𝒛′ and 𝒛 composes the
misleading degree of the masked word. For example, as shown in
Figure 2, when we mask the word "recreational" in the input news
article, the new probability of predicting this new article (i.e., 𝒛′) as
fake news is 99.999999415%. Compared with 99.999998466% of the
original article (i.e., 𝒛), the confidence of correct prediction increases
0.000000949% by masking the word "recreational". Therefore, the
word "recreational" hinders DISCO make the correct prediction,
and its misleading degree is 0.00000000949. In our demo, we rank
each word based on its misleading degree and show the rank in de-
creasing order. Also, the misleading degree can be negative, which
means that the masked word in the original article helps DISCO
make correct predictions.

4 REAL-WORLD EVALUATION
Here, we report the effectiveness of the proposed DISCO in the
real-world fake news detection and decision explanation.

4.1 Data Set
We choose the fake news and real news data set from [1, 2], and
each news article focusing on politics around the world has a title,
text, subject, date, and a label indicating it is fake news or not. After
preprocessing, the statistics of valid records of fake news and real
news are stated as below. The fake news articles consist of 23,481
items, ranging from Mar 31, 2015 to Feb 19, 2018. As for real news
articles, 21,417 items are involved from Jan 13, 2016 to Dec 31, 2017.

4.2 DISCO Setup
First, we initialize Google pre-trainedWord2Vec 6 for the node input
feature 𝑿 in Eq. 1. Second, we use the sum-pooling function as the
𝑟𝑒𝑎𝑑𝑜𝑢𝑡 function in Eq. 3. Third, we use a multi-layer perceptron
with the ReLU activation function to distill 𝒖 in Eq. 4, where the
optimizer is based on Adam and the initial learning rate is set to be
0.0001. The experiments are programmed based on Python 3.7 in a
Windows machine with four 3.6GHz Intel Cores and 64GB RAM.

4.3 Performance of DISCO
Accuracy. We show the performance of different classifiers under
our DISCO and report their fake news detection accuracy in Ta-
ble 1. For each row in Table 1, we report the performance under
different training-testing splits, and each split is executed 10 times

6https://code.google.com/archive/p/word2vec/

randomly to obtain the average and standard deviation. From Ta-
ble 1, we can observe that (1) even the sample classifier can achieve
very competitive performance under the DISCO modeling, for MLP
(hidden dim = 32, # layers = 2) achieving the most accurate and
stable predictions; (2) in many cases, too few or too many training
samples could not contribute the most to the classifier under our
DISCO modeling, for MLP (hidden dim = 64, # layers = 1) and MLP
(hidden dim = 64, # layers = 2) reaching the peak when 20% of the
whole data set are extracted as testing samples.

Figure 3: Overall Performance of DISCO based on the 75%-
25% split setting.

Sensitivity. Cooperating with MLP (hidden dim = 32, # layers
= 2), our DISCO is robust because the performance variance is very
low with varying testing sample sizes. Also, we want to investigate
the prediction sensitivity of DISCO. Again, based on the 75% -
25% training-testing split, we shuffle the entire data set 10 times
randomly and report the precision, recall, and F1-score in Figure 3.
The precision of DISCO is 0.9748 ± 0.0086, which means that in
all the positive predictions, 97.48% of them are correct predictions.
The recall of DISCO is 0.9754± 0.0065, which means that among all
ground-truth positive items, 97.54% of them are identified by DISCO.
The average and standard deviation of the F1-score is 0.9750±0.0010,
and the low standard deviation suggests that each time we achieve
high precision, we also achieve a high recall simultaneously.

5 CONCLUSION
In this paper, we identify disinformation detection challenges from
the context feature heterogeneity and prediction opaqueness. To
this end, we make an attempt to demonstrate DISCO with support
from graph machine learning techniques and test its effectiveness
from different aspects in real-world fake news detection. We wish
that the next generation of disinformation detection systems could
be able to simultaneously detect and explain during the whole life
cycle of disinformation dissemination.

https://code.google.com/archive/p/word2vec/


REFERENCES
[1] Hadeer Ahmed, Issa Traoré, and Sherif Saad. 2017. Detection of Online Fake

News Using N-Gram Analysis and Machine Learning Techniques. In ISDDC 2017.
[2] Hadeer Ahmed, Issa Traoré, and Sherif Saad. 2018. Detecting opinion spams and

fake news using text classification. Secur. Priv. (2018).
[3] Yikun Ban and Jingrui He. 2021. Convolutional neural bandit: Provable algorithm

for visual-aware advertising. arXiv preprint arXiv:2107.07438 (2021).
[4] Yikun Ban, Jingrui He, and Curtiss B. Cook. 2021. Multi-facet Contextual Bandits:

A Neural Network Perspective. In KDD 2021.
[5] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling Graph Neural Networks with Approximate PageRank. In KDD 2020.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT 2019.

[7] Dongqi Fu and Jingrui He. 2021. DPPIN: A Biological Repository of Dynamic
Protein-Protein Interaction Network Data. CoRR (2021).

[8] Dongqi Fu and Jingrui He. 2021. SDG: A Simplified and Dynamic Graph Neural
Network. In SIGIR 2021.

[9] Dongqi Fu, Zhe Xu, Bo Li, Hanghang Tong, and Jingrui He. 2020. A View-
Adversarial Framework for Multi-View Network Embedding. In CIKM 2020.

[10] Dongqi Fu, Dawei Zhou, and Jingrui He. 2020. Local Motif Clustering on Time-
Evolving Graphs. In KDD 2020.

[11] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

ICLR 2019.
[12] Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing Order into Text. In

EMNLP 2004.
[13] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.

2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NeurIPS 2013.

[14] Prathusha Kameswara Sarma, Yingyu Liang, and Bill Sethares. 2018. Domain
Adapted Word Embeddings for Improved Sentiment Classification. In ACL 2018.

[15] Prathusha Kameswara Sarma, Yingyu Liang, and William A. Sethares. 2019.
Shallow Domain Adaptive Embeddings for Sentiment Analysis. In EMNLP 2019.

[16] Kai Shu, Limeng Cui, SuhangWang, Dongwon Lee, and Huan Liu. 2019. dEFEND:
Explainable Fake News Detection. In KDD 2019.

[17] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake News
Detection on Social Media: A Data Mining Perspective. SIGKDD Explor. (2017).

[18] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with
Differentiable Pooling. In NeurIPS 2018.

[19] Minji Yoon, Woojeong Jin, and U Kang. 2018. Fast and Accurate Random Walk
with Restart on Dynamic Graphs with Guarantees. In WWW 2018.

[20] Minji Yoon, Jinhong Jung, and U Kang. 2018. TPA: Fast, Scalable, and Accurate
Method for Approximate Random Walk with Restart on Billion Scale Graphs. In
ICDE 2018.

[21] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An
End-to-End Deep Learning Architecture for Graph Classification. In AAAI 2018.


	Abstract
	1 Introduction
	2 System Architecture
	3 Theoretical Details
	3.1 Building Word Graphs
	3.2 Geometric Feature Extraction
	3.3 Neural Detection
	3.4 Explanation of Misleading Words

	4 Real-World Evaluation
	4.1 Data Set
	4.2 DISCO Setup
	4.3 Performance of DISCO

	5 Conclusion
	References

