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Abstract
Approximating a divergence between two probability distributions from their samples is a fundamental challenge in statistics,

information theory, and machine learning. A divergence approximator can be used for various purposes, such as two-sample

homogeneity testing, change-point detection, and class-balance estimation. Furthermore, an approximator of a divergence

between the joint distribution and the product of marginals can be used for independence testing, which has a wide range

of applications, including feature selection and extraction, clustering, object matching, independent component analysis,

and causal direction estimation. In this paper, we review recent advances in divergence approximation. Our emphasis is

that directly approximating the divergence without estimating probability distributions is more sensible than a naive two-

step approach of first estimating probability distributions and then approximating the divergence. Furthermore, despite

the overwhelming popularity of the Kullback-Leibler divergence as a divergence measure, we argue that alternatives

such as the Pearson divergence, the relative Pearson divergence, and the L
2
-distance are more useful in practice because

of their computationally efficient approximability, high numerical stability, and superior robustness against outliers.
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I. INTRODUCTION

Let us consider the problem of approximating a diver-

gence D between two probability distributions P and P'

on R
d
 from two sets of independent and identically dis-

tributed samples X := {xi}
n

i=1
and X' := , following

P and P'.

A divergence approximator can be used for various

purposes, such as two-sample testing [1, 2], change detec-

tion in time-series [3], class-prior estimation under class-

balance change [4], salient object detection in images [5],

and event detection from movies [6] and Twitter [7]. Fur-

thermore, an approximator of the divergence between the

joint distribution and the product of marginal distribu-

tions can be used for solving a wide range of machine

learning problems [8], including independence testing

[9], feature selection [10, 11], feature extraction [12, 13],

canonical dependency analysis [14], object matching [15],

independent component analysis [16], clustering [17, 18],

and causal direction learning [19]. For this reason, accu-

rately approximating a divergence between two probabil-

ity distributions from their samples has been one of the

challenging research topics in the statistics, information

theory, and machine learning communities.

A naive way to approximate the divergence from P to

P', denoted by D(P||P'), is to first obtain estimators 

and  of the distributions P and P' separately from

their samples X and X', and then compute a plug-in

approximator D( || ).

However, this naive two-step approach violates Vap-

nik’s principle [20]:

If you possess a restricted amount of information for

solving some problem, try to solve the problem directly

and never solve a more general problem as an interme-

diate step. It is possible that the available information

is sufficient for a direct solution but is insufficient for

solving a more general intermediate problem.

More specifically, if we know the distributions P and

P', we can immediately know their divergence D(P||P').

However, knowing the divergence D(P||P') does not nec-

essarily imply knowing the distributions P and P', because

different pairs of distributions can yield the same diver-

gence value. Thus, estimating the distributions P and P' is

more general than estimating the divergence D(P||P').

Following Vapnik’s principle, direct divergence approxi-

mators (X, X') that do not involve the estimation of dis-

tributions P and P' have been developed recently [21-25].

The purpose of this article is to give an overview of the

development of such direct divergence approximators. In

Section II, we review the definitions of the Kullback-

Leibler divergence, the Pearson divergence, the relative

Pearson divergence, and the L
2
-distance, and discuss their

pros and cons. Then, in Section III, we review direct

approximators of these divergences that do not involve

the estimation of probability distributions. In Section IV,

we show practical usage of divergence approximators in

unsupervised change-detection in time-series, semi-super-

vised class-prior estimation under class-balance change,

salient object detection in an image, and evaluation of sta-

tistical independence between random variables. Finally,

we conclude in Section V.

II. DIVERGENCE MEASURES

A function d(·, ·) is called a distance if and only if the

following four conditions are satisfied:

● Non-negativity: x, y, d(x, y) ≥ 0
● Non-degeneracy: d(x, y) = 0  x = y
● Symmetry: x, y, d(x, y) = d(y, x)
● Triangle inequality: x, y, z d(x, z) ≤ d(x, y) + d(y, z)

A divergence is a pseudo-distance that still acts like a

distance, but it may violate some of the above conditions.

In this section, we introduce useful divergence and dis-

tance measures between probability distributions.

A. Kullback-Leibler (KL) Divergence

The most popular divergence measure in statistics and

machine learning is the KL divergence [26], defined as

KL(p||p') := 

where p(x) and p'(x) are probability density functions of

P and P', respectively.

Advantages of the KL divergence are that it is compat-

ible with maximum likelihood estimation, that it is invari-

ant under input metric change, that its Riemannian

geometric structure is well studied [27], and that it can be

approximated accurately via direct density-ratio estima-

tion [21, 22, 28]. However, it is not symmetric, it does not

satisfy the triangle inequality, its approximation is compu-

tationally expensive due to the log function, and it is sen-

sitive to outliers and numerically unstable, because of the

strong non-linearity of the log function, and possible

unboundedness of the density-ratio function p/p' [24, 29].

B. Pearson (PE) Divergence

The PE divergence [30] is a squared-loss variant of the

KL divergence defined as

PE(p||p') := (1)

Because both the PE and KL divergences belong to the

class of Ali-Silvey-Csiszár divergences (which is also

known as f-divergences) [31, 32], they share similar theo-

retical properties such as the invariance under input met-

ric change.

The PE divergence can also be accurately approxi-

x'i'{ }i' 1=

n'

P̂X

P'ˆ
X'

P̂X P'ˆ
X'

D̂

 ∀
 ⇔

 ∀
 ∀

p x( )log p x( )
p' x( )
-----------dx,∫

p' x( ) p x( )
p' x( )
----------- 1–⎝ ⎠

⎛ ⎞
2

dx.∫
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mated via direct density-ratio estimation, in the same way

as the KL divergence [23, 28]. However, its approximator

can be obtained analytically in a computationally much

more efficient manner than the KL divergence, because

the quadratic function the PE divergence adopts is com-

patible with least-squares estimation. Furthermore, the

PE divergence tends to be more robust against outliers

than the KL divergence [33]. However, other weaknesses

of the KL divergence, such as asymmetry, violation of the

triangle inequality, and possible unboundedness of the

density-ratio function p/p', remain unsolved in the PE

divergence.

C. Relative Pearson (rPE) Divergence

To overcome the possible unboundedness of the den-

sity-ratio function p/p', the rPE divergence was recently

introduced [24]. The rPE divergence is defined as

rPE(p||p') := PE(p||q
α
) = , (2)

where, for 0 ≤ α < 1, q
α
 is defined as the α-mixture of p

and p':

.

When α = 0, the rPE divergence is reduced to the plain

PE divergence. The quantity p/q
α
 is called the relative

density-ratio, which is always upper-bounded by 1/α for

α > 0, because

.

Thus, it can overcome the unboundedness problem of

the PE divergence, while the invariance under input met-

ric change is still maintained.

The rPE divergence is still compatible with least-squares

estimation, and it can be approximated in almost the

same way as the PE divergence via direct relative den-

sity-ratio estimation [24]. Indeed, an rPE-divergence

approximator can still be obtained analytically in an

accurate and computationally efficient manner. However,

it still violates symmetry and the triangle inequality, in

the same way as the KL and PE divergence. Furthermore,

the choice of α may not be straightforward, in some

applications.

D. L2-Distance

The L
2
-distance is another standard distance measure

between probability distributions, defined as

L2(p,p') := .

The L
2
-distance is a proper distance measure, and thus

it is symmetric and satisfies the triangle inequality. Fur-

thermore, the density difference p(x) − p'(x) is always

bounded as long as each density is bounded. Therefore,

the L
2
-distance is stable without the need of tuning any

control parameter such as α in the rPE divergence.

The L
2
-distance is also compatible with least-squares

estimation, and it can be accurately and analytically

approximated in a computationally efficient and numeri-

cally stable manner via direct density-difference estima-

tion [25]. However, the L
2
-distance is not invariant under

input metric change, which is a unique property inherent

to ratio-based divergences.

III. DIRECT DIVERGENCE APPROXIMATION

In this section, we review recent advances in direct

divergence approximation.

Suppose that we are given two sets of independent and

identically distributed samples X := {xi}
n

i=1
and X' :=

from probability distributions on R
d
, with densities p(x)

and p'(x), respectively:

X := {xi}
n

i=1
p(x),

X' := p'(x).

Our goal is to approximate a divergence between from

p to p' from samples X and X'.

A. KL Divergence Approximation

The key idea of direct KL divergence approximation is

to estimate the density ratio p/p' without estimating the

densities p and p' [21]. More specifically, a density-ratio

estimator is obtained by minimizing the KL divergence

from p to r·p' with respect to a density-ratio model r

under the constraints that the density-ratio function is

non-negative and r·p' is integrated to one:

KL(p||r·P')

subject to r ≥ 0 and .

Its empirical optimization problem, where an irrele-

vant constant is ignored and the expectations are approxi-

mated by the sample averages, is given by

subject to r ≥ 0 and .

Let us consider the following Gaussian density-ratio

model:

, (3)

where ||·|| denotes the l
2
-norm. We define the vector of

parameters {θl}
n

l=1
as

qα x( ) p x( )
qα x( )
------------ 1–⎝ ⎠

⎛ ⎞
2

dx∫

qα αp 1 α–( )p'+=

p x( )
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-----------+
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1
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1
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2σ
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⎛ ⎞exp

l 1=

n
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θ = (θ
1
, ... ,θn) ,

where,  denotes the transpose. In this model, the Gauss-

ian kernels are located on numerator samples ,

because the density ratio p/p' tends to take large values in

the regions where the numerator samples  exist.

Alternatively, Gaussian kernels may be located on both

numerator and denominator samples, but this seems not

to further improve the accuracy [21]. When n is very

large, a (random) subset of numerator samples 

may be chosen as Gaussian centers, which can reduce the

computational cost.

For the Gaussian density-ratio model (3), the above

optimization problem is expressed as

subject to θ1,..., θn ≥ 0

and   .

This is a convex optimization problem, and thus the

global optimal solution can be obtained easily, e.g., by

gradient-projection iterations. Furthermore, the global opti-

mal solution tends to be sparse (i.e., many parameter val-

ues become exactly zero), which can be utilized for

reducing the computational cost.

The Gaussian width σ is a tuning parameter in this

algorithm, and it can be systematically optimized by

cross-validation with respect to the objective function.

More specifically, the numerator samples X :=  are

divided into T disjoint subsets  of (approximately)

the same size. Then, a density-ratio estimator  is

obtained using X\Xt and X' :=  (i.e., all numerator

samples without Xt and all denominator samples), and its

objective value for the hold-out numerator samples Xt is

computed: 

,

where |Xt| denotes the number of elements in the set Xt.

This procedure is repeated for t = 1,...,T, and the σ value

that maximizes the average of the above hold-out objec-

tive values is chosen as the best one.

Given a density-ratio estimator , a KL-divergence

approximator (X||X') can be constructed as 

(X||X') := .

A MATLABR (MathWorks, Natick, MA, USA) imple-

mentation of the above KL divergence approximator

(called the KL importance estimation procedure; KLIEP)

is available from 

“http://sugiyama-www.cs.titech.ac.jp/
~sugi/software/KLIEP/”.

Variations of this procedure for other density-ratio

models have been developed including the log-linear

model [34], the Gaussian mixture model [35], and the

mixture of probabilistic principal component analyzers

[36]. Also, an unconstrained variant, which corresponds to

approximately maximizing the Legendre-Fenchel lower

bound of the KL divergence [37], was proposed [22]:

 := .

B. PE Divergence Approximation

The PE divergence can also be directly approximated

without estimating the densities p and p' via direct esti-

mation of the density ratio p/p' [23]. More specifically, a

density-ratio estimator is obtained by minimizing the p'-

weighted squared difference between a density-ratio model

r and the true density-ratio function p/p': 

.

Its empirical criterion, where an irrelevant constant is

ignored, and the expectations are approximated by the

sample averages, is given by

.

For the Gaussian density-ratio model (3) together with

the L
2
-regularizer, the above optimization problem is

expressed as

, (4)

where λ ≥ 0 denotes the regularization parameter, and 

is the n×n matrix with the (l,l')-th element defined by

:= ,

and  is the n-dimensional vector with the l-th element

defined by

 := .

This is a convex optimization problem, and the global

optimal solution can be computed analytically as

,

where I denotes the identity matrix.

The Gaussian width σ and the regularization parameter

λ are the tuning parameters in this algorithm, and they

can be systematically optimized by cross-validation, with
⊥

⊥

xi{ }i 1=

n
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n
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1
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n
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1
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respect to the objective function, as follows: First, the

numerator and denominator samples X =  and X' =

 are divided into T disjoint subsets  and

, respectively. Then, a density-ratio estimator

(x) is obtained using X\Xt and X'\X't (i.e., all samples

without Xt and X't ), and its objective value for the hold-

out samples Xt and X't  is computed:

. (5)

This procedure is repeated for t = 1,...,T, and the σ and

λ values that maximize the average of the above hold-out

objective values are chosen as the best ones.

By expanding the squared term  in Equation

(1), the PE divergence can be expressed as

   PE = (6)

= . (7)

Note that Equation (7) can also be obtained via Leg-

endre-Fenchel convex duality of the divergence func-

tional [38]. Based on these expressions, PE divergence

approximators are obtained using a density-ratio estima-

tor  as

(X||X') := , (8)

(X||X') := . (9)

Equation (8) is suitable for algorithmic development

because this would be the simplest expression, while

Equation (9) is suitable for theoretical analysis because

this corresponds to the negative of the objective function

in Equation (4).

A MATLAB implementation of the above method

(called unconstrained least-squares importance fitting;

uLSIF) is available from 

“http://sugiyama-www.cs.titech.ac.jp/
~sugi/software/uLSIF/”.

If the L
2
-regularizer

 := 

in Equation (4) is replaced with the L
1
-regularizer

 := ,

the solution tends to be sparse [39]. Then the solution can

be obtained in a computationally more efficient way [40],

and furthermore, a regularization path tracking algorithm

[41] is available for efficiently computing solutions with

different regularization parameter values.

C. rPE Divergence Approximation

The rPE divergence can be directly estimated in the

same way as the PE divergence [24]:

Its empirical criterion, where an irrelevant constant is

ignored and the expectations are approximated by sample

averages, is given by

.

For the Gaussian density-ratio model (3), together with

the L
2
-regularizer, the above optimization problem is

expressed as

,

where  is the n×n matrix, with the (l, l')-th element

defined by

 := .

This is a convex optimization problem, and the global

optimal solution can be computed analytically as

.

Cross-validation for tuning the Gaussian width σ and

the regularization parameter λ can be carried out in the

same way as the PE-divergence case, with Equation (5)

replaced by

.

By expanding the squared term  in Equation

(2), the rPE divergence can be expressed as

rPE = (10)

= . (11)

Based on these expressions, rPE divergence approxi-

mators are given, using the relative density-ratio estima-

tor  as 

xi{ }i 1=

n

xi''{ }i' 1=

n'
Xt{ }t 1=

T

Xt'{ }t 1=

T

r̂t

1
Xt'
------- r̂t x'( )2

x' X
t
'∈

∑
2
Xt

------ r̂t x( )
x X

t
∈
∑–

p x( )
p' x( )
----------- 1–⎝ ⎠

⎛ ⎞
2

p x( ) p x( )
p' x( )
-----------∫ dx 1–

p' x( ) p x( )
p' x( )
-----------⎝ ⎠

⎛ ⎞
2

∫– dx 2 p x( )p x( )
p' x( )
-----------∫+ dx 1–

r̂

PE 1
n
--- r̂ xi( )

i 1=

n

∑ 1–

PE 1
n'
----– r̂ xi''( )2

i' 1=

n'

∑ +2
n
--- r̂ xi( )

i 1=

n

∑ 1–

θ
2

θl
2

l 1=

n

∑

θ 1 θl

l 1=

n

∑

min
r

qα x'( ) r x( ) p x( )
qα x( )
------------–⎝ ⎠

⎛ ⎞
2

xd∫

min
r

α

n
--- r

2

xi( )
i 1=

n

∑
1 α–

n'
----------- r

2

xi''( )
i' 1=

n'

∑
2
n
--- r xi( )

i 1=

n

∑–+

min
θ

θ
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(X||X') := , (12)

(X||X') := .

(13)

A MATLAB implementation of this algorithm (called

relative uLSIF; RuLSIF) is available from 

“http://sugiyama-www.cs.titech.ac.jp/
~yamada/RuLSIF.html”.

D. L2-Distance Approximation

The key idea is to directly estimate the density differ-

ence p − p' without estimating each density [25]. More

specifically, a density-difference estimator is obtained by

minimizing the squared difference between a density-dif-

ference model f and the true density-difference function p

− p':

.

Its empirical criterion, where an irrelevant constant is

ignored and the expectation is approximated by the sam-

ple average, is given by

.

Let us consider the following Gaussian density-differ-

ence model:

, (14)

where

(c1, ..., cn, cn+1, ..., cn+n') := (x1, ..., xn, x1', ..., )

are Gaussian centers. Then the above optimization prob-

lem is expressed as

,

where the L
2
-regularizer  is included, U is the (n +

n') × (n + n') matrix, with the (l, l')-th element defined by

 := dx

= exp ,

d denotes the dimensionality of x, and  is the (n + n')-

dimensional vector, with the l-th element defined by

 :=  − .

This is a convex optimization problem, and the global

optimal solution can be computed analytically as

.

The above optimization problem is essentially the same

form as least-squares density-ratio approximation for the

PE divergence, and therefore least-squares density-differ-

ence approximation can enjoy all the computational prop-

erties of least-squares density-ratio approximation.

Cross-validation for tuning the Gaussian width σ and

the regularization parameter λ can be carried out as fol-

lows: First, the numerator and denominator samples X =

 and X' =  are divided into T disjoint sub-

sets  and , respectively. Then a density-

difference estimator  is obtained using X\Xt and

X'\  (i.e., all samples without Xt and ), and its objec-

tive value for the hold-out samples Xt and  is com-

puted:

.

Note that the first term can be computed analytically

for the Gaussian density-difference model (14):

U ,

where  is the parameter vector learned from X\Xt and

X'\ .

For an equivalent expression of the L
2
-distance,

,

if f is replaced with a density-difference estimator , and

the expectations are approximated by empirical averages,

the following L
2
-distance approximator can be obtained:

. (15)

Similarly, for another expression

,

replacing f with a density-difference estimator  gives

another L
2
-distance approximator:

U . (16)

Equations (15) and (16) themselves give valid approxi-

mations to , but their linear combination

:= 2 − U ,

was shown to have a smaller bias than Equations (15) and

(16).

A MATLAB implementation of the above algorithm
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(called least-squares density difference; LSDD) is avail-

able from 

“http://sugiyama-www.cs.titech.ac.jp/
~sugi/software/LSDD/”.

IV. USAGE OF DIVERGENCE APPROXIMATORS
IN MACHINE LEARNING

In this section, we show applications of divergence

approximators in machine learning.

A. Class-Prior Estimation under Class-Balance
Change

In real-world pattern recognition tasks, changes in

class balance are often observed between the training and

test phases. In such cases, naive classifier training pro-

duces significant estimation bias, because the class bal-

ance in the training dataset does not properly reflect that

in the test dataset. Here, let us consider a binary pattern

recognition task of classifying pattern x to class y ∈ {+1,

-1}. The goal is to learn the class balance in a test dataset

under a semi-supervised learning setup, where unlabeled

test samples are provided, in addition to labeled training

samples [42].

The class balance in the test set can be estimated by

matching a π-mixture of class-wise training input densities,

+

to the test input density p
test

(x) under some divergence

measure [4]. Here, π ∈ [0, 1] is a mixing coefficient to be

learned, to minimize the divergence (Fig. 1).

We use four UCI benchmark datasets (http://archive.

ics.uci.edu/ml/) for numerical experiments, where we

randomly choose 10 labeled training samples from each

class, and 50 unlabeled test samples, following true class-

prior

π* = 0.1, 0.2, ... , 0.9.

The graphs on the left-hand side of Fig. 2 plot the mean

and standard error of the squared difference between true

and estimated class-balances π. These graphs show that

LSDD tends to provide better class-balance estimates

than the two-step procedure of first estimating probability

densities by kernel density estimation (KDE) and then

learning π.

The graphs on the right-hand side of Fig. 2 plot the test

misclassification error obtained by a weighted L
2
-regular-

ized kernel least-squares classifier [43], with weighted

cross-validation [44]. The results show that the LSDD-

based method provides lower classification errors, which

would be brought by good estimates of test class-balances.

B. Change-Detection in Time-Series

The goal is to discover abrupt property changes behind

time-series data. Let y(t) ∈ Rm be an m-dimensional time-

series sample at time t, and let

Y(t) :=  ∈ Rkm

be a subsequence of time series at time t with length k.

Instead of a single point y(t), the subsequence Y(t) is

treated as a sample here, because time-dependent infor-

mation can be naturally incorporated by this trick [3]. Let

Y(t) := 

be a set of r retrospective subsequence samples starting at

time t. Then a divergence between the probability distri-

butions of Y(t) and Y(t + r) may be used as the plausibil-

ity of change points (Fig. 3).

In Fig. 4, we illustrate results of unsupervised change

detection for the Information Processing Society of Japan

Special Interest Group of Spoken Language Processing

(IPSJ SIG-SLP) Corpora and Environments for Noisy

Speech Recognition (CENSREC) dataset (http://research.

nii.ac.jp/src/en/CENSREC-1-C.html) that records human

voice in noisy environments, such as a restaurant, and the

Human Activity Sensing Consortium (HASC) challenge

2011 dataset (http://hasc.jp/hc2011/), that provides human

activity information collected by portable three-axis

accelerometers. These graphs show that the KL-based

method is excessively sensitive to noise, and thus change

points are not clearly detected. On the other hand, the L
2
-

based method more clearly indicates the existence of

change points.

It was also demonstrated that divergence-based change-

detection methods are useful in event detection from

movies [6], and Twitter [7].

C. Salient Object Detection in an Image

The goal is to find salient objects in an image. This can

be achieved by computing a divergence between the prob-

πptrain x y +1=( ) 1 π–( )ptrain x y 1–=( )

y t( )  ,y t 1+( )  ,...,y t k 1–+( )  [ ]

⊥ ⊥ ⊥ ⊥

Y t( ),Y t 1+( ),...,Y t r 1–+( ){ }

Fig. 1. Schematic of class-prior estimation under class balance
change.



Journal of Computing Science and Engineering, Vol. 7, No. 2, June 2013, pp. 99-111

http://dx.doi.org/10.5626/JCSE.2013.7.2.99 106 Masashi Sugiyama et al.

ability distributions of image features (such as brightness,

edges, and colors) in the center window and its surround-

ings [5]. This divergence computation is swept over the

entire image, with changing scales (Fig. 5).

The object detection results on the MSRA salient object

database [45] by the rPE divergence with α = 0.1 are

described in Fig. 6, where pixels in gray-scale saliency

maps take brighter color if the estimated divergence value

Fig. 2. (Left) Squared error of class-prior estimation. (Right) Misclassification error by a weighted L2-regularized kernel least-squares
classifier with weighted cross-validation. (a) Australian, (b) diabetes, (c) German, and (d) statlogheart datasets. LSDD: least-squares
density difference, KDE: kernel density estimation.
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is large. The results show that visually salient objects can

be successfully detected by the divergence-based

approach.

D. Measuring Statistical Independence

The goal is to measure how strongly two random vari-

ables U and V are statistically dependent, from paired

samples {(ui, vi)}
n

i=1
drawn independently from the joint

distribution, with density pU,V(u,v). Let us consider a

divergence between the joint density pU,V, and the product

of marginal densities pU · pV. This actually serves as a

measure of statistical independence, because U and V are

independent if and only if the divergence is zero (i.e.,

pU,V = pU · pV), and the dependence between U and V is

stronger, if the divergence is larger.

Such a dependence measure can be approximated in the

same way as ordinary divergences by using the two datasets

formed as X = {(ui, vi)}
n

i=1
and X' = {(ui, vj)}

n

i,j=1
. The

dependence measure based on the KL divergence is

called mutual information (MI) [46]:

MI := dudv.

MI plays a central role in information theory [47].

On the other hand, its PE-divergence variant is called

the squared-loss mutual information (SMI):

SMI := dudv.

SMI is useful for solving various machine learning tasks

[8], including independence testing [9], feature selection

[10, 11], feature extraction [12, 13], canonical depen-

dency analysis [14], object matching [15], independent

component analysis [16], clustering [17, 18], and causal

direction estimation [19].

An L
2
-distance variant of the dependence measure is

called quadratic mutual information (QMI) [48]:

QMI := dudv.

QMI is also a useful dependence measure in practice [49].

pU,V u,v( )log pU,V u,v( )
pU u( )pV v( )
--------------------------∫∫

pU u( )pV v( ) pU,V u,v( )
pU u( )pV v( )
-------------------------- 1–⎝ ⎠

⎛ ⎞
2

∫∫

pU,V u,v( ) pU u( )pV v( )–( )2∫∫

Fig. 3. Schematic of change-point detection in timeseries.

Fig. 4. Results of change-point detection. Original time-series
data is plotted in the top graphs, and change scores obtained by
KLIEP (Kullback-Leibler importance estimation procedure; Section
III-A) and LSDD (least-squares density difference; Section III-D)
are plotted in the bottom graphs. (a) CENSREC (Corpora and
Environments for Noisy Speech Recognition) dataset, (b) HASC
(Human Activity Sensing Consortium) dataset.

Fig. 5. Schematic of salient object detection in an image.
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V. CONCLUSIONS

In this article, we reviewed recent advances in direct

divergence approximation. Direct divergence approxima-

tors theoretically achieve optimal convergence rates, both

in parametric and non-parametric cases, and experimen-

tally compare favorably with the naive density-estimation

counterparts [21-25].

However, direct divergence approximators still suffer

from the curse of dimensionality. A possible cure for this

problem is to combine them with dimensionality reduc-

tion, based on the hope that two probability distributions

share some commonality [51, 52]. Further investigating

this line would be a promising future direction.
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