Example of the Baum-Welch Algorithm

Larry Moss

Q520, Spring 2008

1 Our corpus c

We start with a very simple corpus. We take the set Y of unanalyzed words to be $\{A B B A, B A B\}$, and c to be given by $c(A B B A)=10, c(B A B)=20$.

Note that the total value of the corpus is $\sum_{u \in Y} c(u)=10+20=30$.

2 Our first HMM h_{1}

The first HMM h_{1} is arbitrary. To have definite numbers around, we select some.

Starting probability of s is .85 , of t is .15. In $s, \operatorname{Pr}(A)=.4, \operatorname{Pr}(B)=.6$. In $t, \operatorname{Pr}(A)=.5, \operatorname{Pr}(B)=.5$.

$3 \alpha(y, j, s)$

Let $y \in Y$, and let n be the length of y. For $1 \leq j \leq n$ and s one of our states, we define $\alpha(y, j, s)$ to be the probability in the space of analyzed words that the first j symbols match those of y, and the ending state is s.

This is related to the computations in the Forward Algorithm because the overall probability of y in the HMM h is $\sum_{u \in S} \alpha(y, n, u)$. This is number is written as $\operatorname{Pr}_{h}(y)$.

Writing y as $A_{1} A_{2} \cdots A_{n}$, we have

$$
\begin{array}{ll}
\alpha(y, 1, s) & = \\
\alpha(y, j+1, s) & =\sum_{t \in S} \alpha(y, j, t) \operatorname{start}\left(s, A_{1}\right) \\
\alpha, s) \operatorname{out}\left(s, A_{j+1}\right)
\end{array}
$$

$A B B A$

$$
\begin{aligned}
& \alpha(A B B A, 1, s)=(.85)(.4)=0.34 . \\
& \alpha(A B B A, 1, t)=(.15)(.5)=0.08 . \\
& \alpha(A B B A, 2, s)=(0.34)(.3)(.6)+(0.08)(.1)(.6)=0.06120+0.00480=0.06600 . \\
& \alpha(A B B A, 2, t)=(0.34)(.7)(.5)+(0.08)(.9)(.5)=0.11900+0.03600=0.15500 . \\
& \alpha(A B B A, 3, s)=(0.06600)(.3)(.6)+(0.15500)(.1)(.6)=0.01188+0.00930=0.02118 .
\end{aligned}
$$

$\alpha(A B B A, 3, t)=(0.06600)(.7)(.5)+(0.15500)(.9)(.5)=0.02310+0.06975=0.09285$.
$\alpha(A B B A, 4, s)=(0.02118)(.3)(.4)+(0.09285)(.1)(.4)=0.00254+0.00371=0.00625$.
$\alpha(A B B A, 4, t)=(0.02118)(.7)(.5)+(0.09285)(.9)(.5)=0.00741+0.04178=0.04919$.
Total probability of $A B B A$ is $0.00625+0.04919=0.05544$.

$B A B$

$\alpha(B A B, 1, s)=(.85)(.6)=0.51$.
$\alpha(B A B, 1, t)=(.15)(.5)=0.08$.
$\alpha(B A B, 2, s)=(0.51)(.3)(.4)+(0.08)(.1)(.4)=0.0612+0.0032=0.0644$.
$\alpha(B A B, 2, t)=(0.51)(.7)(.5)+(0.08)(.9)(.5)=0.1785+0.0360=0.2145$.
$\alpha(B A B, 3, s)=(0.06600)(.3)(.6)+(0.15500)(.1)(.6)=0.01188+0.00930=0.0209$.
$\alpha(B A B, 3, t)=(0.0644)(.7)(.5)+(0.2145)(.9)(.5)=0.0225+0.0965=0.1190$.
Total probability of $B A B$ is $0.0209+0.1190=0.1399$.

3.1 The likelihood of the corpus using h_{1}

$$
L\left(c, h_{1}\right)=\operatorname{Pr}(A B B A)^{c(A B B A)} \cdot \operatorname{Pr}(B A B)^{c(B A B)}=0.05544^{10} 0.1399^{20}
$$

It is easier to work with the \log of this, and then
$\log L\left(c, h_{1}\right)=(10 * \log 0.05544)+(20 * \log 0.1399)=-68.2611$

4 The $\beta(y, j, s)$ values

Define $\beta(y, j, s)$ to be the following conditional probability:
Given that the j th state is s, the $(j+1)$ st symbol will be A_{j+1}, the $(j+2)$ nd will be A_{j+2}, \ldots, the nth will be A_{n}.

Writing y as $A_{1} A_{2} \cdots A_{n}$, our equations go backward:

$$
\begin{aligned}
& \beta(y, n, s)=1 \\
& \beta(y, j, s)=\sum_{u \in S} \operatorname{go}(s, u) \operatorname{out}\left(u, A_{j+1}\right) \beta(y, j+1, u)
\end{aligned}
$$

4.1 $\beta(A B B A, j, s)$ for $1 \leq j \leq 4$

$\beta(A B B A, 4, s)=1$.
$\beta(A B B A, 4, t)=1$.
$\beta(A B B A, 3, s)=\sum_{u \in S} \operatorname{go}(s, u) \operatorname{out}(u, A) \beta(A B B A, 4, u)=(.3)(.4)(1)+(.7)(.5)(1)=0.47000$
$\beta(A B B A, 3, t)=\sum_{u \in S}^{u \in S} \operatorname{go}(t, u) \operatorname{out}(u, A) \beta(A B B A, 4, u)=(.1)(.4)(1)+(.9)(.5)(1)=0.49000$
$\beta(A B B A, 2, s)=\sum_{u \in S} \operatorname{go}(s, u) \operatorname{out}(u, B) \beta(A B B A, 3, u)=(.3)(.6)(0.47000)+(.7)(.5)(0.49000)=0.25610$
$\beta(A B B A, 2, t)=\sum_{u \in S} \operatorname{go}(t, u) \operatorname{out}(u, B) \beta(A B B A, 3, u)=(.1)(.6)(0.47000)+(.9)(.5)(0.49000)=0.24870$
$\beta(A B B A, 1, s)=\sum_{u \in S} \operatorname{go}(s, u) \operatorname{out}(u, B) \beta(A B B A, 2, u)=(.3)(.6)(0.25610)+(.7)(.5)(0.24870)=0.13315$
$\beta(A B B A, 1, t)=\sum_{u \in S}^{u \in S} \operatorname{go}(t, u) \operatorname{out}(u, B) \beta(A B B A, 2, u)=(.1)(.6)(0.25610)+(.9)(.5)(0.24870)=0.12729$

$$
\begin{aligned}
& 4.2 \quad \beta(B A B, j, s) \text { for } 1 \leq j \leq 3 \\
& \beta(B A B, 3, s)=1 \\
& \beta(B A B, 3, t)=1 \\
& \beta(B A B, 2, s)=\sum_{u \in S} \operatorname{go}(s, u) \operatorname{out}(u, B) \beta(B A B, 3, u)=(.3)(.4)(1)+(.7)(.5)(1)=0.53000 \\
& \beta(B A B, 2, t)=\sum_{u \in S} \operatorname{go}(t, u) \operatorname{out}(u, B) \beta(B A B, 3, u)=(.1)(.4)(1)+(.9)(.5)(1)=0.51000 \\
& \beta(B A B, 1, s)=\sum_{u \in S} \operatorname{go}(s, u) \operatorname{out}(u, A) \beta(B A B, 2, u)=(.3)(.6)(0.53000)+(.7)(.5)(0.51000)=0.24210 \\
& \beta(B A B, 1, t)=\sum_{u \in S} \operatorname{go}(t, u) \operatorname{out}(u, A) \beta(B A B, 2, u)=(.1)(.6)(0.53000)+(.9)(.5)(0.51000)=0.25070 \\
& \mathbf{5} \quad \gamma(y, j, s, t)
\end{aligned}
$$

Let $y \in Y$, and write y as $A_{1} \cdots A_{n}$. We want the probability in the subspace $A(y)$ that an analyzed word has s as its j th state, $\left(A_{j+1}\right.$ as its $(j+1)$ st symbol), and t as its $(j+1)$ st state. (This only makes sense when $1 \leq j<n$.)

This probability is called $\gamma(y, j, s, t)$. It is given by

$$
\gamma(y, j, s, t)=\frac{\alpha(y, j, s) \operatorname{go}(s, t) \operatorname{out}\left(t, A_{j+1}\right) \beta(y, j+1, t)}{\operatorname{Pr}_{h}(y)}
$$

In other words, $\gamma(y, j, s, t)$ is the probability that a word in $A(y)$ has an s as its j th symbol and a t as its $(j+1)$ st symbol.

It is important to see that for different unanalyzed words, say y and $z, \gamma(y, j, s, t)$ and $\gamma(z, j, s, t)$ are probabilities in different spaces.

For example,

$$
\gamma(A B B A, 1, t, s)=\frac{\alpha(A B B A, 1, t) \operatorname{go}(t, s) \operatorname{out}(s, B) \beta(A B B A, 2, s)}{\operatorname{Pr}_{h}(A B B A)}=\frac{0.08 * .1 * .6 * 0.25610}{0.05544}=0.02217
$$

The values are

$$
\begin{array}{rlllll}
\gamma(A B B A, 1, s, s) & =0.28271 & \gamma(A B B A, 2, s, s)=0.10071 & \gamma(A B B A, 3, s, s)=0.04584 \\
\gamma(A B B A, 1, s, t)=0.53383 & \gamma(A B B A, 2, s, t)=0.20417 & \gamma(A B B A, 3, s, t)=0.13371 \\
\gamma(A B B A, 1, t, s)=0.02217 & \gamma(A B B A, 2, t, s)=0.07884 & \gamma(A B B A, 3, t, s)=0.06699 \\
\gamma(A B B A, 1, t, t)=0.16149 & \gamma(A B B A, 2, t, t)=0.61648 & \gamma(A B B A, 3, t, t)=0.75365 \\
& \gamma(B A B, 1, s, s)=0.23185 & \gamma(B A B, 2, s, s)=0.08286 \\
& \gamma(B A B, 1, s, t)=0.65071 & \gamma(B A B, 2, s, t)=0.16112 & \\
& \gamma(B A B, 1, t, s)=0.01212 & \gamma(B A B, 2, t, s)=0.09199 & \\
& \gamma(B A B, 1, t, t)=0.13124 & \gamma(B A B, 2, t, t)=0.68996
\end{array}
$$

$6 \quad \delta(y, j, s)$

This is the probability of an analyzed word in $A(y)$ that the j th state is s. For $j<l e n g t h(y), \delta(y, j, s)=$ $\sum_{u \in S} \gamma(y, j, s, u)$. Also, $\delta(y, n, s)=\alpha(y, n, s) / \operatorname{Pr}_{h}(y)$.

So here we have

$$
\begin{aligned}
& \delta(A B B A, 1, s)=0.81654 \\
& \delta(A B B A, 1, t)=0.18366 \\
& \delta(A B B A, 2, s)=0.30488 \\
& \delta(A B B A, 2, t)=0.69532 \\
& \delta(A B B A, 3, s)=0.17955 \\
& \delta(A B B A, 3, t)=0.82064 \\
& \delta(A B B A, 4, s)=0.11273 \\
& \delta(A B B A, 4, t)=0.88727
\end{aligned}
$$

7 Our next HMM h_{2}

Recall that we start with a corpus c given by $c(A B B A)=10, c(B B A)=20$.
We want to use the δ values along with the corpus to get a new HMM, defined by relative frequency estimates of the expected analyzed corpus c^{*}.

The starting probability of state s is $I /(I+J)$, and that of t is $J /(I+J)$, where

$$
\begin{aligned}
& I=\delta(A B B A, 1, s)(c(A B B A))+\delta(B A B, 1, s)(c(B A B))=(0.81654 * 10)+(0.88256 * 20)=25.816600 \\
& J=\delta(A B B A, 1, t)(c(A B B A))+\delta(B A B, 1, t)(c(B A B))=(0.18366 * 10)+(0.14336 * 20)=4.703800
\end{aligned}
$$

So we get that the start of s is 0.846 , and the start of t is 0.154 .
The probability of going from state s to state s will be $K /(K+L)$, where

$$
\begin{aligned}
K= & (\gamma(A B B A, 1, s, s)+\gamma(A B B A, 2, s, s)+\gamma(A B B A, 3, s, s)) * c(A B B A) \\
& \quad+(\gamma(B A B, 1, s, s)+\gamma(B A B, 2, s, s)) * c(B A B) \\
= & (0.28271+0.10071+0.04584) *(10)+(0.23185+0.08286) *(20) \\
= & 10.58680 \\
= & (\gamma(A B B A, 1, s, t)+\gamma(A B B A, 2, s, t)+\gamma(A B B A, 3, s, t)) * c(A B B A) \\
& \quad+(\gamma(B A B, 1, s, t)+\gamma(B A B, 2, s, t)) * c(B A B) \\
= & (0.53383+0.20417+0.13371) *(10)+(0.65071+0.16112) *(20) \\
= & 24.95370
\end{aligned}
$$

So the new value of $\operatorname{go}(s, s)$ is 0.298 . Similarly, the new value of $\mathrm{go}(s, t)$ is 0.702 . The probability of going from state t to state s will be $M /(M+N)$, where

$$
\begin{aligned}
M= & (\gamma(A B B A, 1, t, s)+\gamma(A B B A, 2, t, s)+\gamma(A B B A, 3, t, s)) * c(A B B A) \\
& \quad+(\gamma(B A B, 1, t, s)+\gamma(B A B, 2, t, s)) * c(B A B) \\
= & (0.02217+0.07884+0.06699) *(10)+(0.01212+0.09199) *(20) \\
= & 3.76220 \\
N= & (\gamma(A B B A, 1, t, t)+\gamma(A B B A, 2, t, t)+\gamma(A B B A, 3, t, t)) * c(A B B A) \\
& \quad+(\gamma(B A B, 1, t, t)+\gamma(B A B, 2, t, t) * c(B A B) \\
= & (0.16149+0.61648+0.75365) *(10)+(0.13124+0.68996) *(20) \\
= & 31.74020
\end{aligned}
$$

So the new value of $\operatorname{go}(t, s)$ is 0.106 . Similarly, the new value of $\operatorname{go}(t, t)$ is 0.894 .

Turning to the outputs, the probability that in state s we output A is $K /(K+L)$, where

$$
\begin{aligned}
K & =(\delta(A B B A, 1, s)+\delta(A B B A, 4, s)) * c(A B B A))+(\delta(B A B, 2, s) * c(B A B)) \\
& =((0.81654+0.11273) * 10)+(0.24398 * 20) \\
& =14.17230 \\
L & =(\delta(A B B A, 2, s)+\delta(A B B A, 3, s)) * c(A B B A))+((\delta(B A B, 1, s)+\delta(B A B, 3, s)) * c(B A B)) \\
& =((0.30488+0.17955) * 10)+(0.88256+0.14939) * 20) \\
& =25.48330
\end{aligned}
$$

Thus the probability is 0.357 . Similarly, the probability that we output B in state s is 0.643 .
The probability that in state t we output A is $M /(M+N)$, where

$$
\begin{aligned}
M & =(\delta(A B B A, 1, t)+\delta(A B B A, 4, t)) * c(A B B A))+(\delta(B A B, 2, t) * c(B A B)) \\
& =((0.18366+0.88727) * 10)+(0.78195 * 20) \\
& =26.34830 \\
N & =(\delta(A B B A, 2, s)+\delta(A B B A, 3, s)) * c(A B B A))+((\delta(B A B, 1, s)+\delta(B A B, 3, s)) * c(B A B)) \\
& =((0.69532+0.82064) * 10)+(0.14336+0.85061) * 20) \\
& =35.03900
\end{aligned}
$$

Thus the probability is 0.4292 . Similarly, the probability that we output B in state s is $N /(M+N), 0.5708$.

7.1 Another model

We have a new HMM which we call h_{2} :

Starting probability of s is 0.846 , of t is 0.154 .
In $s, \operatorname{Pr}(A)=0.357, \operatorname{Pr}(B)=0.643$. In $t, \operatorname{Pr}(A)=0.4292, \operatorname{Pr}(B)=0.5708$.

8 Again

At this point, we do all the calculations over again. I have hidden them, and only report the probabilities of the elements of Y and the log likelihood of the corpus.
Total probability of $A B B A$ is $0.00635+0.04690=0.05325$.
Total probability of $B A B$ is $0.0223+0.1250=0.1473$.

8.1 The likelihood of the corpus using h_{2}

$L\left(c, h_{2}\right)=\operatorname{Pr}(A B B A)^{c(A B B A)} \cdot \operatorname{Pr}(B A B)^{c(B A B)}=0.05325^{10} 0.1473^{20}$
$\log L\left(c, h_{2}\right)=(10 * \log 0.05325)+(20 * \log 0.1473)=-67.6333$

8.2 Again a new model

Using h_{2}, we then do all the calculations and construct a new HMM which we call h_{3} :

Starting probability of s is 0.841 of t is 0.159 .
In $s, \operatorname{Pr}(A)=0.3624, \operatorname{Pr}(B)=0.6376$. In $t, \operatorname{Pr}(A)=0.4252, \operatorname{Pr}(B)=0.5748$.

9 Again Again

Total probability of $A B B A$ is $0.00653+0.04672=0.05325$.
Total probability of $B A B$ is $0.0223+0.1254=0.1477$.

9.1 The likelihood of the corpus using h_{3}

$$
\begin{gathered}
L\left(c, h_{3}\right)=\operatorname{Pr}(A B B A)^{c(A B B A)} \cdot \operatorname{Pr}(B A B)^{c(B A B)}=0.05325^{10} 0.1477^{20} \\
\log L\left(c, h_{3}\right)=(10 * \log 0.05325)+(20 * \log 0.1477)=-67.5790
\end{gathered}
$$

9.2 Another model

After doing all the calculations once again, we have a new HMM which we call h_{4} :

Starting probability of s is 0.841 , of t is 0.159 . In $s, \operatorname{Pr}(A)=0.3637, \operatorname{Pr}(B)=0.6363$. In $t, \operatorname{Pr}(A)=0.4243$, $\operatorname{Pr}(B)=0.5757$.

10 The likelihoods

The likelihood of c in h_{1} was -68.2611 .
The likelihood of c in h_{2} was -67.6333 .
The likelihood of c in h_{3} was -67.5790 .
In playing around with different starting values, I found that the likelihood on h_{3} sometimes was worse than that of h_{2} (contrary to what we'll prove in class). I believe this is due to rounding errors in the calculations of the starting probabilities in the different states. I also noticed that most of the updating was actually to those starting probabilities, with the others changing only a little.

