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1 Our corpus c

We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to
be given by c(ABBA) = 10, c(BAB) = 20.

Note that the total value of the corpus is
∑

u∈Y c(u) = 10 + 20 = 30.

2 Our first HMM h1

The first HMM h1 is arbitrary. To have definite numbers around, we select some.
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Starting probability of s is .85, of t is .15. In s, Pr(A) = .4, Pr(B) = .6. In t, Pr(A) = .5, Pr(B) = .5.

3 α(y, j, s)

Let y ∈ Y , and let n be the length of y. For 1 ≤ j ≤ n and s one of our states, we define α(y, j, s) to be the
probability in the space of analyzed words that the first j symbols match those of y, and the ending state is s.

This is related to the computations in the Forward Algorithm because the overall probability of y in the
HMM h is

∑
u∈S α(y, n, u). This is number is written as Prh(y).

Writing y as A1A2 · · ·An, we have

α(y, 1, s) = start(s)out(s,A1)
α(y, j + 1, s) =

∑
t∈S

α(y, j, t)go(t, s)out(s,Aj+1)

ABBA

α(ABBA, 1, s) = (.85)(.4) = 0.34.
α(ABBA, 1, t) = (.15)(.5) = 0.08.
α(ABBA, 2, s) = (0.34)(.3)(.6) + (0.08)(.1)(.6) = 0.06120 + 0.00480 = 0.06600.
α(ABBA, 2, t) = (0.34)(.7)(.5) + (0.08)(.9)(.5) = 0.11900 + 0.03600 = 0.15500.
α(ABBA, 3, s) = (0.06600)(.3)(.6) + (0.15500)(.1)(.6) = 0.01188 + 0.00930 = 0.02118.
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α(ABBA, 3, t) = (0.06600)(.7)(.5) + (0.15500)(.9)(.5) = 0.02310 + 0.06975 = 0.09285.
α(ABBA, 4, s) = (0.02118)(.3)(.4) + (0.09285)(.1)(.4) = 0.00254 + 0.00371 = 0.00625.
α(ABBA, 4, t) = (0.02118)(.7)(.5) + (0.09285)(.9)(.5) = 0.00741 + 0.04178 = 0.04919.
Total probability of ABBA is 0.00625 + 0.04919 = 0.05544.

BAB

α(BAB, 1, s) = (.85)(.6) = 0.51.
α(BAB, 1, t) = (.15)(.5) = 0.08.
α(BAB, 2, s) = (0.51)(.3)(.4) + (0.08)(.1)(.4) = 0.0612 + 0.0032 = 0.0644.
α(BAB, 2, t) = (0.51)(.7)(.5) + (0.08)(.9)(.5) = 0.1785 + 0.0360 = 0.2145.
α(BAB, 3, s) = (0.06600)(.3)(.6) + (0.15500)(.1)(.6) = 0.01188 + 0.00930 = 0.0209.
α(BAB, 3, t) = (0.0644)(.7)(.5) + (0.2145)(.9)(.5) = 0.0225 + 0.0965 = 0.1190.
Total probability of BAB is 0.0209 + 0.1190 = 0.1399.

3.1 The likelihood of the corpus using h1

L(c, h1) = Pr(ABBA)c(ABBA) · Pr(BAB)c(BAB) = 0.05544100.139920

It is easier to work with the log of this, and then
log L(c, h1) = (10 ∗ log 0.05544) + (20 ∗ log 0.1399) = −68.2611

4 The β(y, j, s) values

Define β(y, j, s) to be the following conditional probability:
Given that the jth state is s, the (j + 1)st symbol will be Aj+1, the (j + 2)nd will be Aj+2, . . ., the nth

will be An.
Writing y as A1A2 · · ·An, our equations go backward:

β(y, n, s) = 1
β(y, j, s) =

∑
u∈S

go(s, u)out(u, Aj+1)β(y, j + 1, u)

4.1 β(ABBA, j, s) for 1 ≤ j ≤ 4

β(ABBA, 4, s) = 1.
β(ABBA, 4, t) = 1.
β(ABBA, 3, s) =

∑
u∈S

go(s, u)out(u, A)β(ABBA, 4, u) = (.3)(.4)(1) + (.7)(.5)(1) = 0.47000

β(ABBA, 3, t) =
∑
u∈S

go(t, u)out(u, A)β(ABBA, 4, u) = (.1)(.4)(1) + (.9)(.5)(1) = 0.49000

β(ABBA, 2, s) =
∑
u∈S

go(s, u)out(u, B)β(ABBA, 3, u) = (.3)(.6)(0.47000) + (.7)(.5)(0.49000) = 0.25610

β(ABBA, 2, t) =
∑
u∈S

go(t, u)out(u, B)β(ABBA, 3, u) = (.1)(.6)(0.47000) + (.9)(.5)(0.49000) = 0.24870

β(ABBA, 1, s) =
∑
u∈S

go(s, u)out(u, B)β(ABBA, 2, u) = (.3)(.6)(0.25610) + (.7)(.5)(0.24870) = 0.13315

β(ABBA, 1, t) =
∑
u∈S

go(t, u)out(u, B)β(ABBA, 2, u) = (.1)(.6)(0.25610) + (.9)(.5)(0.24870) = 0.12729
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4.2 β(BAB, j, s) for 1 ≤ j ≤ 3

β(BAB, 3, s) = 1.
β(BAB, 3, t) = 1.
β(BAB, 2, s) =

∑
u∈S

go(s, u)out(u, B)β(BAB, 3, u) = (.3)(.4)(1) + (.7)(.5)(1) = 0.53000

β(BAB, 2, t) =
∑
u∈S

go(t, u)out(u, B)β(BAB, 3, u) = (.1)(.4)(1) + (.9)(.5)(1) = 0.51000

β(BAB, 1, s) =
∑
u∈S

go(s, u)out(u, A)β(BAB, 2, u) = (.3)(.6)(0.53000) + (.7)(.5)(0.51000) = 0.24210

β(BAB, 1, t) =
∑
u∈S

go(t, u)out(u, A)β(BAB, 2, u) = (.1)(.6)(0.53000) + (.9)(.5)(0.51000) = 0.25070

5 γ(y, j, s, t)

Let y ∈ Y , and write y as A1 · · ·An. We want the probability in the subspace A(y) that an analyzed word
has s as its jth state, (Aj+1 as its (j + 1)st symbol), and t as its (j + 1)st state. (This only makes sense when
1 ≤ j < n.)

This probability is called γ(y, j, s, t). It is given by

γ(y, j, s, t) =
α(y, j, s)go(s, t)out(t, Aj+1)β(y, j + 1, t)

Prh(y)
.

In other words, γ(y, j, s, t) is the probability that a word in A(y) has an s as its jth symbol and a t as its
(j + 1)st symbol.

It is important to see that for different unanalyzed words, say y and z, γ(y, j, s, t) and γ(z, j, s, t) are
probabilities in different spaces.

For example,

γ(ABBA, 1, t, s) =
α(ABBA, 1, t)go(t, s)out(s,B)β(ABBA, 2, s)

Prh(ABBA)
=

0.08 ∗ .1 ∗ .6 ∗ 0.25610
0.05544

= 0.02217.

The values are

γ(ABBA, 1, s, s) = 0.28271
γ(ABBA, 1, s, t) = 0.53383
γ(ABBA, 1, t, s) = 0.02217
γ(ABBA, 1, t, t) = 0.16149

γ(ABBA, 2, s, s) = 0.10071
γ(ABBA, 2, s, t) = 0.20417
γ(ABBA, 2, t, s) = 0.07884
γ(ABBA, 2, t, t) = 0.61648

γ(ABBA, 3, s, s) = 0.04584
γ(ABBA, 3, s, t) = 0.13371
γ(ABBA, 3, t, s) = 0.06699
γ(ABBA, 3, t, t) = 0.75365

γ(BAB, 1, s, s) = 0.23185
γ(BAB, 1, s, t) = 0.65071
γ(BAB, 1, t, s) = 0.01212
γ(BAB, 1, t, t) = 0.13124

γ(BAB, 2, s, s) = 0.08286
γ(BAB, 2, s, t) = 0.16112
γ(BAB, 2, t, s) = 0.09199
γ(BAB, 2, t, t) = 0.68996

6 δ(y, j, s)

This is the probability of an analyzed word in A(y) that the jth state is s. For j < length(y), δ(y, j, s) =∑
u∈S γ(y, j, s, u). Also, δ(y, n, s) = α(y, n, s)/ Prh(y).
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So here we have

δ(ABBA, 1, s) = 0.81654
δ(ABBA, 1, t) = 0.18366
δ(ABBA, 2, s) = 0.30488
δ(ABBA, 2, t) = 0.69532
δ(ABBA, 3, s) = 0.17955
δ(ABBA, 3, t) = 0.82064
δ(ABBA, 4, s) = 0.11273
δ(ABBA, 4, t) = 0.88727

δ(BAB, 1, s) = 0.88256
δ(BAB, 1, t) = 0.14336
δ(BAB, 2, s) = 0.24398
δ(BAB, 2, t) = 0.78195
δ(BAB, 3, s) = 0.14939
δ(BAB, 3, t) = 0.85061

7 Our next HMM h2

Recall that we start with a corpus c given by c(ABBA) = 10, c(BBA) = 20.
We want to use the δ values along with the corpus to get a new HMM, defined by relative frequency

estimates of the expected analyzed corpus c∗.
The starting probability of state s is I/(I + J), and that of t is J/(I + J), where

I = δ(ABBA, 1, s)(c(ABBA)) + δ(BAB, 1, s)(c(BAB)) = (0.81654 ∗ 10) + (0.88256 ∗ 20) = 25.816600
J = δ(ABBA, 1, t)(c(ABBA)) + δ(BAB, 1, t)(c(BAB)) = (0.18366 ∗ 10) + (0.14336 ∗ 20) = 4.703800

So we get that the start of s is 0.846, and the start of t is 0.154.
The probability of going from state s to state s will be K/(K + L), where

K = (γ(ABBA, 1, s, s) + γ(ABBA, 2, s, s) + γ(ABBA, 3, s, s)) ∗ c(ABBA)
+(γ(BAB, 1, s, s) + γ(BAB, 2, s, s)) ∗ c(BAB)

= (0.28271 + 0.10071 + 0.04584) ∗ (10) + (0.23185 + 0.08286) ∗ (20)
= 10.58680

L = (γ(ABBA, 1, s, t) + γ(ABBA, 2, s, t) + γ(ABBA, 3, s, t)) ∗ c(ABBA)
+(γ(BAB, 1, s, t) + γ(BAB, 2, s, t)) ∗ c(BAB)

= (0.53383 + 0.20417 + 0.13371) ∗ (10) + (0.65071 + 0.16112) ∗ (20)
= 24.95370

So the new value of go(s, s) is 0.298. Similarly, the new value of go(s, t) is 0.702. The probability of going
from state t to state s will be M/(M + N), where

M = (γ(ABBA, 1, t, s) + γ(ABBA, 2, t, s) + γ(ABBA, 3, t, s)) ∗ c(ABBA)
+(γ(BAB, 1, t, s) + γ(BAB, 2, t, s)) ∗ c(BAB)

= (0.02217 + 0.07884 + 0.06699) ∗ (10) + (0.01212 + 0.09199) ∗ (20)
= 3.76220

N = (γ(ABBA, 1, t, t) + γ(ABBA, 2, t, t) + γ(ABBA, 3, t, t)) ∗ c(ABBA)
+(γ(BAB, 1, t, t) + γ(BAB, 2, t, t)) ∗ c(BAB)

= (0.16149 + 0.61648 + 0.75365) ∗ (10) + (0.13124 + 0.68996) ∗ (20)
= 31.74020

So the new value of go(t, s) is 0.106. Similarly, the new value of go(t, t) is 0.894.
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Turning to the outputs, the probability that in state s we output A is K/(K + L), where

K = (δ(ABBA, 1, s) + δ(ABBA, 4, s)) ∗ c(ABBA)) + (δ(BAB, 2, s) ∗ c(BAB))
= ((0.81654 + 0.11273) ∗ 10) + (0.24398 ∗ 20)
= 14.17230

L = (δ(ABBA, 2, s) + δ(ABBA, 3, s)) ∗ c(ABBA)) + ((δ(BAB, 1, s) + δ(BAB, 3, s)) ∗ c(BAB))
= ((0.30488 + 0.17955) ∗ 10) + (0.88256 + 0.14939) ∗ 20)
= 25.48330

Thus the probability is 0.357. Similarly, the probability that we output B in state s is 0.643.
The probability that in state t we output A is M/(M + N), where

M = (δ(ABBA, 1, t) + δ(ABBA, 4, t)) ∗ c(ABBA)) + (δ(BAB, 2, t) ∗ c(BAB))
= ((0.18366 + 0.88727) ∗ 10) + (0.78195 ∗ 20)
= 26.34830

N = (δ(ABBA, 2, s) + δ(ABBA, 3, s)) ∗ c(ABBA)) + ((δ(BAB, 1, s) + δ(BAB, 3, s)) ∗ c(BAB))
= ((0.69532 + 0.82064) ∗ 10) + (0.14336 + 0.85061) ∗ 20)
= 35.03900

Thus the probability is 0.4292. Similarly, the probability that we output B in state s is N/(M + N), 0.5708.

7.1 Another model

We have a new HMM which we call h2:

?>=<89:;s

0.702

((
0.298

++ ?>=<89:;t

0.106

hh

0.894

ss

Starting probability of s is 0.846, of t is 0.154.
In s, Pr(A) = 0.357, Pr(B) = 0.643. In t, Pr(A) = 0.4292, Pr(B) = 0.5708.

8 Again

At this point, we do all the calculations over again. I have hidden them, and only report the probabilities of
the elements of Y and the log likelihood of the corpus.
Total probability of ABBA is 0.00635 + 0.04690 = 0.05325.
Total probability of BAB is 0.0223 + 0.1250 = 0.1473.

8.1 The likelihood of the corpus using h2

L(c, h2) = Pr(ABBA)c(ABBA) · Pr(BAB)c(BAB) = 0.05325100.147320

log L(c, h2) = (10 ∗ log 0.05325) + (20 ∗ log 0.1473) = −67.6333
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8.2 Again a new model

Using h2, we then do all the calculations and construct a new HMM which we call h3:

?>=<89:;s

0.708

((
0.292

++ ?>=<89:;t

0.109

hh

0.891

ss

Starting probability of s is 0.841 of t is 0.159.
In s, Pr(A) = 0.3624, Pr(B) = 0.6376. In t, Pr(A) = 0.4252, Pr(B) = 0.5748.

9 Again Again

Total probability of ABBA is 0.00653 + 0.04672 = 0.05325.
Total probability of BAB is 0.0223 + 0.1254 = 0.1477.

9.1 The likelihood of the corpus using h3

L(c, h3) = Pr(ABBA)c(ABBA) · Pr(BAB)c(BAB) = 0.05325100.147720

log L(c, h3) = (10 ∗ log 0.05325) + (20 ∗ log 0.1477) = −67.5790

9.2 Another model

After doing all the calculations once again, we have a new HMM which we call h4:
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Starting probability of s is 0.841, of t is 0.159. In s, Pr(A) = 0.3637, Pr(B) = 0.6363. In t, Pr(A) = 0.4243,
Pr(B) = 0.5757.

10 The likelihoods

The likelihood of c in h1 was −68.2611.
The likelihood of c in h2 was −67.6333.
The likelihood of c in h3 was −67.5790.
In playing around with different starting values, I found that the likelihood on h3 sometimes was worse than

that of h2 (contrary to what we’ll prove in class). I believe this is due to rounding errors in the calculations of
the starting probabilities in the different states. I also noticed that most of the updating was actually to those
starting probabilities, with the others changing only a little.
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