
Extreme Machine Learning

with GPUs

John Canny

Computer Science Division

University of California, Berkeley

GTC, March, 2014

Big Data

Recommendation System
Sentiment Analysis and

Social Network Analysis

Event and text data:

Microsoft

Yahoo

Ebay

Quantcast

…

MOOC logs

Social Media

Health Data

…

Later: Images, Video

Big Data Workflow

Digging Around

in Data

Hypothesize

Model

Large Scale

Exploitation

Evaluate

Interpret

Top-10 “Big Data” Algorithms

1. Regression (logistic, linear) + Naïve Bayes

2. Support Vector Machines

3. Greedy Clustering (k-Means)

4. Topic Models (Latent Dirichlet Allocation)

5. Collaborative Filtering (Sparse Matrix Factorization)

6. Random Forests

7. Hidden-Markov Models

8. Spectral Clustering

9. Factorization Machines (Regression with Interactions)

10. Multi-layer neural networks

11. Natural Language Parsing

Machine Learning for Big Data

DATA

Classical: Batch model update in memory

samples

features

• Incremental-update Methods

• Stochastic Gradient Descent (SGD)

• Gibbs Sampling (GS)

DATA
M+

∆M DATA
M+

∆M
DATA

M+

∆M

Large Datasets: Mini-batch model updates

Spark: UC Berkeley

HaLoop: U. Washington

Mahout

BIDMat/BIDMach: (this talk)

Downpour SGD: (Google)

Hogwild: U. Wisc.-Madison

Torch7: (NYU, NEC)

Convnet, RNNLib, Visual-RBM: Toronto

Theano: Montreal

Deep

Learning

GPUs at a glance…

Intel CPU NVIDIA GPU

Memory Controller

L3 Cache

Core

ALU

Core

ALU

Core

ALU

Core

ALU

L2 Cache

Vive La Difference !

Intel CPU NVIDIA GPU

Memory Controller

L3 Cache

Core

ALU

Core

ALU

Core

ALU

Core

ALU

L2 Cache

4 MB register file (!)4kB registers:

Hardware transcendentals (power series)

A datapoint: NLP Parsing (Canny, Hall, Klein, EMNLP 2013)

Natural language parsing with the state-of-the-art

Berkeley grammar (1100 symbols, 1.7 million rules)

End-to-End Throughput (4 GPUs):

2-2.4 Teraflops (1-1.2 B rules/sec)

CPU throughput is about 5 Mflops.

i.e. we achieved a 0.5 million-fold speedup on rule

evaluation.

Memory Performance

Intel 8 core Sandy Bridge CPU NVIDIA GK110 GPU

8 MB L3 Cache
1.5 MB L2 Cache

4 MB register file (!)4kB registers:

1 MB Shared Mem

2 MB L2 Cache

512K L1 Cache

1 MB Constant Mem

1 TB/s1 TB/s

40 TB/s

13 TB/s

5 TB/s

10s GB Main Memory 4 GB Main Memory

20 GB/s 150 GB/s

500 GB/s
500 GB/s

Hi Speed CPU kernels

Intel 8 core Sandy Bridge CPU NVIDIA GK110 GPU

8 MB L3 Cache
1.5 MB L2 Cache

4 MB register file (!)4kB registers:

1 MB Shared Mem

2 MB L2 Cache

512K L1 Cache

1 MB Constant Mem

1 TB/s1 TB/s

40 TB/s

13 TB/s

5 TB/s

10s GB Main Memory 4 GB Main Memory

20 GB/s 150 GB/s

500 GB/s
500 GB/s

A Strategy for Speed on GPUs

Intel 8 core Sandy Bridge CPU NVIDIA GK110 GPU

8 MB L3 Cache
1.5 MB L2 Cache

4 MB register file (!)4kB registers:

1 MB Shared Mem

2 MB L2 Cache

512K L1 Cache

1 MB Constant Mem

1 TB/s1 TB/s

40 TB/s

13 TB/s

5 TB/s

10s GB Main Memory 4 GB Main Memory

20 GB/s 150 GB/s

500 GB/s

500 GB/s

Using Register and Constant Memory

Our goal is to use registers to hold symbols values, and

constant memory to hold rule weights.

i.e. we commit to compiling the grammar into code, like this

(actual GPU code):

float L001 = left[1][tid];

float R031 = right[31][tid];

float P001 = L001 * R031 * 1.338202e-001f;

P001 += L021 * R019 * 8.32642e-003f;

...

atomicAdd(&parent[1][tid], P001);

Using Register and Constant Memory

But: Each GPU “core” has only 63 (or 255 in Titan)

registers.

We have 1132 x 3 = 3396 symbols, a less-than-perfect fit.

Therefore we use blocking, similar to the approach used in

fast CPU matrix kernels, partly inspired by:

“Usually not worth trying to cache block like you would on CPU”

– GTC 2012 Performance Analysis and Optimization 

i.e. we cluster the symbols into small subsets which fit into

register storage, trying at the same time to balance the

number of rules in each block.

A Strategy for Speed on GPUs

Intel 8 core Sandy Bridge CPU NVIDIA GK110 GPU

8 MB L3 Cache
1.5 MB L2 Cache

4 MB register file (!)4kB registers:

1 MB Shared Mem

2 MB L2 Cache

512K L1 Cache

1 MB Constant Mem

1 TB/s1 TB/s

40 TB/s

13 TB/s

5 TB/s

10s GB Main Memory 4 GB Main Memory

20 GB/s 150 GB/s

500 GB/s

500 GB/s

Blocking

Align the (1132) symbols for P, L, R along the axes of a

cube. We want small subcubes whose sides are roughly 50

values, that will fit in GPU register memory.

8 blocks on

one GPU

Blocks that run as separate kernels (function calls) on a

GPU.

P R

L

Serendipity

The compiler’s version

float tmp = L021 * R019;

P001 += tmp * 8.32642e-003f;

P002 += tmp * 4.31572e-005f;

P005 += tmp * 2.81231e-002f;

Compiles each rule update line into a single atomic

multiply-add instruction, which runs in one cycle.

i.e. with 1.7 million rules, the compiled GPU code has

about 1.7 million instructions.

It runs at about 2 cycles/rule or 1 teraflop per GPU. This is

as fast as dense matrix multiply on the GTX-680.

Back to our Top-10 list

1. Regression (logistic, linear) + Naïve Bayes

2. Support Vector Machines

3. Greedy Clustering (k-Means)

4. Topic Models (Latent Dirichlet Allocation)

5. Collaborative Filtering (Sparse Matrix Factorization)

6. Random Forests

7. Hidden-Markov Models

8. Spectral Clustering

9. Factorization Machines (Regression with Interactions)

10. Multi-layer neural networks

BIDMat/BIDMach architecture

People

Algorithms

Hardware

(GPU + CPU)
Network

Matrix Layer

BIDMach

BIDMat

A GPU-enabled Matrix Tool

Written in the beautiful Scala language:

• Interpreter, w/ excellent performance

• Natural syntax +,-,*, ,, etc and high-level expressivity

• CPU and GPU backend (generics)

• Hardware acceleration – many custom GPU kernels

• Easy threading (Actors)

• Java VM + Java codebase – runs on Hadoop, Spark

• Good text processing, integrated XML interpreter

Inspired by Matlab, R, SciPy

DataSource

(JBOD disks)
Learner

Model

Optimizer

Regularizer

Mixins

Model

Optimizer

Regularizer

Mixins

GPU 1 thread 1

GPU 2 thread 2

:

:

CPU host code

data

blocks

DataSource

(Memory)

DataSource

HDFS over

network

Zhao+Canny

SIAM DM 13, KDD 13, BIGLearn 13A modular learning API

Compressed disk streaming at

~ 1.5GB/s  40-100 Hadoop nodes

4 GPUs: 80 Gflops to

3 Teraflops typical

BIDMach sample code

Latent Dirichlet Allocation Model:

def eStep(sdata:Mat, user:Mat):Unit = {

for (i <- 0 until opts.uiter) {

val preds = SDDMM(modelmat, user, sdata)

val unew = user  (mm * (sdata / preds)) + opts.alpha

user <-- exppsi(unew)

}

}

BIDMach

Every Learner can:

• Run Sparse or Dense input matrices

• Run on GPU or CPU

• Run on single or multiple GPUs

• Use in-memory or disk data sources (matrix caching)

• Run on single or multiple network nodes*

BIDMach Performance

Performance dominated by a few kernels:

Dense-dense MM – sgemm (for dense input data)

Sparse-dense MM and filtered MM (for sparse inputs)

Almost all learners achieve end-to-end performance of:

• 20-40 Gflops (for sparse input data)

• 1-3 Tflops (for dense input data)

Tested K-means, LDA, ALS, on Mahout, Scikit-Learn,

Vowpal Wabbit, Mlbase, with MKL acceleration if possible.

Speedups 100x to several 1000x.

Benchmarks

Variational Latent Dirichlet Allocation

i.e. 10x improvement for the single-node implementation

vs. 64-node cluster, or 500x in per-node throughput.

Avg end-to-end throughput with 4 GPUs is 80 Gflops.

(N hosts x N cores x N GPUs)

Benchmarks

Variational Latent Dirichlet Allocation (256 dims)

We have run this algorithm up to 10 TB, ~1016 floating point operations,

on a single PC with GTX-680s.

This is the largest calculation on commodity hardware that we know of.

LDA convergence on 1 Terabyte of Twitter data

MapReduce Version

Variational Latent Dirichlet Allocation (256 dims)

But you can do this on a big MapReduce Cluster, right?

• No-one has

• Probably not

• The common MapReduce implementations (Hadoop, Spark,

Powergraph*) don’t scale. i.e. The communication time stops

decreasing and starts increasing past a certain point, on this example

about 20 machines.

Kylix: A Scalable, Sparse Allreduce

(Forthcoming paper)

• Total communication across all layers a small constant larger than

the top layer, which is close to optimal.

• Communication volume across layers has a characteristic Kylix

shape.

Learner Output

1.00%, ll=-4.985, gf=71.878, secs=116.9, GB=10.04, MB/s=85.87, GPUmem=0.57, 0.57, 0.57, 0.57

2.00%, ll=-4.852, gf=67.469, secs=254.9, GB=20.54, MB/s=80.56, GPUmem=0.57, 0.57, 0.57, 0.57

3.00%, ll=-4.824, gf=68.385, secs=379.8, GB=31.00, MB/s=81.62, GPUmem=0.57, 0.57, 0.57, 0.57

4.00%, ll=-4.803, gf=68.469, secs=517.2, GB=42.27, MB/s=81.73, GPUmem=0.57, 0.57, 0.57, 0.57

5.00%, ll=-4.787, gf=69.333, secs=639.4, GB=52.91, MB/s=82.74, GPUmem=0.57, 0.57, 0.57, 0.57

6.00%, ll=-4.784, gf=69.589, secs=768.7, GB=63.84, MB/s=83.04, GPUmem=0.57, 0.57, 0.57, 0.57

7.00%, ll=-4.784, gf=70.226, secs=892.2, GB=74.77, MB/s=83.80, GPUmem=0.57, 0.57, 0.57, 0.57

8.00%, ll=-4.762, gf=70.415, secs=1023.6, GB=86.00, MB/s=84.02, GPUmem=0.57, 0.57, 0.57, 0.57

9.00%, ll=-4.765, gf=70.492, secs=1135.5, GB=95.50, MB/s=84.10, GPUmem=0.57, 0.57, 0.57, 0.57

10.00%, ll=-4.761, gf=70.488, secs=1260.1, GB=105.97, MB/s=84.10, GPUmem=0.57, 0.57, 0.57, 0.57

11.00%, ll=-4.762, gf=70.346, secs=1373.9, GB=115.29, MB/s=83.92, GPUmem=0.57, 0.57, 0.57, 0.57

12.00%, ll=-4.758, gf=70.087, secs=1496.1, GB=125.09, MB/s=83.61, GPUmem=0.57, 0.57, 0.57, 0.57

13.00%, ll=-4.760, gf=69.812, secs=1621.2, GB=135.01, MB/s=83.28, GPUmem=0.57, 0.57, 0.57, 0.57

14.00%, ll=-4.756, gf=69.549, secs=1752.5, GB=145.40, MB/s=82.97, GPUmem=0.57, 0.57, 0.57, 0.57

15.00%, ll=-4.753, gf=69.229, secs=1890.2, GB=156.12, MB/s=82.59, GPUmem=0.57, 0.57, 0.57, 0.57

16.00%, ll=-4.748, gf=68.930, secs=2016.9, GB=165.87, MB/s=82.24, GPUmem=0.57, 0.57, 0.57, 0.57

17.00%, ll=-4.752, gf=68.697, secs=2136.9, GB=175.16, MB/s=81.97, GPUmem=0.57, 0.57, 0.57, 0.57

18.00%, ll=-4.749, gf=68.411, secs=2275.6, GB=185.74, MB/s=81.62, GPUmem=0.57, 0.57, 0.57, 0.57

19.00%, ll=-4.759, gf=68.125, secs=2426.5, GB=197.24, MB/s=81.29, GPUmem=0.57, 0.57, 0.57, 0.57

20.00%, ll=-4.751, gf=67.889, secs=2573.0, GB=208.40, MB/s=80.99, GPUmem=0.57, 0.57, 0.57, 0.57

21.00%, ll=-4.740, gf=67.661, secs=2718.3, GB=219.43, MB/s=80.72, GPUmem=0.57, 0.57, 0.57, 0.57

22.00%, ll=-4.760, gf=67.407, secs=2855.3, GB=229.62, MB/s=80.42, GPUmem=0.57, 0.57, 0.57, 0.57

23.00%, ll=-4.760, gf=67.179, secs=2986.0, GB=239.29, MB/s=80.14, GPUmem=0.57, 0.57, 0.57, 0.57

24.00%, ll=-4.755, gf=66.968, secs=3132.1, GB=250.21, MB/s=79.89, GPUmem=0.57, 0.57, 0.57, 0.57

25.00%, ll=-4.756, gf=66.776, secs=3266.1, GB=260.16, MB/s=79.66, GPUmem=0.57, 0.57, 0.57, 0.57

Benchmarks

Alternating Least Squares: (synthetic Netflix Data)

• i.e. order of magnitude speedup for single-node vs. 64-

node cluster, or 1000x speedup in per-node throughput.

• Uses the SDDMM matrix primitive and interleaved

conjugate gradient updates (KDD 2013 paper).

• About 80 Gflops end-to-end throughput w/ 4 GPUs.

Benchmarks

Logistic Regression: (100GB Twitter)

• i.e. single-node implementation takes 2x time, and has
50x the per-node throughput.

• But for multi-model regression (many different targets),
BIDMach achieves 50x the throughput (one node vs 100),
and 5000x the per-node throughput.

Benchmarks

Pagerank Iteration (using Sparse Allreduce)

i.e. for in-memory data, single-node performance is

comparable with a 64-node cluster (about 40x faster in per-

node throughput)

Toward Interactive Machine Learning

People

Algorithms

Hardware

(GPU + CPU)
Network

Matrix Layer

Interactive ML

Gibbs Sampling

The most general method for inference on probabilistic

graphical models:

• Simple to specify and implement

• Flexible (grouping, ordering)

• Unbiased

• Allows estimation of arbitrary statistics

But:

• Slow!!

• Hard to do parameter optimization

EM and Cooled Gibbs Sampling

EM: Separate parameters from other latent variables: joint is
P(X,Θ), maximize P(Θ) and compute expected log likelihood.

Standard Gibbs: blocked sample from P(X | Θ) and P(Θ | X)

Cooled Gibbs: sample from P(X1 ,…, Xk | Θ) and
P(Θ | X1 ,…, Xk) for independent groups Xi

The Xi have the same conditional distribution as before.

parameters now ~ Pk(Θ), i.e. the parameter distribution
cooled to T=1/k.

The samples Xi can often be computed very fast.

EM and Cooled Gibbs Sampling

In the language of graphical models:

Run independent simulations with tied parameters Θ

Θ

EM and Cooled Gibbs Sampling

What cooling does:

Likelihood function in model parameter space (peaks are

good models)

EM and Cooled Gibbs Sampling

What cooling does:

Likelihood function in model parameter space (peaks are

good models)

Cooled Gibbs Sampling

The “fastest” version of this sampler represents a collection

of samples by its average.

For some models, e.g. LDA, other factor models, the fastest

sampler is also exact.

The fast sampler gives a two order-of-magnitude speedup

for inference on LDA models.

We can use both samplers on general graphical models:

• Run the fast, cooled sampler to convergence.

• Run the exact cooled sampler for a few iterations.

Toward Interactive Modeling

We can control the temperature of individual parameters in

a model, and use this for human-supervised search. See

Biye’s poster.

Future

“Caffeinated” BIDMach:

• Wrapping a DNN toolkit called

CAFFE with a Java native API

Genomics Module:

• Very fast, bit-level edit distance (2 Tcups)

• Sorting (the new hashing)

• Probabilistic alignment/assembly

• Cleaving, reversing, filtering,…

Summary

• You can achieve order-of-magnitude speedups for general

machine learning through roofline design (BIDMach).

• With GPU acceleration, you gain a further order of

magnitude.

• You can scale the performance of GPU-accelerated ML,

but not with current MapReduce frameworks.

• Exciting possibilities for fundamental improvements in ML

through deep codesign (model compilation, cooled

sampling).

Software
42

Code:

github.com/BIDData/BIDMat

github.com/BIDData/BIDMach

BSD-style open source libs and dependencies,

Amazon AMI for test-driving…

http://bid2.berkeley.edu/bid-data-project/overview/

