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Figure 5. A, CMA learning curves. B, CMA performance curves. (From
Shynk, J. J., Gooch, R. P., Giridhar, K., and Chan, C. K., 1991, A com-
parative performance study of several blind equalization algorithms, in Pro-
ceedings of the SPIE Conference on Adaptive Signal Processing. © 1991,
SPIE. Reprinted with permission.)

variations of the LMS algorithm, including those that have less
complexity or improved convergence properties. For example,
CMA is a blind stochastic-gradient algorithm that can be used in-
stead of the LMS algorithm when an explicit training sequence is
not available. The recursive-least-squares (RLS) algorithm is an
adaptive algorithm based on the method of least squares that offers
faster convergence rates (compared with the LMS algorithm), but
at the expense of an increased computational complexity (Haykin,
2002).

Forecasting
Lyle H. Ungar

Introduction

Forecasting the future values of sequences of observations is, in
many ways, ideally suited for neural networks. Large amounts of

The adaptive filter configuration described in this article is the
basic component of a multilayer perceptron. These additional lay-
ers provide greater nonlinear modeling capabilities, which is usu-
ally necessary for complex applications such as speech and image
processing. Stochastic-gradient algorithms are typically used to ad-
just the weights of a multilayer perceptron. They are similar to the
adaptive algorithms described in this article, but they have an ad-
ditional degree of complexity owing to the cascade of layers. One
such algorithm, known as the backpropagation algorithm (Rumel-
hart and McClelland, 1986), has been successfully applied to a
number of signal processing problems (Widrow and Lehr, 1990).
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data may be available, and the underlying relationships are often
nonlinear and unknown. Neural nets, mostly of the standard back-
propagation type (see BACKPROPAGATION: GENERAL PRINCIPLES),
have been used with great success in many forecasting applications,
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including forecasting electricity load, freeway traffic volume, solar
cycles, milk yields, tourism demand, grain drying times, ambient
air quality, exchange rates, inflation, unemployment, disease epi-
demics, fish stock levels, sea surface temperatures, sales volumes,
flood occurrence in Moravia, and rainfall in Bangladesh. However,
in not all of such cases do neural networks outperform conventional
ARMA models. This article looks at the use of neural nets for
forecasting, with particular attention to understanding when they
perform better or worse than other technologies.

The success of neural networks in forecasting depends signifi-
cantly on the characteristics of the process being forecast. One may
want to predict minute-by-minute progress of a chemical reaction,
hour-by-hour power usage (load) for an electric power utility, daily
weather, monthly prices of products and inventory levels, and quar-
terly or yearly sales and profits. These problems differ in the quan-
tity and type of information available for forecasting, and hence
call for different forecasting techniques. One also needs to choose
an appropriate network architecture.

Forecasting problems can be characterized on a number of di-
mensions: (1) Is a single series of measurements used, as is often
done in conventional forecasting, or are multiple related measure-
ments available? (2) Are the data seasonal or not? Monthly or quar-
terly data such as sales volume or energy use often show strong
seasonal variation, while annual data or data measured each second
or minute do not. (3) The number of observations and (4) the degree
of randomness (signal/noise ratio) of the process also strongly limit
the complexity of the model that can be fit. If data are only available
annually for the past 10 or 20 years, and if no measurement is
available for most of the disturbances, one should not expect to be
able to fit a complex model such as a neural network. This is un-
fortunately the case for many forecasting problems such as those
represented in the Makerdakis collection (described below). (5) Fi-
nally, for some forecasting problems, one only requires prediction
a single time step in the future, while for others, multiple time step
forecasts are required. This has implications for the method used
to train the neural network.

Before looking at neural networks, we will briefly review con-
ventional forecasting methods. Forecasting has mostly been done
using one of two different classes of methods, depending on
whether the data are seasonal or not. For monthly data, such as
sales or unemployment levels, the seasonal variation is often re-
moved by dividing the series by an index representing the historical
seasonal variation. For example, dividing the unemployment rate
for each month (perhaps averaged over several years) by the av-
erage annual unemployment rate gives an index that indicates
monthly variations. This index will have an average value of one.
Dividing the actual unemployment rate in a given month by the
index for that month gives the seasonally adjusted unemployment
rate, which shows overall trends after typical monthly variations
are accounted for. A linear or exponential regression (i.e., fitting
the data as a linear or exponential function of time), or some form
of smoothing such as a moving average, can then be used to make
predictions of the deseasonalized unemployment. Actual levels are
then forecast by multiplying these base predictions by the index
for the month being forecast (Makridakis, Wheelwright, and
McGee, 1983).

In contrast, for many complex processes such as chemical plant
production, robots, or stock prices, the best prediction of the near
future is obtained by using an appropriately weighted combination
of recent measurements of the variable being predicted and other
correlated variables. The most widely used approach is the Auto-
Regressive Moving Average (ARMA) model. For example, to pre-
dict the value of a variable y (such as a temperature or a pressure
or a stock price) at time ¢+ + 1 using past values of y and of a
second variable z, one would use a linear regression to fit a model
of the form

Yie1 = € t oyt Gyt Yy T
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Note that ARMA models differ from the linear regression models
mentioned above in that they are functions of previous variables
rather than of time.

Neural networks can be used to learn a nonlinear generalization
of ARMA models of the form

Yerr = SO Yoot Yemos oo s 2o Zv1s - 2) 2)

When the process is nonlinear and sufficient data are available, the
neural networks will provide a more accurate model than the linear
ARMA model. See Box and Jenkins (1970) for extensive descrip-
tions of conventional ARMA models and the Box-Jenkins model-
ing approach, which involves picking a model of the form of Equa-
tion 1 with some subset of the coefficients set to zero. Later in this
article we summarize the results of a number of studies that com-
pare ARMA and neural network models.

Two other modeling methods are also often used by engineers,
Kalman filtering and Wiener-Voltera series. Kalman filters (see
KALMAN FILTERING: NEURAL IMPLICATIONS) assume a known
model structure in which the parameters and their covariance,
which is modeled explicitly, may be changing over time. Kalman
filters are good for modeling relatively simple but noisy processes,
but, unlike neural networks, they do not form nonparametric mod-
els that can accurately forecast the behavior of nonlinear systems.
Wiener-Voltera series are polynomial expansions fitted to past data.
As such, they, like neural nets, can approximate arbitrary functions.
However, for models with multiple inputs they require more data
than neural networks to obtain an equal level of accuracy.

Using Neural Nets for Forecasting

Neural networks are most often used to fit ARMA-style models of
raw time series data from one or more measurements, but they can
also be used as a piece of larger forecasting systems, such as in
combination with deseasonalizing (i.e., forecasting a time series
from which the seasonal component has been removed, as de-
scribed above). Even for the simpler ARMA-style models, attention
to the method is required if one is making forecasts multiple time
steps in the future rather than a single time step.

Direct Versus Recurrent Prediction

A simple form of multistep forecasting is direct prediction (Figure
1A), in which a network takes past values as inputs and has separate
outputs for predictions one, two, and more time steps in the future.
Alternatively, one can train a network to predict one time step in
the future and then use the network recursively to make multistep
predictions (Figure 1B). Such networks are sometimes called ex-
ternally recurrent networks, in contrast to networks that have in-
ternal memory. Direct forecasting networks are easier to build than
externally recurrent nets because they do not require unfolding in
time (described below), but the predictions are generally less ac-
curate, since they have more parameters that must be fit from the
same limited data.

The obvious way to train a network such as is used in Figure 1B
is to minimize the error on the one-time-step predictions. Unfor-
tunately, this does not give optimal networks for multistep predic-
tions. To better understand this somewhat confusing point, consider
the case of a simple linear ARMA model:

Yie1 = Co F 1y T Gy 3)
A two-step-ahead prediction would then take the form
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Figure 1. A, Direct prediction using a neural network. B, Recurrent one-
step-ahead prediction using a neural network repeatedly.

Selecting coefficients ¢, ¢, and ¢, to minimize the prediction error
for the one-step-ahead error yields a different equation than se-
lecting the same coefficients to minimize the error in the two-step
prediction. (Note that the former is a linear regression problem,
whereas the latter requires nonlinear regression because the coef-
ficients multiply each other.) More accurate long-range predictions
are obtained by training to minimize the multistep prediction error.
The solution using backpropagation uses the same unfolding in
time or other solution methods as for internally recurrent networks
(see RECURRENT NETWORKS: LEARNING ALGORITHMS). This and
related issues are covered in detail in books on conventional system
identification methods (e.g., Ljung and Torsten, 1983). Much good
work has been done using recurrent nets to model time series (e.g.,
Mozer, 1994).

Combining Neural Networks with Other Methods

There are a number of ways in which neural networks can be com-
bined with data preprocessing techniques, first principles (mecha-
nistic) with partial models of the process being forecast, and with
other forecasting techniques. Most commonly, if there is a strong
seasonal component to the data, the data may be deseasonalized
and the neural net used to forecast the basic trend. It may appear
pointless to use a seasonal index when it is well known that neural
networks can approximate arbitrary functions, which should in-
clude any seasonal variation. Experience indicates that if sufficient
data are available, this is true, but that for shorter time series, de-
seasonalizing gives more accurate forecasts.

Similarly, when modeling complex physical systems, much bet-
ter forecasts can be obtained with much less data when prior knowl-
edge (e.g., in the form of mass, energy, or kinematic constraints
on the variables, or in terms of monotonic relations between mea-
sured and forecast variables) is built into the network (Psichogios
and Ungar, 1992). In a typical example, the equations governing a
fermentation reactor are known except for the growth kinetics of
the cells (e.g., yeast) in the reactor. If a neural network is used just
to approximate the growth kinetics rather than to model the whole
system, models are learned that are more accurate and that extrap-
olate better to operating regimens where no data are available. Such
hybrid or “gray box” methods are popular in science and
engineering.

Neural networks can also be used in conjunction with conven-
tional forecasting methods. For example, one can often produce

more accurate forecasts by providing several conventional forecasts
as input to the neural network. In this case, the network serves
partly as a combining method in which the network produces a
weighted average of the different forecasts (Foster, Collopy, and
Ungar, 1992). Such combining of forecasts is widely practiced in
the forecasting community, mostly with relatively arbitrary com-
bining weights.

Assessing Neural Nets for Forecasting

There are several difficulties in assessing forecasting methods. The
most serious is that the results of a single forecast tell little about
whether the method will be superior for other forecasts. In testing
any method, it is important to have a large set of representative
time series on which the methods will be tested. An example of
such a collection of time series that has been widely used to com-
pare forecasting methods is the Makridakis competition, or M-
competition, model (Makridakis et al., 1982). This competition in-
cluded 1,001 series and evaluated 24 forecasting methods. The
series were taken from a variety of organizations in a number of
countries and included macroeconomic, microeconomic, industrial,
and demographic data such as production levels, net sales, unem-
ployment, spending, GNP, vital statistics, and infectious disease
incidence. The series included yearly, quarterly, and monthly se-
ries, but no series arising from securities or commodities trading.
These time series all involve only a single variable and do not
provide correlated variables, which might enhance the predictions.

One must also decide which error criteria to use. The most ob-
vious criterion, and the one that is optimized by standard neural
networks, is minimization of the mean squared prediction error.
This criterion has the property that a small number of unusual series
may have a large effect on the error. In looking at combined errors
for different time series, one must, of course, also normalize for
the different magnitudes of the series. Thus, forecasters often mea-
sure performance by using measures that are more robust to outliers
or atypical time series.

Three error measures that have proved particularly robust are the
percentage of time a method had a lower absolute error than the
“no-change” forecast (or “percent better”), the relative absolute er-
ror (or RAE), and the median absolute percent error (or mdAPE).
The RAE is calculated as the geometric mean across all series i of

T
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where X(7) is the forecast and x(¢) represents the true value of the
series at time 7. The RAE represents a comparison over the forecast
horizon T for series i of the absolute error of the forecast method,
compared to the no-change or random walk forecast. One then
calculates a geometric mean over all the series:

n 1/n
RAE = [H RAE,-] (6)
i=1
The median average percent error is defined as the median across

all series i of

T
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Good forecast performance is reflected in higher “percent betters”
and lower RAEs and mdAPEs.
In assessing neural networks for forecasting, one must compare
the accuracy of the neural networks with that of other statistical
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tools such as exponential smoothing (for a single time series) or
linear ARMA models (for several correlated time series). Surpris-
ingly, many studies fail to compare neural network forecasts with
well-made conventional forecasts.

Table 1 lists some applications in which neural networks have
been used for forecasting. Almost all of the studies used standard
backpropagation networks with less than a dozen inputs and less
than a dozen hidden nodes, with the exact architecture being se-
lected by trial and error. Also, most of the studies used data from
a single source, and most of the authors evaluated their results on
the basis of the mean squared error on out-of-sample forecasts (i.e.,
error when forecasting data other than that used for building the
model). Table 1 does not include any studies using chaotic time
series such as from the Mackey-Glass equation, which give little
insight into neural network forecasts of realistic data. See Vemuri
and Rogers (1994) for a good collection of reprints of a wide variety
for neural network forecasting studies, including all studies cited
in Table 1 that are not listed in the references. There is also an
extensive literature on neural network forecasting for process con-
trol (see PROCESS CONTROL in the First Edition). Process control
and robotics applications have seen some of the most successful
use of neural networks for forecasting, as the processes involved
are often sufficiently multivariable and nonlinear to warrant the use
of neural networks but sufficiently well characterized and free of
noise to allow accurate models to be built.

Dangers in Using Forecasts

Forecasts rely on a number of assumptions. They assume that the
system that is modeled remains constant, i.e., that the model that
held when the model was built still applies when the forecast is
made. If the system structure is evolving over time, techniques
from adaptive control may be more appropriate. It is also implicitly
assumed when forecasting using neural networks with multiple in-
puts that the covariance structure of the inputs will remain constant.
This presents a major difficulty when modeling systems that have

Table 1. Forecasting Using Neural Nets: Sample Results

Application Authors Results Compared with
Car sales, Tang et al. NNet better for Box-Jenkins
airline longer-term
passengers forecast;
Box-Jenkins
better for
shorter
Currency Weigend et al.  NNets better Random guessing
exchange
rates
Electric load Park et al. NNet better Currently used
forecasting technology
(unclear what)
Electrochemical Hudson et al. Prediction —
reaction looks good
Flour prices Chakraborty NNets better ARMA
et al. than ARMA
Polypropylene Chitra NNets slightly ~ ARMA
sales better than
ARMA
Stock prices White NNets provide ~ Random walk
no benefit

Widely varied Foster et al. NNets better Many exponential

(Makridakis on quarterly smoothing and
collection) data, worse deseasonalizing
on annual methods
data

feedback in them, if the feedback structure is variable. For example,
consider a house controlled by a thermostat. One will typically find
that the heater will be on more often when the house is cold (this
is, after all, what the heating system is designed to do). Forecasts
of future house temperature can be accurately made using historical
temperature measurements. If, however, these forecasts are used as
part of the control scheme (the thermostat), then instability often
results, since the forecasts fail to account for the new thermostat
behavior. Similar situations often occur in economics and market-
ing, where forecasts can result in new laws being passed or in new
prices being charged (and resulting actions by competitors), thus
invalidating the original forecast. Unfortunately, there is generally
little that one can do other than monitoring forecasts and distrusting
them or collecting more data, if the process being forecast changes.
(This is true in linear regression as well, where it is impossible to
tell which of two highly correlated inputs is responsible for changes
in an output, but at least one can easily detect the problem in linear
problems by examining the uncertainty on the regression coeffi-
cients, whereas it is usually concealed in neural nets.)

Discussion

Neural networks have many demonstrated successes as forecasting
tools and a smaller number of documented failures. All the usual
warnings about model building apply. In particular, to build a good
model, one needs good data. When the data are noisy and occur in
short series, neural networks often fail to do better than simple
forecasting techniques. For example, the 181 yearly series of the
M-competition, which have a mean length of 19 data points on
which to base a prediction, do not provide a good basis for complex
nonlinear models. Neural networks generally give significant im-
provements over conventional forecasting methods when applied
to monthly data in the M-competition set but not when applied to
yearly data (Hill, O’Connor, and Remus, 1996). This is probably
due to the high ratio of noise to data in the yearly data.

It may also be the case that the data are truly random or that the
key independent variables are not being measured. Research sug-
gests that this is true of the stock market (White, 1988). If this is
true, then neural networks will not produce useful market forecasts,
although they may help sell forecasting products. Several fund
managers claim that they are getting superior predictions using neu-
ral networks, but for obvious competitive reasons, they generally
do not provide enough information to test the claims. Moody
(1998) provides a good discussion of the issues in forecasting the
economy.

Neural networks have proved successful in a number of appli-
cations such as forecasting prices (Chakraborty et al., 1992), prod-
uct demand (Chitra, 1993), electric utility loads (Yu, Moghadda-
mjo, and Chen, 1992), and inventory levels (see Table 1). Such
problems are characterized by ample measurements with a rela-
tively high signal-to-noise ratio. In most cases, substantially better
performance is obtained by using several related inputs to the net-
work. For example, in forecasting wheat prices in three cities, su-
perior performance was found by using recent wheat prices and
measures of the local earning power. Similarly, in forecasting de-
mand for polypropylene production, several macroeconomic vari-
ables were fed into the network. On longer, more deterministic time
series, such as measuring the progress of a chemical reaction, neu-
ral networks have been shown to be a relatively accurate means of
forecasting even chaotic series (Hudson et al., 1990; Lapedes and
Farber in Vermuri and Rogers, 1994).

All of the applications cited above use standard backpropagation
networks, occasionally with some degree of structure built into the
network. For example, in the currency exchanges, excess weights
were eliminated, while for forecasting wheat prices, past values of
prices in three different cities were used to predict the logarithm
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of flour prices. All have demonstrated better performance than con-
ventional forecasting methods, except when only short time series
were available (10 to 30 data points) or when it was unclear if there
was an underlying model other than a biased random walk (e.g.,
stock prices). However, the gains in accuracy over conventional
forecasting methods are often relatively small, and overfitting is a
common problem. Many companies are now using neural networks
for problems such as demand forecasting. When sufficient data are
available and care is taken to avoid overfitting, neural networks
work well.

Road Map: Applications
Related Reading: Kalman Filtering: Neural Implications; Recurrent Net-
works: Learning Algorithms
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Gabor Wavelets and Statistical Pattern Recognition

John Daugman

Introduction

Starting around 1960, for about three decades investigation into the
functioning of the mammalian primary visual cortex was domi-
nated by recordings from single neurons. Using relatively simple
stimuli such as oriented bars of light (e.g., Hubel and Wiesel, 1962,
1974), the apparent coding dimensions underlying spatial vision
were mapped out by measuring tuning curves of individual neural
responses as functions of stimulus parameters. Although methods
later moved on, with innovations such as population recordings,
noninvasive imaging with photovoltaic dyes, and novel anatomical
techniques, the single-unit recording paradigm left a rich legacy of
data that lent itself to modeling in engineering terms such as fil-
tering, feature extraction, transform coding, and dimensionality
reduction.

In this framework, the key functional concept is that of a neu-
ron’s receptive field, which specifies that region of two-dimen-
sional (2D) visual space in which image events or structure can
influence the neuron’s activity. More exactly, the neuron’s recep-
tive field profile indicates the relative degree to which the cell is
excited or inhibited by the distribution of light as a function of its
spatial position within the receptive field. Through careful mea-
surements with precisely defined stimuli, the receptive field profile
of a linear neuron (one obeying proportionality and superposition
in its responses to stimuli) reveals how it will respond to any pattern
and allows the neuron to be analyzed in signal processing terms as
a filter. The powerful mathematical tools of linear systems analysis
(including Fourier analysis) are the basis of such extrapolations,
subject always to the assumption of linearity. More recent findings
of adaptive, nonlinear, remote interactions between visual neurons
“beyond the classical receptive field” undermine the linear filter
perspective and may even call into question the whole notion that

a neuron has a stable receptive field profile. Nevertheless, impres-
sive practical results have been achieved in engineering applica-
tions of one such model inspired by the classical receptive field
data. This article reviews the model that has come to dominate the
classical description of cortical simple cells and their inputs to com-
plex cells, and it reviews some successful applications of that
scheme within computer vision and statistical pattern recognition.

Receptive Fields and 2D Gabor Wavelets

Typical two-dimensional receptive field profiles of simple cells in
the feline visual cortex (Jones and Palmer, 1987) are shown in the
top row of Figure 1. There are arguably five major degrees of free-
dom (i.e., independent forms of variation) spanned by the spatial
receptive field structure of such neural populations. These can be
regarded as defining the dimensions of the spatial visual code at
this cortical level. The first two degrees of freedom are the location
of a neuron’s receptive field, defined by retinotopic coordinates (x,
v). The third is the size of its receptive field (which can be described
using a single scalar diameter, provided we view variation in the
field width/length aspect ratio as a secondary population structure).
The fourth is the orientation of the boundaries separating excitatory
and inhibitory regions, as seen in Figures 1 and 3, normally also
corresponding to the direction of receptive field elongation. The
fifth is the symmetry, which may be even or odd, or some linear
combination of these two canonical states. (Any function can be
decomposed into the sum of an even function plus an odd function,
and their relative amplitudes define a continuum that allows this
fifth dimension to be regarded as phase.)

These degrees of freedom in the spatial visual code also corre-
spond to certain dimensions of the “cortical architecture” (rules of
topographic and modular organization), although such structure is

TLFeBOOK



