
Geometric Optimisation on
Manifolds with Applications to

Deep Learning

Mario Lezcano Casado
Keble College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Hilary 2021

ar
X

iv
:2

20
3.

04
79

4v
1

 [
m

at
h.

O
C

]
 9

 M
ar

 2
02

2

Acknowledgements

I would like to begin by thanking my supervisors, Prof. Raphael Hauser and Prof. Vidit

Nanda for their time, effort, and guidance throughout this thesis. Thank you for giving me the

flexibility to delve into whatever mad topic I found interesting at the time. Discussions with

Jaime Mendizabal and David Martínez-Rubio have been truly excellent. Their suggestions,

clarifications, and probing questions pushed me to think in new ways and greatly improved

the thesis. My collaborators Adam Golinski and Tom Rainforth helped me to explore the

applications that this research has in other fields. Prof. Jose Manuel Gamboa Mutuberría has

been a constant source of support and encouragement all these years. To all of them a warm

thank you.

A heartfelt thank you to my parents and my brother for their unconditional support, in

particular during the final writing of this thesis.

On the less academic side, I would like to thank everybody in and around La Katacumbia.

Borondiño, Juan, Adri, Álvaro, Jorge, Recio, Miguel, David vinos, Sam, Felix, Steve, Adam,

Sergio, Daniel, María, Laura and everyone at 11 Iffley road. . . You have made these years

in the small city of Oxford incredibly enjoyable. From the parties by the river, to nights at

Plush and Cellar, barbecues, swimming pool, squash, gigs at the Tap Social and even a very

special summer solstice in Stonehenge followed by a weekend in Bristol that was not for the

faint-hearted. In all fairness, a long list of things to have done in the small town of Oxford.

I must single out Garima, Adri, and David, with whom I spent the best of lockdowns. Starting

as an odd night in London that looked straight from a B film, it was followed by some of

the best food I’ve had in my life—the arroz con leche, risotto, and banana bread come to

mind—Smash-up, Hollow Knight, Cuphead, the month that we worked out. . . For these things

and many more, thank you for making this surreal year special.

I would also like to thank Amigas y Conocidas, Roberto, Lorenzo, Cámara, Charles, Visierdo,

Inés and those floating around it such as my beloved Juan. It is always fantastic to be back

and be able to forget whatever I’m working on and just have a great night out, whether in

Burgos or in Berlin.

There are a few more that have made the last few years enjoyable—Irene and Elyem from la

Caixa, Mendi, Paco, David, Aguirre, Aitor and Adrià from Comeis, Guillem and Sara, Debbie,

Lina, Elena, Noémie, Manolo. . .—with whom I have shared some truly amazing moments.

To all of you: Thank you.

Contents

1 Introduction 1

1.1 Why this Thesis? . 1

1.1.1 A practical reason . 1

1.1.2 A theoretical reason . 2

1.2 Contributions and Outline . 4

2 Machine Learning and Neural Networks 6

2.1 Offline Statistical Learning . 6

2.1.1 Framework and terminology . 7

2.1.2 A note on statistical learning theory . 9

2.2 First Order Optimisation . 11

2.2.1 The complexity model . 11

2.2.2 Convex optimisation . 14

2.2.3 Non-convex optimisation . 16

2.3 Neural Network Architectures . 18

2.3.1 Neural networks . 18

2.3.2 Feedforward networks . 18

2.3.3 Recurrent neural networks (rnns) . 19

2.3.4 Why affine layers? . 21

2.3.4.1 Graphics Processing Units (gpus) . 21

2.3.4.2 Auto-differentiation: Forward and backward pass 22

2.3.5 An implementation of a feedforward network . 22

3 Differential and Riemannian Geometry 26

3.1 Fibred Manifolds . 26

3.2 Invariant Metrics and Principal Bundles . 31

3.3 Homogeneous Spaces . 36

3.4 Naturally Reductive Homogeneous Spaces . 41

3.5 Matrix Manifolds . 46

3.5.1 The Stiefel manifold . 47

3.5.2 The Grassmannian . 50

3.5.3 Symmetric positive definite matrices . 52

i

3.5.4 Fixed-rank matrices . 53

4 Fibred Manifolds in First Order Optimisation 54

4.1 Optimisation on Manifolds . 54

4.2 Fibred Manifolds and First Order Structure . 56

4.3 Riemannian Submersions . 63

4.4 Static Trivialisations . 67

4.4.1 Diffeomorphisms . 67

4.4.2 The Riemannian exponential . 67

4.4.2.1 Hadamard manifolds . 68

4.4.2.2 The general case . 68

4.4.2.3 The adjoint of the Riemannian exponential 70

4.5 Dynamic Trivialisations . 73

5 First and Second Order Bounds on the Riemannian Exponential 77

5.1 Introduction . 77

5.1.1 The problem and overview of assumptions . 77

5.1.2 Previous work . 79

5.2 Differential Geometry: Conventions and Notation . 81

5.3 First Order Bounds for the Exponential Map . 84

5.3.1 Jacobi fields . 85

5.3.2 Parallel vector fields . 88

5.3.3 Rauch’s theorem . 88

5.3.4 The law of cosines on manifolds . 94

5.4 Second Order Bounds for the Exponential Map . 96

5.4.1 The differential equation . 96

5.4.2 Manifolds of bounded geometry . 98

5.4.3 Curvature bounds . 100

5.4.4 A comparison lemma . 101

5.4.5 A second order version of Rauch’s theorem . 103

5.5 Concrete Second Order Bounds . 106

5.5.1 Constant curvature . 106

5.5.2 Locally symmetric spaces . 107

5.6 Convergence Rates for Dynamic Trivialisations . 110

5.7 When Is a Retraction an Exponential Map? . 113

6 GeoTorch: A Library for Optimisation on Manifolds at Scale 114

6.1 Orthogonal Constraints within Neural Networks . 115

6.1.1 Vanishing and exploding gradient problems . 115

6.1.2 Optimisation with orthogonal constraints . 117

ii

6.2 GeoTorch . 120

6.2.1 Libraries for optimisation on manifolds . 120

6.2.2 The design of GeoTorch . 121

6.2.2.1 Reusing pre-existing classes . 123

6.2.2.2 Caching tensors . 124

6.2.2.3 Injecting properties into classes . 126

6.2.2.4 Initialising parametrisations . 127

6.2.2.5 Class system . 128

6.3 Exponential Recurrent Neural Networks (exprnn / dtriv) 131

6.3.1 Comparison with previous approaches . 131

6.3.1.1 Riemannian Gradient Descent (rgd) . 132

6.3.1.2 Parametrisations . 132

6.3.2 The exponential map on a gpu . 134

6.3.3 Non-linearities . 136

6.3.4 Initialisation . 137

6.4 Experiments . 138

6.4.1 Copying memory task . 138

6.4.2 Pixel-by-pixel mnist . 139

6.4.3 timit speech dataset . 140

Bibliography 142

iii

Chapter 1

Introduction

1.1 Why this Thesis?

We start this thesis by justifying the theoretical and practical approach that this thesis takes. We

outline the general problems that we study on throughout it. After this, we summarise the results in the

thesis and its structure.

1.1.1 A practical reason

Optimisation has always been a field with vast applications in the real world, bringing together the

fields of analysis and constructive mathematics—and subsequently computer science—in order to be able

to approximate in a principled way the minima of functions traditionally defined on some subset of the

Euclidean space.

A natural extension of this setting is that of optimisation on Riemannian manifolds. Most of the

interesting sets of matrices used in the context of optimisation turn out to have a manifold structure.

Optimisation on manifolds is both theoretically and practically challenging due to the inherent complexity

of the objects involved. Even then, optimisation on matrix manifolds has proven to be rather useful in

many subfields of machine learning and neural networks (nn). Examples of interesting matrix manifolds in

the context of gradient-based optimisation are the set of positive definite matrices in Bayesian statistics as

kernels (Rasmussen and Williams 2005), orthogonal matrices within recurrent neural networks (Arjovsky,

Shah, and Bengio 2016; Helfrich, Willmott, and Ye 2018; Lezcano-Casado and Martínez-Rubio 2019), nns

with structured linear layers via matrix factorisations such as the qr or the svd decomposition (J. Zhang,

Lei, and Dhillon 2018; Kingma and Dhariwal 2018), or invertible matrices in normalising flows (Berg et al.

2018) and vaes (Tomczak and Welling 2016).

In parallel, during the last 10 years, neural networks have revolutionised many fields such as speech

recognition (Hinton et al. 2012; Saon et al. 2017), image recognition (Krizhevsky, Sutskever, and Hinton

2012; Y. Huang et al. 2019), and natural language processing (Collobert et al. 2011; Ott et al. 2018). Initially,

neural networks were a concatenation of linear layers, but with time, these architectures have been getting

more and more complex with the introduction of architectures such as attention mechanisms (Bahdanau,

Cho, and Bengio 2015; Vaswani et al. 2017), neural Turing machines (Graves, Wayne, and Danihelka

1

2014), variational auto encoders (vae) (Kingma and Welling 2014) and generative adversarial networks

(gan) (Goodfellow, Pouget-Abadie, et al. 2014).

This trend of building larger models on more advanced hardware, such as gpus and tpus has gone

hand in hand with the development of large linear algebra libraries such as PyTorch, Tensorflow, or

jax. These libraries are similar to Numpy or Scipy, but also come with full gpu and tpu support, an

autodifferentiation engine, support for automatic mixed-precision (amp), and many other capabilities

to help develop modern high-dimensional deep learning models that scale to datasets with millions of

datapoints.

At the time of writing, there is no library to put these two trends together in a practical way. The

current libraries that implement optimisation on manifolds techniques are designed for researchers, not for

practitioners. For this reason, the thesis aims to fulfil the following two objectives:

GeoTorch: A library for optimisation on manifolds at scale We design and implement a Python

library to help the non-expert using all these powerful tools in a way that is efficient, extensible, and

simple to incorporate into the workflow of the data scientist, practitioner, and applied researcher. The

algorithms implemented in this library have been designed with usability and gpu efficiency in mind, and

they can be added to any PyTorch model with just one extra line of code.

Orthogonal rnns We showcase the effectiveness of these tools on an application of optimisation on

manifolds in the setting of time series analysis. In this setting, orthogonal and unitary optimisation is

used to constraint and regularise recurrent models and avoid vanishing and exploding gradient problems.

The algorithms designed for GeoTorch allow us to achieve state of the art results in the standard tests for

this family of models.

1.1.2 A theoretical reason

The current approach to optimisation on manifolds rarely makes use of the abstract approach, favouring

the embedded setting. This seems like a natural thing to do, as the manifolds of interest in Riemannian

optimisation are, by definitions, manifolds embedded in Rn×k—i.e., matrix manifolds. When one has a

matrix manifold, it is natural to use the structure of the manifold as a manifold embedded in a linear

space and identify points on the manifold, vectors, actions by a (matrix) Lie group, isometries and similar

objects as matrices or linear functions. This approach often puts aside the entire abstract toolbox from

modern differential geometry, like fibred manifolds, group actions, principal connections, or Riemannian

homogeneous spaces, in favour of matrix manipulations.

Using matrices and algebraic manipulations rather than sections of the different associated bundles

and group actions often hides the actual symmetries that make these manifolds tractable. It is these

symmetries that allow us to find closed-form solutions to some differential equations on the manifold.

Cartan made a similar point when talking about the abstract index formalism:

2

The great opportunities that the absolute differential calculus of Ricci and Levi-Civita has

given us must not prevent us from avoiding purely formal calculations, where the profusion1 of

indices masks an often very simple geometric reality. It is this reality that I set out to highlight

here. (Original in French2) (Cartan 1946)

Identifying geometric objects on the manifold with matrices simplifies the background necessary to

check whether a proof is true, but it often hides the true reasons why the proof is true. Drawing similarities

with type systems in computer science, we can see that while it is true that dropping the types of a

correct program does not make it incorrect, it certainly makes it more difficult to reason about. The same

happens if we simply write points on the manifold or sections on the tangent bundle of the manifold as

matrices: It hides the geometric meaning from these operations.

In this sense, this more abstract approach, whenever applicable, can be used to explain the nature

of some numerical computations. In particular, in the field of constrained optimisation, when the set of

constraints is a Riemannian manifold with enough symmetries, we are in the best of scenarios as we can

use all the tool set from differential, Riemannian, and comparison geometry to explain the behaviour of

our algorithms. In this sense, this helps us in getting closer to the goal already set by Hamming in his

book on numerical methods

The purpose of computing is insight, not numbers. (Hamming 1962)

With these points in mind, in this thesis we will use the language of differential geometry for studying

the field of optimisation on manifolds. In particular, we will explore the following two research directions:

Use abstract differential geometry to study optimisation problems over matrices We use

the more abstract language of global differential geometry and group actions to prove convergence bounds

on certain optimisation problems on manifolds, postponing the instantiation of the results on concrete

manifolds as much as possible.

In doing so, we follow the approach started by Smith in his PhD thesis (Smith 1993), which was

written aimed for a numerical analysis audience in the influential paper (Edelman, Arias, and Smith 1998).

Use comparison geometry to study optimisation problems on Riemannian manifolds We

use tools from comparison geometry to give bounds on quantities that are of interest in optimisation

problems. In particular, we build on the work of (Kaul 1976) to give explicit bounds on the norm of the

second derivative of the Riemannian exponential.
1It is of historical interest to note that this expression was popularised in English by Spivak, who jokingly translated it as

“debauch of indices” in the first volume of his treaty on differential geometry. The word “débauches” in French has the same
meaning as “debauch” in English in almost any situation, being this one of the few exceptions in which it simply means
“profusion” with no extra connotation.

2Les services éminents qu’a rendus et que rendra encore le Calcul différentiel absolu de Ricci et Levi-Civita ne doivent pas
nous empêcher d’éviter les calculs trop exclusivement formels, où les débauches d’indices masquent une réalité géométrique
souvent très simple. C’est cette réalité que j’ai cherché à mettre partout en évidence.

3

1.2 Contributions and Outline

This thesis puts together three fields that are not usually found together. These are global differential

geometry, optimisation on manifolds, and deep learning. Researchers in each of these fields approach

problems lying at the intersection with completely different tools, notation, and goals in mind. It is for

this reason that we include at the beginning of the thesis two introductory chapters, one on classical

optimisation, machine learning, and their ties to deep learning (Chapter 2), and another one on differential

geometry from a global perspective (Chapter 3). All the results in these chapters are well-known to

researchers from the fields of optimisation, machine learning and/or differential and Riemannian geometry,

so it is only the exposition and comments throughout it that are original.

In the last three chapters, we present the research carried by the author during these last years. All

the results in these chapters are original except when specified otherwise. When a section is well-known to

geometers, we carefully announce so either at the beginning of each section or before each result so that it

is perfectly clear what is classic and what is new.

Chapter 4. Its main theme is optimisation on manifolds, and its secondary theme is differential and

Riemannian geometry. In this chapter, we study how the theory of pullbacks along submersions is a

fruitful one (Section 4.3). This theory helps to simplify problems in optimisation from spaces with a difficult

geometry to simpler ones. We also show how to use the theory laid out in Chapter 3 to prove second

order bounds on the pullback of a function by a Riemannian submersion (Theorem 4.3.1

and Proposition 4.3.2). We then go and look at the special case when we pullback an optimisation problem

to a Euclidean space via a retraction. We call this the static trivialisation framework. We make

special emphasis on the case when we use the Riemannian exponential map to pullback the problem to a

tangent space (Section 4.4.2), as this will be the main tool studied and used in Chapter 5 and implemented

in Chapter 6. At the end, we introduce the dynamic trivialisation framework (Algorithm 1), which

sees the Riemannian exponential as a map from TM to M and uses the vector bundle structure of TM

to solve the shortcomings of static trivialisations. These ideas were was presented at ICML 2019 and

NeurIPS 2019 (Lezcano-Casado and Martínez-Rubio 2019; Lezcano-Casado 2019).

Chapter 5. Its main theme is Riemannian and comparison geometry, and its secondary theme is

optimisation on manifolds. In this chapter, we give bounds on ‖Hess(f ◦ expp)‖ in terms of first and

second order bounds on f and the curvature of the Riemannian manifold (M, g). We start the chapter

by doing a literature review of previous approaches to the subject, where we show how these bounds

can be readily used in a number of papers that use second order bounds on retractions. We then offer

a self-contained proof of Rauch’s theorem, as we heavily rely on it throughout the second part of the

chapter, and it is not very well-known in the field of optimisation. We also look at its implications in the

area of convex optimisation on manifolds at the end of the section. After this, we use these results and a

few more to develop novel second order bounds on the Riemannian exponential (Theorems 5.4.13

and 5.4.14). From the first and second order bounds, we give conditional convergence rates for sgd

on the function f ◦ expp (Theorem 5.6.2), and the equivalent result for the dynamic trivialisation

algorithm (Theorem 5.6.4). The second order bounds and their application to get convergence rates for

4

static and dynamic trivialisations are the main theoretical results of the thesis. We finish this chapter

with a short characterisation result for retractions that are Riemannian exponential maps for

some connection in terms of sprays on the second tangent bundle TTM (Theorem 5.7.1).

Chapter 6. Its main themes are practical optimisation on manifolds and deep learning. In this chapter,

we explain how to implement the ideas of static and dynamic trivialisations that were laid out in Chapter 4.

The exposition in this chapter is done by developing the example of optimisation with orthogonal

constraints. We then present a literature review of the current state of the art of practical optimisation on

manifolds. After this, we go on to describe the implementation details of library GeoTorch that we have

developed to perform scalable optimisation on manifolds in large models (Section 6.2.2). We finish this

chapter and the thesis showing a number of experiments to showcase the practical efficiency of dynamic

trivialisations in the context of orthogonal rnns(Sections 6.3 and 6.4).

GeoTorch is available under mit license at

https://github.com/Lezcano/geotorch

The ideas in this chapter have been submitted to core PyTorch and have been accepted to be part

of PyTorch 1.9.0. The work in Section 6.3.2 led to the addition of the matrix exponential into core

PyTorch by Nikita Vedeneev. This implementation yielded a ×12 speed-up over the previous fastest GPU

implementation.

5

https://github.com/Lezcano/geotorch

Chapter 2

Machine Learning and Neural
Networks

In this chapter, we aim to contextualise the field of optimisation on manifolds and its applications

to neural networks within the broader field of machine learning. As we will see, the field of theoretical

machine learning draws from fields as disparate as probability in Banach spaces, optimisation in Hilbert

spaces, computer science, and engineering. This makes it difficult to find consistent terminology for this

field, where some concepts have been rediscovered several times during the last 50 years. As such, this

chapter has an introductory as well as a unifying character, giving a short introduction to all these ideas,

their development throughout history and the kind of results that one encounters in each relevant field,

while also introducing the nomenclature used in the fields of machine learning and deep learning, which

will be used throughout the rest of the thesis. This is done in the hope that readers coming from other

fields are not left with a text full of foreign terminology without a proper dictionary.

All the theoretical ideas in this chapter and many more can be found in the books (Vapnik 1995;

Nesterov 2004).

Outline of the chapter. We will start by giving a short motivation for the ideas that underlay the

current theoretical approach to offline machine learning, with the usual split between generalisation and

optimisation. Then, we will provide a historical review of some classical results in the field of statistical

learning theory and optimisation in Rn, to serve as an introduction and contextualisation to the convergence

results that we will give in the thesis. After that, we will give specific examples of a popular family

of models called neural networks, and we will show how to implement them in the PyTorch library.

Throughout the course of this introduction to the practical side of machine learning, we will make sure

to always draw connections to the theory outlined before. We hope this connection between theory and

practice helps to put in context the ideas that will be introduced in the thesis, where practical remarks

will often be interleaved with more theoretical ones to give algorithms that are solid on both ends.

2.1 Offline Statistical Learning

Before introducing what neural networks are, we shall first present the standard framework for offline

statistical learning in its most basic setting.

6

2.1.1 Framework and terminology

Features and labels. Let X and Y be two sets. We say that X is the feature space and Y is the

label space. For example, if we wanted to model whether the income of the parents affects whether

their children end up studying at Oxford, we would have X ∼= R≥0 as the set of all possible incomes (for

example in pounds), and Y ∼= {0, 1} which models whether certain children of theirs studied at Oxford

or not.12 In general, we could have X and Y to be any pair of sets, discrete or continuous, without any

structure.

Distribution and training set. We assume that there exists a random variable (X,Y) on X ×Y that

we want to study. We do not have direct access to (X,Y), but we can sample from it. One convenient way

of thinking of the random variable (X,Y) is as thinking that there exists certain random variable X on X

which induces a conditional one Y | X on Y.

In the context of offline statistical learning, we assume that we have access to m i.i.d. samples

(X1, Y1), . . . , (Xm, Ym) ∈ X × Y from (X,Y). We call these samples the training set, and we assume

m to be fixed a priori. This is where offline learning differs from online learning. In online learning, we

assume that we have access to a sampling oracle that gives us i.i.d. samples of (X,Y) on demand, so our

algorithm may adapt as we get more and more samples.3

In the example of the acceptance at Oxford, the distribution (X,Y) would be the actual unknown

distribution, having certain distribution on the income X and certain probability of being accepted at

Oxford given certain fixed income Y | X. The training set could be m samples that we collect via a survey.

Model and loss function. In order to model Y | X, we consider a family of functions fθ : X → Y

indexed by some parameter θ ∈ Θ. Usually Θ will be a Euclidean space Rn for some n > 0, but in more

general settings, like those that we will consider in this thesis, Θ can be a manifold or a more general

topological space. The family of functions {fθ | θ ∈ Θ} is called the model. The last thing that we will

need, is a loss function ` : Y ×Y → [0,∞), which serves as a proxy for a distance on Y , although it need

not be symmetric—and often it is not.

Following the previous example of admissions to Oxford, we would have to model the binary output

Y = {0, 1}. To do so, one usually considers the relaxation Y ∼= {0, 1} ⊆ [0, 1]. An example of a model in

this case could be what is called polynomial linear regression of degree n for a fixed n > 0 together

with a mapping σ : R→ [0, 1]. This model can be mathematically described setting Θ ∼= Rn+1 and

fθ : X × Rn+1 → [0, 1]

(x, θ) 7→ fθ(x) = σ
(n∑
k=0

θkx
k
)

1The use of ∼= instead of = here has a bit of a pedantic nature. Note that the set of all weights X is not intrinsically equal
to the abstract set R≥0 but it is merely identified mathematically with it. Hence, X and R≥0 are isomorphic, and not equal.

2The model and methodology presented here is an over-simplification which would not be of much use in the real world.
In a real model, one would compare many other variables, together with a much more complex analysis than the one that we
will present here.

3Often these m samples would be split into training set, test set and validation set. Although this practice is
fundamental in practice, we will not talk about it here to simplify this introduction.

7

and we could choose sigm(x) := 1
1+exp(−x) as the mapping. This is called the sigmoid function.4

In classification models, it is customary to think of the map fθ with image contained in [0, 1] as a

random variable on [0, 1] modelling Y |X. As such, the usual loss function is the cross-entropy between

the distribution induced by fθ and the empirical distribution

`(x, y) =
{log(x) if y = 1

log(1− x) if y = 0

Note that, in this case, y is assumed to be in {0, 1}, while x is assumed to be in (0, 1), which is the image

of fθ.

Remark 2.1.1 (Modelling a problem). The choice of the model and the loss function heavily depends

on the problem at hand, and currently, it is closer to an art than a science. For this reason, we will not

explore these further theoretically, as the scope of doing so is limited. We will come back to them in the

experiment sections, when we implement certain models to benchmark the algorithms that we will propose

against those in the literature.

Expected and empirical risk. With these objects in hand, we can define the expected risk or

population risk as

r(θ) := E[`(fθ(X), Y)].

We would then like to approximate a solution to the expected risk problem

arg min
θ∈Θ

E[`(fθ(X), Y)]. (2.1)

Of course, we cannot directly compute r(θ) as we do not have direct access to the distribution of (X,Y),

but what we can do is to estimate it via the empirical risk

Rm(θ) := 1
m

m∑
i=1

`(fθ(Xi), Yi).

We can compute the empirical risk, as opposed to the population risk. It also has the desirable property

of being an unbiased consistent estimator of r(θ). Using this estimator, we can define the empirical risk

minimisation objective (erm)

min
θ∈Θ

1
m

m∑
i=1

`(fθ(Xi), Yi). (2.2)

Denote an expected optimal value for the expected risk problem and an empirical optimal value

for the empirical risk problem by

θ∗ ∈ arg min
θ∈Θ

r(θ) ψ∗ ∈ arg min
θ∈Θ

Rm(θ).

In general, we will not be able to compute ψ∗ exactly. We will use some optimisation method that gives a

sequence of estimates ψt given by some optimisation algorithm. Putting all these quantities together, we

have the so-called statistics-optimisation trade-off.
4The image of the sigmoid function is (0, 1) rather than the full [0, 1], which seems in contradiction with the fact that we

are interested in modelling a random variable with values on the ends of [0, 1]. This is done due to convenience, as (0, 1) is
diffeomorphic to R (through the sigmoid function, for example), while [0, 1] is not even homeomorphic to R.

8

Proposition 2.1.2 (Statistics-optimisation trade-off). We have the following factorisation:

r(ψt)− r(θ∗) ≤ sup
θ∈Θ

(r(θ)−Rm(θ)) + sup
θ∈Θ

(Rm(θ)− r(θ))︸ ︷︷ ︸
Statistical term

+Rm(ψt)−Rm(ψ∗)︸ ︷︷ ︸
Optimisation term

. (2.3)

Proof. Interpolating we have

r(ψt)− r(θ∗) = (r(ψt)−Rm(ψt)) + (Rm(ψt)−Rm(ψ∗)) + (Rm(ψ∗)−Rm(θ∗)) + (Rm(θ∗)− r(θ∗)).

Noting that the term in the third parenthesis is non-positive and taking suprema we get the result.

The area of statistical learning theory studies how to give bounds for the statistical term for

different classes of models,5 and tries to give bounds on the number of samples m needed to make the

statistical term smaller than certain given quantity ε. Given that the samples (Xi, Yi) are stochastic, the

results in this field are given as results with high probability, that is, one proves that the statistical

term is less than ε with probability at least 1− δ, where ε, δ > 0 are some parameters given a priori. The

abstract idea behind these type of results is that of concentration of measure, quantifying for example

the rate of convergence of certain central limit theorem. These usually come from fine high-dimensional

versions of Markov’s and Chebyshev’s inequalities and other tail inequalities.

On the other hand, the area of stochastic optimisation studies how to design algorithms to

approximate solutions to the problem in (2.2). Given an algorithm, one proves the convergence of ψt as a

function of the number of steps t to a minimiser ψ∗. One often assumes some notion of convexity or some

degree of regularity of the derivatives of the function being minimised—Rm(θ) in this case—to be able to

prove this kind of results.

2.1.2 A note on statistical learning theory

The statistical term is studied in the statistical learning theory, often also referred to as generali-

sation theory, given that it studies how well an empirical optimum—for example Rm(ψ∗) or any other

estimator—approximates r(θ∗). In this approach, the quantity Rm(θ) is treated as random variable that

depends on (X1, Y1), . . . , (Xm, Ym).

Dimensionless bounds. In practice, machine learning models are larger and larger. In particular, the

parameter space Θ can have a dimension in the order of the billions. As such, the bounds that this theory

hopes to get are dimensionless, that is, independent of the dimension of Θ.6 For this reason, this theory

is based in the field of high dimensional probability. When one is able to get dimensionless bounds, it

tends to be the case that the proofs and results can be adapted to work in Hilbert and Banach spaces, and

as such, it should be no surprise that this theory is itself based in the theory of probability in Banach

spaces. The reference book in this field is Ledoux and Talagrand’s (Ledoux and Talagrand 1991).
5More generally, statistical learning theory tries to bound r(ψ) for an arbitrary point ψ ∈ Θ. The point does not need to

come from erm, and the bounds may be different to the ones presented here. That being said, this is by far the most used
approach.

6Note that this need not hold on the optimisation term. When computing bounds for the optimisation term later on,
we will often put them in terms of the Lipschitz constant. This Lipschitz constant often depends on the dimension of the
problem.

9

Modelling the generalisation term. The approach to get bounds on the statistical term in (2.3)

comes from assuming a metric space (Θ, d) on the parameter space and, for a fixed m > 0, considering the

stochastic process Xθ = r(θ)−Rm(θ) that depends on the random variables (X,Y), (X1, Y1), . . . , (Xm, Ym).

The problem can be then translated to bounding above and below the quantity

E sup
θ∈Θ

Xθ.

Generalising the problem by forgetting the particular structure of Xθ, one looks to give upper and lower

bounds on the expectation of a general stochastic process Xθ on a metric space (Θ, d).

The first result in this direction was the chaining argument. It was first developed by Kolmogorov

in 1934 but never published (Chentsov 1956), and it was then generalised by Dudley (Dudley 1967),

who proved Dudley’s entropy integral under the assumption that Xθ is subgaussian, giving the upper

bound

E sup
θ∈Θ

Xθ ≤ 12
∫ ∞

0

√
logN(Θ, d, ε) dε

where N(Θ, d, ε) is the ε-covering number of the metric space (Θ, d), that is, the minimum number of

balls of radius ε needed to cover the whole Θ.

Lower bounds on this quantity were given in the theory of Gaussian processes by Slepian, Fernike, and

Sudakov. These results assume Xθ to be a Gaussian process and consider the natural metric induced

by it in Θ, which is the L2 metric

d(θ1, θ2) = ‖Xθ1 −Xθ2‖2 = E[|Xθ1 −Xθ2 |2]1/2.

Using this distance, a Gaussian process is, by definition, also subgaussian under this metric. These natural

metrics allow giving not only lower bounds, but actually matching upper and lower bounds. This was

done by Talagrand in the celebrated majorising measure theorem (Talagrand 1987; Talagrand 1992;

Talagrand 1994). This result is quite technical, as it involves some fairly complex constructions on metric

spaces. Intuitively, these structures can be seen as a refinement of the global quantity N(Θ, d, ε) to be

rather a finer local one.

Going back to statistical learning theory, one of the most basic models of learning to consider is the set

Θ = {(−∞, x] | x ∈ R}

and fθ to be the indicator function on the interval θ ∈ Θ. A natural metric for these functions is the L∞

metric, as it is a metric that makes the empirical measure µm =
∑m
i=1 δXi subgaussian. On the other

hand, it is direct to see that the covering numbers N(Θ, ‖−‖∞, ε) =∞ for any ε. As such, all the previous

bounds become trivial for the case of infinite sets of indicator functions. However, it is possible to give

finite bounds for these functions via a process called symmetrisation, which can be summarised in the

following chain of inequalities

E
[
sup
θ∈Θ

m∑
i=1

(fθ(Xi)− E fθ)
]
≤ 2E

[
sup
θ∈Θ

m∑
i=1

εkf(Xi)
]
≤
√

2π E
[
sup
θ∈Θ

m∑
i=1

gkf(Xi)
]

where εk are i.i.d. symmetric Bernoulli and gk are i.i.d. N (0, 1). The quantities in the first and second

bound are called the Rademacher complexity of the set of functions Θ and the Gaussian complexity

10

of Θ respectively. These inequalities tell us that bounding any of these two complexities is enough to give

bounds on the empirical process, and as such, to give a priori bounds on the generalisation of the class of

our class of models. Most of the theory in statistical machine learning centres around giving bounds for

these two complexity quantities under different assumptions on the family fθ.

For a rather in-depth introduction to these and other topics from a probability theory perspective, we

strongly recommend the book by Ramon van Handel (Handel 2014). For a book with more applications

towards the machine learning see (Vershynin 2018). There is also the classical book by Vapnik which lays

the foundations of the field of statistical learning (Vapnik 1995).

To finish this note on the statistical term, we shall give an example of the magnitude of this term for a

simple family of classifiers.

Proposition 2.1.3. Let (X,Y) be a random variable on X × Y ⊆ Rn × R. Let Bn(r) ⊆ Rn be the ball

centred at zero with respect to the `2 norm. Consider two bounded sets Θ ⊆ Bn(rΘ), X ⊆ Bn(rX) for two

fixed rΘ, rX > 0. Consider the family of linear predictors fθ(x) = 〈θ, x〉 parametrised by Θ. For a loss

function L-Lipschitz on the first variable, we can bound the statistical term as

E sup
θ∈Θ

(Rm(θ)− r(θ)) = E
[
sup
θ∈Θ

m∑
i=1

`(〈θ,Xi〉, Yi)− E `(〈θ,X〉, Y)
]
≤ 2rX rΘL√

m
.

Proof. See for example (Shalev-Shwartz and Ben-David 2014, Lemma 26.9 and Lemma 26.10).

If one further assumes subgaussianity of the distribution of (X,Y), it is then possible to convert these

bounds in expectation to bounds with high probability, that is, one gets tail bounds on the distribution

of Rm(θ).

Remark 2.1.4 (Qualitative properties of the bound). The first thing to note is that, as we mentioned

before, this bound is independent of the dimension n of the parameter space Θ and the input space X .

Secondly, this bound tells us that, in the most basic case, the statistical term in (2.3) scales as O(1√
m

).

It is also possible to show that this bound is asymptotically tight for this family of classifiers. This bound

suggests that it is enough to optimise up to a precision on the order of O(1√
m

).

The asymptotics O(1√
m

) do not appear just in the case of linear classifiers, but also in many other

architectures. In essence, they stem from the convergence rates given by the central limit theorem. These

rates are asymptotically tight unless extra assumptions are considered. In typical scenarios, under more

restrictive hypotheses, the rate of convergence can be improved to O(1
m), which is usually referred to as

fast rate.

The take home from these ideas is that it should be just necessary to bound the optimisation term

at a rate O(1√
m

), as this bound is already imposed by the statistical term in the statistics-optimisation

factorisation.

2.2 First Order Optimisation
2.2.1 The complexity model

In the rest of the thesis, we will just look at the optimisation term introduced in the previous section.

More generally, we will be interested in studying algorithms to approximate a solution of problems of the

11

form

min
x∈X

f(x)

where X is a subset of Rn.7 Note that the set X is what we called Θ in the context of modelling and

machine learning.

As it is customary when developing a complexity theory for a class of algorithms, to be able even talk

about what an algorithm is without getting lost in computational semantic considerations, it is necessary

to introduce a computational model. A computational model in the theory of optimisation abstracts

the idea of what is a function, as a function in computer science can be defined in many possible ways

and a definition of a function may be as concrete as to be language-dependant.

In optimisation, the computational model abstracts a function f in terms of its value and derivatives

at its points.

Definition 2.2.1. A k-th order oracle O for a class Ck(X) function f : X→ R is a mapping that, given

a point x ∈ X, returns the k-th order information of f :

O(x) = (f(x),∇f(x),Hess f(x), . . . , fk)(x)).

An algorithm in this model may query the oracle for the value of the function and its derivatives at

one or more points. Then, the algorithm will process this information together with the information from

previous calls to output a point xt ∈ X. This new point will be used to generate more queries to the oracle

and so on. We note that, in general, there is no reason for which an algorithm should perform just one

call to the oracle in every step. In fact, some very important algorithms require of two calls or even a

logarithmic number of calls to the oracle in every step. On the other hand, in this thesis we will mostly

consider algorithms that perform one call to the oracle in every step.

In this thesis, we will centre our attention on first order methods. These are methods that just have

access to the value of the function and its gradient. This is the most common class of methods used in the

context of neural networks since if a model has n parameters—dim X = n—the Hessian would have n2

entries, which is prohibitively large even for small models. It is worth mentioning that, when implementing

second order optimisation, one almost never computes the full Hessian. Instead, algorithms are specified

in terms of Hessian-vector products of the form H−1(v) where v is a vector and H is the Hessian of

f—second order methods—or an approximation of it from first order information—quasi-Newton methods.

Even then, computing Hessian-vector products tends to be quite costly when compared with first order

methods both in time and memory.

Due to memory limitations given the large models used in deep learning, we will just look at first-order

algorithms that do not depend on previous calls to the oracle. An algorithm A of this form is just a

function

xt+1 = A(xt,∇f(xt)).
7The contributions in this thesis will be in the more abstract setting where X is a differentiable manifold not necessarily

embedded in Rn. We will restrict the presentation in this introductory section to subsets of Rn for the sake of simplicity. It
will be in Chapter 4 where we will give an introduction to the subject of optimisation on manifolds together with a literature
review of the field in Section 5.1.2, once we have given a presentation of the geometric tools and notation in Chapter 3. Even
though we will not mention the manifold setting in this section, we will write most definitions in a coordinate-independent
fashion, so that they readily generalise to the manifold setting without much effort.

12

These algorithms are inherently local, as they just process the information at the current point to make

their next guess.

Remark 2.2.2 (Optimisation algorithms as discretisations of odes). A more formal definition

of an algorithm being local comes by interpreting such an algorithm as a discretisation of a differential

equation. For example, the gradient step is the forward-Euler discretisation of the differential equation

ẋ = ∇f(x).

This is an autonomous differential equation which gives rise to a flow called the gradient flow. Since

this is an invariant equation, this view can be generalised to Riemannian manifolds provided a suitable

discretisation scheme. This more general definition of local algorithms allows for a constant number of calls

to the oracle to be used in each step, rather than just one. The perspective of looking at the algorithm A

as an integrator has yielded a unified way of looking at large families of optimisation algorithms under a

common lens (Wibisono, Wilson, and Jordan 2016; Wilson 2018; França, Jordan, and Vidal 2020).

Remark 2.2.3 (A note on stochastic optimisation). As we mentioned in the previous section, in

machine learning, the objective function often depends on an unknown random variable ξ so that the

objective function takes the form8

f(x) = E[f(x, ξ)].

In the offline learning setting, the random variable ξ has finite support and represents the dataset so that

f(x) = Rm(x).

The field that studies functions with this structure is called stochastic optimisation, and it was

introduced in the seminal paper by Robbins and Monroe (Robbins and Monro 1951). Stochastic optimisation

has become particularly popular in the last decade due to its applications in machine learning.

The simplest stochastic algorithm approximates the gradient of E[f(x, ξ)] using B i.i.d. samples ξi ∼ ξ

to form a stochastic approximation to the direction of steepest descent of f

xt+1 = xt −
η

B

B∑
i=1
∇f(xt, ξi). (2.4)

This is called stochastic gradient descent (sgd). The samples ξi are called the minibatch—or

sometimes simply the batch—and the number B is called the minibatch size. Many other algorithms

have been developed in recent years for the stochastic optimisation in the online and offline setting,

yielding algorithms widely used in practice such as adagrad (Duchi, Hazan, and Y. Singer 2011), and

its heuristic variations rmsprop (Hinton et al. 2012) and adam (Kingma and Ba 2015). In parallel, the

field of stochastic optimisation has grown in its own directions, for example by using this framework to

set online decision problems (Bubeck and Cesa-Bianchi 2012).

In the rest of the thesis, we will develop the theory in the non-stochastic setting. On the other hand,

the results that we will present are quite general, so it should not be too difficult to generalise the ideas to

the stochastic setting. That being said, we will see in the experiments section that the theory developed

here works surprisingly well in practice in the stochastic setting. We leave the theoretical development of

these ideas open for future research.
8The random variable ξ represents in the offline setting the product random variable of the dataset (X1, Y1), . . . , (Xm, Ym).

13

Having introduced the abstract computational model, we will spend the rest of the section introducing

and giving examples of the two main classes of functions considered in the optimisation literature.

2.2.2 Convex optimisation

Convex optimisation studies the setting in which the function f is convex and the set of constraints X

is a convex subset of Rn. This is the most classical scenario as there are many interesting problems in

practice that are either convex or can be relaxed into a convex problem, while still reflecting most of the

initial structure of the problem.

The convexity hypothesis is a quite restrictive one, but at the same time, it allows applying local

algorithms to solve global problems over the whole space X. This comes from the fact that for a convex

function on a convex space, every local minimiser is a global minimiser. Furthermore, if the function is

strictly convex, there is a unique global minimiser. Convexity (resp. strict convexity) is a local property

when the function is of class C2(X)—it is equivalent to Hess f(x) � 0 (resp. Hess f(x) � 0) at every point

x ∈ X—so it makes tackling the global problem of optimisation by local methods feasible.

It would be rather naïve to try to give a comprehensive introduction to convex optimisation in a couple

of pages given the vast literature on the subject. For example, when the function is linear or quadratic, one

enters the fields of linear programming, conic programming and semidefinite programming among others,

which study algorithms such as interior point methods and simplex methods, each of which decomposes in

many other subfamilies. To avoid falling down that rabbit hole, we will just mention methods that can be

applied in practice to general non-linear functions, even if we are just able to prove convergence for a

subfamily of convex functions.

Furthermore, to simplify the exposition, we will assume that f is at least of class C2(X). Virtually all

the theory in convex optimisation can be reformulated without this hypothesis via the use of subgradients.

On the other hand, the C2(X) regularity assumption often clarifies the exposition, and proofs in the C2(X)

setting can often be generalised to the convex non-differentiable setting via standard algebraic arguments.

To exemplify the kind of results that one gets in this field, let us consider the simplest of the algorithms:

Gradient descent. Gradient descent (gd)—sometimes called steepest descent—accounts for following

the direction of steepest descent for a time η > 0. Starting at a point x0 ∈ X, the update rule is given by

xt+1 = xt − η∇f(xt).

The quantity η is usually called the step-size, although in machine learning is often called the

learning-rate. Now, this begs the question: What is a reasonable step-size?

In the same way that one does when giving bounds on the discretisation term of an ode, to answer

this question one has to put some assumptions on the function. The simplest assumption is that of smooth

convexity.

Definition 2.2.4. A function f ∈ C2(X) is said to be of α-bounded hessian if

−αIn � Hess f(x) � αIn ∀x ∈ X.

If the function f is also convex (i.e., 0 � Hess f(x)), f is said to be α-smooth.

14

In other words, a C2 function is of α-bounded Hessian if the eigenvalues of its Hessian lie in the interval

[−α, α], and it is α-smooth if they lie in [0, α].

Expanding the function as a Taylor series along the straight line that connects two points x, y ∈ X and

bounding Lagrange’s remainder we get the following bound around x ∈ X for a function of α-bounded

Hessian

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ α

2 ‖x− y‖
2. (2.5)

Denote γ(t) = x + t(y − x) for t ∈ [0, 1] the line connecting x and y. This bound can be interpreted

geometrically as having an upper bound on f |γ by a quadratic function tangent to f at x with leading term
α
2 . Note that this bound is everywhere sharp for the distance function to a fixed point f(x) = α

2 d(x, x0)2

as this is a quadratic function with Hessian equal to α · Id. For this function, in the unconstrained case

X = Rn, it is possible to get to the minimum x0 from any point in one gradient descent step letting η = 1
α .

Algebraically, we can see all these ideas by setting y = xt+1 = xt − 1
α∇f(xt) in (2.5) to get

f(xt)− f(xt+1) ≥ 1
2α‖∇f(xt)‖2. (2.6)

Geometrically, this means that we improve the value of the function at least by 1
2α‖∇f(xt)‖2 after every

step. On the other hand, by convexity and Cauchy-Schwartz, one may bound below the norm of the

gradient by
f(xt)− f(x∗)
‖xt − x∗‖

≤ ‖∇f(xt)‖.

Plugging this into (2.6), putting the resulting equation in terms of δt = f(xt)− f(x∗) and showing that

‖xt − x∗‖ is decreasing in t, one gets the inequality

δt+1 ≤ δt −
1

2α‖x0 − x∗‖2
δ2
t .

and bounding the general term of this recurrence, the following full convergence result follows.

Theorem 2.2.5. Assume that X = Rn and f is α-smooth and has a minimiser x∗. Then, gradient descent

with step η = 1
α starting at a point x0 converges as

f(xt)− f(x∗) ≤ 2α‖x0 − x∗‖2

t+ 4 .

This result says that the optimisation term in the setting of convex α-smooth functions decays as

O(1
t). A much more impressive result is the one developed by Nesterov in 1983. Nesterov proposed an

algorithm such that, under the same α-smoothness hypothesis, converged at a rate of O(1
t2). This was a

major result, as a few years before it had been proven that this rate was optimal for the set of convex

α-smooth functions. After that result by Nesterov, many other algorithms that converge at this fast rate

have been developed. In general, an algorithm that converges faster than vanilla gradient descent for a

class of functions is called an accelerated algorithm.

This type of results gives us a worst-case analysis of the optimisation oracle, as one may reword

this as “gradient descent converges to a point with a value at most ε away of the minimum in at most

O(1
ε) steps”.

15

Of course one can easily generalise this algorithm to one where X ⊆ Rn is a proper convex subset,

provided that we have an efficient way to project from Rn onto X. This is called projected gradient

descent. In this case, a similar convergence analysis gives the same rates as in the unconstrained case.

There are many other classes that are studied in the setting of convex optimisation, such as α-strongly

convex functions (Hess f � αIn for α > 0), Lipschitz functions and combinations of these. Another line of

research is that of studying convergence under weaker regularity assumptions than differentiability. In this

case, one of the most commonly known algorithm given its versatility is Nemirovsky and Yudin’s mirror

descent (Nemirovsky and Yudin 1983), which may be applied in the more general setting of Banach spaces.

In general, one can find a vast zoo of algorithms with convergence guarantees in convex optimisation.

To name a few, by replacing the penalty function in mirror descent by a non-linear function one gets

proximal methods. If one can do linear optimisation over the domain, one may use Frank-Wolfe. In

coordinate gradient descent and block-coordinate gradient descent one optimises one or more of

the coordinates of the function at a time, leaving the others fixed during that iteration. In alternated

direction method of multipliers (admm) for constrained optimisation one tries to approximate a

solution to equation given by the Lagrange multipliers iteratively updating the multipliers. . . For a

theoretical introduction to all these methods and others see (Nesterov 2004; Boyd and Vandenberghe

2004).

2.2.3 Non-convex optimisation

In the setting of non-convex optimisation, one drops completely the assumption of f being convex.

On the one hand, this gives a much wider range of applicability to the results developed by this theory.

On the other, the results that this theory is able to prove are much weaker. In particular, in this theory,

as the global properties given by convexity are dropped, one is likely to encounter critical points and

local minima of f , to the point that, in general, not even finding but checking that a given point is a

local minimum for a non-convex function is NP-hard (Murty and Kabadi 1987). For this reason, in this

setting, one often has to content oneself with approximating critical points of f , that is, points at which

∇f(x) = 0.

Of course, as it was the case with convex functions, if one wants to get reasonable bounds, it is

necessary to restrict the attention to a subset of functions. Again, the class of functions of α-bounded

Hessian is suitable for this task. For these functions, we get the following standard result. We prove

it here for completeness, as it will be the result that we will generalise to manifold in Chapter 5 (cf.,

Theorem 5.6.4).

Theorem 2.2.6. Let f : Rn → R be a function of α-bounded Hessian bounded below by f∗ ∈ R. Gradient

descent on f , with a step-size of 1
α starting at a point x0, converges as

min
0≤k≤t

‖∇f(xk)‖ ≤

√
2α(f(x0)− f∗)

(t+ 1) .

Proof. By (2.6), we have that for a function of α-bounded Hessian

1
2α‖∇f(xk)‖2 ≤ f(xk)− f(xk+1).

16

Summing over all the indices and telescoping

1
2α

t∑
k=0
‖f(xk)‖2 ≤ f(x0)− f(xt+1) ≤ f(x0)− f∗

which yields the desired bound.

In other words, if the function is of α-bounded Hessian, gradient descent with constant step-size finds

a point with gradient ε-close in norm to a critical point of f in at most O(1
ε2) steps, as opposed to the

O(1
ε) needed to approximate the global minimiser when the function is convex.

Remark 2.2.7 (Projected gradient descent on non-convex functions). It is worth noting that the

previous theorem assumes the problem to be unconstrained, that is, X = Rn. One could hope to extend

this proof to work on constrained optimisation problems, as in the convex case. A moment’s reflection

shows that this is not easily achieved. In fact, non-convex constrained optimisation is notoriously difficult,

as the projection does not respect the derivatives in any reasonable way, which destroys the convergence

of the algorithm. As such, these two elements do not interact well together.

Even though the proof for gradient descent for non-convex objectives assures that gradient descent will

converge to a critical point, this critical point might not be a local minimum, but perhaps a saddle point

or a local maximum. On the other hand, via an application of the stable manifold theorem from dynamical

systems, it is possible to prove that if the initial point x0 is sampled from a smooth distribution on Rn,

gradient descent will almost always converge in the limit to a local minimiser (Lee et al. 2016), although

it may take exponentially many steps in ε (Du et al. 2017). These results inspired many others that tried

to estimate Hessian information to escape saddle-points by perturbing the gradient (Allen-Zhu 2018).

In the last 5 years, there has been renewed interest in the field of non-convex optimisation due

to the popularity of neural networks. Before that, there had been very little progress since the years

1965–1975 (Nesterov 2004). The new lower-bounds developed for first order (and higher-order) methods

on several classes of non-convex functions—assuming certain first and second order bounds—have been

of special interest (Cartis, Gould, and Toint 2010; Carmon et al. 2020). In parallel to this work, several

accelerated algorithms for non-convex optimisation (Carmon et al. 2017) and algorithms in the stochastic

and non-stochastic setting for functions of the form f(x) = 1
n

∑
fi(x), like the empirical risk. For a recent

review of these results see the papers (Allen-Zhu 2018; Allen-Zhu and Li 2018).

Other directions of research in this area are those coming from convex relaxations, where one is able

to find a convex problem that has the same minimiser as the non-convex one, such as those coming from

geometric programming, many linear programming problems, and some eigenproblems such as the

svd decomposition. Many of these non-convex problems that happen to have a fast way to solve them

while being non-convex often have a hidden Riemannian structure that makes them geodesically convex

under some convenient metric. We will explore in depth this kind of problems in Chapter 4. For now, we

will close this review section referencing what is, as the time of this writing, the largest compilation to our

knowledge of papers and reviews in the area of provable non-convex optimisation

https://sunju.org/research/nonconvex/

17

https://sunju.org/research/nonconvex/

The web-page is active as of 2020, and contains lists of relevant papers written in the last 5–10 years in

most of the sub-fields of non-convex optimisation.

2.3 Neural Network Architectures

In this section, we introduce neural networks in the framework of statistical models. We give some

examples of different classes of neural networks, and we show how to implement them in the Python

library PyTorch. A good introductory reference for all these ideas and many more is the book (Goodfellow,

Bengio, and Courville 2016).

2.3.1 Neural networks

Definition 2.3.1. Let Θ ⊆ Rn be open and connected. A neural network architecture is a mapping

f : Θ×X → Y that is differentiable in the first variable and that factorises into a composition of simpler

functions f (i) : Θi × Rdi−1 → Rdi for i = 1, . . . , p with X ∼= Rd0 , Y ⊆ Rdp and Θ = Θ1 × · · · ×Θp

fθ = f
(p)
θp
◦ · · · ◦ f (1)

θ1
.

We will often omit the parameters of the functions and write f (i) = f
(i)
θi

. Each parametrised function f (i)

is called a layer. We say that f (1) is the input layer, f (i) for i = 2, . . . , p − 1 are the hidden layers,

and f (p) is the output layer.9 A network is said to be deep whenever it has three or more layers. Deep

learning is the area that studies deep neural networks.

Each of the layers in a neural network is designed to be a (parametrised) transformation that can be

computed very efficiently. In particular, most of the layers used in practice are designed so that they can

be heavily parallelised, making their implementation very fast on a gpu. We will touch on this in more

detail later in this section.

The size of deep neural networks has seen an exponential explosion in size in the last ten years, seeing

models that have hundreds of layers and up to a hundred billion parameters the current largest one (Brown

et al. 2020).

Remark 2.3.2. In most standard neural networks, Θ is just a Euclidean space. As we did in the previous

section, we will assume that Θ is isomorphic to a Euclidean space in this section for simplicity, but the

reader should bear in mind that the direction of the rest of the thesis will be that of considering Θ to be a

connected manifold—often a matrix manifold.

2.3.2 Feedforward networks

The most classical neural network architecture is that of the feedforward network. These are models

where each layer is an affine transformation of its input together with a coordinate-wise non-linear

transformation.
9Sometimes the input and output layers are also called first and last hidden layers.

18

Definition 2.3.3. Let X ∼= Rk, Y ∼= Rd and Θ ∼= Rd×k × Rd. A linear layer of width d is the affine

transformation defined by
f : Θ×X → Y

((A, b), x) 7→ fA,b(x) = Ax+ b

We say that A is the matrix of weights and b is the bias.

Given a function σ : R→ R, we define a non-linearity as the associated map σ : Rd → Rd that comes

from applying the map σ on vectors in Rd component-wise. We will denote both maps with the same

symbol.

A feedforward network is a neural network where every layer is a linear layer followed by a non-

linearity, f (i)
θi

= σ ◦ fAi,bi , θi = (Ai, bi). Usually, the non-linearity in the last layer is chosen to be the

identity—i.e., there is no non-linearity in the last layer.

Strengths, weaknesses, and limitations of feedforward networks A feedforward network is one

of the simplest neural network architectures used in practice. It is sometimes also referred to as multi-

layer perceptron (mlp). The work of Cybenko (Cybenko 1989) and Hornik (Hornik 1991) shows that

feedforward networks are universal approximators, in the sense that they are dense in the set of

continuous functions supported on a compact subset of Rk. On the other hand, an important remark is

in order: While these functions may approximate any continuous function arbitrarily well, the width of

a shallow network necessary to get an ε-approximator grows exponentially fast in ε (Eldan and Shamir

2016). It is this one of the reasons why feedforward networks are often replaced in practice by more

specialised layers that try to encode domain-specific biases. Examples of these are cnns (Fukushima and

Miyake 1982), attention (Bahdanau, Cho, and Bengio 2015), neural machine translation (Kalchbrenner

and Blunsom 2013) and transformer models (Vaswani et al. 2017) among many others. More generally,

the field of geometric deep learning studies how to encode invariances present in the data so that the

model structurally preserves them, via the use of equivariant layers (T. S. Cohen and Welling 2016), graph

neural networks (Scarselli et al. 2009), and other architectures.

2.3.3 Recurrent neural networks (rnns)

The simplest non-trivial data topology is that of sequential data. This comes up naturally when

processing an input with variable length like audio samples, time series, or sentences in a language. In

these cases, every element of the sequence is usually encoded into a vector of a fixed dimension, but the

number of these vectors is unknown a priori. Using computer science nomenclature, these objects are

encoded in the free monoid (Rk)∗ := ⊕∞t=0(Rk)t. Recurrent Neural Networks were designed to process this

kind of sequential data, constituting a map from (Rk)∗ into a finite-dimensional embedding space Rd.

Definition 2.3.4. Given a sequence of inputs (xt)Tt=1 ∈ (Rk)∗, we define a recurrent neural network

(rnn) with hidden size d > 0 as

ht = σ(Bht−1 + Cxt) t = 1, . . . , T

19

where B ∈ Rd×d and C ∈ Rd×k are parameters, σ is some fixed non-linearity, and h0 ∈ Rd is some fixed

initial vector. C is called the input kernel and B is the recurrent kernel. In most applications, the

starting vector h0 is set to zero.

In classification tasks, where one needs an encoding of the whole sequence into a vector, one often

chooses either hT , or 1
T

∑
ht as the encoding of the whole sequence in Rd. The problem with these

encodings is that they are biased towards the last elements of the sequence, given that these were the

elements that were encoded the last. For that reason, one often uses a bi-directional rnn, which accounts

for running two separate rnns, one on (xt)Tt=1 and another one on the reversed sequence (xT−t)Tt=1 and

computes the embedding as the sum of the hidden states of the two.

The intermediate vectors ht are usually regarded as the memory of the rnn at time t. Each of

the applications of the recurrent step is called a time-step, and the dimension t is called the time

dimension.

rnns are a rather straightforward generalisation of feedforward neural networks to sequences. On

the other hand, they present some problems when the matrix B is not well-conditioned. Consider the

degenerate case where σ = Id. If B has eigenvalues of norm larger than 1, the gradient of B will explode

in some directions for long sequences, while if B has eigenvalues of norm less than 1, the gradients of

B with respect to the first time-steps will be close to zero, so the gradient will incorporate almost no

information of the initial elements of the sequence. These problems are regarded as exploding gradient

and vanishing gradient problems (Bengio, Simard, and Frasconi 1994). We discuss them in more detail

in Section 6.1.

The Long-Short Term Memory cell (lstm) (Hochreiter and Schmidhuber 1997) is a more complex

recurrent architecture that tries to heuristically alleviate the vanishing gradient and exploding gradient

problems via a system referred to as gating. The idea of this heuristic is to control the flow of the gradients

along the lstm, by allowing to retain some information in the internal state, while giving mechanisms

to delete other information—often thought of as forgetting. The gating mechanism is composed of 4

vectors: input i, forget f , output, and output modulation g. The lstm also separates the hidden

state into an internal state ct—sometimes referred to as cell—and the hidden state ht. If we denote

by sigm(t) = 1
1+e−t the sigmoid function and by tanh the hyperbolic tangent—keeping in mind that the

range of these functions are (0, 1) and (−1, 1) respectively—the lstm is defined by the equations
i
f
o
g

 =


sigm
sigm
sigm
tanh

(W (
xt
ht−1

))
ct = f � ct−1 + i� g ht = o� tanh(ct)

where � denotes the component-wise multiplication and W ∈ R4d×(d+k) is a matrix of parameters. There

are other popular variations of this recurrent layer, such as the Gated Recurrent Unit (gru) (Chung

et al. 2014), but we will spare the reader their description, as we will not use them in the practical work

in this thesis.

20

2.3.4 Why affine layers?

The layers that we have introduced until now are all variations of the same idea: Applying an affine

transformation to the inputs and then apply a component-wise non-linearity. This is not a coincidence.

This design comes from engineering considerations arising from the implementation of neural networks.

Even though neural networks were first devised in the 80’s (Fukushima and Miyake 1982), they were

partly forgotten until the first decade of the XXI century (Ciresan et al. 2010; Krizhevsky, Sutskever, and

Hinton 2012). Current interest has built upon two large engineering efforts that made neural networks

accessible to users outside of academia. These two engineering advances are Graphics Process Units (gpus)

and auto-differentiation engines.

2.3.4.1 Graphics Processing Units (gpus)

gpus have been around for many years now, mostly tied to the design and video game industry. It has

been just in the last 10 years that we have seen the field of gpu computing soar as a major tool in data

analysis, allowing processing large quantities of datapoints in parallel.

A coarse but fairly accurate description of gpus would come from thinking about them as pieces of

hardware that perform operations massively in parallel much more quickly than a cpu. In general, they

can apply the same operation in parallel to many datapoints. While a cpu can execute many different

operations on individual pieces of data with a very low overhead between operations, a gpu shines at

executing the same operation in parallel on many datapoints. We can think of a gpu as having a cpu

with a very large number of cores, where the cores are tied to execute the same operation.

If we look at a matrix-vector multiplication, for a matrix of size d× k, this can be decomposed into

d inner-products on Rk, each of which can be computed in parallel. Furthermore, each inner-product

accounts for adding k different elements, which can be performed in log(d) time.

At the same time, when performing stochastic gradient descent as described in (2.4), in every step of

the algorithm we need to compute the value of the function at B datapoints, where B is the minibatch

size. This can also be performed in parallel, taking again advantage of the fast parallel processing given by

gpus. This has allowed neural networks to be able to scale the approximation of the minimisation problem

to large datasets, having some of them in the order of 108 datapoints (Deng et al. 2009; Kuznetsova et al.

2020; Mahoney 2006).

A word on efficiency and gpus gpus provide an efficient way to execute the same operation on

many datapoints in parallel. Each of these highly parallel operations is called a kernel. Launching a

kernel has a much larger overhead than executing an operation on a cpu. For this reason, gpus shine

when reducing the amount of kernels launched during a program. We can think of executing a kernel as

having a unitary fixed cost—that of the overhead—when executed on very few points. For this reason,

computing a sequence of multiplications of sparse matrices can often be more efficiently implemented on a

cpu than on a gpu, due to the lower overhead per operation of the cpu. gpus also suffer from a penalty

coming from memory latency, as each minibatch has to be moved from cpu to gpu, which can result on a

computational bottleneck in some applications. The take home from all these ideas is that one has to be

21

careful when computing the efficiency of an algorithm implemented on a gpu, taking into account the

size of the data one is working with and how parallelisable are the operations that are being executed.

This latter point will be of particular importance when devising a fast implementation of the methods

proposed in this thesis in Section 6.3.2.

2.3.4.2 Auto-differentiation: Forward and backward pass

In the offline learning setting, as we detailed in Section 2.1, we have access to a dataset {(Xi, Yi)} of

m pairs of features and labels. As we mentioned before, in deep learning, in many datasets we can have m

to be in the order of the millions. Computing the gradient of the empirical risk

Rm(θ) = 1
m

m∑
i=1

`(f(Xi, θ), Yi)

would be infeasible, as every step would require to evaluate the function f on millions of points. As an

alternative, stochastic gradient descent is used. As we already mentioned, this algorithm chooses in every

step a subset of B elements {(Xai , Yai)} from the dataset to form a minibatch and averages their losses

to form

R̂B(θ) := 1
B

B∑
i=1

`(f(Xai , θ), Yai) (2.7)

performing the update

θ ← θ − η∇R̂B(θ). (2.8)

In order to implement this algorithm in practice, it is necessary to be able to compute the gradients

of the function θ 7→ `(f(Xi, θ), Yi). It was in the seminal work (Ciresan et al. 2010) where it was first

documented that this naïve looking algorithm was able to perform astonishingly well at optimising highly

non-convex neural networks. Furthermore, in this same work, they showed that this optimisation process

could be accelerated several orders of magnitude by implementing it on a gpu. In this first work, the

authors implement themselves the necessary gpu kernels. This is a very difficult task, as programming on

a gpu is notoriously technical.

In parallel to this work, there had been a line of research that involved the computation of the

derivatives of functions automatically (Wengert 1964). These are called auto-differentiation engines

or simply autodiff engines.

It was just then that Theano was born (Al-Rfou et al. 2016). Theano was the first library marrying

auto-differentiation and gpus first released in 2007 as a library for the programming language Lua. An

autodiff engine helps the user define differentiable functions: The user writes the function using methods

provided by the library and the library will automatically compute its derivative at a given point. In some

sense, it implements the chain rule—more formally, the adjoint method—for a wide range of functions

and constructions in a programming language. In practice, this is a rather challenging problem.

2.3.5 An implementation of a feedforward network

Let us explain the rudiments of how all the ideas in this section come together via an example written

on the PyTorch library, as this will be the library that we will use all throughout Chapter 6.10
10A disclaimer to the seasoned practitioner: This is intended to be a simple working example to showcase the ideas in this

chapter. It does not try to be a performant one by any possible measure.

22

Figure 2.1: Example of digits present in the mnist dataset.

Example 2.3.5 (mnist classification with a feedforward network). Consider a two layer feedfor-

ward neural network with relu(x) := max(x, 0) non-linearities designed to classify greyscale images of

handwritten digits. A dataset that provides this exact set-up is that of mnist (LeCun, Cortes, and Burges

1998). The mnist dataset consists of 60.000 labelled images of size 28 × 28 represented by a floating-

point number at every pixel describing the intensity of the grey (see Figure 2.1). As such, X = R28×28,

Y = {0, 1, . . . , 9}.

The model will output a distribution on the set of 10 elements by processing the 10-dimensional output

of the last layer with a softmax non-linearity, which maps a 10 dimensional vector into the 10-dimensional

simplex by mapping its k-th coordinate to

softmax(x)k = exk∑9
i=0 e

xi
.

In practice we will output log ◦ softmax for numerical stability reasons.

Loss The loss function will be the negative log-likelihood at a given label

` : R10 × {0, 1, . . . , 9} → R

(x, k) 7→ − log(softmax(x)k)

Hyperparameters We perform stochastic gradient descent with η = 10−3 and a minibatch size of 128.

We will iterate over the whole dataset 80 times. The hidden size of the two layer network will be 256.

Data processing The dataset is normalised to have mean 0 and standard deviation of 1. This is a

common preprocessing step. The data will also be first flattened by the model, that is, it will be converted

from data in R28×28 into data in R784.11

The procedure to fit this model to the dataset can be written in PyTorch 1.6 as shown in Listing 2.1.

Let us explain what is happening in this example.

Data processing In lines 11 to 18, we download and normalise the dataset. In particular, we download

it automatically, and we use the PyTorch convenience functions to apply a transform pipe to the points of

this dataset. In this case, we are transforming every image so that the whole dataset has zero mean and

unitary standard deviation. The values 0.1307 and 0.3081 are the empirical mean and variance of the

dataset and were computed a priori.
11By applying this transformation, we are effectively forgetting the 2D structure of the data. This is far from being an

optimal way to process an image, but it is the simplest.

23

1 import torch
2 import torch .nn as nn
3 import torch .nn. functional as F
4 from torchvision import datasets , transforms
5

6 # Hyperparameters
7 epochs = 80
8 batch_size = 128
9 learning_rate = 0.001

10

11 # Data processing
12 # Centre the MNIST dataset , which has mean 0.1307 and standard deviation 0.3081
13 transform = transforms . Compose ([
14 transforms . ToTensor () ,
15 transforms . Normalize ((0.1307 ,) , (0.3081 ,))
16])
17 dataset = datasets . MNIST (’./ data ’, train =True , download =True , transform = transform)
18 loader = torch . utils .data. DataLoader (dataset , batch_size = batch_size , shuffle =True)
19

20 # Run the model on GPU if possible
21 device = torch . device ("cuda" if torch .cuda. is_available () else "cpu")
22

23 # Instantiate model and optimiser (Stochastic Gradient Descent)
24 model = nn. Sequential (
25 nn. Flatten () ,
26 nn. Linear (28*28 , 256) ,
27 nn.ReLU () ,
28 nn. Linear (256 , 10) ,
29 nn. LogSoftmax (dim =1)
30).to(device)
31 optim = torch . optim .SGD(model . parameters () , lr= learning_rate)
32

33 # Training loop
34 for epoch in range (epochs):
35 for idx , (batch_x , batch_y) in enumerate (loader):
36 batch_x , batch_y = batch_x .to(device), batch_y .to(device)
37

38 out = model (batch_x)
39 loss = F. nll_loss (out , batch_y)
40

41 optim . zero_grad ()
42 loss. backward ()
43 optim .step ()
44 print (" Train Epoch : {} [{}/{}]\ tLoss : {:.6f}"
45 . format (epoch , idx* batch_size , len(dataset), loss))

Listing 2.1: PyTorch code implementing a two layer feedforward network to classify mnist

In this part we also wrap the dataset into a loader. The loader is an abstraction that samples batches

of size batch_size for us from the dataset. We can iterate over it like a list, as we do in Line 35. We also

set the DataLoader to shuffle the data every time we start iterating over it.

In Line 21, we check whether the computer has a gpu available. If so, we will be computing every

operation in a gpu. If there is no gpu available, we fall back to the cpu.

Model specification In Line 24, we define a Sequential model. This model is one that splits exactly

as a sequential composition of functions, as defined in Definition 2.3.1. We start by flattening the input,

that is, applying the linear isomorphism R28×28 ∼= R784. After that, we apply a linear transformation (cf.,

Definition 2.3.3) together with the relu(x) = max(x, 0) non-linearity, where the max is taken coordinate-

wise. Finally, in Line 30 we move the model to gpu if there was one available. If not, this line does not do

anything. Being able to switch between cpu and gpu with a single line of code is one of the strengths of

these modern machine learning libraries.

24

In Line 31, we define the optimiser to be sgd with a learning rate of η = 10−3.

Forward pass The gist of the code starts in the training loop. The training loop iterates over the

whole dataset 80 times—also called epochs—in batches of size 128. As we had mentioned, we can iterate

over the loader, which returns in every step a batch of size 128 of images and labels. In particular, we

have that batch_x has dimensions (128, 28, 28) while batch_y is a tensor of one dimension of size 128 of

integers. As we did with the model, if there was an available gpu, we move the data from cpu to gpu.

In Line 38, we compute the image under our model of every point of the dataset. Using our previous

notation, if we have a batch {(Xi, Yi)}, this is equivalent to computing {fθ(Xi)}. As such, the output

out is of size (128, 10), where every vector out[i] is the component-wise logarithm of a point on the

10-dimensional simplex.

In Line 39, we compute the average negative log-likelihood loss over the minibatch using the logarithmic

probabilities and the true labels. As such, the variable loss is just a floating-point number encapsulated

in a PyTorch class, that is, a tensor of dimension 1 holding the value of the empirical risk of the minibatch

R̂B(θ) as defined in (2.7).

Lines 38 and 39 do much more heavy work than it looks at first sight. When these lines are called,

each operation in model, that is, every matrix multiplication, every addition of a bias vector, every

coordinate-wise non-linearity, etc., is recorded into a graph called the computation graph as it is being

executed. This graph contains the dependencies between all the variables in the program as a dependency

tree, where the parameters of the model are in the leaves and the inner nodes of this tree are operations

putting them together. The computation of fθ(Xi) and the creation of the computation graph is what is

often called the forward pass.

Backward pass The computation of the gradients and the update of the parameters happens in the

last three lines of the loop. As we have seen, in Line 31 we have passed the parameters of our model to the

optimiser. Line 41 initialises the optimiser, zeroing-out the gradients of all the parameters that it controls,

this is just a technical point. Line 42 computes the gradients traversing the computation graph backwards

using the chain rule—in this context often called the adjoint method. Finally, Line 43 updates the

variables with the update step from the optimisation algorithm (cf., Equation (2.8)).

25

Chapter 3

Differential and Riemannian
Geometry

This section is intended as an introduction to some results and computations in differential geometry

and Riemannian geometry that will be useful later on. We will skip the proofs of some constructions at

the beginning for the sake of the exposition, as they are quite technical, but we will give references to

what, in our opinion, are some particularly clean proofs of them. We will always assume all the objects to

be in the smooth category, unless stated otherwise.

Outline of the chapter. The problem motivating this whole chapter is that of computing geodesics

on a large class of manifolds—naturally reductive homogeneous spaces—as this will be of interest in the

rest of the thesis. The chapter is organised going from more general objects to more particular ones,

stopping at each layer looking into what it adds to the global picture. We finish the chapter in Section 3.5

showing how to instantiate the constructions in the chapter in a number of manifolds commonly used in

optimisation.

Even though all the ideas in this chapter are well-known to geometers, we are not aware of any source

that contains all of them. It is for this reason that we include at the beginning of each section a short

comment on both historical references and standard references. We also include the proofs necessary to

derive the equations for the geodesics in the studied spaces.

3.1 Fibred Manifolds

In this section we provide an introduction to the theory of submersions and Riemannian submersions.

This can be seen as a first approach to the theory of Ehresmann connections on fibre bundles. The theory

of connections on a fibred manifold as distributions on the total space was first developed in (Ehresmann

1952), while most of the formulae relating the geometry of the base space to the geometry of the total

space on a Riemannian submersion is due to O’Neill (O’Neill 1966). A more detailed review of this subject

can be found in (Besse 2008, Chapter 9).

We start by recalling the definition of a submersion.

Definition 3.1.1. Let π : M → M be a map between manifolds. We say that π is a submersion if

(dπ)p : TpM → Tπ(p)M is surjective for every p ∈ M . In particular, if π is surjective, this is equivalent

26

to saying that dπ : TM → TM is surjective. We say that M is the total manifold, and M is the base

manifold. We will assume submersions to be surjective unless stated otherwise.

The fibre over x ∈M is defined as Mx := π−1(x). By the implicit function theorem, the fibres of a

submersion are manifolds of dimension dim(M)−dim(M). A pair of manifolds together with a submersion

between them is called a fibred manifold.

Notation. Even though the notation may suggest otherwise, the manifold M is completely unrelated to

the manifold M . We choose this notation for fibred manifold as it is possible to identify vector fields X on

M with certain class of vector fields X on M . This notation makes this identification easier to follow.

If all the fibres are diffeomorphic, then we get the concept of a space that locally looks like a product

of the base space and its fibre. This idea is formalised through fibre bundles.

Definition 3.1.2. Let π : E → M be a fibred manifold. Then π : E → M is a fibre bundle over M

with fibre F if for every x ∈M there is an open neighbourhood U and a map α : π−1(U)→ F such that

(π, α) : π−1(U)→ U × F

is a diffeomorphism. We say that (π, α) is a bundle chart. For every x ∈M we have that α |x : Ex → F

is a diffeomorphism.

All the fibred manifolds we will work with will be fibre bundles.

A key property of fibred manifolds is that they admit local smooth sections. These are mainly used to

show that objects defined on fibre bundles are smooth.

Proposition 3.1.3 (Existence of local sections). Let π : M →M a fibred manifold. Then, for every

p ∈M , there exists a neighbourhood U ⊆M , and a smooth function σ : π(U)→ U such that π◦σ = Idπ(U).

This is called a local section through p.

Proof. See for example (Lang 1999, Ch. II Prop. 2.2)

Remark 3.1.4 (Fibred spaces). It is in fact possible to show via a simple application of the inverse

function theorem that submersions are characterised by the property of having smooth sections. This

allows us to generalise the concept of fibred manifolds to the category of topological manifolds simply by

swapping smooth sections with continuous sections. This is of particular interest when studying stratified

spaces, such as low-rank matrices

Rn×k≤r = {X ∈ Rn×k | rank(X) ≤ r}.

In this case, we have that this is not a manifold, but a collection of manifolds—the collection of the

manifolds of fixed-rank matrices (Section 3.5.4)—called strata, with some homogeneity properties. These

spaces appear naturally when considering decompositions such as the qr decomposition, which is smooth

on each of the strata of this topological manifold. Sadly, we will not have time to explore this connection

between topology, numerical analysis, and optimisation on manifolds in this thesis.

27

Remark 3.1.5 (Global sections). Global sections need not exist in general. In particular, we may

not find in general an immersed copy of the base space inside the total space. To see this, consider the

following circle bundle over the round sphere:

US2 := {(x, v) ∈ TS2 | ‖v‖ = 1}.

It is not difficult to show that this is a fibre bundle over the sphere with fibre S1. On the other hand, by

the hairy ball theorem, it has no global sections, as a global section would give an everywhere non-zero

vector field over the 2-sphere. This is a particular example of a general behaviour of non-trivial principal

bundles. Note that this is an example of a bundle with no global section, but we can still find an immersed

S2 inside its total space.

The study of the existence or lack of existence of global sections in fibred spaces and fibre bundles is

of paramount importance in the field of algebraic topology. An introductory exposition to fibre bundles in

this context can be found in (Steenrod 1951).

For a submersion, we define the vertical bundle as VM := ker dπ ⊆ TM . This is a vector subbundle

of TM .

If we also have a metric g on M , we can define the horizontal bundle H as the fibre-wise orthogonal

complement with respect to g of VM , that is,

Hp := (VpM)⊥ = (ker(dπ)p)⊥ = {X ∈ TpM | g(X,Y) = 0, ∀Y ∈ VpM}.

These two vector bundles form a split TM = VM ⊕H. For an element ζ ∈ TM we denote its split into

its horizontal and vertical components by ζ = ζV + ζH.

Note that since (dπ)p is a surjective linear map, (dπ)p : Hp → Tπ(p)M is a linear isomorphism of vector

spaces.

In particular, H is a smooth choice of a complement of VM . Note that the only property that we have

used of the metric g is that it is non-degenerate, so that the complement (VM)⊥ together with VM span

all of TpM . We can abstract these properties to define a general connection on a fibred manifold.

Definition 3.1.6. We say that a vector subbundle H of TM is an Ehresmann connection on a fibred

manifold π : M →M if it is a complement of the vertical bundle, that is, TM = VM ⊕H.

The split given by an Ehresmann connection makes dπ|H into a vector bundle morphism along π, in

the sense that the following diagram commutes

H TM

M M

dπ|H

πTM |H πTM

π

(3.1)

and dπ|H is a fibre-wise linear isomorphism.

Definition 3.1.7. Let π : M →M be a fibred manifold with an Ehresmann connection H. A vector field

X on M can be uniquely identified with a vector field X on M with values on H. We call this vector field

the horizontal lift of X. In symbols,

Xp := (dπ|Hp)−1(Xπ(p)) ∀p ∈M.

28

This lift gives a projectable vector field, meaning that dπ(X) = X is well-defined. This construction can

be readily generalised to any tensor bundle of TM , being able to lift not only vector fields, but also any

kind of tensor. In technical words, a connection induces connections on all the associated bundles.

Definition 3.1.8. Let (M, g), (M, g) be two Riemannian manifolds and let π : M →M be a submersion

between them with induced Ehresmann connection H. We say that π is a Riemannian submersion if

for every p ∈M

dπ|Hp : Hp → Tπ(p)M

is a linear isometry. In other words,

gp(ζ1, ζ2) = gπ(p)((dπ)p(ζ1), (dπ)p(ζ2)) ∀ζ1, ζ2 ∈ Hp.

We may equivalently write this condition in terms of horizontal vectors as

gp(u, v) = gπ(p)(u, v) ∀u, v ∈ Tπ(p)M.

Remark 3.1.9 (A Riemannian submersion does not restrict to a local isometry). By the

definition above, together with the existence of local sections of π, one might be tempted to think that

for a point x ∈M there exists a section s : Σ→ s(Σ) through p ∈ π−1(x) such that π|s(Σ) is an isometry.

This is not true as, by the local version of Frobenius theorem (Lang 1999, Ch. VI Thm. 1.1), H is only

integrable—there exists a submanifold N ⊆ M with TpN = Hp for p ∈ N—whenever it is involutive

around p, that is, it is closed under the Lie bracket. This means that we may only find a section giving an

immersed manifold s(Σ) with tangent bundle ds(Σ) ⊆ H whenever H is involutive. But H is often not

involutive. In fact, the curvature of H is defined as how much H deviates from being involutive. Hence, we

may only locally integrate H when the connection is locally flat. In this case, M is locally a Riemannian

product of manifolds.

If we have a fibred manifold π : M →M with an Ehresmann connection H and a metric g on M , we

may lift g to a metric tensor on H by setting gH := (dπ|H)∗(g) where (−)∗ denotes the pullback

gHp(u, v) := gπ(p)(dπ(u),dπ(v)) ∀u, v ∈ Hp.

Using the decomposition TM = VM ⊕H, we can choose a metric tensor gV on VM and define a metric

on M declaring the horizontal and vertical bundles to be orthogonal, that is, g := gV ⊕ gH. This metric

makes π : M →M into a Riemannian submersion. We can summarise this discussion as follows:

Proposition 3.1.10 (Lifting a metric on a fibred manifold). Let π : M →M be a fibred manifold.

Given a metric g on M , an Ehresmann connection H and a metric tensor gV on VM we can form a

metric that turns π into a Riemannian submersion by setting g = gV ⊕ (dπ|H)∗(g).

Conversely, if we have a metric g on M that is projectable—gp1(u, v) = gp2(u, v) for every p1, p2 ∈

Mx, u, v ∈ TxM—we may push it forward to form a metric on M such that π is a Riemannian submersion.

We will show in the next sections how to construct metrics on VM in the particular case of principal

bundles and homogeneous spaces, where the fibre has the structure of a Lie group.

Riemannian submersions generalise the idea of an isometry between spaces of the same dimension. In

particular, they provide a strong link between the geometry of M and M .

29

Proposition 3.1.11. Let π : M →M be a Riemannian submersion. We have that:

1. A geodesic in M with horizontal initial conditions is horizontal everywhere. π takes horizontal

geodesics on M to geodesics on M . In particular, if (M, g) is complete, so is (M, g).

2. Any geodesic on M may be locally lifted to a geodesic on M with horizontal initial conditions.

3. π is distance decreasing: d(p, q) ≥ d(π(p), π(q)), ∀p, q ∈M .

4. (Hermann 1960) If (M, g) is complete, any curve in M may be lifted globally to a curve in M . In

particular, any geodesic in (M, g) may be lifted globally to a horizontal geodesic of (M, g).

5. (O’Neill 1966) For X,Y vector fields on M we have

∇XY = ∇XY + 1
2 [X,Y]V

[X,Y]H = [X,Y].

Proof. Item 1 can be found in (O’Neill 1983, Ch. 7 Corol. 45). Item 2 is a corollary of the formula for the

connection in Item 5. Item 3 is a direct corollary of Item 1. Item 4 is proved in (Hermann 1960, Prop. 3.2).

Item 5 is proved in (O’Neill 1966, Lemma 3 and Lemma 1.2)

According to this proposition, if we have a Riemannian submersion, and we know how to compute

geodesics with horizontal initial conditions on the total space, we can compute geodesic on the base space.

Furthermore, since dπ is surjective, any geodesic on the base space is of this form.

Before finishing this section, we look at Riemannian submersions with totally geodesic fibres, as these

will be rather important in the sequel. We start by defining a totally geodesic submanifold.

Definition 3.1.12. An immersed submanifold (F, gF) of a Riemannian manifold (M, gM) is totally

geodesic if geodesics on (F, gF) are also geodesics on (M, gM).

Example 3.1.13. On a round sphere maximum circles are geodesic submanifolds but any other circle is

not.

The deviation of an immersed submanifold from being a geodesic submanifold is given by the shape

tensor sometimes also called the second fundamental form.

Definition 3.1.14. Given an immersed submanifold (F, gF) of a Riemannian manifold (M, gM) with

Levi-Civita connections ∇F ,∇M respectively, we define the shape tensor of F for two vector fields X,Y

on F as the (2, 1) tensor

II(X,Y) = ∇FXY −∇MX Y.

A simple computation involving Gauss’ equation gives the following characterisation of totally geodesic

submanifolds.

Proposition 3.1.15. A Riemannian submanifold (F, gF) of (M, g) is totally geodesic if and only if

II ≡ 0.

Proof. See (O’Neill 1983, Ch. 4 Prop. 13).

30

Totally geodesic submanifolds will be important when we talk about Riemannian submersions with

totally geodesic fibres. Most of the Riemannian submersions that we will encounter in the optimisation

context will have this property.

In the next sections we will look at two problems: How to construct Riemannian submersions and how

to compute geodesics on some total spaces of these submersions. Once we know how to do this, we may

repeat this process forming a chain of submersions

M1
π1−→M2

π2−→M3
π3−→ . . . ,

where, if we know how to compute geodesics on M1, and every map is a Riemannian submersion, we

know how to compute geodesics on all the other manifolds in the chain. This will be particularly useful

for optimisation with orthogonal constraints as shown in Section 3.5, where we will see that the special

orthogonal group, the Stiefel manifold, and the Grassmannian form such a tower. We will also leverage

this in Chapter 6 to implement optimisation on different manifolds by implementing it on one manifold,

and then pushing the geodesics forward along Riemannian submersions.

3.2 Invariant Metrics and Principal Bundles

In this section we will study manifolds together with a group action. In particular, we will be interested

in studying conditions for the existence of an invariant metric under this action. This will take us naturally

to the definition of principal bundles which, in turn, will provide us with a way to construct Riemannian

submersions. Most of the theory presented in this section and the next one can be generalised to study

connections on principal and associated bundles. The presentation in this section differs from the classical

one in that we emphasise the Riemannian side of principal bundles as spaces on which we can find a

metric invariant under a Lie group action that descends into the quotient of the manifold by the action.

Principal bundles were first proposed in full generality by Palais, who introduced the study of proper

actions on manifolds, as a generalisation of actions by compact groups (Palais 1961). The results of this

section can mostly be found across the books (Kobayashi and Nomizu 1963; Kobayashi and Nomizu 1969),

written by two of the fathers of the subject.

We start by defining some notation and recalling some rudiments of Lie groups.

Notation. Let µ : G×M →M be an action of a Lie group G on a manifold M . We will write µg(x) =

µx(g) = µ(g, x) for the different partial maps defined by it. In particular, µg is a diffeomorphism with

inverse µg−1 .

We will denote left and right actions of a Lie group onto itself by Lg and Rg, and the conjugacy

action of a Lie group by cg := Lg ◦Rg−1 .

For a Lie group G,H, we will denote their Lie algebras as g, h. Given a vector X ∈ g, we denote the

left-invariant vector field associated to X by

XL
g := (dLg)e(X).

31

Left-invariant vector fields provide a linear isomorphism between TgG and g and they allow us to define

left-invariant tensors on the whole manifold by defining them just on the Lie algebra. For example, if we

have an inner product ge on the Lie algebra, we can define a left-invariant metric as

gL
g(XL

g , Y
L
g) := ge(X,Y) X,Y ∈ g.

We recall that the Lie exponential is defined as the integral of left-invariant vector fields, that is, if

v ∈ g, expm(tX) = γ(t) we have that

γ̇(t) := XL
γ(t).

We will denote it by expm, to differentiate it from the Riemannian exponential map.

We denote the orbit of a point x ∈M as

G(x) := {µg(x) | g ∈ G},

and the stabiliser of x, also referred to as the isotropy group at x, as

Gx := {g ∈ G | µg(x) = x}.

Note that for continuous actions Gx = (µx)−1({x}) is closed.

Remark 3.2.1 (Left and right actions). In the sequel we will be using left and right actions. The use

of one or the other is merely due to convenience, since we may turn a left action µg into a right action by

considering the map g 7→ µg−1 . We will reserve right actions for actions we use to quotient by, and left

actions to talk about actions that act on this quotient.

We are interested in studying metrics that are invariant under the action of a group, as these metrics

will descend into the quotient of the manifold by the group action.

Definition 3.2.2. Given a manifold M together with a right action µ by a Lie group G, we say that a

metric g on M is G-invariant if

gµg(p)(dµg(u),dµg(v)) = gp(u, v) ∀g ∈ G, p ∈M,u, v ∈ TpM,

in other words, the action µg is an isometry for every g ∈ G. Furthermore, if the group of isometries

µG = {µg | g ∈ G} is a closed subgroup of Iso(M, g), we say that G acts by isometries.

Remark 3.2.3 (Effective actions). Note that µG is isomorphic to G if µg = Id implies that g = e. We

call these effective actions. If an action is not effective, we can define the ineffective kernel of the

action N =
⋂
x∈M Gx. This is a normal subgroup of G, and in this setting µG is isomorphic to G/N as

Lie groups. In particular, the action of G/N on the manifold M is equivalent to that of G, so in most

situations we can safely assume that the action is effective, although at times it is convenient to work

with non-effective actions, when doing explicit computations in concrete manifolds.

Remark 3.2.4 (Closed subgroups of isometries). By a theorem of Myers and Steenrod 1939, the

isometry group Iso(M, g) is a Lie group. Hence, the requirement that µG is a closed subgroup of Iso(M, g)

implies that µG is itself a Lie group. We will see in shortly that having a closed subgroup of isometries

will allow us to quotient by it—i.e., putting a unique smooth structure on the space of orbits such that it

makes the projection a submersion—which may not be possible when the group is not closed.

32

The first kind of actions that we will consider are proper actions. An action is said to be proper if the

map from G×M to M ×M , (g, x) 7→ (µg(x), x) is proper, in the sense that the preimage of a compact

set is compact. Proper actions give us a way to construct G-invariant metrics. Even though this result

goes back to Palais, it was recently shown that this metric can be chosen to be complete.

Theorem 3.2.5 (Kankaanrinta 2005). Let M be a manifold with a proper G-action µ. Then, there

exists a complete metric g which makes µG into a closed subgroup of Iso(M, g).

The second kind of actions that we will look at are free actions. A free action is one that has no

non-trivial fixed points. In other words, if µg(x) = x for an x ∈M , then g = e. Another way of looking at

this is that every isotropy group is trivial. Free isometric actions are actions by which we can quotient

and obtain a smooth manifold.

Theorem 3.2.6 (Free slice theorem). Let G be a closed subgroup of Iso(M, g) that acts freely. Then,

the set of orbits M/G = {G(x) | x ∈ M} can be given a unique manifold structure and a Riemannian

metric such that π : M →M/G is a Riemannian submersion.

Proof. See (Petersen 2016, Theorem 5.6.21).

Combining these two theorems we have the following corollary.

Corollary 3.2.7. Let M be a manifold together with a free proper action. There exists a G-invariant

metric on M that descends into a metric on M/G which makes π : M → M/G into a Riemannian

submersion.

Proper actions are a reasonably general setting on which to study invariant metrics.

Theorem 3.2.8 (Isometric actions are proper). Let (M, g) be a Riemannian manifold and G be a

closed subgroup of Iso(M, g). Then, its action on M is proper.

Proof. See (Alexandrino and Bettiol 2015, Theorem 3.62).

Remark 3.2.9 (Isometric actions vs. effective and proper). Theorem 3.2.8 gives a converse to The-

orem 3.2.5. Between these two theorems, we have an equivalence between effective and proper G-actions

on a manifold M and closed subgroups G of Iso(M, g) where g is a complete metric.

Remark 3.2.10 (Non-free isometric actions). In some situations, it is not strictly necessary for the

action to be free but it certainly makes things easier. If the action is not free, one still has an open and

dense subset of the manifold whose quotient by the action is a manifold. This is part of the content of

the principal orbit theorem, and the start of the theory of Riemannian foliations (Alexandrino and

Bettiol 2015, Thm. 3.82).

Let us now define principal bundles, which are fibre bundles whose fibre is a Lie group, together with

a compatible fibre-preserving action.

Definition 3.2.11. Let π : P →M be a fibre bundle with fibre a Lie groupG. We say that P is a principal

bundle if we have a free and transitive (on the fibres) fibre-preserving right action µ : P ×G→ P , and

an atlas such that the bundle charts α : π−1(U)→ G are equivariant with respect to the action,

α(µ(p, g)) = α(p)g ∀p ∈ π−1(U), g ∈ G.

33

This makes the charts compatible with the action µ on P and the action of multiplication on the right on

G.

We now show that principal bundles are the right abstraction to look at metrics that are G-invariant

by which we can quotient.

Theorem 3.2.12 (Construction of principal bundles). Let M be a manifold with a free and proper

G-action. Then, π : M →M/G has the structure of a principal bundle.

Proof. See (Alexandrino and Bettiol 2015, Theorem 3.34). A sketch of the proof goes as follows:

Since the action is free and proper, by Theorem 3.2.6 the map π : M →M/G is a submersion, so every

fibre Mx := π−1({x}) is a manifold. These fibres are, by definition, the orbits of the action and, since the

action is free, they are all isomorphic to G, so a principal bundle is a fibre bundle with fibre G and a

fibre-preserving free and proper action. Adapting the proof of Theorem 3.2.6 one proves that the bundle

charts are equivariant.

And we have the following converse.

Proposition 3.2.13 (Characterisation of principal bundles). The action µ of a principal bundle is

free and proper.

Proof. See (Alexandrino and Bettiol 2015, Proposition 3.33). These properties follow from the fact that

an action of a Lie group on itself is free and proper, and using the equivariance of the bundle charts.

In particular, every principal bundle admits an invariant metric that descends into the base space and

makes π into a Riemannian submersion.

Until now, we have argued that principal bundles are spaces that accept G-invariant metrics, and that

if we have a G-invariant metric on the total space, it descends into a metric on the base space. We will

now see some sort of converse to this result. In particular, we will see how to lift a metric from the base

space into the total space such that the metric on P is G-invariant. In general, we described in Section 3.1

how, given a metric on a base space and a connection on the total space, we may lift it to a metric on the

total space of a fibred manifold by declaring dπ to be an isometry and choosing a metric tensor on the

vertical bundle. In the case of principal bundles, the fact that the fibres look like Lie groups allows us to

simplify the process of choosing a metric tensor on V P to choosing one on the Lie algebra.

We start by defining a connection on a principal bundle.

Definition 3.2.14. A connection on a principal G-bundle π : P → M (or simply a principal

connection) H ⊆ TP is a G-equivariant Ehresmann connection, that is, a G-equivariant sub-bundle

complementary to V P . In symbols,

(dµg)p(Hp) = Hµ(p,g) ∀p ∈ P, g ∈ G.

It is direct to see that a G-invariant metric on P induces a connection on P defining Hp := (VpP)⊥,

and it is exactly the G-invariance of the metric what gives the equivariance. In particular, since principal

bundles accept G-invariant metrics, every principal bundle admits a principal connection. We may use

these to lift a metric from M to P making π : P →M into a Riemannian submersion.

34

Theorem 3.2.15 (Lifting a metric on a principal bundle (Vilms 1970)). Let π : P → M be a

principal G-bundle. Given a metric g on M , an inner product ge on g and a principal connection H,

there exists a unique metric g on P such that π is a Riemannian submersion with totally geodesic fibres

isometric to (G, geL)—the left-invariant metric on G associated to ge—and horizontal distribution H.

Proof. Given the principal connection H, we can put a metric on the horizontal space by pulling back the

metric on M as gH = (dπ|H)∗(g). We can then declare H and V P to be orthogonal, and put a metric on

V P by transferring the right-invariant metric on G to P via the bundle charts. If α : π−1(U)→ G is a

bundle chart, the metric is defined locally on π−1(U) as

g|π−1(U) = α∗(geL)⊕ (dπ|H∩Tπ−1(U))∗(g|U).

This is well-defined as, since the charts are right-equivariant, we have that for any two bundle charts

αU , αV with U ∩ V 6= ∅,

αV ◦ α−1
U = Lg

for some g ∈ G (see e.g., Naber 2011, Lemma 4.2.1).

The fact that the fibres in this construction are totally geodesic submanifolds of P is proved in (Vilms

1970, Theorem 3.5).

The uniqueness of this construction comes from the fact that the fibres are totally geodesic, so they

have to be orthogonal to the connection subbundle.

Remark 3.2.16 (Associated bundles). The construction above goes through in the more general

setting of associated bundles, as proved in the original paper. On the other hand, the simpler case of

principal bundles is enough for what we will need in the sequel.

Let us now define a family of vector fields which will be useful later.

Definition 3.2.17. For a principal G-bundle π : P → M with action µ we define the infinitesimal

generators of the action as
ξ : P × g→ V P

(p, v) 7→ ξv(p) := (dµp)e(v)

Example 3.2.18. In the simplest case of the principal bundle π : G→ {e}, ξv(g) = (dLg)e(v). In other

words, ξv are just left-invariant vector fields on G, that is, ξv = vL.

The infinitesimal generators of the action take values on V P , since for a p ∈ P , (dπ)p ◦ (dµp)e =

d(π ◦ µp)e = 0, where we have used that the action µp is fibre-preserving, and thus π ◦ µp is constant. The

infinitesimal generators provide with bundle-isomorphism between V P and P × g, and hence, they show

that the vertical bundle is always trivial.

Proposition 3.2.19. Let π : P →M be a principal G-bundle, then (dµp)e : g→ VpP is a linear isomor-

phism, so that the vertical space factorises as V P ∼= P × g. We also have that the infinitesimal generators

induce a Lie algebra homomorphism

ξ[u,v] = [ξu, ξv] ∀u, v ∈ g.

35

Proof. For a p ∈ P , VpP can be identified with the tangent to the orbit of G at p. This orbit is diffeomorphic

to G, as the action is free, so VpP and g have the same dimension. If we prove that (dµp)e is injective,

then it is a linear isomorphism. Let v ∈ g such that (dµp)e(v) = 0 for p 6= e. This is equivalent to saying

that
d
dt

∣∣∣
t=0

µ(p, expm(tv)) = 0.

Thus, p is locally a fixed point of the map µexpm(tv), but since the action is free this only happens when

v = 0 so (dµp)e is injective.

To prove that ξ is an Lie algebra homomorphism, we have by equivariance that

µg ◦ µp(expm(tv)) = µµg(p)(g−1 expm(tv)g) ∀v ∈ g, g ∈ G, p ∈ P

and differentiating at t = 0 we get the following infinitesimal equivariance property:

(dµg)p(ξv(p)) = ξAdg−1 (v)(µg(p)) ∀g ∈ G, p ∈ P, v ∈ g. (3.2)

Finally, letting g = expm(−tu), substituting p with µ(expm(tu), p) in (3.2), and differentiating

d
dt

∣∣∣
t=0

(µexpm(−tu))∗(ξv(µ(expm(tu), p))) = d
dt

∣∣∣
t=0

ξAdexpm(tu)(v)(p) ∀p ∈ P, u, v ∈ g.

The left-hand side is the definition of [ξu, ξv](p), while the right-hand side is equal to ξ[u,v](p), after using

that the derivative of a linear map is the map itself.

Remark 3.2.20 (Lifting a metric on a principal G-bundle for G compact). In the case when G

is compact, the construction of the metric on V P in Theorem 3.2.15 may be greatly simplified by the use

of infinitesimal generators. As it was shown in Equation (3.2), (dµg)p may be evaluated using infinitesimal

generators. In particular, it acts as the adjoint action on g. If we have an Ad(G)-invariant inner product

on g, we may then pull it back to a G-invariant metric tensor on V P . This metric is much simpler to

work with and compute, as it does not make use of the bundle charts.

As we will see in Proposition 3.3.9, on compact Lie groups one may construct Ad(G)-invariant metrics,

so we may carry this construction whenever G is compact. Luckily, we will just study the setting of

G-compact in the sequel, as all Riemannian homogeneous spaces are of this form.

3.3 Homogeneous Spaces

We now come back to the computation of geodesics on different manifolds. The discussion in the

previous section tells us that, by Corollary 3.2.7, if one has a G-invariant metric on a principal bundle,

then this metric descends to a metric on the quotient P/G ∼= M , turning the projection into a Riemannian

submersion. Since a Riemannian submersion maps horizontal geodesics into geodesics, if we know how to

compute geodesics on P , then we can compute geodesics on M just by projecting the horizontal ones.

In this section, we will address the questions of how to implement these ideas in concrete families of

manifolds. In particular, we will look at families of manifolds on which we can compute the geodesics

easily, so that we can get the geodesics on the quotient simply by projecting onto it.

36

The theory of (left-) invariant metrics on a space with a transitive action was pioneered by Nomizu

1954, which was the first to realise that, if one has a transitive action, it can be used to translate geometric

problems on a manifold to algebraic problems on a tangent space. An introduction to reductive spaces in

terms of representations can be found in (Kobayashi and Nomizu 1969, Ch. X Sec. 1 and 2). An early

introduction to the subject of reductive homogeneous spaces avoiding representations and delving deeper

into the theory of the canonical connection of a reductive space can be found in (Kowalski 1980, Ch. 1).

The theory of reductive structures was first systematically studied by Lichnerowicz in (Lichnerowicz 1958).

A concise and self-contained introduction to a number of the ideas in this section and the next one can

also be found in the excellent text (Cheeger and Ebin 2008, Chapter 3).

We start by looking at the simplest example. Let H be a closed subgroup of a Lie group G, consider

the right action of H on G by right multiplications. It is not difficult to see that this action is proper and

free, so we have our first specific family of principal bundles.

Proposition 3.3.1. Let H be a closed subgroup of a Lie group G acting on G via right multiplications.

Then, π : G→ G/H is a principal H-bundle.

Manifolds that are a quotient of a Lie group by a closed subgroup are particularly important and are

called homogeneous spaces.

Definition 3.3.2. A manifold M is a G-homogeneous space if it is diffeomorphic to a manifold of the

form G/H with H a closed subgroup of a Lie group G.

The name of homogeneous spaces comes from the fact that these are exactly the manifolds that admit

transitive actions, as we will show in a second.

Definition 3.3.3. An G-action is transitive on M if for every x, y ∈M , there exists a g ∈ G such that

µg(x) = y.

When G is a Lie group acting on a smooth manifold, a transitive action µg allows us to move any

point to any other point. In particular, since µg is a diffeomorphism (its inverse is µg−1), these manifolds

look the same from a smooth point of view at every point.

Proposition 3.3.4 (Construction and characterisation of homogeneous spaces). Let H be a

closed subgroup of G. The G-action by left multiplications induced on the quotient G/H is transitive, so

G/H is a G-homogeneous space.

Conversely, let M be a G-homogeneous space with action µ, and fix a point x0 ∈ M . Then, M is

diffeomorphic to the quotient of G by the stabiliser of x0, H := Gx0 by right multiplications, through the

diffeomorphism
µ̃x0 : G/H →M

π(g) 7→ µx0(g)
.

Remark 3.3.5 (Maps that descend to the quotient). A map Φ: P → P on a principal bundle map

that commutes with the action µg descends into a map on the quotient Φ̃ := π ◦Φ. We will use this in the

setting of the principal bundle of a homogeneous space π : G→ G/H, with Rh for h ∈ H as the bundle

right-action and Φ = Lg. The left-action then descends into a left-action L̃g on G/H since left and right

multiplication on a Lie group always commute.

37

For a homogeneous space M , there might be different groups that act transitively on it. Therefore, its

representation as a quotient of Lie groups may not be unique. To see this, we shall first introduce a large

family of examples for homogeneous spaces.

Definition 3.3.6. A Riemannian manifold (M, g) is a Riemannian homogeneous space if its isometry

group Iso(M, g) acts transitively on M .

Example 3.3.7 (Non-unique quotient representation of a homogeneous space). Let M = Rn

with the canonical metric, the full isometry group is generated by rotations, reflections, and translations, but

the subgroup of translations acts transitively on Rn and is a closed subgroup of Iso(Rn, gRn). In other words,

both the full isometry group and the subgroup of translations act transitively on Rn. Hence, if we denote

the translations on Rn by T(n), we have two representations of Rn as Rn ∼= T(n) ∼= Iso(Rn, gRn)/O(n),

where we have used that the group of translations has a trivial stabiliser.

Riemannian homogeneous spaces have a particularly simple geometry. In particular, by definition, for

any two points there exists an isometry that transforms one into the other. Hence, quantities that are

invariant under isometries, such as the curvature tensor or the Levi-Civita connection, may be computed at

all points just by computing them at one point and translating them using the isometries of the manifold.

In other words, from the perspective of Riemannian geometry, these manifolds look the same at every

point, so it is enough to study them at one of their points—or in a neighbourhood of one point—to

understand their geometry at any given point.

The stabilisers of Riemannian manifolds are always compact. This means that a Riemannian homoge-

neous space can always be represented as G/H with H compact.

Proposition 3.3.8 (Necessary condition for Riemannian homogeneous spaces). Let (M, g) be a

Riemannian manifold and let G be a closed subgroup of Iso(M, g), then its stabiliser H at a point x0 ∈M

is compact.

Proof. By Theorem 3.2.8 an action by isometries is proper, and sinceH = (µx0)−1({x0}),H is compact.

The converse is also true. In order to prove it, we first need the following important construction on

Lie groups called the averaging trick.

Proposition 3.3.9 (Bi-invariant metric by a compact subgroup). Let G be a Lie group and H a

compact subgroup. Then G admits a left-G-invariant metric that is also right-H-invariant

Proof. Let ωh be a non-zero alternating multilinear map on h in k = dim h variables (i.e., ωh ∈
∧k

h∗).

Since dim
∧k

h∗ = 1, this form is unique up to a multiplicative constant. We can then extend it to all of

H by pushing it forward along Rh, defining (ωH)h := (Rh)∗(ωh). This makes ωH into a right-invariant

top-dimensional form on H, and its associated measure is called the right Haar measure on H.

Let 〈·, ·〉 be any inner product on g. We can turn this inner product into an Ad(H)-invariant inner

product on g by averaging it over the elements of the group using the right Haar measure ωH

gg(u, v) :=
∫
H

〈Adh(u),Adh(v)〉ωH u, v ∈ g.

38

Note that this integral is well-defined since H is compact. The Ad(H)-invariance follows from the

right-invariance of ω

gg(Adh′(u),Adh′(v)) =
∫
H

〈Adhh′(u),Adhh′(v)〉ωH = gg(u, v) ∀u, v ∈ g,∀h′ ∈ H.

Finally, we can extend this inner product to a metric on all of G by pushing it forward along Lg,

gg := (Lg)∗(gg). This makes g into a left-G-invariant metric, but since it is Ad(H)-invariant and it is

left-H-invariant, it is right-H-invariant as well.

We call a metric that is both left-invariant and right-invariant bi-invariant. When G is itself compact,

we may choose H = G in the theorem above, getting the following result.

Corollary 3.3.10 (Bi-invariant metrics on compact Lie groups). A compact Lie group G admits

a bi-invariant metric.

Remark 3.3.11 (Correspondence between invariant metrics and Ad(H)-invariant inner prod-

ucts). It is easy to see by going in the opposite direction in the construction of Proposition 3.3.9 that

left-G-invariant right-H-invariant metrics on G are in one-to-one correspondence with Ad(H)-invariant

inner products on g.

With this construction in hand, we may prove the converse of Proposition 3.3.8.

Proposition 3.3.12 (Sufficient condition for Riemannian homogeneous spaces). Let M be a

manifold with a transitive action. If M has a compact stabiliser H = Gx0 then, there is a metric g that

makes (M, g) into a Riemannian homogeneous space.

Proof. Following the construction in Proposition 3.3.9, we may construct a metric on G such that it

is left-G-invariant and right-H-invariant. Since it is right-H-invariant, it descends into a metric g on

M ∼= G/H, and since it is left-G-invariant, the metric on M is G-invariant, that is, (M, g) is a Riemannian

homogeneous space.

Remark 3.3.13 (A homogeneous space may not be Riemannian homogeneous). It is not the

case that every homogeneous space admits a metric that makes it into a Riemannian homogeneous space.

For example, the family of matrices of a fixed rank never admits a Riemannian homogeneous structure

outside the trivial case, as noted in Section 3.5.4.

As we have seen, on a Riemannian homogeneous space M , after fixing a point x0 ∈M , its isometry

group may be endowed with a metric that is right-H-invariant for H = Gx0 . In other words, this metric

descends into the quotient G/H, making it isometric to M by construction. Furthermore, since this metric

can be chosen to be left-G-invariant, it makes the diffeomorphism from Proposition 3.3.4 into an isometry

and the map π : G→ G/H into a Riemannian submersion.

As a Riemannian homogeneous space is a principal bundle with a metric that descends onto the

quotient, we know that geodesics on G/H are just the projection of geodesics on G with a given initial

horizontal vector. Hence, one piece that we are missing to be able to compute geodesics on Riemannian

homogeneous spaces is to figure out what constitutes a horizontal vector for these metrics. In order to be

able to do this, we will work with a class of Riemannian homogeneous spaces for which the horizontal

39

bundle is particularly simple. We have already implicitly worked with these spaces during the proof

of Proposition 3.3.9, and now we will give them a name.

We aim to be able to left-translate a tensor that descends from TeG to TeHG/H ∼= Tx0M onto all of

M . Since we are taking the quotient by right action of the isotropy group H, any tensor that descends

into the quotient should be right-H-invariant. Since we will be looking at tensors that are dL̃g-invariant,

we are in particular interested in looking at tensors that are dL̃h-invariant for h ∈ H. These two things

together take us into looking at tensors that are Ad(H)-invariant. We can formalise this idea by looking

at the quotient isotropy representation (dL̃h)e := (dπ ◦ dLh)e. To compute it, we look first at the quotient

action on the left

L̃h(g) := π(Lh(g)) = hgH = hgh−1H = π(ch(g)) g ∈ G, h ∈ H

and differentiating this relation at g = e we get

(dL̃h)e(v) = (dπ)e(Adh(v)) h ∈ H, v ∈ g.

In other words, we see that the differential of the diffeomorphisms L̃h can be described via the adjoint

representation of H on g. Since h is clearly Ad(H)-invariant, the study of tensors that are dL̃h-invariant

heavily simplifies when g splits into two complementary vector spaces that are Ad(H)-invariant.

Definition 3.3.14. We say that a homogeneous space G/H is reductive if there is a linear complement

g = h⊕m such that

Adh(m) ⊆ m ∀h ∈ H.

Remark 3.3.15. The subspace m does not need to be an ideal, as it may not be closed under the Lie

bracket.

We now give a more geometric interpretation of the usefulness of the reductive condition. But first we

recall a basic geometric fact about Lie groups.

Remark 3.3.16 (Lie groups have trivial tangent bundle). Looking at the principal bundle π : G→

{e} of G acting on itself via right multiplication, we already saw in Proposition 3.2.19 that the infinitesimal

generators of the action—left-invariant vector fields in this case—provide a vector bundle isomorphism

ξ : G × g → V G. Since in this case V G = TG, this proposition translates to the classical fact that

left-invariant vector fields give a trivialisation of the tangent bundle of a Lie group, that is, ξ(v) = vL.

Remark 3.3.17 (A distinguished principal connection on a reductive homogeneous space).

Since G is a principal H-bundle, a principal connection gives a split TG = H⊕V G. We have that, through

left-invariant vector fields, V G ∼= G× h. What the reductive condition gives us is a distinguished principal

connection Hg := (dLg)e(m). Since this is a principal connection, it descends into the quotient G/H to

give a bundle morphism along π between H ∼= G×m and T (G/H) which is an isomorphism on the fibres,

as described in (3.1). Furthermore, the equivariance allows us to identify an element in T (G/H) with

an element in m modulo a choice of an element in h ∈ H, coming from the fact that Adh(m) = m, but

Ad |m 6= Idm. In practice, when identifying an element (x, v) ∈ T (G/H) with an element in m, we will have

to choose an element of the fibre π−1(x) ∼= H. This choice will not matter in the definition of the metric

tensor on G, as the inner products that we consider on m will be Ad(H)-invariant (cf. Proposition 3.3.9).

40

We have access to all these desirable properties in the setting of Riemannian homogeneous spaces, as

every Riemannian homogeneous space is reductive.

Proposition 3.3.18. Every Riemannian homogeneous space is reductive.

Proof. A Riemannian homogeneous space can be represented as G/H with H a compact subgroup of G

(Proposition 3.3.8). Following Proposition 3.3.9, fixing an inner product on g, we may average it into an

Ad(H)-invariant inner product on g. The choice m := h⊥ is a reductive complement of h.

The language of reductive homogeneous spaces allows us to give a more concise version of the ideas

already presented in Proposition 3.3.9. In particular, it allows us to give a simpler version of the construction

in Theorem 3.2.15 in the context of reductive homogeneous spaces.

Theorem 3.3.19 (Lifting a metric on a reductive homogeneous space). Let (M, g) withM ∼= G/H

be a reductive homogeneous space and let gh be an Ad(H)-invariant inner product on h (which exists

when H is compact). There exists a unique metric g on G that makes π : G → M into a Riemannian

submersion with totally geodesic fibres isometric to (H, ghL).

Proof. We may lift the metric g into a left-G-invariant metric on the canonical distribution H = mL

as done in Theorem 3.2.15 by defining gH = (dπ|H)∗(g). At the same time, the Ad(H)-invariant inner

product on h may be left-transported as in the proof of Proposition 3.3.9 to a right-G left-H-invariant

product on V G = hL. The metric g comes from declaring the horizontal and vertical distributions to be

orthogonal, that is, g = ghL ⊕ gH. This metric is left-G-invariant and right-H-invariant by construction

and makes π into a Riemannian submersion. The proof that the fibres of this construction are totally

geodesic follows from Theorem 3.2.15.

It is worth noting that a more general version of this theorem holds as first proved in the paper (Bérard-

Bergery 1975) (in French). If we have K ⊆ H closed and compact subgroups of a Lie group G, we can

still form a Riemannian submersion with totally geodesic fibres of the form

π : G/K → G/H

gK 7→ gH

although in this case we end up with a fibre bundle with fibre the homogeneous space H/K, rather than

a principal bundle. The details can be found in English in (Besse 2008, Thm. 9.80).

3.4 Naturally Reductive Homogeneous Spaces

In this section, we look at a particularly nice example of Riemannian homogeneous spaces for which

the Levi-Civita connection of the metric coincides with the natural torsion-free affine connection on G/H.

These are called naturally reductive homogeneous spaces, and were introduced in (Nomizu 1954).

An introductory treatment with a more modern notation can be found in (Kobayashi and Nomizu 1969,

Ch. X Sec. 3).

We now have all the necessary tools to start computing geodesics on Riemannian homogeneous spaces.

If we have a Lie group G with a compact subgroup H we can put a left-G-invariant and Ad(H)-invariant

41

metric on G. This metric descends into a left-invariant metric on G/H making π : G→ G/H a Riemannian

submersion. Hence, if we know how to compute geodesics for this metric on G, we know that the geodesics

on G/H are exactly projection of the geodesics on G with initial conditions on m, where m is the orthogonal

complement of h.

The process to compute geodesics with initial conditions (gH, v) ∈ T (G/H) would be as follows:

1. Identify v with an element in m as follows: vm := (dLg−1)g((dπ|Hg)−1(v)) ∈ m.

2. Compute the geodesic γe(t) on G with horizontal initial conditions (e, vm).

3. Transport γe(t) to TgG using the isometry Lg: γg := (Lg)∗(γe).

4. Project the geodesic back to the manifold: π ◦ γg.

Note that in the first step we have implicitly chosen an element in π−1(gH) ∼= H—which we have

conveniently denoted by g—as the element in the fibre onto whose tangent space to lift v. As we mentioned

before, this does not change the geodesics, as the metric is Ad(H)-invariant.

The only step missing in implementing the plan above is the second one. In other words, we just need

examples of reductive homogeneous spaces on which we can compute horizontal geodesics. To do so, we

first need the following proposition which will allow us to translate the Lie derivative on the manifold to

the Lie derivative on the Lie algebra via left-invariant vector fields.

Proposition 3.4.1. Let G be a Lie group. The map X 7→ XL is a Lie algebra homomorphism

[X,Y]L = [XL, Y L] ∀X,Y ∈ g.

Proof. Note that XL = (dLg)e(X) = d
dt

∣∣∣
t=0

g expm(tX) comes from the differential of a right action

evaluated at g. In other words, XL = ξ(X) and the result follows from Proposition 3.2.19.

Now, we may compute the Levi-Civita connection for a left-invariant metric on G.

Proposition 3.4.2. Let g be a left-invariant metric on G. Then, the Levi-Civita connection at the identity

takes the form

(∇XLY L)e = 1
2 [X,Y] + U(X,Y) ∀X,Y ∈ g,

where U is the symmetric bilinear form on g defined by

2g(U(X,Y), Z) = −g(X, [Y, Z])− g(Y, [X,Z]) ∀X,Y, Z ∈ g,

or, more succinctly,

U(X,Y) := −1
2 (ad∗X(Y) + ad∗Y (X)) ∀X,Y ∈ g,

where ad∗X is the adjoint with respect to the inner product on g.

Proof. By the Koszul formula (see e.g., Petersen 2016, Thm. 2.2.2), for any X,Y, Z ∈ g

2g(∇XLY L, ZL) = XL(g(Y L, ZL)) + Y L(g(XL, ZL))− ZL(g(XL, Y L))

− g(XL, [Y L, ZL])− g(Y L, [XL, ZL]) + g(ZL, [XL, Y L]).

Since XL, Y L, ZL are left-invariant fields, the function p 7→ g(XL, Y L)p is constant, so the first three terms

are zero. Using Proposition 3.4.1 and evaluating at the identity we get the formula.

42

Remark 3.4.3. It is not true in general that ∇XLY L is itself left-invariant due to the factor U . This is

the reason for which we could compute the connection just at the identity.

Following this proposition, if we have a Riemannian homogeneous space G/H, the vector bundle

morphism dπ : m×G→ T (G/H) along π induces the mapping

X? := dπ(XL) X ∈ m.

With these vector fields, we may compute the connection at eH ∈ G/H.

Proposition 3.4.4. Let (G/H, g) be a Riemannian homogeneous space then

(∇X?Y ?)eH = 1
2 ([X,Y]m)?eH + (Um(X,Y))?eH ∀X,Y ∈ m

where Um : m×m→ m is the projection of the bilinear form U from Proposition 3.4.2 onto m.

Proof. The result follows from the expression for the Koszul formula as in Proposition 3.4.2 after noting

that dπ(XL) = dπ((Xm)L) so that [X?, Y ?] = ([X,Y]m)?.

This proposition suggests the following definition:

Definition 3.4.5. A naturally reductive homogeneous space is a Riemannian homogeneous space for

which Um ≡ 0, or, equivalently, if the projection onto m of the adjoint (adX)m : m→ m is skew-symmetric

for every X ∈ m. In symbols,

〈[X,Y]m, Z〉 = −〈Y, [X,Z]m〉 ∀X,Y, Z ∈ m.

Remark 3.4.6 (Pseudo-Riemannian metrics on G). The definition of a naturally reductive space

just depends on ad∗, which, in turn, just depends on the choice of reductive structure g = h⊕m and a

suitable inner product on m. In particular, as we lift the metric from M to G, we have a choice on the

Ad(H)-invariant bilinear map on h. Throughout this chapter, we have assumed that this bilinear map was

an inner product, but it is possible to have a pseudo-Riemannian left-G-invariant and right-H-invariant

metric on G that descends into a Riemannian metric on G/H. This setting includes examples such as the

different non-compact Grassmannian and general non-compact symmetric spaces. For simplicity, we will

not explore these spaces, as, to the best of our knowledge, these spaces are not of great interest in the

setting of optimisation, with the notable exception of the hyperbolic space.

Remark 3.4.7 (A geometric motivation for naturally reductive geometric spaces). We saw

in Remark 3.3.17 that reductive homogeneous spaces have a distinguished principal connection. For a

homogeneous space, the associated bundle induced by the isotropy representation is the tangent bundle

of G/H, that is, G ×H Tx0M
∼= T (G/H). Hence, this principal connection defines a parallel transport

system on G/H, which is given for a curve γ(t) and an horizontal lift of it g(t) ∈ G by

Pγ,t : Tγ(0)G/H → Tγ(t)G/H

X 7→ d(π ◦ Lg(t) ◦ Lg(0)−1)g(0)((dπ|Hg(0))−1(X)).

The associated affine connection to this parallel transport system is called the canonical connection.

This affine connection is given at the identity for a curve γ(0) = eH, γ̇(0) = X by

(∇X?Y ?)eH := d
dt

∣∣∣
t=0

P−1
γ,t(Y ?(t)) = ([X,Y]m)?eH .

43

This affine connection is left-invariant and complete, with geodesics of the form γ(t) = π(g expm(tX))

for X ∈ m and g ∈ G by construction. This connection has non-zero torsion given by the formula

T (X,Y)eH = ([X,Y]m)?eH (Kobayashi and Nomizu 1969, Ch. X Thm. 2.6).

For any affine connection ∇ we can define a torsion-free connection ∇̃ with the same geodesics by

subtracting a half of its torsion from it, ∇̃ := ∇ − 1
2T (Ambrose, Palais, and I. M. Singer 1960). By

applying this construction to the canonical connection, given that the torsion is also left-invariant, we get

a torsion-free left-invariant affine connection on G/H with the same geodesics as the canonical connection,

which is called the natural torsion-free connection. Now, on a Riemannian homogeneous space we

have two distinguished torsion-free connections, namely the Levi-Civita connection associated to the

metric and the natural torsion-free connection. Naturally reductive homogeneous spaces solve the question

of when do these two connections agree. Since g is left-invariant, its Levi-Civita connection ∇LC will also

be left-invariant. Since ∇̃ is also left-invariant, we will have that ∇̃ = ∇LC if and only if they agree at eH

on the geodesics of ∇̃, that is, on the vector fields X?. But Proposition 3.4.4 gives a formula for ∇LC

at eH, from which we deduce that ∇̃ = ∇LC if and only if Um ≡ 0. In other words, the connection of a

Riemannian homogeneous space (M, g) is the natural torsion-free connection of its reductive structure if

and only if (M, g) is naturally reductive. This was the original motivation for their introduction by Nomizu.

Note that, in general, g could be a pseudo-Riemannian metric, making (M, g) a pseudo-Riemannian

homogeneous space. We restrict our attention to the Riemannian setting, as, for optimisation, we need a

metric space structure on M to be able to prove convergence results.

Remark 3.4.8 (Killing vector fields). Sometimes, the formulas for the connection in Proposition 3.4.4

are given in terms of Killing vector fields on a Riemannian homogeneous space (M, g). In that case, letting

G = Iso(M, g), and fixing a point p ∈M , it is possible to identify each X ∈ m with a Killing vector field

X+ on G/H that does not vanish at p. In this case, this assignment is a Lie algebra antihomomorphism

[X,Y]+ = −[X+, Y +], and the formula for the Levi-Civita connection of two Killing vector fields is the

same but with a minus sign. This picture is particularly simple in the setting of naturally reductive

homogeneous spaces as Killing vector fields are then given by the projection of right-invariant vector fields

on G, as will follow from Proposition 3.4.10. On the other hand, the left-invariant vector fields are more

amenable for the computation of geodesics.

The formula for the Levi-Civita connection of the projection of a left-G-invariant right-H-invariant

metric on G/H takes a particularly simple form when (G/H, g) is naturally reductive.

Proposition 3.4.9. Let G be a Lie group and H a compact Lie subgroup. Let g be a left-G-invariant

Ad(H)-invariant metric on G so that (G/H, π∗(g)) is a naturally reductive homogeneous space. Then

∇XLY L = 1
2[X,Y]L ∀X,Y ∈ m.

Proof. By the Koszul formula we have that for X,Y, Z ∈ g

2g(∇XLY L, ZL) = −g(XL, [Y L, ZL])− g(Y L, [XL, ZL]) + g(ZL, [XL, Y L]).

By linearity, if we prove that the formula holds for Z ∈ m and for Z ∈ h then we are done.

44

Assume that X,Y ∈ m and Z ∈ m. By the naturally reductive condition and the left-invariance of g

the first two terms cancel getting

2g(∇XLY L, ZL) = g([X,Y]L, ZL)

so the formula holds on its horizontal part.

Assume now that Z ∈ h. Since g is Ad(H)-invariant, computing the derivative at zero of

g(Adexpm(tZ)(X),Adexpm(tZ)(Y)) = g(X,Y),

we get that adZ is skew-symmetric so the two first terms of the Koszul formula also cancel, and the

formula holds on its vertical part as well.

We are now ready to compute the geodesics for naturally reductive homogeneous spaces, and, in

particular, for compact Lie groups with a bi-invariant metric.

Proposition 3.4.10 (Geodesics on naturally reductive spaces). Let G be a Lie group with a left-

invariant metric such that U ≡ 0. The geodesic at the identity γe with initial condition X ∈ g is given by

the one-parameter subgroups γe(t) = expm(tX).

More generally, if G/H is a naturally reductive homogeneous space, the geodesics at an arbitrary point

gH ∈ G/H are of the form

γgH(t) = π(g expm(tXm)) = g expm(tXm)H.

Proof. If U ≡ 0, we have ∇XLY L = 1
2 [X,Y]L (Proposition 3.4.2). In particular, the vector field XL is

self-parallel. The integral curves of a left-invariant vector field is given by the Lie exponential, by definition

of the Lie exponential.

The same argument goes through after selecting X,Y ∈ m and applying the formula for the connection

on two left-invariant vector fields on a naturally reductive homogeneous space (Proposition 3.4.9). Since

these are horizontal geodesics and π : G→ G/H is a Riemannian submersion we get the result.

A large family of naturally reductive homogeneous spaces comes from having a Lie group G together

with a bi-invariant metric.

Definition 3.4.11. A normal Riemannian homogeneous space is a Riemannian homogeneous space

(M, g) with a presentation G/H such that the metric is induced by a bi-invariant metric on G.

Normal Riemannian homogeneous spaces are examples of naturally reductive spaces.

Proposition 3.4.12. Let G be a Lie group with a bi-invariant metric, then

〈adX(Y), Z〉 = −〈Y, adX(Z)〉 ∀X,Y, Z ∈ g,

or, more compactly, ad∗g = − adg for every g ∈ G. In particular, a normal Riemannian homogeneous space

is naturally reductive and its connection on left-invariant vector fields is given by

∇XLY L = 1
2[X,Y]L ∀X,Y ∈ g.

45

Proof. Differentiate 〈Adexpm(tX)(Y),Adexpm(tX)(Z)〉 = 〈Y,Z〉 at t = 0. For the formula for the connection,

consider the Koszul formula and use that ad∗X = − adX for every X ∈ g.

Remark 3.4.13. We already proved in Corollary 3.3.10 that compact groups admit bi-invariant metrics.

Using the same construction, without the need of averaging, one proves that Abelian groups also admit a

bi-invariant metric. A basic result in Lie group theory says that any Abelian group is the direct product of

a torus with Rn. Hence, Lie groups of the form G ∼= K × Rn, for K compact, admit a bi-invariant metric.

In fact, these are the only groups with bi-invariant metrics.

Theorem 3.4.14 (Classification of groups with bi-invariant metrics). A Lie group admits a bi-

invariant metric if and only if it is isomorphic to a direct product G × H, with G compact and H

Abelian.

Proof. See (Milnor 1976, Lemma 7.5).

In the case when G is compact and semisimple, the bi-invariant scalar product is unique up to a scaling

factor, and it is given by −B, where B is the Killing form. These normal homogeneous spaces are called

standard Riemannian homogeneous spaces and this metric is called the canonical metric.

3.5 Matrix Manifolds

All the theory developed in this chapter comes together particularly nicely when G is a matrix Lie

group. In this case, if G/H is a naturally reductive homogeneous space, we may simplify the computation

of geodesics to the computation of the Lie exponential on G. It turns out that the Lie exponential is

just the exponential of matrices, so this effectively transforms all the necessary computations into linear

algebra problems. In this section we will see how some of the most important families of manifolds used in

optimisation fall within the different categories of manifolds described before.

We start by recalling the definition of a matrix Lie group.

Definition 3.5.1. A complex (resp. real) matrix Lie group is a closed subgroup of GL(n,C) (resp.

GL(n,R)).

On matrix Lie groups, the Lie exponential is just the regular exponential of matrices.

Proposition 3.5.2. The Lie exponential map on a real or complex matrix Lie group is given by the

exponential of matrices.

Proof. The matrix exponential γ(t) = expm(tX) can be expressed as the solution of the matrix differential

equation

γ′(t) = Xγ(t) γ(0) = In

for X ∈ Cn×n = gl(n,C). Since, for matrix groups, (dLX)In(A) = XA, we have that this is exactly

the differential equation that defines the exponential map as an integral curve of a left-invariant vector

field.

Let us now show how the whole theory for computing geodesics is put together in the case of some

commonly used manifolds in optimisation.

46

3.5.1 The Stiefel manifold

We define the Stiefel manifold as the space of matrices with orthonormal columns

St(n, k) := {X ∈ Rn×k |XᵀX = Ik} 1 ≤ k ≤ n.

Throughout this section we will assume n > k as, for n = k, St(n, k) ∼= O(n), which is disconnected.

Hence, when doing orthogonal optimisation on Rn×n, we will just work on SO(n).

Calling something a manifold does not make it a manifold, so let us show that it is in fact a homogeneous

space by showing that it has a transitive action by a Lie group. This shows, in particular, that it is a

smooth manifold (Proposition 3.3.4).

Consider the left action of SO(n) on St(n, k) by multiplication on the left. This action is transitive,

since for U1, U2 ∈ St(n, k) there exists a matrix U ∈ SO(n) such that LU (U1) = U2. To see this, complete

U1, U2 into two orthogonal matrices U1, U2 ∈ SO(n) and consider U := U
−1
1 U2.

Let x0 =
(

Ik
0n−k,k

)
∈ St(n, k). The isotropy group of the action above at x0—the elements of SO(n)

that fix x0—is

H = Ik ⊗ SO(n− k) =
{(Ik 0k,n−k

0n−k,k Q

) ∣∣∣Q ∈ SO(n− k)
}
.

Since H ∼= SO(n−k), we have that St(n, k) = SO(n)/ SO(n−k), where the projection π : SO(n)→ St(n, k)

maps an orthogonal matrix to its first k columns (Proposition 3.3.4).1

Consider the inner product on so(n) = Skew(n) given by g(A,B)e := 1
2 tr(AᵀB).2 Since this is

Ad(SO(n))-invariant, it extends naturally to a bi-invariant metric on all of SO(n) via left-invariant

vector fields, setting g(UA,UB)U := g(A,B)e (Corollary 3.3.10). Since this metric on the total space is

bi-invariant, St(n, k) is a normal Riemannian homogeneous space (Proposition 3.4.12).

Denote by U =
(
U U⊥

)
the decomposition of a matrix U ∈ SO(n) into its first k columns and the

rest so that π(U) = U . We want to compute the Riemannian exponential of a matrix ∆ ∈ TU St(n, k). To

do so, we will start by computing h and setting m = h⊥ (Proposition 3.3.18)

h = 0k,k ⊗ so(n− k) m =
{(S −Aᵀ

A 0n−k,n−k

) ∣∣∣ S ∈ so(k), A ∈ R(n−k)×k
}
.

As the space is reductive, we can represent a tangent vector ∆ ∈ TU St(n, k) by a vector in Xm ∈ m as

∆ = (dπ)U (UXm), and the exponential map is given by

expU (∆) = π(U expm(Xm)) = U expm
(
S −Aᵀ

A 0n−k,n−k

)
Pn,k, (3.3)

where Pn,k :=
(

Ik
0k,n−k

)
is the matrix representation of the projection onto the first k columns (Proposi-

tion 3.4.10). The differential of π at a matrix B is then given by dπ(B) = BPn,k, so

∆ = dπ(UXm) = US + U⊥A ∈ TU St(n, k).

In view of this, we may represent a tangent space to the Stiefel manifold as

TU St(n, k) = {US + U⊥A | S ∈ so(k), A ∈ R(n−k)×k}.
1Note that here we are writing π to refer to the map that is the composition of the canonical projection onto SO(n)/ SO(n−

k) and the isotropy action at x0 to avoid unnecessarily cluttering the notation.
2The factor of 1

2 is there so that St(n, 1) is isometric to the round sphere of radius 1.

47

Remark 3.5.3 (The choice of completion U⊥). Note that U ∈ π−1(U) ∼= H (Proposition 3.3.1). Hence,

a choice of U⊥ to complete U into an orthogonal matrix U accounts for a choice of h ∈ H ∼= SO(n− k),

which would transform m as Adh(m). In this case, as we are fixing a basis of m and we are computing the

basis of TU St(n, k) in terms of it, this choice materialises as a change of basis on TU St(n, k). This change

of basis of the tangent space does not affect the computation of the geodesics or any other metric-related

object, as the metric comes from an Ad(H)-invariant inner product on g.

We could directly use (3.3) to compute the exponential map on St(n, k), but this formula has two

problems. First, it requires the matrix exponential of the n× n matrix Xm. As this matrix has rank at

most 2k, for small k, we would like to have a formula that scales down with k. Second, we need to compute

U⊥ if we only have access to U . This is equivalent to computing a qr decomposition of an n× (n− k)

matrix, which we would like to avoid.

Assume for the rest of the section that n > 2k. We now present a method proposed in (Gallier and

Quaintance 2020) that avoids the first problem, but not the second. The idea is to decompose A into its

thin qr decomposition

A = QARA QA ∈ St(n− k, k), RA ∈ Rk×k.

We then compute

U expm
(

S −QARᵀ
A

QARA 0n−k,n−k

)
︸ ︷︷ ︸

n×n

Pn,k = U

(
Ik 0k,k

0n−k,k QA

)
expm

(
S −Rᵀ

A

RA 0k,k

)(
Ik 0k,n−k

0k,k Qᵀ
A

)
Pn,k

=
(
U U⊥QA

)
expm

(
S −Rᵀ

A

RA 0k,k

)
︸ ︷︷ ︸

2k×2k

Pn,k,

where in the first equality we have used that, since expm is analytic,

expm(BXBᵀ) = B expm(X)Bᵀ ∀B ∈ St(n, k), X ∈ Rk×k.

The cost of this formula is a thin qr of an (n− k)× k matrix, the exponential of a 2k × 2k matrix and

the computation of U⊥, which can be done through another thin qr of an n× (n− k) matrix.

We will now show how to avoid the computation of U⊥. This may be achieved via a trick first introduced

in (Edelman, Arias, and Smith 1998). In their paper they just outline the method and do not explicit the

computations. We will see that, given the abstract theory presented before, the computations will follow

naturally.

The trick to avoid the computation of U⊥ will come from finding a different parametrisation of tangent

spaces of St(n, k). To do this, consider the natural embedding of St(n, k) into Rn×k. For a given matrix

on the ambient space C ∈ Rn×k, and any point U ∈ St(n, k), the canonical inner product of Rn×k gives a

decomposition into the normal and tangential part of C

C = πU (C) + π⊥U (C).

We will use the projection πU to parametrise the tangent space in terms of matrices in Rn×k. In order to

do this, we shall compute formulas for these projections. By differentiating the formula UᵀU = Ik that

48

defines St(n, k) we get an implicit formula for the tangent space of St(n, k)

TU St(n, k) = {∆ ∈ Rn×k | Uᵀ∆ ∈ so(k)}.

It is direct to see that this implicit representation is equivalent to the explicit representation of the tangent

space of St(n, k) given before. Now, consider a matrix N in the normal space NU St(n, k), where normal

is taken with respect to the canonical inner product of Rn×k. N ∈ Rn×k is in the normal space if and only

if 〈N,∆〉 = 0 for every ∆ ∈ TU St(n, k), so we may choose a matrix of the form N = UB for an arbitrary

symmetric matrix B, as

〈∆, UB〉 = tr(∆ᵀUB) = 〈Uᵀ∆, B〉 = 0 ∀∆ ∈ TU St(n, k),

where we have used that symmetric and skew-symmetric matrices are orthogonal. Counting dimensions,

we see that every matrix in the normal space is of this form, concluding that the normal space can be

expressed as

NU St(n, k) = {UB ∈ Rn×k |B ∈ Sym(k)}.

From here, we get the formulas for the normal and tangential projections from Rn

π⊥U (C) = Usym(UᵀC),

πU (C) = C − π⊥U (C) = Uskew(UᵀC) + (In − UUᵀ)C,

where we have written sym(C) := 1
2 (C + Cᵀ), skew(C) := 1

2 (C − Cᵀ) for the orthogonal projections onto

the symmetric and skew-symmetric matrices.

Using πU , we can represent the matrix ∆ ∈ TU St(n, k) as the projection of a matrix C ∈ Rn×k,

∆ = Uskew(UᵀC) + (In − UUᵀ)C.

This decomposition is not unique, as there are many matrices C ∈ Rn×k that project onto the same matrix

πU (C). Comparing this decomposition with that in terms of m, since both are orthogonal decompositions,

we see that they are related by the equations

U⊥A = (In − UUᵀ)C S = skew(UᵀC).

Finally, we just have to apply the same qr trick that we used before:

U expm
(
S −Aᵀ

A 0n−k,n−k

)
︸ ︷︷ ︸

n×n

Pn,k =
(
U In

)(Ik 0k,k
0n,k U⊥

)
expm

(
S −Aᵀ

A 0n−k,n−k

)
Pn,k

=
(
U In

)
expm

(
skew(UᵀC) −((In − UUᵀ)C)ᵀ

(In − UUᵀ)C 0k,k

)
Pn,k

=
(
U QC

)
expm

(
skew(UᵀC) −Rᵀ

C

RC 0k,k

)
︸ ︷︷ ︸

2k×2k

Pn,k,

where we have written QC ∈ St(n, k), RC ∈ Rk×k for the qr decomposition of (In − UUᵀ)C ∈ Rn×k.

This formula is entirely in terms of C and U , circumventing the computation of U⊥. Furthermore, it just

involves the exponential of a 2k × 2k matrix. By doing this, we inadvertently lose the differentiability of

49

the process, as the qr decomposition is not smooth for matrices that are not full rank. This will render

these tricks useless for the applications in this thesis, but they are rather interesting in their own sake

nonetheless.

We summarise this section in the following proposition.

Proposition 3.5.4 (Exponential map on the Stiefel manifold). Let U ∈ SO(n) and U = π(U) ∈

St(n, k) be points on the total space and the manifold respectively. Let Xm =
(
S −Aᵀ

A 0n−k,n−k

)
∈ m be the

matrix on the Lie algebra that defines the tangent vector (matrix) ∆ = (dπ)U (UXm) ∈ TU St(n, k). The

Riemannian exponential map with respect to the canonical metric is given by

expU (∆) = π(U expm(Xm)) = U expm
(
S −Aᵀ

A 0n−k,n−k

)
Pn,k,

where Pn,k :=
(

Ik
0k,n−k

)
is the matrix representation of the projection onto the first k columns.

If we represent Xm using a matrix C ∈ Rn×k so that U⊥A = (In−UUᵀ)C and S = skew(UᵀC), using

a qr decomposition of QCRC = (In − UUᵀ)C ∈ Rn×k, we can write the exponential map as

expU (∆) =
(
U QC

)
expm

(
skew(UᵀC) −Rᵀ

C

RC 0k,k

)
Pn,k.

Furthermore, this formula is only differentiable with respect to C whenever (In − UUᵀ)C has maximal

rank k.

3.5.2 The Grassmannian

The Grassmannian Gr(n, k) is the set of all k-dimensional subspaces of Rn. Its construction as a

Riemannian homogeneous space is essentially the same as in the case of the Stiefel manifold, so we will

not give as many details here as we gave in the previous section.

The homogeneous space structure of the Grassmannian, analogously to the case of the Stiefel manifold,

comes from considering the isotropy group of the transitive left G = SO(n) action on the class of x0 with

x0 =
(

Ik
0n−k,k

)
∈ St(n, k). In this case H = S(O(k)⊗O(n−k)) and Gr(n, k) ∼= SO(n)/ S(O(k)×O(n−k)),

where

S(O(k)⊗O(n− k)) := (O(k)⊗O(n− k)) ∩ SO(n).

Considering the Ad(G)-invariant inner product 〈A1, A2〉 = 1
2 tr(Aᵀ

1A2) on g, we get

h = so(k)⊗ so(n− k) m =
{(0k,k −Aᵀ

A 0n−k,n−k

) ∣∣∣A ∈ R(n−k)×k
}

and left-translating it into a bi-invariant metric on SO(n), it descends into a metric on Gr(n, k) that makes

Gr(n, k) into a normal Riemannian homogeneous space.3 The Riemannian exponential is then given by

exp[U](Am) = π(U expm(Am))

for a U ∈ SO(n) with π(U) = [U]. The elements of the Grassmannian are typically represented by a

representative of their class U ∈ St(n, k).
3The Grassmannian with this metric is not only a normal Riemannian homogeneous space but also a symmetric space,

but we will not use this fact here.

50

We can stablish an isomorphism between Gr(n, k) and Gr(n, n−k) by sending a space to its complement.

Hence, we will assume in what follows that n ≥ 2k.

It is possible to compute the exponential on the Grassmannian by performing just one svd of an

(n−k)×k matrix, as noted in (Edelman, Arias, and Smith 1998). This is similar to the qr trick performed

in the Stiefel manifold case. Let A ∈ R(n−k)×k, and let Am ∈ m be the associated matrix on m. If

A = UAΣAV ᵀ
A is a svd of A with UA ∈ St(n− k, k),ΣA ∈ Rk×k, VA ∈ SO(k), then

Am =
(

0k,k −Aᵀ

A 0n−k,n−k

)
=
(

VA 0k,n−k
0n−k,k UA

)(
0k,k −Σᵀ

A

ΣA 0k,k

)(
V ᵀ
A 0k,n−k

0n−k,k Uᵀ
A

)
.

Now, representing a k-subspace [U] ∈ Gr(n, k) giving a base U ∈ St(n, k) of it, if U⊥ ∈ St(n, n− k) is a

completion of U into an orthogonal matrix,

exp[U](Am) =
(
UVA U⊥UA

)(cos(ΣA)
sin(ΣA)

)
V ᵀ
A ,

where ΣA is a diagonal matrix, so the sine and cosine are applied element-wise to the diagonal of ΣA.

Note that, if we consider a matrix C ∈ Rn×k, we may use the same trick as we did for the Stiefel

manifold to avoid having to compute U . Indeed, consider the svd UCΣCV
ᵀ
C = (In − UUᵀ)C. We have

that for an element X = (In − UUᵀ)C ∈ T[U] Gr(n, k),

exp[U](X) =
(
UVC UC

)(cos(ΣC)
sin(ΣC)

)
V ᵀ
C .

In gpu implementations, this method is hardly every faster than the naïve computation of the

exponential of matrices, given that computing the svd is orders of magnitude slower than computing a

matrix exponential. Even then, it is still possible to perform the qr trick described in the previous section

and compute the Riemannian exponential map on the Grassmannian by computing a qr decomposition

QCRC = (In − UUᵀ)C, so that

exp[U](X) = U expm
(

0k,k −Aᵀ

A 0n−k,n−k

)
Pn,k =

(
U QC

)
expm

(
0k,k −Rᵀ

C

RC 0k,k

)
Pn,k.

This trick for the Grassmannian was not presented in (Edelman, Arias, and Smith 1998).

We summarise this discussion in a proposition.

Proposition 3.5.5 (Exponential map on the Grassmannian manifold). Let U ∈ SO(n) and

[U] = π(U) ∈ Gr(n, k) be points on the total space and the manifold respectively with a representative

U ∈ St(n, k). Let Xm =
(

0k,k −Aᵀ

A 0n−k,n−k

)
∈ m be the matrix on the Lie algebra that defines the tangent

vector (matrix) ∆ = (dπ)U (UXm) ∈ TU Gr(n, k). The Riemannian exponential map with respect to the

canonical metric is given by

exp[U](∆) = π(U expm(Xm)) = U expm
(

0k,k −Aᵀ

A 0n−k,n−k

)
Pn,k

where Pn,k :=
(

Ik
0k,n−k

)
is the matrix representation of the projection onto the first k columns.

If we represent Xm using a matrix C ∈ Rn×k so that U⊥A = (In − UUᵀ)C and skew(UᵀC) = 0,

using a qr decomposition and an svd of QCRC = UCΣCV
ᵀ
C = (In − UUᵀ)C ∈ Rn×k, we can write the

exponential map as

exp[U](∆) =
(
UVC UC

)(cos(ΣC)
sin(ΣC)

)
V ᵀ
C =

(
U QC

)
expm

(
skew(UᵀC) −Rᵀ

C

RC 0k,k

)
Pn,k,

51

respectively. Furthermore, this formula is only differentiable with respect to C whenever (In − UUᵀ)C has

maximal rank k, and in the case of the svd whenever Xm rank has, additionally, non-repeated singular

values.

3.5.3 Symmetric positive definite matrices

The case of the symmetric positive definite matrices Sym+(n) is slightly different from the previous

two. We include all the details here as it is surprisingly difficult to find this derivation in the literature.4

This manifold has a transitive left action by the non-compact group of orientation preserving invertible

matrices GL+(n) given by
µ : GL+(n)× Sym+(n)→ Sym+(n)

P,A 7→ PAP ᵀ

The action is well-defined, since 〈Av, v〉 > 0 for every v ∈ Rn\{0} if and only if 〈PAP ᵀv, v〉 =

〈AP ᵀv, P ᵀv〉 > 0 for every v ∈ Rn\{0} given that P ᵀ ∈ GL(n). It is direct to see that the action

is transitive, since any matrix in A ∈ Sym+(n) is diagonalisable as A = QΣQᵀ for Q ∈ SO(n), so any

matrix can be taken to the identity as µ(Σ−1/2Qᵀ, A) = In.

The isotropy group of this action is H = SO(n). Considering the canonical scalar product rescaled5

〈〈X,Y 〉〉 := 4〈X,Y 〉 = 4 tr(XᵀY) X,Y ∈ gl(n) ∼= Rn×n

we get that the split g = m⊕ h is the usual split of a matrix into its symmetric and skew-symmetric parts

via the projection with respect to the canonical product, that is, h = so(n) ∼= Skew(n) and m = Sym(n).

Furthermore, since this is an Ad(H)-invariant product, we may extend it to a product on GL+(n) via left

translations as

g(B1, B2)P := 〈〈P−1B1, P
−1B2〉〉 P ∈ GL+(n), B1, B2 ∈ TP GL+(n).

In this case, the isotropy representation defining the isomorphism in Proposition 3.3.4, rather than being

a projection onto some components as it the case for the Stiefel manifold and the Grassmannian, is given

by the map
µIn : GL+(n)/ SO(n)→ Sym+(n)

P · SO(n) 7→ PP ᵀ.

Therefore, the submersion from GL+(n) onto Sym+(n) associated to the action µ is given by

µIn ◦ π : GL+(n)→ Sym+(n)

P 7→ PP ᵀ.

Differentiating at the identity, we get the linear isomorphism between m and a tangent space of Sym+(n)

d(µIn ◦ π ◦ LA1/2)In : m→ TA Sym+(n)

∆ 7→ 2A1/2∆A1/2.

4In this case, one may take a shortcut since Sym+(n) is not only a naturally reductive homogeneous space, but also a
symmetric space. One may then use the theory of symmetric spaces to compute the geodesics, but this somewhat hides the
ideas of the construction of a Riemannian submersion that underlay this computation.

5This rescaling makes up for a constant that appears when differentiating the action µ.

52

The construction of the metric on a naturally reductive homogeneous space goes on to make this map into

a linear isometry to turn µIn ◦ π into a Riemannian submersion. For this to happen, since this map has

inverse
ηA : TA Sym(n)→ m

∆ 7→ 1
2A
−1/2∆A−1/2

we have that the product on TA Sym+(n) that turns the projection into a submersion is

g(∆1,∆2)A := 〈〈ηA(∆1), ηA(∆2)〉〉 = 〈A−1∆1, A
−1∆2〉 ∆1,∆2 ∈ TA Sym+(n).

Applying now the formula for the geodesics, we have that for an element ∆ ∈ TA Sym+(n) ∼= Sym(n)

expA(∆) = (µIn ◦ π)(A1/2 expm(1
2A
−1/2∆A−1/2))

= A1/2 expm(A−1/2∆A−1/2)A1/2

= A expm(A−1∆),

where in the last equality we have used that the exponential and the conjugation by a matrix commute.

We summarise these computations in the following proposition.

Proposition 3.5.6 (Exponential map on Sym+(n)). Let A ∈ Sym+(n) and ∆ ∈ TA Sym+(n) ∼=
Sym(n) be a point and a vector respectively. The Riemannian exponential map with respect to the metric

g(∆1,∆2)A = 〈A−1∆1, A
−1∆2〉 is given by

expA(∆) = A1/2 expm(A−1/2∆A−1/2)A1/2 = A expm(A−1∆).

3.5.4 Fixed-rank matrices

The manifold Rn×kr of n × k matrices of fixed rank r is a manifold that is often considered in the

context of low-rank optimisation. This manifold is a homogeneous manifold as it has a transitive left

action from GL(n)×GL(k) given by

µ : (GL(n)×GL(k))× Rn×kr → Rn×kr

((A,B), X) 7→ AXB−1.

It is clear that the action is well-defined by looking at X as a linear map from Rk to Rn looking at A,B

as linear isomorphisms on these spaces. It is transitive, as, after an svd, any matrix X ∈ Rn×kr may be

taken to the matrix x0 =
(

Ir 0r,k−r
0n−r,r 0n−r,k−r

)
. The isotropy group of this action is then given by

H =
{(

C A1
0n−r,r A2

)
,

(
C 0r,k−r
B1 B2

) ∣∣∣C ∈ GL(r), A1 ∈ Rr×(n−r), B1 ∈ R(k−r)×r

A2 ∈ GL(n− r), B2 ∈ GL(k − r)
}
⊆ GL(n)×GL(k)

so we have that Rn×kr
∼= (GL(n)×GL(k))/H.

As opposed to the previous examples, this manifold is much more difficult to work with, as it does not

admit the structure of a Riemannian homogeneous space. In particular, it is not reductive outside of the

case Rn×nn
∼= GL(n) (Munthe-Kaas and Verdier 2016, Prop. 5.7). This is one of the reasons why doing

low-rank optimisation is particularly challenging, as we do not have at our disposal all the tools developed

above to compute the geodesics.

53

Chapter 4

Fibred Manifolds in First Order
Optimisation

In this chapter we show how the theory of Riemannian submersions and the ideas developed in Chapter 3

can be used to prove convergence results for optimisation problems on some manifolds in terms of problems

on simpler manifolds by looking at submersions and Riemannian submersions. We also present a general

treatment of the dynamic trivialisation framework. This framework was originally published in the

paper (Lezcano-Casado 2019) at NeurIPS 2019. The proofs of convergence for this framework and an

in-depth literature review are postponed to Chapter 5.

Outline of the chapter. In Section 4.1, we set up the notation for the rest of the chapter, and we

include a short historical introduction to the field. In Section 4.2, we give some reasons for why submersions

are of interest in the context of first-order optimisation, and we discuss the relation between Riemannian

submersions and retractions. In Section 4.3 we prove all the necessary tools to give convergence rates

on a base manifolds in terms of convergence rates on a total space, when these two are connected by a

Riemannian submersion. In Section 4.4, we take a closer look at the static trivialisation framework

when using the Riemannian exponential map to pullback the problem to a Euclidean space. In Section 4.5,

we introduce the dynamic trivialisation framework, and outline the practical advantages that it

provides. These advantages will be put in practice all throughout Chapter 6 during the design of the

library for optimisation on manifolds GeoTorch presented in that chapter.

4.1 Optimisation on Manifolds

Consider the problem

min
x∈X

f(x)

where X ⊆ Rn. In this section we will consider the setting in which X has a differentiable manifold

structure, and we will denote this set by M . More generally, we will consider the intrinsic view of the

problem, where M is just an abstract differentiable manifold, writing the problem as

min
x∈M

f(x). (4.1)

54

In order to be able to perform first order optimisation, we will need some extra structure on M such

as a Riemannian metric or an affine connection. We will consider this extra structure as we need it

through the chapter. Even more, we will see that the point that makes manifold optimisation simpler than

general constrained optimisation is the existence of a group of symmetries. In the cases when this group

of symmetries is large enough, we will be able to make use of the tools presented in the last chapter. This

approach will allow us to prove convergence results for this particularly well-behaved set of constrained

optimisation problems.

The idea of taking advantage of the Riemannian structure of an embedded manifold, seen as a curved

space locally approximated by their tangent spaces was first introduced in (Luenberger 1972). Luenberger

sees a manifold as a set of constraints M = {x ∈ Rn |h(x) = 0} for a map h : Rn → Rm for which zero is a

regular value. He then presents two extrinsic projected gradient descent algorithms: Orthogonal projection

onto the manifold, and projecting following the perpendicular to the tangent space, seeing the tangent

space as an affine subspace of the ambient space. He also considers the intrinsic algorithm of gradient

descent along geodesics. About these different perspectives, Luenberger notes:

Developing a convergence analysis for the gradient projection method leads quickly to horren-

dous approximations and almost endless assumptions. Such analyses hardly compare with the

relative neatness and elegance of the corresponding analysis of the unconstrained case.

but he also adds:

It should not be inferred that this paper suggests that when implementing such a scheme

one should try to move along a geodesic. The geodesic method is proposed for theoretical

purposes only. It should be noted, however, that all the methods for selecting the descent curve

discussed above are asymptotically equivalent in the sense that the curves on M , determined

by gradient projection or the geodesic leaving in the direction of the projected gradient, are all

tangent at the starting point. This means that as the step size goes to zero the methods all

move approximately along the same curve. This in turn implies that the algorithms all possess

the same asymptotic convergence properties. In all cases the simplest procedure should be

used. For computation the simplest is the second of the projection methods; for analysis it is

certainly the geodesic method.

In other words, following a geodesic in the direction of steepest descent or following a curve that is

tangent to the geodesic is asymptotically equivalent. This idea has driven the research in the field for the

last 50 years under the name of retractions.

Definition 4.1.1. A map r : TM → M is a retraction if for every p ∈ M , the map rp : TpM → M

satisfies

rp(0) = p and (drp)0 = Id.

By construction, a curve defined by a retraction rp(tv) for t ∈ [0, 1] is tangent at p to the geodesic

with initial conditions (p, v) ∈ TM . In particular, the Riemannian exponential map is a retraction, and as

55

such, retractions can be thought of as a first order approximation to the Riemannian exponential map on

(M, g) for any metric g.

Note that in the definition of retraction there is no condition on M being an embedded manifold of a

Euclidean space nor there is any mention to a metric structure on M . For this reason, to be able to talk

about notions such as distances or directions of steepest descent, it is convenient to consider a Riemannian

metric on M so that (M, g) is a Riemannian manifold. Armed with these two tools, it is possible to define

what has been the most popular first order algorithm for optimisation on manifolds: Gradient descent

along a retraction

xt+1 = rxt(−η∇f(xt)). (4.2)

This algorithm has been instantiated for most manifolds of interest in the area of optimisation by finding

convenient retractions for each of them. For an introduction to these methods and their applications, we

refer the reader to the book (Absil, Mahony, and Sepulchre 2009).

Even though we needed a Riemannian structure on M to be able to define the gradient in (4.2),

the choice of a retraction is independent of this Riemannian metric. This is the main reason underlying

Luenberger’s remark that proving convergence for these methods is far from clean. As Luenberger mentions,

things considerably simplify when r is chosen to be the Riemannian exponential map. In this case, it is

possible to give some meaningful theorems, as the exponential map may be studied through the properties

of the metric tensor. We will explore these ideas further in Chapter 5.

Concurrently with Luenberger’s work, Brockett brought techniques from differential geometry to nu-

merical analysis to study differential equations on Lie groups, with applications to control theory (Brockett

1972). His approach was much more abstract, considering intrinsic properties of the manifolds, rather

than looking at them as manifolds embedded in Rn. It was his PhD student Smith who, in his thesis,

applied these techniques for the first time in the context of optimisation on manifolds, generalising for the

first time conjugate gradient descent and the Newton’s method to abstract manifolds (Smith 1993). These

ideas were written aimed at a numerical analysis reader in the influential paper (Edelman, Arias, and

Smith 1998).

We follow this latter approach, concentrating mostly on the global perspective as done in Chapter 3,

given that we believe that it strongly emphasises the underlying geometry of the problem.

We postpone to Section 5.1.2 a full literature review, as presenting a literature review before presenting

the algorithmic framework may make it unnecessarily difficult to follow.

4.2 Fibred Manifolds and First Order Structure

Consider a map ϕ : M → M where M is another differentiable manifold. We may transform prob-

lem (4.1) into

min
p∈M

f(ϕ(p)). (4.3)

We define this to be a pullback problem associated to the original problem (4.1). We will also refer to

this pullback problem as a static trivialisation of the initial problem.1

1The “trivialisation” part of the name comes from the fact that, in the case when dimM = dimM , which will be quite
important later on whenM = TpM , if ϕ does not have critical points on a neighbourhood, then it defines a local trivialisation

56

We state now the two main examples that first drew our attention to this family of problems.

Example 4.2.1 (Homogeneous spaces). Consider a homogeneous space π : G→ G/H. The function π

allows pulling back an optimisation problem from a space which may have a potentially difficult topology

to a Lie group, where we may exploit its group structure. This was a recurrent idea in Chapter 3 and in

this chapter we will see how we may apply this to optimisation on manifolds.

Example 4.2.2 (Tangent space). Consider M = TpM for a fixed p ∈ M . We will see that, if we

consider a complete Riemannian manifold (M, g) with non-positive sectional curvature, we may choose

ϕ = expp so that the map expp : TpM → M is a submersion. In the general setting, even though it is

not a global submersion, we can still control the problems that may arise for the manifolds of interest

using standard tools from geometry, as we will see in Section 4.4. The failure of expp at being a global

submersion will naturally lead to the concept of dynamic trivialisations studied in Section 4.5.

If we pullback the problem to a Euclidean space, there are some practical advantages. The main

advantage is that on a Euclidean space we have many different optimisation techniques which exploit its

vector space structure: Momentum methods, adaptive methods, quasi-Newton methods, . . . We will see

that this gives a great advantage over traditional optimisation methods when dealing with non-convex

optimisation problems in the deep learning context in Section 6.4. We will enumerate a number of other

different advantages that this approach presents at the end of Section 4.5.

We now turn our attention to the study the general properties of static trivialisations in terms of those

of the original problem.

If we are going to compare the pullback problem with the original problem, we should at least ask for

ϕ to be surjective. If ϕ is surjective, then both minimisation problems are equivalent

min
p∈M

f(ϕ(p)) = min
x∈M

f(x).

In this setting, if the original problem has a unique minimiser x∗ ∈M then, any minimiser of the pullback

problem p∗ ∈M will be related to x∗ through ϕ as ϕ(p∗) = x∗. In general, if ϕ is surjective, ϕ will map

global minimisers of the pullback problem to global minimisers of the original problem. In other words,

surjective maps do not modify the 0th order structure of the problem.

Given that in our study we will be looking at first order optimisation methods, it would be reasonable

to ask ϕ to also preserve the first order structure of the f in some sense. For example, if we want to

parametrise R>0 in terms of R, we could choose ϕ(t) = log(1 + exp(t)) as the parametrisation. On the

other hand, we could also consider a function like the one seen in Figure 4.1. Both of them are smooth

surjective mappings from R into R>0, but it should be clear that it may not be the best idea to use the

latter one, as it will create new local minima or saddle points in pullback problem that did not exist in

the original one.

More abstractly, by the chain rule we have:

d(f ◦ ϕ) = df ◦ dϕ.
around that point, which we may use to simplify gradient computations and use optimisers from Rn. These ideas were
studied in the context of discretisation of differential equations on Lie groups, where one has access to global trivialisations
of the tangent bundle (Magnus 1954; Iserles and Nørsett 1999; Iserles, Munthe-Kaas, et al. 2000). The “static” part comes
opposed to the dynamic trivialisations, which will be introduced in Section 4.5.

57

Figure 4.1: Two surjective maps from R to R>0 with vastly different properties when used in optimisation
problems.

In local coordinates around a point, this is just a vector-matrix multiplication. Now, if we want d(f ◦ ϕ)

to have critical points if and only if df has critical points, this may only happen if dϕ has a right-inverse

at every point, that is, if dϕ is surjective at every point. In other words, since we wanted ϕ to be also

surjective, we have that the maps that do not create new critical points are exactly submersions.

Proposition 4.2.3 (Submersions do not create spurious critical points). Let ϕ : M → M be a

surjective map between manifolds. The following are equivalent:

1. The map ϕ is a submersion.

2. For every function f on M and every point p ∈M , p is a critical point of f ◦ ϕ if and only if ϕ(p)

is a critical point of f .

Note that Proposition 4.2.3 does not mean that the critical points of f and f ◦ϕ are in bijection through

ϕ, but rather that for every point critical point x ∈M we get a fibre of critical points Mx := ϕ−1(x). In

other words, the critical points of f ◦ ϕ are somewhat “concentrated in the same way as those from f”, so

that ϕ does not create new spurious critical points.

Another way of looking at this idea is through the lens of local sections. If ϕ is a submersion, for any

two points such that ϕ(p) = x, there exists a map σ : ϕ(U) → U on a neighbourhood U of p such that

ϕ◦σ = Idϕ(U) (Proposition 3.1.3). In particular, if x is an isolated critical point of f on a neighbourhoodW ,

then p will be an isolated critical point of f◦ϕ on the immersed manifold Σ = U∩σ(W) ⊆M . Note that this

submanifold Σ need not be open inM , so it will not be a neighbourhood of p whenever dim(M) > dim(M).

In this case, the fibre will not be discrete—will have dimension dim(M)− dim(M)—and the point p will

not be an isolated critical point of f ◦ ϕ on M .

Let us look at all these ideas in a simple example to help visualise them.

Example 4.2.4 (Submersion onto the circle). Let π : R2\{0} → S1 be the orthogonal projection onto

the unit circle in R2. The differential of this map at a point projects a vector onto its tangent component, so

π is a submersion. We can see several local sections of this submersion at a point p ∈ R2\{0} in Figure 4.2.

This fibred manifold is particularly simple, as the total space splits as a product of the base space and the

fibre R2\{0} ∼= S1 × R>0. This means that this is a trivial fibre bundle, so it also has global sections, as

seen in Figure 4.2.

58

Figure 4.2: Examples of local and global sections of the fibre bundle π : R2\{0} → S1.

Consider a function f : S1 → R with an isolated critical point x ∈ S1. We may pullback this function

to R2\{0} using π. In this case, a critical point x ∈ S1 is transformed into a whole fibre of critical points

of f ◦ π. On the other hand, none of the fibres next to that one have any critical points.

Another slightly different submersion onto the circle that is sometimes of help is that given from its

universal cover. If we have a function f on the circle, we may pull it back to a 1-periodic function on

the real line via the map ρ : R→ S1 ⊆ C given by ρ(t) = e2πit. This submersion is different in nature to

the previous one given that, since dimR = dim S1, it has a discrete fibre. As such, this submersion maps

isolated critical points to isolated critical points.

This second example hints at how submersions help to define functions on manifolds via functions

on other more amenable spaces. We will exploit this idea in the sequel when working with homogeneous

spaces π : G→ G/H.

Remark 4.2.5 (Higher order generalisation). We have motivated the use of submersions in the

context of first order optimisation via the existence of 1st order right-inverses. It is worth noting that the

idea of a function being surjective can be phrased in categorical terms as the function having a 0th order

right-inverse, that is, an inverse in the category of sets. This should be not surprising, as the difference

between f and the pullback f ◦ ϕ is just a right composition.

This hints at how to extend these ideas and the ideas presented in the sequel to higher order methods.

On the other hand, this extension gets quite technical very quickly as, to be able to talk about higher-order

derivatives either one has work with jet bundles, or one has to fix connections—or Riemannian metrics—on

M and M to be able to talk about ∇dϕ. It is for this reason that we leave the higher order treatment for

future research.

There are also examples of very simple submersions that are widely used in the machine learning and

deep learning community.

Example 4.2.6 (Submersions in machine learning). Let M ∼= Rn and consider component-wise

functions like the hyperbolic tangent tanh: Rn → (−1, 1)n or the sigmoid function σ : Rn → (0, 1)n. These

59

examples are not only submersions but also diffeomorphisms. We already saw their use in the lstm model

in Section 2.3.3.

For now, we have looked at the use of submersions just through the lens of differential geometry. We

still need to talk about metric structures to be able to make sense of notions relevant to convergence and

gradients. Before doing so, let us fix some notation and recall some standard constructions.

Assume that we have two metrics g, g on M and M respectively. For these metrics, denote by

α : TM → T ∗M (resp. β) the isomorphism between the tangent and cotangent bundle given by the metric,

α(X) := g(X,−). For a given map ψ : M →M we denote its fibre-wise dual as

dψ′ : T ∗M → T ∗M

η 7→ η ◦ dψ

and its fibre-wise adjoint with respect to g and g as dψ∗ : TM → TM , which is defined for a vector field

X on M and a vector field Y along ψ as

g(X, (dψ)∗(Y)) := g(dψ(X), Y).

Proposition 4.2.7. Let ψ : M →M be a smooth map—not necessarily a submersion—between Rieman-

nian manifolds with metrics g and g respectively. The following relation holds

β ◦ dψ∗ = dψ′ ◦ α.

Proof. Let Y be a vector field on M and X be a vector field along ψ,

(dψ′ ◦ α)(X)(Y) = g(X,dψ(Y)) = g(dψ∗(X), Y) = (β ◦ dψ∗)(X)(Y).

Using this proposition, we can compute the gradient with respect to the new parametrisation. This is

sometimes referred to as the adjoint method in numerical analysis.

Corollary 4.2.8 (The adjoint method). Let ψ : M → M be a smooth map between Riemannian

manifolds and f be a function on M . Then,

∇(f ◦ ψ) = dψ∗(∇f). (4.4)

Proof. This is direct using the previous proposition

∇(f ◦ ψ) := β−1(d(f ◦ ψ)) = (β−1 ◦ dψ′)(df) = dψ∗(∇f).

If ϕ : M →M is a Riemannian submersion, since dϕ|H is a linear isometry and dϕ|VM = 0, we have

that

dϕ ◦ dϕ∗ = IdTM .

In other words, the map dϕ∗ takes values in the horizontal bundle H (Definition 3.1.6) and is a linear

inverse of dϕ|H—the non-zero part of dϕ—and a linear right-inverse of dϕ. This formula together

with Proposition 4.2.7 is particularly useful to check when a map ϕ is a Riemannian surjection on low

dimensional manifolds if we have access to a local representation of g and g, as we do not need to compute

the horizontal space associated to g.

60

It is also worth noting that, while the right-hand side of (4.4) seems to depend on the choice of

metric on M , it does not. Even then, when computing gradients recursively in autodiff frameworks, it is

convenient to fix a metric on every intermediate manifold and compute the adjoints with respect to these

fixed metrics, so that we can compose the gradient given by some layer with the adjoint with respect to

these metrics of the next layer. Of course, in most situations this metric is just the canonical metric on

Rn, so computing the adjoint simply accounts for transposing the Jacobian.

Let us now see how submersions provide a natural way to define a retraction on M in terms of one on

M . Assume that we have a retraction r on M , that is, a method to perform optimisation on M . This

induces discrete dynamics on M as the pushforward of the dynamics on M for a step-size η > 0

pt+1 = rpt(−η∇f(pt))

xt+1 = ψ(pt+1)

This allows us to define the step map on M .

Definition 4.2.9. Let ψ : M → M be a smooth map between Riemannian manifolds and let r be a

retraction on M . We define the step map of r along ψ at p ∈M as

Ψr
p := ψ ◦ rp ◦ (dψ)∗p : Tψ(p)M →M.

In this way, we can write the dynamics on M as

xt+1 = Ψr
pt(−η∇f(xt))

where pt is defined as before. A question that arises now is whether the map Ψr
p : TM →M is a retraction

for every p ∈M .

Proposition 4.2.10. Let ψ : M → M be a smooth map between Riemannian manifolds and let r be a

retraction on M . Then Ψr
p is a retraction for every p if and only if ψ is a—not necessarily surjective—

Riemannian submersion.

Proof. It is clear that Ψr
p(x, 0) = x. For the second condition, differentiating Ψr

p, we have that the map is

a retraction if and only if

dψp ◦ dψ∗p = IdTψ(p)M

or equivalently, whenever ψ is a not necessarily surjective submersion.

In the simplest case, when the dimension of M and M agree, this proposition says that the gradient is

preserved just by local isometries, which is exactly what one would expect.

In the general case, we have seen in Proposition 3.1.10 that, if we have a submersion ϕ : M →M and

a metric on M , we may lift this metric to a metric on M that makes ϕ : M → M into a Riemannian

submersion after choosing an Ehresmann connection on M and a metric tensor on VM . As such,

Proposition 4.2.10 shows that this process gives dynamics induced by a gradient descent performing

optimisation on M rather than on M after lifting the gradient on every step to a horizontal gradient on

M via (dϕ)∗.

61

On the other hand, there are metrics on M that do not descend into a metric on M—those metrics

that are not constant on the fibres. This shows that, through this method, we can get new dynamics

that cannot be achieved just by performing gradient descent with a retraction on M with respect to any

metric.

There is a third interesting setting. If ϕ is a diffeomorphism, and we have two distinguished metrics g, g,

but these metrics do not make ϕ into a Riemannian submersion, optimising f ◦ ϕ accounts for optimising

f with respect to the pushforward metric ϕ∗(g) on M . Therefore, precomposing by ϕ accounts for a

change of metric on M . More generally, we may find this scenario when we have a metric on M that does

descend into a metric on M .

To summarise, we have three scenarios of particular interest:

1. π : M →M is a Riemannian submersion

2. It is not a Riemannian submersion, but the metric on M descends into a metric on M

3. The metric on M does not descend into a metric on M .

We will study the first case in Section 4.3 and the second one in Section 4.4.

The third case is particularly interesting in the setting of linear networks, as it has been shown

in (Arora, N. Cohen, and Hazan 2018) that overparametrisation in the linear setting yields dynamics that

fall in this setting—dynamics that cannot be achieved by Riemannian gradient descent—and furthermore,

they achieve acceleration-like convergence. The follow-up work (Bah et al. 2019) looks at these results

from the lens of Riemannian geometry. This allows the authors to prove stronger results than those in the

original paper. Even though we think that the ideas presented in this thesis would help to draw a more

geometric picture of the behaviour described in these papers, we will not pursue this research direction in

this thesis.

Before delving into the first two points, we continue the simple example of the circle to showcase some

of these scenarios.

Example 4.2.11 (Projection onto the circle). We continue with the example of the orthogonal

projection π : R2\{0} → S1. Both the total space and the base space involved in this submersion have a

distinguished metric, i.e., that induced by their identification as subsets of R2. These metrics do not turn

π into a Riemannian submersion. This is clear, since Riemannian submersions map horizontal geodesics

to geodesics, and the projection of geodesics of R2\{0} with horizontal initial conditions—straight lines

orthogonal to the fibre—just cover half of S1, while the round metric on S1 is complete.

The standard metric on R2\{0} in polar coordinates is represented as dr2 +r2dθ2, while the differential

of π is given by dπ = ∂t ⊗ dθ, where ∂t is the line element on S1. The pullback of the canonical metric on

the circle dt2 onto the horizontal bundle spanned by ∂θ that makes dπ|H into a linear isometry is given

by π∗(dt2) = dθ2—rather than r2dθ2, as the metric has. As described in Section 3.1, we find that a family

of metrics that make π into a Riemannian submersion are those of the form g(r, θ)2dr2 + dθ2 for a strictly

positive function. For example, for g ≡ 1 we get a cylinder.

62

The horizontal geodesics for any metric of this form starting at (r, θ) are just circles of radius r and

therefore, they project onto geodesics on S1, as expected. Note that this construction of a family of metrics

that make a submersion into a Riemannian submersion is exactly that described in Proposition 3.1.10.

The standard metric on R2\{0} does not descend into a metric on S1 and as such, the dynamics given

by optimising f ◦ π with respect to this metric would not be given by any retraction on the circle.

This example is not too interesting, as the metric that makes the projection into a Riemannian

submersion is the one that “copies” the metric onto each circle of the total space. This is due to the fact

that the bundle is trivial. When the bundle is not trivial, this construction gives much more interesting

examples, as we will see in the next section.

4.3 Riemannian Submersions

Riemannian submersions are the simplest of all the previous scenarios. They are a natural generalisation

of isometries, and thus, they are as well-behaved as one could expect. Riemannian submersions allow us

to prove a fairly general convergence theorem, which can be interpreted as saying that if we know how to

optimise in the total space (M, g) and we have a Riemannian submersion ϕ : M →M , it is sensible to

consider the optimisation algorithm along the step-map, as described in the previous section.

Theorem 4.3.1. Let ϕ : M →M be a Riemannian submersion, r a retraction on M and f a function on

M . If for an initial point p0 ∈M and a step η > 0 the sequence

pt+1 = rpt(−η∇(f ◦ ϕ)(pt))

converges to a critical point p∗ of f ◦ ϕ on M as

dM (pt, p∗) ≤
C

tr

for some constants C, r > 0, the sequence of points

xt = ϕ(pt) (4.5)

converges to the critical point x∗ := ϕ(p∗) of f on M at the same rates:

dM (xt, x∗) ≤
C

tr
.

Proof. Since p∗ is a critical point of f ◦ ϕ and ϕ is a submersion, x∗ is a critical point of f (Proposi-

tion 4.2.3). The result then follows from the fact that a Riemannian submersion is distance decreasing

(Proposition 3.1.11).

What this theorem says is that if we have convergence rates on (M, g) for a family of functions C(M,g),

and the pullback by the Riemannian submersion ϕ respects that family of functions—if f ∈ C(M,g) then

f ◦ ϕ ∈ C(M,g)—then, we have the same convergence rates for C(M,g) by applying the algorithm to f ◦ ϕ

and using ϕ to project the iterates. The families of functions do not even need to be “the same” on both

manifolds.

63

A tighter but more abstract way of saying this is that if we know how to prove convergence of an

algorithm for the pullback of a family of functions ϕ∗(C(M,g)), we may pushforward the algorithm to solve

problems in C(M,g).

We will now see how to implement this idea for the class of functions of α-bounded Hessian functions

on a manifold (Definition 2.2.4) in terms of functions that are L-Lipschitz and of α-bounded Hessian. We

therefore set

CL,α(M,g) = {f ∈ C2(M) | ‖∇f‖ ≤ L, ‖Hess f‖ ≤ α}

Cα
′

(M,g) = {f ∈ C2(M) | ‖Hess f‖ ≤ α′}

where the bounds on the gradient and Hessian are to be regarded uniformly point-wise.

In what follows, we will show that when ϕ : M →M is a Riemannian submersion with some further

properties, we actually have the equality

ϕ∗(CL,α(M,g)) = Cα
′

(M,g)

for a concrete value of α′ > 0 that just depends on L, α, and ϕ. We will explicitly bound the ϕ-dependant

quantity explicitly for some manifolds of interest.

We will devote all of Chapter 5 to the study of convergence rates for functions in the class Cα
′

(M,g) in

terms of the curvature of (M, g). This, together with Theorem 4.3.1 yields convergence rates on some

homogeneous spaces in terms of their curvature.

We start by recalling the usual bounds on the second order information on the pullback of a function.

If a function f is L-Lipschitz of α-bounded Hessian and if we are have bounds for ϕ such as ‖dϕ‖ ≤ Lϕ
and ‖∇dϕ‖ ≤ αϕ, we have that

‖∇d(f ◦ ϕ)‖ ≤ αL2
ϕ + Lαϕ.

As such, all we have to do to implement the plan above is to give first and second order bounds when ϕ is

a Riemannian submersion.

We start by looking at a general submersion with totally geodesic fibres, like those presented through-

out Chapter 3. Bounds similar to these can be found in (O’Neill 1966; Vilms 1970).

Proposition 4.3.2 (First and second order bounds of a submersion). Let ϕ : M → M be a

Riemannian submersion with totally geodesic fibres with Levi-Civita connections ∇,∇ respectively. We

have that

‖dϕ‖ ≤ 1 (4.6)

‖∇dϕ|TpM‖ = 2 max
X∈Hp,V ∈VpM
‖X‖=‖V ‖=1

‖(∇X Ṽ)Hp‖ (4.7)

Here YHp denotes the horizontal part of each vector Y ∈ TpM and Ṽ is any smooth local extension of

V ∈ VpM to a vector field around p.

Proof. The first bound is direct as for X ∈ TM

‖dϕ(X)‖ = ‖dϕ(XH +XV)‖ = ‖dϕ(XH)‖ = ‖XH‖ ≤ ‖X‖.

64

To prove the second formula, recall that for vector fields X,Y on M the Hessian of ϕ is defined as

∇dϕ(X,Y) := ∇dϕ(X)(dϕ(Y))− dϕ(∇XY). (4.8)

We will split the computation into its horizontal and vertical components.

If V ∈ VM is a vertical vector, the first term of ∇dϕ(V, V) in (4.8) is zero since ϕ is constant on the

fibres so that dϕ(V) = 0. On the other hand, the hypothesis that the fibres are totally geodesic means

that ∇V V ∈ VM (Proposition 3.1.15) so that ∇dϕ(V, V) = 0.

If X ∈ H is a horizontal vector field, let γ be the horizontal geodesic with γ̇(0) = X, and let γ = ϕ(γ)

be projection onto a geodesic on M . Then, evaluating (4.8) along γ we have

∇dϕ(γ̇, γ̇) = ∇γ̇ γ̇ − dϕ(∇γ̇ γ̇) = 0.

If V is a vertical vector field and X ∈ Hp, then

∇dϕ(X,V) = −dϕ(∇XV) (4.9)

and

‖∇dϕ(X,V)|TpM‖ = ‖(∇XV)Hp‖.

Putting the horizontal and vertical case together, if X ∈ TM is an arbitrary vector, we can decompose

it into its horizontal and vertical part so that ‖∇dϕ(X,X)‖ = 2‖∇dϕ(XH, XV)‖. Using that Φ(X,Y) :=

∇dϕ(X,Y) is a symmetric bilinear form, by polarisation, the triangle inequality and Cauchy–Schwarz

4‖Φ(u, v)‖ ≤ ‖Φ|diag‖(‖u+ v‖2 + ‖u− v‖2) = 4‖Φ|diag‖

where Φ|diag(u) := Φ(u, u) so that

‖∇dϕ|TpM‖ = max
u,v∈TpM
‖u‖=‖v‖=1

‖(∇dϕ)p(u, v)‖ = max
u∈TpM
‖u‖=1

‖(∇dϕ)p(u, u)‖ = 2 max
X∈Hp,V ∈VpM
‖X‖=‖V ‖=1

‖(∇dϕ)p(X,V)‖.

For a normal Riemannian homogeneous space (Definition 3.4.11) these bounds can be simplified to an

algebraic computation on the Lie algebra.

Proposition 4.3.3. If (M, g) is a normal Riemannian homogeneous space with ϕ : G→M the canonical

projection,

‖∇dϕ‖ = max
X∈m,Y ∈h
‖X‖=‖Y ‖=1

‖[X,Y]‖

where h and m are as in Definition 3.3.14

Proof. We start by noting that, since (M, g) is a normal Riemannian homogeneous space, ϕ is a Riemannian

submersion with totally geodesic fibres (Theorem 3.3.19), so that we are in the setting of Proposition 4.3.2.

In order to compute the norm of the Hessian of ϕ at an arbitrary point in G, given that the only

non-zero part is that given by Equation (4.9), it is enough to compute the derivative of a vertical vector

field with Vp = V ∈ TpM in the direction of a horizontal vector field. Furthermore, as we are working

with a Riemannian homogeneous space, the norm of the Hessian of ϕ will not depend on the point. For

this reason, it will be enough to compute it at the identity e ∈ G. But at the identity we can use that if V

65

is a vertical vector, V ∈ h and V L is a vertical vector field. The result follows from the formula for the

connection on a normal Riemannian homogeneous space (Proposition 3.4.12) and the fact that due to the

reductive condition [m, h] ⊆ m we do not need to project onto m.

Now, we may apply these results to the Stiefel manifold and the Grassmannian since, as described

in Section 3.5, they are both normal Riemannian homogeneous spaces.

Proposition 4.3.4. Let (M, g) be either the Stiefel manifold St(n, k) or the Grassmannian manifold

Gr(n, k) as a bundle π : SO(n)→M with the metric induced by the scalar product 〈A,B〉 = 1
2 tr(AᵀB).

Consider a function f : M → R that is L-Lipschitz and of α-bounded Hessian. We then have that f ◦ π is

of (
√

2L+ α)-bounded Hessian on SO(n).

Proof. The chain rule and Cauchy–Schwarz give the bound

‖Hess(f ◦ π)‖ ≤ ‖Hess f‖‖dπ‖2 + ‖df‖‖∇dπ‖ ≤ α+ L max
X∈m,Y ∈h
‖X‖=‖Y ‖=1

‖[X,Y]‖

where we have used Propositions 4.3.2 and 4.3.3 and the bounds on f .

Since the total space SO(n) of the Stiefel manifold and the Grassmannian is a matrix manifold, the

bracket on its Lie algebra is just the commutator of skew-symmetric matrices. As shown in Ge 2014,

Lemma 2.5 for the Frobenius norm ‖A‖F =
√

tr(AᵀA) we have the bound

‖[A,B]‖F ≤ ‖A‖F ‖B‖F ∀A,B ∈ so(n).

Using that ‖A‖ = 1√
2‖A‖F we get that

‖[A,B]‖ ≤
√

2‖A‖‖B‖ ∀A,B ∈ so(n)

and the result follows.

Remark 4.3.5. The result in Ge 2014 also gives the equality cases for this bound of the norm. It is direct

to see that no two matrices [m,h] with m ∈ m, h ∈ h achieve this bound. On the other hand, consider the

case Gr(8, 4) and the matrices

A =


0 −λ 0 0
λ 0 0 0
0 0 0 −λ
0 0 λ 0

 B =


0 0 0 λ
0 0 λ 0
0 −λ 0 0
−λ 0 0 0


so that

m =
(

04,4 −Aᵀ

A 04,4

)
∈ m h =

(
04,4 04,4
04,4 B

)
∈ h

then we see that

‖[m,h]‖ = 2λ2 ≤ ‖m‖‖h‖ = 4λ2

so the bound in the Hessian of π is pessimistic by at most a factor of 2. We have the same upper-bound

for the constants for St(n, k) and Gr(n, k) for n ≥ 8 and k ≥ 4, via the totally geodesic immersions of

St(8, 4) and Gr(8, 4) into the larger ones. Similar results can be obtained whenever n < 8 or k < 4.

66

4.4 Static Trivialisations

Let us now explore the static trivialisation framework from Equation (4.3) for the setting when

dim(M) = dim(M). In this case, we will be forward a metric from M along ϕ into a new metric on M .

Here we will present the framework in the fully general case. For a—perhaps illuminating—example in

the setting of optimisation with orthogonal constraints see Section 6.1.2.

4.4.1 Diffeomorphisms

The simplest case comes when we have access to a diffeomorphism between the spaces ϕ : M →M . If

we have a metric g on M , we may then form the pushforward metric ϕ∗(g) that makes ϕ into an isometry.

If also have a retraction r on M , and a metric g on M , we may define a step map on M as

ϕ∗(r) : TM →M

(x, v) 7→ (ϕ ◦ rϕ−1(x) ◦ (dϕ)∗ϕ−1(x))(v)
.

This construction is essentially the same as that described in Definition 4.2.9. The difference is that, in

this case, given that we have a diffeomorphism, the fibre is trivial and the map does not depend on the

lifted point. On the other hand, Proposition 4.2.10 still applies, and we have that this will be a retraction

if and only if ϕ is a local isometry, that is, if ϕ∗(g) = g.

The setting of having a diffeomorphism is not particularly interesting, as the existence of diffeomor-

phisms between manifolds is too strong a topological constraint. In the following section, we will see how

the Riemannian exponential map is a submersion for some manifolds and, in general, it is a diffeomorphism

in a large enough set. This allows us to safely pull back problems from a manifold with a potentially

difficult topology to a Euclidean space.

4.4.2 The Riemannian exponential

Consider the pullback problem along the Riemannian exponential

min
v∈TpM

f(expp(v)).

We will assume throughout this section that we have a complete metric g on a connected manifold M . In

this setting, expp is surjective and

min
x∈M

f(x) = min
v∈TpM

f(expp(v)).

Note that problem (4.3) does not come equipped a priori with a choice of metric. As such, we

have the freedom to select one that makes our life easier. Complete metrics exist for any differentiable

manifold (Nomizu and Ozeki 1961) but the geometry of a complete metric may not be simple in our

manifold of choice. In particular, solving the second order non-linear differential equation to compute the

Riemannian exponential map may be rather challenging if the metric does not have enough symmetries.

Luckily, as we saw in Section 3.5 most of the manifolds that we are interested on in optimisation are

rather amenable in this aspect, with the notable exception of fixed rank matrices (Section 3.5.4).

67

4.4.2.1 Hadamard manifolds

A reasonable question could be: When is the exponential map a diffeomorphism, so that we can

pushforward the flat metric on the tangent space onto a metric onto the manifold? Hadamard manifolds

have this desirable property.

Definition 4.4.1. A connected and complete Riemannian manifold (M, g) is Hadamard if its sectional

curvature is everywhere non-positive.

The importance of Hadamard manifolds comes from the Cartan–Hadamard theorem.

Theorem 4.4.2 (Cartan–Hadamard theorem). In a Hadamard manifold (M, g), for every p ∈ M ,

the map expp is a submersion. In particular, if the manifold is simply connected, expp is a diffeomorphism.

We provide a proof of this classical theorem as a corollary of the expository results in Section 5.3.

Examples of manifolds in this family that are of interest in optimisation are the hyperbolic space or the

space of symmetric positive definite matrices with the left-invariant coming from its representation as a

symmetric space Sym+(n) ∼= GL+(n)/ SO(n). After a choice of frame—a linear isomorphism between Rn

and TpM—we may effectively work on M as if it was Rn provided that we know how to compute the

adjoint of the differential of the exponential map. This is something that we will explore in Section 4.4.2.3.

For Hadamard manifolds, we may pullback the minimisation problem from a curved space into a Euclidean

space on which we can use more sophisticated optimisation methods, such as momentum or adaptive

methods.

Remark 4.4.3 (Numerical stability of the Riemannian exponential map on negatively curved

manifolds). For manifolds that are strictly negatively curved, the exponential map grows exponentially

fast in the sense described in Rauch’s theorem (Theorem 5.3.16). For this reason, when using the exponential

map to pullback a problem to a Euclidean space on a Hadamard manifold, one often encounters numerical

stability issues which might have to be approached separately via a careful numerical implementation of

the algorithms (see e.g., Yu and Sa 2019).

Remark 4.4.4 (Other manifolds for which the Riemannian exponential is a diffeomorphism).

Hadamard manifolds are a large family of manifolds on which the exponential map is a diffeomorphism

but they are not the only ones. If the exponential map is a diffeomorphism at a point, the manifold may

still have parts of positive curvature—e.g., at the vertex of a paraboloid. In fact, there are examples of

manifolds that are not Hadamard where the exponential map at any point is a covering map (Gulliver

1975).

4.4.2.2 The general case

For a general Riemannian manifold, the exponential may not be a covering map due to the existence

of conjugate points. Although we will present an introduction to conjugate points in Section 5.3.1, we

recall here one possible definition.

Definition 4.4.5. A point q is conjugate to a point p if the map expp is not regular at q, i.e., its

differential at a vector v ∈ exp−1
p ({q}) ⊆ TpM is not full rank.

68

Even though the Riemannian exponential is not in general a submersion, it is a local diffeomorphism

around zero. The Gauss’ lemma gives that the differential of the exponential map at zero is the identity.

As such, by the inverse function theorem, expp is a diffeomorphism on a neighbourhood of 0 ∈ TpM . An

obvious question now is: How large is this neighbourhood?

This is of course a well studied question in Riemannian geometry. We summarise here some relevant

results from the literature.

Definition 4.4.6. Let (M, g) be a complete Riemannian manifold. We define the segment domain, and

its interior as

seg(p) := {v ∈ TpM | expp(tv) : [0, 1]→M is length minimising}

seg0(p) := {tv ∈ TpM | t ∈ [0, 1), v ∈ seg(p)}

We also define the tangent cut locus at p and the cut locus at p as

Tcut(p) := seg(p)\ seg0(p)

cut(p) := expp(Tcut(p))

By Hopf–Rinow, expp(seg(p)) = M . More generally, the segment domain and the cut locus have the

following properties.

Proposition 4.4.7 (Properties of the cut locus). The segment domain has the following properties:

1. seg0(p) is the interior of seg(p). In particular, seg0(p) is open

2. expp is a diffeomorphism on seg0(p)

3. If v ∈ Tcut(p), then either expp fails to be injective at x = expp(v), or its differential fails to be

surjective, or both

Proof. See for example (Petersen 2016, Section 5.7.3).

In plain words, seg0(p) is a maximal star-shaped open neighbourhood of zero on TpM on which the

exponential map is a diffeomorphism.

Due to the third property of the cut locus, we see that points in the cut locus are those that are either

joined by two geodesics of the same length starting at p (cut points) or conjugate points of p. We will look

at how to bound the first occurrences of the latter and its applications to convex geometry on manifolds

in Section 5.3.4.

We may now ask what is the topology of the cut locus. By Proposition 4.4.7, it is a closed set in M ,

but we do not know how big is it. The cut locus is a remarkably slippery object of study given that,

in general, it is not differentiable. For example, for surfaces, the cut locus of a point has structure of a

local tree, in the sense that every point in the cut locus has a neighbourhood W such that the connected

component of W ∩ cut(p) on which z lies is a tree (Myers 1935). Here by tree we mean that any two points

can be joined by a unique injective curve. This tree, on the other hand, may be infinite of a fractal-like

shape. This was later generalised in (Buchner 1977), where it was proved that locally, the cut locus of an

n-dimensional manifold is homeomorphic to an (n− 1)-dimensional simplicial complex.

69

Regarding the size of the cut locus, we have the following theorem by Itoh and Tanaka.

Theorem 4.4.8 (Itoh and Tanaka 1998). Let M be a connected and complete Riemannian manifold

of dimension n. For a point p ∈ M the Hausdorff dimension of Tcut(p) is either 0 or n − 1, and the

Hausdorff dimension of cut(p) is an integer strictly smaller than n.

Let us put now this result in the language of measures, which is more familiar to the optimisation

community.

Corollary 4.4.9. Tcut(p) has Lebesgue measure zero on TpM and cut(p) has measure zero with respect to

the Borel measure on M . If M is orientable, cut(p) has measure zero with respect to the measure induced

by the Riemannian volume form.

We can argue that, although the cut locus can introduce problems in practice, the problematic set is

not too large in a measure-theoretic sense. On the other hand, even though the cut locus is of measure

zero, it might have quite a wild topology. For M compact, the cut locus is connected as M\{p} is a

deformation retract onto cut(p) given by flowing along geodesics emanating from p. On the other hand, in

the non-compact case, the cut locus may have countably many components (Chavel 1970). Luckily, as we

have mentioned at the beginning of this section, the manifolds on which we are interested in optimisation

are particularly well-behaved, so this is never a problem in practice, as we will see empirically in Section 6.4.

It is also worth noting that, when setting up the static trivialisation framework, we will often sample

a point p ∈ M according to some measure and then start at the point v0 = 0 ∈ TpM . For this reason,

we will start the optimisation at the farthest point from the conjugate locus, which is advantageous in

practice.

4.4.2.3 The adjoint of the Riemannian exponential

In order to implement the pullbacks along the exponential map in first order optimisation, it is

necessary to compute the adjoint of the differential of the exponential map. For general Riemannian

manifolds, this can be computed in terms of the radial vector field defined by geodesics. We will not use

this result, but we believe that it may be of interest.

Proposition 4.4.10 (McAlpin 1965). Let (M, g) be a Riemannian manifold and let (p, v) ∈ TM such

that γ(t) = expp(tv) does not have conjugate points for t ∈ [0, 1] then

(d expp)∗v = (d expγ(1))−γ̇(1)

A proof of this result can be found in (Lang 1999, IX, Lemma 3.4).

Let us now compute the adjoint of the differential of the exponential on naturally reductive homogeneous

spaces. For these spaces, we may simplify its computation to the computation of the adjoint of the Lie

exponential on G.

Proposition 4.4.11. Let (G/H, g) be a naturally reductive homogeneous space and fix a point and a

vector (x, v) ∈ T (G/H). Let ζg = (dπ)g ◦ (dLg)e|m : m→ TgH(G/H) be the linear isometry given by the

naturally reductive structure. Then, letting vm := ζ−1
g (v) for a g ∈ π−1(x) and denoting g̃ := expm(vm),

(d expp)∗v = ζg ◦ (d expm)∗vm ◦ (dLg)∗g̃ ◦ (dπ)∗gg̃

70

Proof. The formula follows by differentiating the expression for the Riemannian exponential in Proposi-

tion 3.4.10

expx(v) = (π ◦ Lg ◦ expm ◦ζ∗g)(v)

and taking adjoints.

When G is a matrix Lie group, we may give a more computationally concrete formula for the adjoint

of the Riemannian exponential. In this case, Lg is just left multiplication, which makes computing its

adjoint with respect to the canonical basis direct. To compute the adjoint for the exponential, we use

the fact that in this case, for matrix Lie groups, the Lie exponential is just the exponential of matrices

(Proposition 3.5.2) and, in particular, an analytic map. For an analytic matrix map, we have a particularly

simple formula for the adjoint. As we are working on Rn×n, we will identify dLX with LX to simplify the

notation.2

Theorem 4.4.12. Consider an analytic matrix function

ψ : Rn×n → Rn×n

X 7→
∞∑
n=0

an
n!X

n

We then have that, for the canonical inner product on Rn×n

(dψ)∗X = (dψ)Xᵀ X ∈ Rn×n.

Proof. We can compute the differential of ψ as

(dψ)X(E) =
∞∑
n=0

(an
n!

n∑
i=0

XiEXn−i
)
.

By linearity, it is enough to compute the adjoint of functions of the form X 7→ XiEXn−i.

Observe that the adjoint of the linear map given by left multiplication LA(X) = AX is exactly LAᵀ

〈LA(X), Y 〉 := tr((AX)ᵀY) = tr(XᵀAᵀY) = 〈X,LAᵀ(Y)〉.

In the case of right multiplication, we also get R∗A = RAᵀ .

Finally, we just have to apply this formula to the functions LXi(E) = XiE and RXn−i(E) = EXn−i,

and noting that X 7→ XiEXn−i = LXi(RXn−i(E)) we get the result.

Remark 4.4.13 (Complex setting). The generalisation of this result to complex functions is direct,

just computing the differential of the analytic function with conjugate coefficients in its Taylor series. In

this case, one can interpret this theorem by saying that “the adjoint of the differential is the differential of

the conjugate at the adjoint”, noting the two different meanings of the word “ adjoint” in the sentence.

One can also formulate the theorem for a holomorphic function defined just on an open subset U ⊆ C,

and define the function on matrices on the set of matrices such that their spectrum is contained in U ,

hence making sense also of functions like log(X).
2After obtaining this result, we thought that this should be folklore in some areas like functional analysis or numerical

analysis. In fact, this result can be found without proof in (Higham 2008, p.66).

71

Putting this together with Proposition 4.4.11, we are able to compute the adjoint of the Riemannian

map for manifolds such as the Stiefel manifold, the Grassmannian.

Theorem 4.4.14. Let (G/H, g) be a naturally reductive homogeneous space with G a subgroup of U(n)

(resp. SO(n)) and g the quotient metric induced from the canonical metric on Cn×n (resp. Rn×n). With

the notation in Proposition 4.4.11,

(d expp)∗v = ζg ◦ (d expm)vH
m
◦ (dLg)∗g̃ ◦ (dπ)∗g̃

where −H denotes the conjugate transpose.

In Section 6.3.2, we will explore how to numerically approximate both the exponential and its adjoint

efficiently on a gpu.

The conjugate locus on naturally reductive homogeneous spaces has a particularly simple structure,

given that it is just the projection as the conjugate locus of the Lie group. If this is a matrix Lie group

then the conjugate locus can be computed by algebraic means, as this is set of points on which the

differential of the exponential of matrices fails to be surjective. Using the formula for the differential of

the exponential and looking at its eigenvalues, it is easy to show the following.

Theorem 4.4.15. Let G be a matrix Lie group. The exponential of matrices is analytic, with analytic

inverse on a bounded open neighbourhood of the origin given by

U = {A ∈ g | |Im(λi(A))| < π}.

Proof. See for example (Rossmann 2002, Proposition 7’).

In particular, this gives us a neighbourhood of radius π—or in general a whole band—around the

identity where the exponential is a diffeomorphism.

Remark 4.4.16 (Symmetric spaces). For compact groups with a bi-invariant metric, where at the

identity the Lie exponential and the Riemannian exponential coincide, this gives a tight bound for the

conjugate radius. These computations may be extended to symmetric spaces by means of Jacobi fields. On

a symmetric space (G/H, g), as the curvature tensor is covariantly constant, the Jacobi equation—i.e., the

equation that the differential of the exponential satisfies (cf., Proposition 5.3.4)—has constant coefficients.

As such, it is possible to express it in terms of the Lie bracket on G. When G is compact, using the

roots of G and H, it is possible to compute the largest radius on which the Riemannian exponential is a

submersion. The details can be found in (Rauch 1966)

Remark 4.4.17 (A note on the Lie exponential). The Lie exponential has the advantage over

the general Riemannian exponential that it is straightforward to compute for matrix Lie groups, while

the Riemannian exponential requires looking for a suitable metric on which the geodesics are easy to

compute. On the other hand, once we have a suitable Riemannian exponential, it is possible to give

convergence results with respect to the different metrics involved in the Riemannian submersion π : G→M .

Furthermore, the metrics that we work with are often complete, so if M is connected, the Riemannian

exponential is surjective, and it is a diffeomorphism onto all the manifold but a set of measure zero—the

72

conjugate locus (Corollary 4.4.9). On the other hand, for some groups such as GL(n,R) or SL(n,R) the

Lie exponential is not surjective, which is problematic.

To be able to use maps that are not surjective, and to mitigate the problem of converging to a critical

point of the parametrisation, we introduce the framework of dynamic trivialisations.

4.5 Dynamic Trivialisations

In this section, we will exploit vector bundle structure of the tangent bundle to alleviate the problems

of lack of surjectivity or of convergence to a critical point of a static trivialisation. We will assume, as it is

often the case, that we have access to a retraction r : TM →M .

In this setting, to approximate a minimiser of f , we may choose a point p ∈M and optimise on a fixed

tangent space TpM , performing gradient descent on the function f ◦ rp. We will call p the basepoint.

If we simply fix the basepoint p, this is exactly the setting of static trivialisations, where we just pulled

back the problem by a fixed map. On the other hand, it may be the case that either rp : TpM → M is

not surjective or that it has critical points. In either case, given that we do not have access to a map but

to a whole family of maps indexed by p ∈ M , we could change the basepoint if we detect that we are

converging to a critical point of rp or if we see that we are not exploring all the manifold.

To formalise this, let p0 ∈M be some starting point. Consider the iterates in Tp0M

v0,k+1 = v0,k − η0,k∇(f ◦ rp0)(v0,k)

with v0,0 = 0. Then, if after K iterations we observe that we are too close from a critical point of rp0 ,

or we consider that we are not exploring a part of M due to rp0 not being surjective, then we take

p1 = rp0(v0,K), set v1,0 = 0 and continue the optimisation process on Tp1M .

These ideas can naturally be translated into Algorithm 1 given a boolean stopping rule stop. We call

it the dynamic trivialisations framework. The term “dynamic” comes from the fact that we choose

an appropriate basepoint dynamically, according to the stopping rule stop into which we can embed some

prior knowledge about M and structure of the problem.

Algorithm 1 Dynamic trivialisation framework
Require: A starting point p0 ∈M , a boolean statement stop, a map r : TM →M , a function f : M → R
1: for i = 0, . . . do
2: vi,0 = 0
3: for k = 1, . . . do
4: vi,k = vi,k−1 − ηi,k−1∇(f ◦ rpi)(vi,k−1) . Optimise on TpiM
5: if stop then . Stopping condition
6: break
7: pi+1 = rpi(vi,k) . Update pullback point

The procedure described in Algorithm 1 accounts for changing the metric onM every time the stopping

rule fires. An example of a stopping rule to detect that we are converging to a critical point of ϕ with a

stopping rule of the form

stop ≡ ‖∇(f ◦ rpi)(vi,k)‖
‖∇f(rpi(vi,k))‖ < ε.

This algorithm has two interesting limiting cases.

73

ϕ
M

TpM ∼= Rn

v0
v1

v2
v3

v4

v5

v6

p

Static Trivialisation

rpi

rpi+1

M

TpiM
∼= Rn Tpi+1

M ∼= Rn

pi+1 := rpi(vi,4)

vi,0
vi,1

vi,2

vi,3

vi,4

vi+1,0

vi+1,1

vi+1,2

vi+1,3
vi+1,4

pi

pi+1

Dynamic Trivialisation

Figure 4.3: Example of the pullback method vs. the dynamic trivialisation procedure changing the basepoint
after 4 steps.

Generalisation of pullbacks. If stop ≡ False, that is, if we never change the basis p0, it reduces to

the static trivialisation framework with the map rp0 .

Generalisation of Riemannian gradient descent. In the case stop ≡ True, we are changing the

basis of the trivialisation on every step. In this case, this method recovers exactly Riemannian gradient

descent using r as a retraction. To see this, just note that by the chain rule and the definition of a

retraction

d(f ◦ rpi)0 = (df)rpi (0) ◦ (drpi)0 = (df)pi .

From this it follows that

∇(f ◦ rpi)(0) = ∇f(pi)

so the update rule simplifies for a learning rate ηi,0 = ηi > 0 can be rewritten as

vi,1 = −ηi∇f(pi) pi+1 = rpi(−ηi∇f(pi))

and pi+1 are exactly the iterates given by doing Riemannian gradient descent using the retraction r.

For this reason, we can see dynamic trivialisations as an interpolation between the pullback method

using rp0 and Riemannian gradient descent along r.

Remark 4.5.1 (Retractions vs. more general maps). We ask for the map r : TM → M to be a

retraction for simplicity, but this is not strictly necessary. If we do not have that rp(0) = p then, when

changing from rpi to rpi+1 we would just have to take the vector on Tpi+1M that is mapped through rpi+1

to the point at which we are at the moment. Note that it is not necessary for (drp)0 to be the identity

either, but simply to be full rank so that it defines a new metric locally. In practice, it would also be

necessary for the neighbourhood on which the retraction is non-singular to be large enough, as it is the

case with the Riemannian exponential. For other retractions, this is a property that should be studied

case by case.

Dynamic trivialisations have several practical advantages over rgd.

74

Errors do not accumulate Consider usual Riemannian descent on SO(n) with a bi-invariant metric

along the Riemannian exponential map (cf., Section 3.5.1). Unrolling the update rule, we get that after t

steps, we will be at the point

xt = x0 expm(−η∇f(x0)) · . . . · expm(−η∇f(xt−1)).

This computation is exact in theory, but in practice, one has to compute the exponential of matrices at every

step, which will lead to some numerical error in every step. In particular, every matrix expm(−η∇f(xi)),

when represented in memory, will not be orthogonal but just very close to orthogonal. These errors will

accumulate, which means that the matrix xt will deviate from SO(n) as t increases. This is problematic

in practice since, as we will showcase in the experiment section Section 6.4, optimisation on manifolds is

often used in practice to regularise very badly conditioned optimisation problems. In these problems, the

Lipschitz constant of the function being optimised is rather large, and projecting back to the manifold

often affects very negatively the convergence of the algorithm.

Consider now the static trivialisation framework with the Riemannian exponential on a complete and

connected Riemannian manifold. After choosing a frame, we are effectively pulling back the problem to

Rn—e.g., to Skew(n) in the case of SO(n). As this is a vector space, its elements can be represented in

memory exactly by the use of a frame ζ : TpM → Rn. It is for this reason that the static trivialisation

framework does not present this accumulation of errors. On the other hand, by construction, if we have a

surjective map from a Euclidean space onto a manifold that is not simply connected, it will necessarily

have critical points, as it was the case with the conjugate locus for the Riemannian exponential map.

Dynamic trivialisations allow choosing a sweet-spot between these two situations depending on the

problem. For example, consider that we know a priori the conjugate radius of the manifold in hand,

which is often the case. With this information, we may run a coarse estimate based on the norm of the

gradients so far and the step size of whether the current iterate may be too close to a singular point of

the exponential map. If this cheap check passes, we may then run an actual check on the manifold to see

if the current point is on the conjugate locus—on SO(n) this would account for doing an svd of a matrix

and checking the pairwise distance between eigenvalues values. If we are then ε-close to the conjugate

locus of p, we may then change the basepoint and so on.

The flexibility of the framework allows for the quantities involved in the estimation to be tuned in an

online manner, where one may try to estimate some of the hyperparameters involved in the stopping rule

according to the change of the norm of the gradient when one changes the point, or even second order

information.

Gradient computations It is very common to find a section in papers on optimisation on manifolds

where the equation for the Riemannian gradient on the manifold is derived for the manifold considered in

the paper. These computations are always standard, and it often accounts for finding a projection from

some matrix space onto a representation of the tangent space of the manifold and computing its adjoint.

The computation of the adjoint of this linear map is purely mechanic, but it is often rather cumbersome,

even more so in the case of the Riemannian Hessian.

75

The static and dynamic trivialisation frameworks implement this via composition of functions, after

choosing a suitable frame ζ : TpM → Rn on the tangent space. After this choice, one gets the Riemannian

gradient without any extra effort, as the adjoint method is automatically computed by the autodiff engine,

hence saving a considerable amount of effort. We will show some concrete examples of this in Section 6.1.2.

Modularity by design Another benefit of this framework in this context is that it takes full advantage

of the modularity of autodiff frameworks. Consider that we want use the Lie exponential to perform

optimisation on a Lie subgroup of a Lie group on which we have already implemented the Lie exponential.

If that is the case, we know that the Lie exponential on H will be just the Lie exponential on g restricted to

h. As such, we just need to consider the map that embeds h into g and precompose by this parametrisation

to get the exponential at H. Naturally reductive homogeneous spaces provide the same modularity with

the Riemannian exponential map. We will explore this further in Section 6.2.2 when looking at the class

system in GeoTorch.

Use of different optimisers Arguably the most important thing that this approach brings to the

table is that, as one is effectively working on Rn, the update rule in Algorithm 1 need not be that coming

from gradient descent but could be that from other optimiser, such as adam or adagrad. We will see

that these optimisers bring a considerable advantage over traditional gradient descent in the context of

neural networks in the experiments (Section 6.4).

Remark 4.5.2 (A note on adaptive optimisers and change of basepoint). When using adaptive

optimisers, one has to be careful when performing a change of basepoint. Adaptive optimisers have extra

parameters where they keep an approximation of the curvature of the function at the current point. As

such, when changing the basepoint, as we are effectively changing the metric, this notion of curvature

changes as well. While it is possible to correct for this, it is too expensive to do in practice. Therefore,

even though one may leave this estimator hoping that it is a good starting point for the estimation of the

curvature with respect to this new metric, sometimes destabilises the training. As a rule of thumb, it is

preferable to just zero out these estimations and start the estimation from scratch when using adaptive

optimisers.

Of course the use of these optimisers is just recommended together with a stopping rule that does not

change the basepoint very often like that given by the closeness to the conjugate locus in the case of the

exponential. In the general case where one may change the basepoint after every optimisation step, as one

does to recover Riemannian gradient descent, there is no hope in that this scheme optimiser would yield a

sensible update rule when used with an adaptive optimiser.

Remark 4.5.3 (Vector bundles). This whole construction may be carried for a general vector bundle

π : E →M with a map r : E →M . We chose to carry the presentation in the simpler setting of E = TM ,

since we do not aware of any setting where using a more general bundle is of practical interest.

76

Chapter 5

First and Second Order Bounds on
the Riemannian Exponential

In this chapter we present the main theoretical results of the thesis: Novel second order bounds on the

Riemannian exponential map in terms of the curvature of the manifold. With these we then go and prove

some conditional convergence results for the static and dynamic trivialisation framework when using the

Riemannian exponential map. This kind of results are the first of their kind, to the best of our knowledge.

The results presented in this chapter are as general as they can be, and they can be used to give concrete

bounds for different manifolds, as many papers in the literature on optimisation on manifolds give their

results in terms of second order bounds of retractions.

Outline of the chapter. We start by setting-up the problem and giving a literature review, linking

previous theoretical approaches to the one given here. In Section 5.2, we set the notation, and we recall a few

results from differential and Riemannian geometry that will be used throughout the chapter. In Section 5.3,

we give a self-contained proof of first order bounds on the Riemannian exponential map, which go by

the name of Rauch’s theorem. We include it as we believe that this proof is not very well-known in the

optimisation on manifolds community. We emphasise the maximal domains on which the inequalities hold,

which is often neglected in the literature. In Section 5.4, we prove the second-order bounds, following the

proof structure given in (Kaul 1976) but heavily simplifying the proof and the final bounds. In Section 5.5,

we look at the form that these bounds take for some manifolds used in optimisation. In Section 5.6, we

show how to use these bounds to prove conditional convergence of the static and dynamic trivialisation

framework for functions of bounded Hessian on manifolds of bounded geometry. To finish the chapter, we

include a short section giving a simple algebraic way to tell when is a given retraction the exponential

map of a connection.

5.1 Introduction
5.1.1 The problem and overview of assumptions

We are interested in approximating critical points of a—possibly non-convex—function defined on a

manifold

min
x∈M

f(x).

77

In particular, we are interested in giving global convergence bounds for such problems. These problems form

a particularly well-behaved subset of the field of constrained optimisation. Examples of the importance of

this family of problems are ubiquitous in engineering, statistics, and machine learning. For example, they

have found applications in image processing, using Grassmannians for tracking subspaces; analysis of time

series in deep learning with the orthogonal group to avoid vanishing and exploding gradient problems;

Bayesian statistics and machine learning with the manifold of positive definite matrices in kernel methods

and metric learning; the space of low-rank and fixed-rank matrices for low-rank models; and the hyperbolic

space for word embeddings, among many others.

The approach that we investigate in this chapter is that of using the exponential map to pullback the

problem from the whole manifold to a fixed tangent space, converting the problem into an unconstrained

one over TpM ∼= Rn

min
v∈TpM

f(expp(v)). (5.1)

For this to be a sensible method, the exponential map has to be surjective, so we will assume (M, g) to be

connected and complete throughout the chapter.

For some manifolds, such as the hyperbolic space or the space of symmetric positive definite matrices

(and more generally, Hadamard spaces), one may find (geodesically) convex functions which can be

optimised efficiently (Bačák 2014). On the other hand, when the manifold is compact, as is the case for

the sphere, or when dealing with orthogonality constraints (Edelman, Arias, and Smith 1998), there exists

no convex function besides the constant ones, so we inevitably have to deal with non-convex problems.

To this end, we will consider a function f which is of α-bounded Hessian (i.e., with bounded Hessian

in operator norm) and we ask ourselves whether f ◦ expp is of α′-bounded Hessian for any α′. The answer

to this problem will be: Not in general. For example, for the hyperbolic space, the exponential map grows

as cosh(t), which has unbounded first and second derivatives. For this reason, we will have to content

ourselves with proving tight bounds on the growth of the Hessian of f ◦ expp on a neighbourhood of a

given radius.

When it comes to the assumptions on the manifold, we will look at the family of manifolds of bounded

first order geometry.

Definition 5.1.1 (Bounded first order geometry). We say that a Riemannian manifold (M, g) has

(δ,∆,Λ)-bounded geometry if it has uniformly bounded injectivity radius rinj > 0 and we have bounds

on the sectional curvature and the derivative of the curvature tensor R

δ ≤ sec ≤ ∆ ‖∇R‖ < Λ.

These manifolds have found many uses in the area of pdes on manifolds and geometric analysis. In

particular, any compact manifold with any metric is of bounded geometry. On the other hand, this family

does not impose topological restrictions on M as any differentiable manifold admits a complete metric of

bounded geometry (Greene 1978). We will introduce these manifolds in a bit more depth in Section 5.4.2.

For a much more in-depth introduction to this family of manifolds see the thesis (Eldering 2012).

78

Proof strategy. We will implement the following strategy:

1. Give first and second order bounds for expp that depend on the curvature of the manifold (Sections 5.3

and 5.4)

2. Instantiate these bounds on some manifolds of interest (Section 5.5)

3. Use the first and second order bounds for expp to estimate a bound on the norm of the Hessian of

f ◦ expp on a bounded domain (Section 5.6)

4. Use these bounds to prove the convergence of the dynamic trivialisation framework (Section 5.6)

5.1.2 Previous work

General pullbacks in constrained optimisation. The idea of pulling back a problem from a space

with a complex geometry to a simpler one via a particular family of maps lies at the core of the area

of constrained optimisation. Mirror descent (Nemirovsky and Yudin 1983) and Lagrange multipliers are

examples of methods that allow simplifying a constrained optimisation problem into one in a simpler space.

It is also a recurrent theme in the literature on optimisation on manifolds. We have the Burer–Monteiro

method (Burer and Monteiro 2003; Burer and Monteiro 2005) which parametrises the space of low-rank

matrices via the multiplication of two tall matrices. Other approaches via different factorisations have

also been explored, for example via an svd (Vandereycken 2013) or other factorisations like the polar

factorisation (Mishra et al. 2014). Similar parametrisations have been explored for the algebraic variety of

matrices of rank at most k—low-rank optimisation—and manifolds such as positive semidefinite matrices

of a fixed rank (Vandereycken, Absil, and Vandewalle 2013; Massart and Absil 2020). The idea behind

these algorithms is that of parametrising a space in terms of simpler ones, effectively pulling back the

problem to an easier one and then mapping back the solution of the simpler problem to the complex space

via the parametrisation map.

Pullbacks along the exponential in numerical analysis. Instances of (5.1) can be found all

throughout the area of numerical analysis. For example, in the study of the centre of mass in the manifold

of Sym+(n) matrices (Arsigny, Commowick, et al. 2006; Arsigny, Fillard, et al. 2006); continuous dynamics

on Lie groups, and their discretisations (Magnus 1954; Iserles and Nørsett 1999; Iserles, Munthe-Kaas, et al.

2000); optimisation on compact Lie groups (Lezcano-Casado and Martínez-Rubio 2019); optimisation on

non-compact Lie groups (via the Lie exponential) (Mahony and Manton 2002); and probabilistic methods

on manifolds for their use in machine learning (Falorsi et al. 2019). More recently, these ideas were unified

into the framework of static trivialisations (Lezcano-Casado 2019).

The main idea behind pulling back an optimisation problem from a manifold to a flat space is that of

heavily simplifying the problem at hand, going from a manifold which might have a complex topology and

geometry, to one that is flat and has trivial topology. Of course, that comes at a cost, as this change of

topology makes the new function f ◦ expp have more critical points. Luckily, for any differentiable manifold

and any smooth metric, this set of problematic points, called the conjugate locus, has measure zero by

a theorem of Sard (Sard 1965). Since the conjugate locus is a subset of the cut locus, it is far from the

79

point p. This is because the cut locus can vaguely be regarded as “the set that is opposite to the point p”.

For example, on a sphere, the cut locus of a point p is its antipode and on a cylinder, the cut locus of a

point is the whole line opposite to that point. As such, the cut locus is, in some sense, as far from p as

possible, and so is the conjugate locus. At the expense of this technicality, one may heavily simplify the

problem of optimising a function on a space with a non-trivial topology to a Euclidean problem. We will

expand on this technical point in Section 5.2.

An idea surprisingly similar to this one was outlined in (Manton 2015, Section 7) in the context of

second order optimisation and Newton methods on manifolds. Even though the strategy is very similar

to that of dynamic trivialisations, the nature of the proofs developed in that paper and the theoretical

background are essentially different. It would be of interest to look further into the connections between

the approach presented here and that presented in that paper, as they can surely benefit of each other.

Pullbacks along the exponential map: Trivialisations. If we pullback the problem to the tangent

space at each iteration of the algorithm along a retraction, we recover Riemannian Gradient Descent (rgd)

along that retraction (Boumal, Absil, and Cartis 2019). It was then noted in (Lezcano-Casado 2019) that

one may change the point p in (5.1) to avoid converging to a point in the conjugate locus of p. In fact,

one may change the point according to an arbitrary stopping rule giving the following meta-algorithm:

1. Compute gradient steps of the function f ◦ exppi to obtain iterates vi,k ∈ TpiM for k = 1, 2, . . .

2. If we are close to a point in the conjugate locus of pi, we set pi+1 = exppi(vi,k) and repeat

This is the algorithm presented in Algorithm 1 choosing the Riemannian exponential map rather than

a general retraction (Lezcano-Casado 2019)

Algorithm 2 Dynamic trivialisation framework
Require: A starting point p0 ∈M , a boolean statement stop
1: for i = 0, . . . do
2: vi,0 = 0
3: for k = 1, . . . do
4: vi,k = vi,k−1 − ηi,k−1∇(f ◦ exppi)(vi,k−1) . Optimise on TpiM
5: if stop then . Stopping condition
6: break
7: pi+1 = exppi(vi,k) . Update pullback point

Two possible stopping rules stand out over the others. If we let stop ≡ False, then we recover the

static-trivialisation framework of pulling back the function to a fixed tangent space as in (5.1). On

the other hand, if stop ≡ True, then the algorithm is exactly Riemannian gradient descent, as mentioned

before. The stopping rule of being too close to the conjugate locus could be then written as

stop ≡
‖∇(f ◦ exppi)(vi,k)‖
‖∇f(xi,k)‖ < ε.

The ideas of pulling back the problem at the current point of the optimisation and then taking a few

steps on the tangent space have been recently explored in (Criscitiello and Boumal 2019; Sun, Flammarion,

and Fazel 2019) in the context of escaping saddle points for optimisation on manifolds.

80

Retractions with bounded second and third order derivatives. To be able to prove convergence

of the dynamic trivialisation framework, we will give novel bounds on the norm of the Hessian of the

exponential map in terms of the curvature of the manifold. These bounds are one example of second

order bounds for a large family of retractions. These bounds lie at the heart of the convergence results

of Riemannian methods via retractions, where it is often referred to as the L-smoothness of the

retraction. Examples of work under this assumption are adaptive methods on matrix manifolds (Kasai,

Sato, and Mishra 2018), quasi-Newton methods on manifolds (W. Huang, Gallivan, and Absil 2015),

stochastic methods with variance reduction (Kasai, Sato, and Mishra 2018), and general convergence of

Newton methods in Riemannian manifolds (Ferreira and Svaiter 2002), among many others. The bounds

developed in this chapter give exact rates of growth for the norm of the Hessian of the retraction in terms

of the curvature of the manifold when the retraction is the exponential map, which falls exactly in the

framework of these papers and many others.

Third order and higher order bounds are used when trying to converge to second order optima

and escaping saddle points (Criscitiello and Boumal 2019) and when adapting Newton methods to

manifolds (Agarwal et al. 2020), and other higher order methods. The computations of higher order

bounds is analogous to that of second order bounds. In this chapter, we present all the necessary techniques

to give n-th order bounds for a manifold of n-bounded geometry (Definition 5.4.3), although we do not

perform these computations explicitly. Bounds of this flavour were first developed in (Eichhorn 1991), where

the rate of growth of the n-th derivative of the Christoffel symbols in normal coordinates is estimated.

5.2 Differential Geometry: Conventions and Notation

In this section, we establish the notation used to refer to some recurrent objects, such as the distance

function, the segment domain, mixed derivatives and pullbacks of connections. We also use it to recall

some definitions from differential geometry that are not that commonly seen in the area of optimisation,

such as the definition of the Lie derivative and covariant derivative of tensors.

The manifold We will always work on a connected and complete Riemannian manifold (M, g) of

dimension at least 2 and at least C4 regularity. We will denote the sectional curvature on the plane defined

by two vectors u, v ∈ TpM as sec(u, v). When we write sec ≤ ∆ for a constant ∆ ∈ R, we mean that for

every p ∈M , u, v ∈ TpM , sec(u, v) ≤ ∆. We will implicitly the natural identification T(p,v)(TpM) ∼= TpM

for every v ∈ TpM .

Distance function, segment domain, conjugate and cut locus We summarise here some well-

known results on some objects associated to the geometry of a Riemannian manifold. Most of these were

already presented more formally in Definition 4.4.6 and Proposition 4.4.7.

For a point p ∈M , we define the segment domain as

seg(p) := {v ∈ TpM | expp(tv) is length minimising for t ∈ [0, 1]}

81

and we denote its interior by seg0(p). The set seg0(p) is a star-shaped open neighbourhood of 0 in TpM .

We will also write

Up := expp(seg0(p)).

Up is sometimes referred as a normal neighbourhood of p, and its complement is called the cut locus

cut(p) ⊆M . We have that the map

expp |seg0(p) : seg0(p)→ Up

is a diffeomorphism. In particular, on these sets, we have that exp−1
p exists and that d expp is full rank.

A conjugate point expp(v) = q of p is one such at which (d expp)v is not full rank. We denote the set

of all these points conj(p). We have that conj(p) ⊆ cut(p). By a theorem of Sard, conj(p) has measure

zero in M (Sard 1965). Even more, cut(p) has Hausdorff dimension at most n− 1 (Itoh and Tanaka 1998).

As such, Up is an open radially convex neighbourhood of p that covers almost all the manifold.

We will write r(x) := d(x, p) for the distance to a fixed point p. This function is differentiable on

Up\{p}, with gradient the unit radial vector field emanating from p. In particular, we have that for a

geodesic γ starting at p, ∇r|γ = γ̇. The cut locus of p is exactly the set of points other than p at which

the distance function r is not differentiable.

Einstein convention Whenever we refer to coordinates {xi} on all of Up, we will always assume that

these are the normal coordinates given by exp−1
p on TpM . We will denote ∂i := ∂

∂xi for short. We will use

Einstein’s summation convention that if an index appears as a super-index and a sub-index in a formula,

it means that we are summing over it. For example, for a vector field X in local coordinates we write

X =
n∑
i=1

Xi∂i = Xi∂i.

Remark 5.2.1. Almost all the results in this chapter can be developed working just on a neighbourhood

of a geodesic rather than on the whole Up. We will make sure of make this explicit in each result throughout

the chapter.

Connections and derivations We will write DXf := df(X) for the directional derivative of a function

along a vector field X to disambiguate with the gradient of a function, which we will denote by ∇f its

gradient. We denote by ∇ the Levi-Civita connection on Up and by ∇flat the pushforward of the flat

connection on TpM along expp. In the same way that we do for the norms, we will abuse the notation

and also denote by ∇ the associated connections defined by ∇ on associated bundles.

We recall that connections on tensor bundles are defined so that the Leibnitz rule holds. For example,

for the Hessian and three vector fields X,Y1, Y2, the Leibnitz rule reads

DX(Hess f(Y1, Y2)) = (∇X Hess f)(Y1, Y2) + Hess f(∇XY1, Y2) + Hess f(Y1,∇XY2)

so ∇Hess f is given by the (0, 3) tensor

(∇X Hess f)(Y1, Y2) := DX(Hess f(Y1, Y2))−Hess f(∇XY1, Y2)−Hess f(Y1,∇XY2).

82

We can do the same for a tensor T of type (0, s). We define its covariant derivative ∇T as the tensor

of type (0, s+ 1) such that the Leibnitz rule holds

(∇XT)(X1, . . . , Xs) := DX(T (X1, . . . Xs))−
s∑
i=1

T (X1, . . . ,∇XXi, . . . , Xs).

For example, if we have in local coordinates the differential of a function is a (0, 1) tensor df = f idxi. We

may compute its Hessian in local coordinates as the (0, 2) tensor given by

∇df = ∇(f idxi) = df i ⊗ dxi + f i∇dxi

where we have used that the connection on functions is just the differential, by definition.

The Lie derivative of tensors is defined in the same way. For a (0, s) tensor T , the Lie derivative of T ,

LXT in the direction of a tensor X is defined as the (0, s) tensor

(LXT)(X1, . . . , Xs) := DX(T (X1, . . . Xs))−
s∑
i=1

T (X1, . . . ,LXXi, . . . , Xs).

Pullback connections When dealing with a smooth curve γ : [0, r]→M , we will sometimes want to

derive a vector field X along it. We will write ∇∂tX for the covariant derivative along γ, that is, the

pullback connection along γ.

We will sometimes write the covariant derivative along γ as Ẋ := ∇∂tX. This comes from the fact

that if we choose a parallel frame {ei} along γ, that is ∇∂tei = 0, we have that by the Leibnitz rule

Ẋ = ∇∂t(Xiei) = ∇∂t(Xi)ei +Xi∇∂t(ei) = Ẋiei

where Ẋi are just the regular derivatives of the coordinate functions. With this notation, the usual

equation for geodesics simply reads γ̈ = 0.

If instead of a curve we have an embedded surface

c : [0, r]× [−ε, ε]→M

(t, s) 7→ c(t, s)

we will analogously write ∂s for the vector field in the direction of the second component. Suppose that

we have a vector field J along γ(t) := c(t, 0) given by

J(t) = ∂c

∂s
(t, 0) = dc(∂s)|γ

where ∂s is the coordinate vector field on the second component of [0, r] × [−ε, ε]. We will abuse the

notation and write for a vector field X along γ

∇JX := ∇∂sX

in the same way that we may write the equation for the geodesics as

∇γ̇ γ̇ := ∇∂t γ̇ = 0.

Sometimes, we will also pullback a connection along the exponential map expp. For the distance

function r to p, we have the radial vector field on Up\{p} ⊆ M given by ∇r. By Gauss’s lemma, the

83

pullback of this vector field to seg0(p)\{0} ⊆ TpM via the exponential map is exactly the radial vector

field on the tangent space ∂r, that is

d expp(∂r) = ∇r.

With this notation, we can write the equation for the geodesics emanating from p on all of Up\{p} using

the pullback connection along expp as

∇∂r∇r = 0.

Hessian and iterated Hessian If we want to evaluate the (0, 2) Hessian twice on the same vector, we

may do so by simplifying this problem to just performing a Euclidean derivative. Let γ be the geodesic

such that γ̇(0) = X

Hess f(X,X) = (f ◦ γ)′′(0) = Dγ̇(0)〈∇f, γ̇〉 = 〈∇γ̇(0)∇f, γ̇(0)〉 = ∇df(X,X). (5.2)

In other words, ∇df serves as a coordinate-free definition of the (0, 2) Hessian of f . In the same way,

∇∇f is the (1, 1) Hessian of f .1

We also recall the definition of the iterated Hessian of a function as a (0, 2) tensor. This is also best

introduced in its (1, 1) form by using that the (1, 1) Hessian is given by Hess f(X) = ∇X∇f so that

Hess2 f(X) := (Hess f ◦Hess f)(X) = ∇∇X∇f∇f.

Its (0, 2) version is consequently defined as

Hess2 f(X,Y) := 〈Hess f(Hess f(X)), Y 〉 = Hess f(Hess f(X), Y) = 〈Hess f(X),Hess f(Y)〉 (5.3)

where we have used that the Hessian is symmetric. This formula shows that Hess2 f(X,Y) is also symmetric.

5.3 First Order Bounds for the Exponential Map

In this section, we give bounds on the norm of the differential of the exponential map of a manifold

with bounded sectional curvature. In particular, if the sectional curvature of any plane of M is bounded

above and below by δ ≤ sec ≤ ∆, for a ball Bp(r), the bounds will be of the form

f∆(r)‖w‖ ≤ ‖(d expp)v(w)‖ ≤ fδ(r)‖w‖ ∀w ∈ TpM, ‖v‖ ≤ r

for suitable functions fδ, f∆ : [0, r]→ R+.

First order bounds for the exponential map have been known, at least for surfaces, since the times

of Cartan (Cartan 1928), and are well-known in areas such as comparison geometry or pdes, but they

are not so known in the area of optimisation on manifolds. The tight bounds that we will present here

are often referred to as Rauch’s theorem as he was the first to show these bounds in the positive

curvature-case (Rauch 1951) and later in the general case (Rauch 1959).

There are quite a few proof techniques of these theorems. There exist proofs via the second variation

formula of the energy (Spivak 1999), through bounds on the norm via the Jacobi equation (Jost 2017), by
1Note that in the expression ∇∇f , the first ∇ represents a connection, while the second represents the gradient of f .

This distinction will always by clear, as we represent the directional derivative on functions by the notation DXf .

84

bounding Riccati equation on self-adjoint operators and integrating the result (Eschenburg 1994), or by

the study of the distance function to a given point (Gromov 1981). We choose to present here this fourth

approach.

The approach presented here was first introduced by Gromov in the context of volume bounds, in

what’s called now the Bishop–Gromov theorem. This approach has the advantage of yielding upper and

lower bounds for positive and negative curvatures at the same time. Other approaches need different

techniques for the upper and lower bounds, or they just give some weaker version of the theorem with

constraints on the sign of the curvature. This approach also has a more geometric flavour as it accounts for

bounding the principal curvatures of geodesic balls on the manifold. The general strategy of this proof is

to decompose certain homogeneous second order differential equation into a Riccati equation and a system

of first order equations, bound the Riccati equation, and then integrate the result to get the bounds on

the differential of the exponential. The view on Jacobi fields and parallel vector fields is from (Cheeger

and Ebin 2008), while the approximation to Rauch’s theorem using curvature equations is from (Petersen

2016). We provide different proofs of the Riccati comparison lemmas, as those in the book are incorrect.

We emphasise throughout the exposition whether the theorems work just on the segment domain or up to

the first conjugate point, as this point is often neglected in previous expositions and it is of interest in

optimisation.

5.3.1 Jacobi fields

We begin by introducing what will be the main tool that we will just throughout the chapter: Jacobi

fields. Jacobi fields are certain vector fields along a given geodesic that describe the behaviour of the

differential of the exponential map along this geodesic. We will see that they are the solution of a certain

differential equation, and we will use this equation to give the bounds on the differential of the exponential.

Before defining what Jacobi fields are and deducing this differential equation we will need a lemma.

This lemma that can loosely be interpreted as the Lie derivative commutes with the differential of a smooth

map.

Lemma 5.3.1. For an immersion ψ and two vector fields X,Y on M there exist local extensions X̃, Ỹ

along ψ—that is, dψ(Xx) = X̃ψ(x) for x ∈M—and

dψ([X,Y]) = [X̃, Ỹ].

Proof. See for example (O’Neill 1966, 1. Lemma 22 and 1. Lemma 33).

With this lemma in hand, we are ready to show that the differential of the exponential satisfies certain

differential equation.

Proposition 5.3.2 (First order Jacobi equation). Let (M, g) be a complete Riemannian manifold.

Let γ : [0, r]→ M be a geodesic without conjugate points with initial unit vector v := γ̇(0) and a vector

w ∈ TpM such that w ⊥ v. Consider the following variation of γ in the direction of w

c : [0, r]× (−ε, ε)→M

(t, s) 7→ expp(t(v + sw))

85

where ε is small enough so that c(−, s) has no conjugate points for every s ∈ (−ε, ε).

Define the vector field J along γ as

J(t) := dc(∂s)|γ = ∂c

∂s
(t, 0) = (d expp)tv(tw).

This vector field solves the following differential equation on γ

L∇rJ |γ = 0

or equivalently, using the pullback connection

∇γ̇J = ∇J∇r. (5.4)

Proof. The fact that γ is in Up is equivalent to saying that tv ∈ seg0(p) for t ∈ [0, r]. From this we get that

the ε in the definition exists as seg0(p) is open. Since c defines an embedded surface, c is a diffeomorphism

onto its image.

Since ∂t, ∂s are coordinate vector fields of the surface defined by c, we have that

[∂t, ∂s] = 0.

Using that c is a diffeomorphism, by Lemma 5.3.1 together with the fact that the Lie derivative restricted

to a submanifold is the Lie derivative of the restrictions, we have that

[dc(∂t),dc(∂s)] = dc([∂t, ∂s]) = 0.

We get the Lie formulation of the Jacobi equation by noting that dc(∂t)|γ = ∇r|γ . The equation using the

pullback connection is just a reformulation of the Lie derivative using that the Levi-Civita connection is

torsion-free.

Remark 5.3.3. Note that, even though the differential equation involves a Lie bracket, we just need to

define J along the flow of ∇r, which is just a geodesic γ. This equation can be extended into a pde on all

of Up\{p}, looking for vector fields on this domain such that

L∇rW = 0.

One such a solution is clearly given by the radial vector field W = ∇r.

To find other solutions, we imitate the construction that we did in Proposition 5.3.2 and define W on

a sphere around p and extend it radially to all of Up as

W (x) = d expp
(
r(x)W

(
x

r(x)

))
.

It is clear by Proposition 5.3.2 that this vector field solves the first order Jacobi equation on all of Up\{p}.

We will now use this equation to derive the linear version of the Jacobi equation.

Proposition 5.3.4 (Jacobi equation). Let γ : [0, r] → M be a geodesic with initial values γ(0) = p,

γ̇(0) = v. Then J(t) = (d expp)tv(tw) is a vector field along γ that solves the following second order

homogeneous linear differential equation

J̈ +R(J, γ̇)γ̇ = 0.

We call this equation the Jacobi equation.

86

Proof. For a vector w ∈ TpM , we may differentiate (5.4) to get

∇∂t∇∂tJ = ∇∂t∇J∇r

and using the definition of the curvature tensor and the fact that [J,∇r] = 0 we get

∇∂t∇∂tJ +R(J,∇r)∇r = 0.

We then get the Jacobi equation by restricting this equation to γ, since ∇r ◦ γ = γ̇.

Using an orthonormal parallel frame {ei} along γ with e1 = γ̇, and expressing a solution of this

equation as J iei, where J i : [0, r] → R, we see that, in fact, this is a second order linear differential

equation on [0, r]

J̈ i +RijJ
j = 0 i = 1, . . . , n

with coefficients

Rij =
{

0 if i = 1
R(ej , γ̇, γ̇, ei) if i = 2, . . . , n.

Definition 5.3.5. We say that a vector field J along a geodesic γ is a Jacobi field if it satisfies the

Jacobi equation.

Remark 5.3.6 (Basic properties of Jacobi fields). By elementary theory of differential equations,

the Jacobi equation has 2n independent solutions, defined by the initial values (J(0), J̇(0)) ∈ TpM × TpM .

By construction, we have found n independent solutions given by

J(t) = (d expp)tv(tw) ∀w ∈ TpM.

These correspond to the initial values J(0) = 0, J̇(0) = w. Geometrically, they correspond to a family of

geodesics c that fixes the initial point, that is, c(0, s) = p.

It is also direct to show that γ̇ is another solution to this equation with initial values J(0) = v, J̇(0) = 0.

The other n− 1 independent solutions correspond to variations of the geodesic γ that do not fix the initial

point p. These solutions will not be important for our analysis.

It starts being clear now the importance of Jacobi fields. If we want to control the norm of the

differential of expp at a point rv ∈ seg0(p), for r > 0, ‖v‖ = 1, we may define the Jacobi field along the

geodesic γ : [0, r]→M with initial conditions (p, v) and we have that

(d expp)rv(w) = J(r)
r

.

In order to bound the norm of the differential of the exponential, we just need to bound the norm of the

solutions of the Jacobi equation.

If the vector w is parallel to v, as we saw in the proof of Proposition 5.3.4, the Jacobi field takes the

form J(t) = t‖w‖γ̇(t). As such, in this direction we have an exact solution of the Jacobi equation, and we

can compute its norm exactly as ‖J(t)‖ = t‖w‖.

If the vector w is perpendicular to γ̇(0), then J(t) is perpendicular to γ̇(t) for every t ∈ [0, r], as the

equation for J1 would be given by

J̈1 = 0 (J1(0), J̇1(0)) = (0, 0).

87

Geometrically, the previous proposition says that Jacobi fields just rotate around the vector field

defined by γ̇. In symbols, this means that if we split a Jacobi field along γ into its radial and normal part

as

J† = 〈J, γ̇〉γ̇ J⊥ = J − J†

if J̇†(0) = 0 then J†(t) = 0 for every t ∈ [0, r].

The results discussed in this remark are commonly known as the Gauss’s lemma.

Jacobi fields are also very closely related to conjugate points and the conjugate locus. A point

q = expp(v) is conjugate to p if the exponential at v is not full rank. Another way of looking at this

definition is by defining a point q conjugate to p if there exists a Jacobi field connecting p and q such

that it is zero at p and q. We will see when studying Rauch’s theorem that the estimates for Jacobi fields

will work on every point on the manifold but the conjugate locus, as these points will be exactly the

singularities of the maps that we work with. For a unit vector v, we will denote by rconj(v) ∈ (0,∞] the

smallest time t at which the geodesic γ(t) = expp(tv) is conjugate to p, that is, the point γ(rconj(v)) is

conjugate to p.

5.3.2 Parallel vector fields

In the same way that Jacobi fields with initial condition J(0) = 0 and J̇(0) ⊥ γ̇(0) are the vector fields

such that L∇rJ = 0, we have parallel vector fields.

Definition 5.3.7. We say that E is a parallel vector field on Up\{p} if it satisfies

∇∇rE = 0.

Parallel vector fields can be easily described along a geodesic as parallel transporting a vector

w ∈ Tγ(0)M along it. Analogously, we can also define a parallel vector field on all of Up\{p} by specifying a

vector field on a sphere and extending it to all of Up parallel transporting this vector field along geodesics.

5.3.3 Rauch’s theorem

We now go back to the study of the norm of the differential of the exponential. The strategy that we

will follow will be that of bounding the derivative of the norm of the exponential. For that end, let J be a

Jacobi field along a geodesic γ such that J(0) = 0, J̇(0) ⊥ γ̇(0). As we already saw before, this vector

field takes the form

J(t) = (d expp)tγ̇(0)(tJ̇(0)).

The derivative of its norm is given by
d
dt‖J‖ = 〈J̇ , J〉

‖J‖
.

At first sight it looks like we have not achieved much, as we still have a term involving the norm of J on

the right-hand side, but it turns out that it can be conveniently rewritten using (5.4) as

〈J̇ , J〉 = 〈∇∇rJ, J〉 = 〈∇J∇r, J〉 = Hess r(J, J)

88

so we get
d
dt log ‖J‖ = Hess r

(J

‖J‖
,
J

‖J‖

)
.

Our plan will be to bound the Hessian of the distance to p on vectors of norm 1 to get bounds on the

log-derivative of the norm of the Jacobi fields and then integrate these to get bounds on ‖J‖. To this end,

we start by computing formulas that relate the Hessian of the distance function to the curvature tensor.

A geometric interpretation of this approach comes after noting that the Hessian of the distance function

is exactly the second fundamental form (or shape operator) of the distance function. As such, this quantity

can be interpreted geometrically as the variation of the curvature of spheres.

Proposition 5.3.8 (Radial Curvature Equations). Let (M, g) be a Riemannian manifold. For a point

p ∈M , we have on Up

(L∇r Hess r)(X,Y)−Hess2 r(X,Y) = −R(X,∇r,∇r, Y) (5.5)

(∇∇r Hess r)(X,Y) + Hess2 r(X,Y) = −R(X,∇r,∇r, Y). (5.6)

where Hess2 denotes the iterated Hessian defined in (5.3).

Proof. Since for a geodesic γ we have that ∇r|γ = γ̇, the gradient of r has ∇∇r∇r = 0. From this we get

−R(X,∇r,∇r, Y) = 〈∇∇r∇X∇r, Y 〉+ 〈∇LX∇r∇r, Y 〉

= D∇r〈∇X∇r, Y 〉 − 〈∇X∇r,∇∇rY 〉+ Hess r(LX∇r, Y)

= D∇r(Hess r(X,Y))−Hess r(X,∇∇rY)−Hess r(L∇rX,Y).

Equation (5.5) follows after expanding the first term as

D∇r(Hess r(X,Y)) = (L∇r Hess r)(X,Y) + Hess r(L∇rX,Y) + Hess r(X,∇∇rY −∇Y∇r)

and equation (5.6) follows after expanding it as

D∇r(Hess r(X,Y)) = (∇∇r Hess r)(X,Y) + Hess r(∇∇rX,Y) + Hess r(X,∇∇rY).

Remark 5.3.9 (A Riccati-type equation). Note that the previous proposition holds for every vector

field Y . As such, we may write it in its (1, 1) form

(∇∇r Hess r)(X) + Hess2 r(X) +R(X,∇r)∇r = 0.

Denoting by R2(X) := R(X,∇r)∇r the (1, 1) curvature tensor in this equation, and the shape operator

for the geodesic balls as S := Hess r, this equation can be rewritten in the radial direction as a Riccati

equation along gamma on self-adjoint (1, 1) tensors

Ṡ + S2 +R2 = 0.

After a choice of a parallel frame along the geodesic, it can be regarded as a differential equation on

self-adjoint matrices.

89

As one does in one dimension splitting a second order differential equation into a first order equation

and a Riccati equation, here we have split the Jacobi equation into first order symmetric matrix equation—

more formally, an equation on self-adjoint endomorphisms along a geodesic—and the first order equation

defining Jacobi fields (Equation (5.4))

J̇ = S(J).

A careful analysis of this Riccati equation yields another particularly clean proof of Rauch’s theorem, at

the expense of the use of more abstract methods, as presented in (Eschenburg and Heintze 1990).

In contrast, we will use parallel and Jacobi vector fields to simplify these matrix equations.

Proposition 5.3.10. Let γ be a geodesic, and let J be a Jacobi field along it such that J(0) = 0,

J̇(0) ⊥ γ̇(0). Let E be a parallel vector field along γ that is normal to γ̇. We have the following differential

equations along γ

d
dt (Hess r(J, J))−Hess2 r(J, J) = − sec(J, γ̇)〈J, J〉 (5.7)

d
dt (Hess r(E,E)) + Hess2 r(E,E) = − sec(E, γ̇). (5.8)

Proof. We just evaluate (5.5) and (5.6) on J,E and use that

L∇rJ = 0 ∇∇rE = 0.

To go from the Riemannian tensor to the sectional curvature on the right-hand side, we just recall that if

a Jacobi field or a parallel vector field is normal to γ̇ at one point, it is normal to γ̇ at every point.

Given the signs of the Hess2 in this proposition, it is now a bit clearer how Jacobi fields may be used to

give lower bounds and parallel vector fields to give upper bounds on the Hessian of the distance function.

We now define some generalised trigonometric functions, which will be useful in the sequel.

Definition 5.3.11 (Generalised trigonometric functions). For a constant κ ∈ R, we define the

generalised sine function snκ as the solution to the differential equation

ẍ+ κx = 0 x(0) = 0, ẋ(0) = 1.

In particular, we have

snκ(t) :=


sin(
√
κt)√
κ

if κ > 0
t if κ = 0
sinh(

√
−κt)√
−κ if κ < 0

Define πκ as the first positive zero of snκ if it has one, and ∞ otherwise

πκ :=
{

π√
κ

if κ > 0
∞ if κ ≤ 0

Finally, define the generalised cotangent ctκ as

ctκ(t) := sn′κ(t)
snκ(t) =


√
κ cot(

√
κt) if κ > 0

1
t if κ = 0
√
−κ coth(

√
−κt) if κ < 0

This function is differentiable on (0, πκ).

90

Remark 5.3.12 (Riccati equation). Note that the equation ẍ+ κx = 0 is the associated second order

equation to the Riccati equation ρ̇+ ρ2 + κ = 0. The relation between these two equations comes from the

change of variables ρ = ẋ
x . This is exactly the Riccati equation that the shape operator for the distance

function solves in constant curvature, as pointed out before. Given that snκ solves the second order

equation, ctκ solves the Riccati equation.

Remark 5.3.13 (Qualitative behaviour). From a qualitative point of view, it is worth noting that

the family of functions snκ(t) is strictly increasing in κ. We also have that snκ has a zero at 0 for every κ

and another one at πκ for κ > 0, so

lim
t→0+

ctκ(t) =∞ κ ∈ R

lim
t→π−κ

ctκ(t) = −∞ κ > 0.

All we need to do now is to relate the solutions of the Jacobi equation in Riccati as given by the

Hessian of the distance function in Proposition 5.3.10 with its solutions in constant curvature. To do so,

we need the following elementary comparison lemma for functions of real variable. It can be thought of as

a version of Sturm’s comparison theorem for Riccati equations, and it is proved in a similar way.

Lemma 5.3.14 (Comparison Lemma for Riccati Equations). Let ρ1, ρ2 : (a, b)→ R be two differ-

entiable functions such that

ρ̇1 + ρ2
1 ≤ ρ̇2 + ρ2

2.

If we have that ρ1(t0) ≥ ρ2(t0) for a t0 ∈ (a, b), then ρ1 ≥ ρ2 on (a, t0].

Proof. Let u = ρ1 − ρ2 and ζ = ρ̇2 − ρ̇1 + ρ2
2 − ρ2

1. We have by hypothesis that u(t0) ≥ 0 and ζ ≥ 0 on

(a, b), and it is enough to prove that u ≥ 0 on (a, t0] provided that u(t0) ≥ 0.

We can write the differential inequality as a differential equation in terms of u and ζ as

u̇ = −(ρ1 + ρ2)u− ζ.

and we can solve this differential equation using the method of variation of parameters. We compute the

general solution of the homogeneous system

v̇ = −(ρ1 + ρ2)v

as v = Cv1 for v1 := e−
∫
ρ1+ρ2 > 0 and a constant C ∈ R.

To get a particular solution of the inhomogeneous equation, we may use variation of parameters. Let

u = ηv1 and, plugging it into the inhomogeneous equation, we see that the function η satisfies η̇ = −ζv−1
1 .

As ζ and v−1
1 are positive, we conclude that η is decreasing.

Finally, we get the general solution by adding the particular solution and the general solution to the

homogeneous system u = v1(C+η). Since, by hypothesis, u(t0) ≥ 0, we get that C+η(t) ≥ 0 for t ∈ (a, t0]

so that u(t) ≥ 0 on (a, t0].

Proposition 5.3.15 (Riccati Comparison Estimate). Let ρ : (0, b)→ R be a differentiable function

and fix κ ∈ R.

91

1. If ρ̇+ ρ2 ≤ −κ then ρ(t) ≤ ctκ(t) on (0, b). Furthermore, b ≤ πκ

2. If ρ̇+ ρ2 ≥ −κ and lim
t→0+

ρ(t) =∞ then ctκ(t) ≤ ρ(t) on (0,min{b, πκ}).

Proof. For the first inequality, assume by contradiction that ρ(t0) > ctκ(t0) for some t0 ∈ (0, b). By

continuity, we can choose 0 < ε < t0 such that

ρ(t0) ≥ ctκ(t0 − ε).

By Lemma 5.3.14, since ctκ(t− ε) solves the differential equation ẋ+ x2 + κ = 0, we have that

ρ(t) ≥ ctκ(t− ε) ∀t ∈ (ε, t0).

But taking limits as t tends to ε on the right, the right-hand side goes to infinity, which is a contradiction.

In this case, we also have that b ≤ πκ for ρ to be differentiable, as lim
t→π−κ

ctκ(t) = −∞ for κ > 0.

We get the second inequality after interchanging the roles of ρ and ctκ in the previous argument. In

this case, we need t ∈ (0,min(b, πκ)) for ctκ(t) to be differentiable as lim
t→π−κ

ctκ(t) = −∞ for κ > 0.

We now have everything we need to prove Rauch’s theorem.

Theorem 5.3.16 (Rauch’s theorem). Let (M, g) be a Riemannian manifold with bounded sectional

curvature δ ≤ sec ≤ ∆. Fix a point p ∈M and define r as the distance to p. For any other point in a ball

x ∈ Bp(π∆)\{p}, and any w ∈ TxM we have

ct∆(r(x))‖w⊥‖ ≤ (Hess r)x(w,w) ≤ ctδ(r(x))‖w⊥‖.

The upper bound also holds for every x ∈M\(cut(()p)∪{p}). These bounds are tight on spaces of constant

curvature.

Proof. Since x 6∈ cut(p), there exists a unique distance minimising geodesic between x and p. Let

γ : [0, r]→M be that geodesic.

If w ∈ TxM is a radial vector, assume that w = γ̇(r)—the case w = −γ̇(r) follows by linearity. We

then have that, by definition of the Hessian, since r|γ = γ̇,

Hess r(γ̇, γ̇) = 〈∇γ̇r, γ̇〉 = 〈∇γ̇ γ̇, γ̇〉 = 0,

so the Hessian of the distance function is zero in the radial direction.

For the rest of the bounds, we will take advantage of the simple form that the curvature equations

take when evaluated on Jacobi and parallel vector fields, as computed in Proposition 5.3.10.

For the lower bound we consider a Jacobi field along γ such that J(r) = w and define ρ(t) =

Hess r(J
‖J‖ ,

J
‖J‖). Computing its derivative

ρ̇ = d
dt

Hess r(J, J)
〈J, J〉

=
d
dt Hess r(J, J)‖J‖2 − 2 Hess r(J, J)2

‖J‖4
=

d
dt Hess r(J, J)
‖J‖2

− 2ρ2.

and using the formula (5.7) for the derivative of the Hessian on a Jacobi vector field, we get

ρ̇+ 2ρ2 −Hess2 r
(J

‖J‖
,
J

‖J‖

)
= − sec(J, γ̇).

92

Using Cauchy–Schwarz, we can bound the iterated Hessian for any vector field X of norm 1

Hess2 r(X,X) = 〈∇X∇r,∇X∇r〉 ≥ 〈∇X∇r,X〉2 = Hess r(X,X)2

so taking X = J
‖J‖ together with the upper bound on the sectional curvature we get the differential

inequality

ρ̇+ ρ2 ≥ −∆.

Finally, since ‖J(0)‖ = 0 and ‖J̇(0)‖ 6= 0, we have that lim
t→0+

ρ(t) =∞, so we may use the second part

of Proposition 5.3.15 to finish the lower bound.

For the upper bound consider a parallel vector field E such that E(r) = w and define ρ = Hess r(E,E).

We may then rewrite Equation (5.8) for the derivative of Hess r on a parallel vector field as

ρ̇+ ρ2 = − sec(E, γ̇) ≤ −δ

and we finish by applying the first part of Proposition 5.3.15.

Remark 5.3.17 (Bounds on Jacobi fields). For the upper bound, we never used the fact that

x 6∈ cut(p). We merely used that the geodesic γ does not have any conjugate points on [0, r], to be able to

use Proposition 5.3.15, as if ‖J(t)‖ = 0, then the Hessian of the distance function at that point would be

infinite.

As stated, the theorem is as general as it can be, as the distance function r is not differentiable

on cut(p). On the other hand, if it is stated in terms of Jacobi fields, one can further generalise it to

Jacobi fields along geodesics without conjugate points, since both the proof of the theorem and that

of Proposition 5.3.8 can be done in terms of a geodesic and short variations of geodesics. We will use this

more general version in the following theorem.

Theorem 5.3.18 (First order bounds for the exponential map). Let (M, g) be a Riemannian

manifold with bounded sectional curvature δ ≤ sec ≤ ∆. Fix a point p ∈M , for any unit vector v ∈ TpM

and r ∈ [0, π∆],

min
{

1, sn∆(r)
r

}
‖w‖ ≤ ‖(d expp)rv(w)‖ ≤ max

{
1, snδ(r)

r

}
‖w‖ ∀w ∈ TpM.

The upper bound also holds for r < rconj(v).

These bounds are tight on spaces of constant curvature.

Proof. The bound by 1 above and below comes from the Gauss’s lemma, as the exponential is a radial

isometry. From this, and using linearity, we just have to prove the bound for a vector w in the normal

direction with ‖w‖ = 1.

All we have to do now is to transform the bounds on the Riccati equation on bounds on the Jacobi

equation. Define γ as the geodesic starting at p with γ̇(0) = v
‖v‖ , and choose a Jacobi field along γ such

that J(r) = w, that is, choose J̇(0) = w
r . As we noted at the beginning of this section, we have that

Hess r
(J

‖J‖
,
J

‖J‖

)
= 〈J̇ , J〉
‖J‖2

=
d
dt‖J‖
‖J‖

= d
dt log(‖J‖)

93

so Rauch’s theorem may be rewritten on (0, π∆) as

d
dt log(sn∆(t)) ≤ d

dt log(‖J‖) ≤ d
dt log(snδ(t)).

Integrating, using that ‖J(0)‖ = sn∆(0) = snδ(0) = 0, and computing the limit using l’Hôpital, we get

sn∆(t) ≤ ‖J‖ ≤ snδ(t).

and since J(r) = (d expp)rv(rw),

‖(d expp)rv(w)‖ = ‖J(r)‖
r

.

As it was the case in the proof of Rauch’s theorem, we just used that γ does not have conjugate points

on [0, r], rather than the stronger rv ∈ seg0(p). As such, just by noting that the proof does not rely on

the definition of Hess r, and instead, can be carried out in terms of Jacobi fields, we get the finer result

for the upper bound.

Example 5.3.19. To see how the definition of the upper bounds are an improvement over just considering

rv ∈ seg0(p), consider the flat torus (S1 × S1 with the product metric). For this manifold, seg0(p) ⊆ TpM

is a square centred at 0. On the other hand, since for the flat torus we have that conj(p) = ∅, we get that

the upper bound holds on all TpM .

We make explicit the following strengthening of the Cartan–Hadamard theorem that was implicitly

present in the statement of the last theorem.

Theorem 5.3.20. If (M, g) has sec ≤ ∆, then the exponential map expp is not singular on Bp(π∆), so

Bp(π∆) ⊆M\ conj(p) and π∆ ≤ rconj(v) for every point p ∈M and every unit vector v ∈ TpM .

5.3.4 The law of cosines on manifolds

Rauch’s theorem has found countless applications in geometry, as those given by Rauch himself, who

proved with it a weak version of the sphere theorem, or as used by Gromov or Karcher to give bounds

the volume form of a Riemannian manifold, or to control the size of the fundamental group of a given

manifold. Here we deviate slightly from the presentation to remark one that has been found particularly

useful in the context of optimisation on manifolds.

Theorem 5.3.21 (Law of cosines). Let (M, g) be a Riemannian manifold with bounded sectional

curvature δ ≤ sec ≤ ∆. Let p be a point on M and let x, y ∈ Bp(R) for R ≤ π∆ such that the minimising

length geodesic γ that connects them also lies in this ball. Define the angle α = ∠pxy. We then have

d(y, p)2 ≤ ζ1,δ(R)d(x, y)2 + d(x, p)2 − 2d(x, y)d(x, p) cos(α)

d(y, p)2 ≥ ζ2,∆(R)d(x, y)2 + d(x, p)2 − 2d(x, y)d(x, p) cos(α)

where

ζ1,κ(r) := max{1, r ctκ(r)}=
{

1 if κ ≥ 0
√
−κr coth(

√
−κr) if κ < 0

ζ2,κ(r) := min{1, r ctκ(r)}=
{

1 if κ ≤ 0
√
κr cot(

√
κr) if κ > 0

94

Furthermore, the first bound holds for any x, y ∈M such that there exists a distance minimising geodesic

contained in Up that connects them. These bounds are tight on spaces of constant curvature.

Proof. Define fp = 1
2r

2. We start by relating the Hessian of fp to the Hessian of r using the Leibnitz rule

twice

Hess fp = ∇(rdr) = dr ⊗ dr + rHess r.

As such, for a radial vector w of norm 1, since Hess r(w,w) = 0, this equation simplifies to

Hess fp(w,w) = dr(w)2 = 〈∇r, w〉2 = 1.

For normal vectors we may use the bounds on the Hessian of r. It is now evident that the functions ζ1,δ
and ζ2,∆ are defined to be upper and lower bound on the Hessian of fp acting on vectors of norm 1.

Let γ : [0, t]→M be a distance-minimising geodesic such that γ(0) = x, γ(t) = y and γ(s) ∈ Up for

every s ∈ [0, t]. We will prove the first inequality, as the proof of the second one is analogous. By the

bounds above, using (5.2), we have that

Hess fp(γ̇(s), γ̇(s)) = (fp ◦ γ)′′(s) ≤ ζ1,δ(R)

for every s ∈ [0, t], since fp is differentiable on Up. Integrating this inequality we get∫ t

0
(fp ◦ γ)′′(s) ds = (fp ◦ γ)′(t)− 〈∇fp(γ(0)), γ̇(0)〉 ≤ ζ1,δ(R)t.

Integrating once again we have that

(fp ◦ γ)(t)− (fp ◦ γ)(0)− 〈∇fp(γ(0)), γ̇(0)〉t ≤ ζ1,δ(R) t
2

2 .

which, after substituting the values of fp and γ, gives

d(y, p)2 ≤ ζ1,δ(R)d(x, y)2 + d(x, p)2 + 2d(x, y)〈∇fp(x), γ̇(0)〉.

Finally, since ∇fp(x) = r(x)∇r(x) = − exp−1
x (p) we get the desired inequality.

Remark 5.3.22 (Obstructions to a global law of cosines). One could ask whether it is possible to

extend this local result on Up to a global result for geodesic triangles whose sides are distance minimising,

as one does in Toponogov’s theorem. This is, in general, not possible. Consider the flat torus and a point

p in it and an equilateral triangle on a generating circle. The sides of this triangle are distance minimising

of length x—one third the circumference of the circle—and the angles of this triangle will be α = π. Since

for the flat torus we have that δ = 0, the first inequality would imply that 3x2 ≤ 2x2.

The upper bound for the case δ ≤ 0 has found multiples uses in the optimisation literature in the

context of Hadamard manifolds (cf., Section 4.4.2.1). Rauch’s theorem allows for a particularly clean

proof of Cartan–Hadamard theorem, showing that these manifolds are diffeomorphic to Rn through the

Riemannian exponential map at any given point.

Corollary 5.3.23 (Cartan–Hadamard theorem). A simply connected Hadamard manifold is diffeo-

morphic to Rn.

95

Proof. By Theorem 5.3.20, since sec ≤ 0, π∆ =∞ and the differential exponential map at a point p ∈M

is always full rank. As such, by the inverse function theorem, it is a covering map, and Rn is the universal

cover of M . Since M is simply connected, M is diffeomorphic to its universal cover.

It is now clear that simply connected Hadamard manifolds are a class of particularly well-behaved

manifolds, in that the cut(p) = ∅ for every p ∈M , so Up = M and seg0(p) = TpM , and all the theorems

in Section 5.3 hold globally (i.e., for every v ∈ TpM).

If one then considers a simply connected Hadamard manifold with sectional curvature bounded below

by δ < 0, then one may apply the upper bounds in Theorem 5.3.21 on the whole manifold. This idea

was heavily exploited in (Bonnabel 2013) to get convergence rates for stochastic gradient descent, and

in (H. Zhang, Reddi, and Sra 2016) to prove convergence both stochastic and non-stochastic setting.

In (Ferreira, Louzeiro, and Prudente 2019), the authors used the lower bounds whenever δ < 0 to prove

convergence rates for certain step-size schedulers. In (Bento, Ferreira, and Melo 2017), the authors use the

law of cosines on manifolds of either non-negative or non-positive curvature to prove convergence rates for

subgradient methods and proximal-point methods. In (Agarwal et al. 2020), the lower bounds are used to

prove convergence rates for certain second order method.

In the previous presentation, we have showed that the Hadamard restriction, that is, being simply

connected and with sectional curvature bounded above, is not really necessary. In particular, if we have

a positive bound on the curvature, we can still apply this kind of results, at the expense of working on

certain neighbourhood of the initial point. The same happens if we remove the condition of the manifold

being simply connected. In this case, the first-order bounds on the exponential still hold globally, but the

law of cosines only works on a ball of radius one half the length of the shortest geodesic loop.

5.4 Second Order Bounds for the Exponential Map

In this section, we give bounds on the Hessian of the differential of the exponential map. This kind of

bounds were first given in the paper (Kaul 1976). The proof can just be found in German, so we will give a

self-contained presentation. Our proof uses a comparison lemma developed by Kaul, and then streamlines

all the other technical tools, considerably simplifying the proof and obtaining tighter explicit bounds.

5.4.1 The differential equation

We start by giving a technical remark on the nature of the Hessian of the exponential map. The

differential of the exponential for a point (p, v) ∈ TM is a linear map of the form

(d expp)v : TpM → Texpp(v)M.

For this reason, it can be seen as a section of the bundle T ∗pM⊗exp∗p(TM) over TpM . We have connections

∇flat and ∇ on T ∗pM and exp∗p(TM) respectively. Any two connections induce a connection on a tensor

product bundle so that the Leibnitz rule holds. In the concrete example of the exponential map, this

Leibnitz rule for vector fields W 1,W 2 on seg0(p), takes the form

∇d expp(W 1)(d expp(W 2)) = (∇W 1
d expp)(W 2) + d expp(∇flat

W 1
W 2).

96

Since expp is a diffeomorphism between seg0(p) and Up, writing Wi = d expp(W i) for the pushforward of

a vector from seg0(p) to Up, we see that the Hessian of the exponential map can be put in terms of the

Christoffel symbols in normal coordinates as

(∇W 1
d expp)(W 2) = ∇W1W2 −∇flat

W 1
W 2 = Γ(W1,W2) = Γki,jW i

1W
j
2 ∂k. (5.9)

In other words, the Hessian of the exponential map is exactly the Christoffel symbols of the connection in

normal coordinates at p evaluated at the pushforward of the vector along expp. In particular, this shows

that the Hessian of the exponential map is a symmetric bilinear map of the form

(∇d expp)v : TpM × TpM → Texpp(v)M.

As we did for the first order bounds, our strategy to bound this quantity will be to deduce a differential

equation for ∇d expp and then bound the norm of the solutions of this equation. In this case, we will

have to differentiate a second time through a second variation of a geodesic. Given that this second

derivative will not be in the direction of the geodesic, it will not be enough to have vector fields along the

geodesic—we will have to have them defined also in the direction in which we want to differentiate them.

Proposition 5.4.1. Let (M, g) be a Riemannian manifold and let γ be a geodesic with initial unit vector

v ∈ TpM . For two vectors w1, w2 ∈ TpM perpendicular to v, the vector field along γ

K(t) := (∇d expp)tv(tw1, tw2)

satisfies the following second order inhomogeneous linear differential equation along γ

K̈ +R(K, γ̇)γ̇ + Y = 0 K(0) = 0, K̇(0) = 0

where Y is the vector field along γ given by

Y := 2R(J1, γ̇)J̇2 + 2R(J2, γ̇)J̇1 + (∇γ̇R)(J2, γ̇)J1 + (∇J2R)(J1, γ̇)γ̇

and J1, J2 are the Jacobi fields along γ with initial conditions Ji(0) = 0, J̇i(0) = wi.

Proof. Define the geodesic variation

c : [0, r]× (−ε, ε)× (−ε, ε)→M

(t, s1, s2) 7→ expp(t(v + s1w1 + s2w2))

Consider the first variation along γ(t) = expp(tv) in the direction of s1 given by the family of Jacobi fields

J̃1(t, s) = ∂c

∂s1

∣∣∣∣
s1=0

(t, s) = (d expp)t(v+sw2)(tw1).

We denote by Ji(t) the Jacobi field along γ with initial conditions (0, wi). In particular, we have that

J1(t) = J̃1(t, 0), so J̃1 is an extension of J1 in the direction of J2 so that ∇J2 J̃1 is well-defined. Moreover,

we have that ∇flat
J2
J̃1 = 0 as J̃1 is constant in the direction of J2, that is, in the direction of stw2 for

s ∈ (−ε, ε) and a fixed t. For this reason, the vector field K is the second variation along γ in the directions

w1, w2

K(t) = (∇d expp)tv(tw1, tw2) = ∇J2 J̃1 = ∂J̃1

∂s

∣∣∣∣
s=0

(t).

97

Furthermore, J̃1 satisfies the Jacobi equation in all its domain with initial conditions (0, 1
‖v+sw1‖) so

that

∇∇r∇∇rJ̃1 +R(J̃1,∇r)∇r = 0.

We may then derive a differential equation for K along γ by differentiating this equation in the direction

of J2

∇J2∇∇r∇∇rJ̃1 +∇J2(R(J̃1,∇r)∇r) = 0. (5.10)

Note that, as we just are interested in deriving a differential equation for K along γ, we will use that

∇r|γ = γ̇ and J̃1 = J1 whenever we have that a quantity just depends on the values of the vector fields

involved along γ, rather than in a neighbourhood around γ in the direction of J2.

We may put the first term of (5.10) in terms of K by repeatedly using the definition of the curvature

tensor and the fact that since [J2,∇r]|γ = 0, we have that ∇J2∇r = ∇γ̇J2 = J̇2

∇J2∇∇r∇∇rJ̃1 = ∇γ̇∇J2∇∇rJ̃1 +R(J2, γ̇)∇γ̇J1

= ∇γ̇∇γ̇K +∇γ̇(R(J2, γ̇)J1) +R(J2, γ̇)J̇1

= ∇γ̇∇γ̇K + (∇γ̇R)(J2, γ̇)J1 +R(J̇2, γ̇)J1 + 2R(J2, γ̇)J̇1.

We can expand the second term as

∇J2(R(J̃1,∇r)∇r) = (∇J2R)(J1, γ̇)γ̇ +R(K, γ̇)γ̇ +R(J1, J̇2)γ̇ +R(J1, γ̇)J̇2.

Putting everything together and using the symmetries of the curvature tensor and the first Bianchi identity

we get the differential equation.

For the initial conditions, we have that

K(0) = (∇d expp)0(0, 0) = 0.

Differentiating the Hessian in the direction of γ̇ = d
dt we have that

K̇(0) = (∇∇d expp)0(v, 0, 0) + (∇d expp)0(w1, 0) + (∇d expp)0(0, w2) = 0.

5.4.2 Manifolds of bounded geometry

By Proposition 5.4.1, we have that the Hessian of the exponential map solves a Jacobi-like differential

equation with two main differences: It is inhomogeneous and depends on the covariant derivative of the

curvature tensor.

The inhomogeneity of the differential equation will stop us from simplifying the differential equation

into two first order differential equations, as we did for the Jacobi equation. In contrast, this time we will

have to deal directly with the second order equation. Luckily, we have already developed most of the tools

to do so.

The fact that involves the covariant derivative of the curvature tensor is a more intrinsic difference.

Since the sectional curvature completely defines the curvature tensor, bounds on the sectional curvature

can be translated into bounds on the norm of the curvature tensor. One question that naturally arises is

whether these 0-th order bounds also give first order bounds. As one may expect, this is not the case.

98

Example 5.4.2 (Manifold of bounded 0-th order and unbounded 1-st order). Consider a rota-

tionally symmetric surface of the form dr2 + ρ(r)2dθ2 on the cylinder (0, 1) × S1 for a function ρ > 0.

These metrics have a particularly simple formula for the sectional curvature

sec(∂r, ∂θ) = R(∂r, ∂θ, ∂θ, ∂r)
ρ2 = − ρ̈

ρ
.

All we have to do now is to choose a positive function ρ with bounded second derivative and arbitrarily

large third derivative, for example ρ(r) = 2 + r5 sin(1/r). This metric has |sec| < 12, but

(∇∂rR)(∂r, ∂θ, ∂θ, ∂r) = D∂r (R(∂r, ∂θ, ∂θ, ∂r))− 2R(∂r,∇∂r∂θ, ∂θ, ∂r) = ρ̇ρ̈− ρ...ρ

which is unbounded as r goes down to 0.

This example motivates the following definition.

Definition 5.4.3 (Manifold of bounded geometry). Let (M, g) be a Riemannian manifold. We say

that a manifold has k-bounded geometry if for every i = 0, . . . , k there exist constants Ci ≥ 0 such that

‖∇iR‖ ≤ Ci

and the injectivity radius is uniformly bounded below by a positive constant

rinj := inf
p∈M

rinj(p) > 0.

Remark 5.4.4. A manifold has 0-bounded geometry if it has bounded sectional curvature above and

below and positive injectivity radius. As one may expect, given that the 1-bounded geometry is given by

the Christoffel symbols, which are given by directional derivatives of the metric g in normal coordinates,

the condition on the boundedness of the derivatives of the curvature tensor is equivalent to asking for the

entries of the metric tensor to be bounded in normal coordinates. This was first proved in (Eichhorn 1991).

It is clear that any compact manifold with any given metric will be of k-bounded geometry for every

k ∈ N. A natural question would be whether this condition puts any constraint in the topology of the

manifold. This is not the case.

Theorem 5.4.5 (Greene 1978). Every differentiable manifold admits a complete metric of bounded

geometry.

Given that we usually have access to upper and lower bounds on the sectional curvature, and given

the form that takes the covariant derivatives in Proposition 5.4.1, we give the following definition, which

is just a generalisation of that given in the introduction.

Definition 5.4.6. We say that a Riemannian manifold (M, g) has (δ,∆,Λ)-bounded geometry if

rinj > 0 and

δ ≤ sec ≤ ∆

‖(∇xR)(y, x)y + (∇yR)(y, x)x‖ ≤ 2Λ‖x‖2‖y‖2 ∀p ∈M ∀x, y ∈ TpM.

99

Remark 5.4.7. If a manifold is of (δ,∆,Λ)-bounded geometry according to Definition 5.1.1 it is of

(δ,∆,Λ)-bounded geometry according to Definition 5.4.6, but not necessarily the other way around. In the

proofs, we will just use Definition 5.4.6, as it is all we need. This definition also simplifies the computations

when one wants to estimate the actual constant Λ for a concrete manifold.

Remark 5.4.8 (Injectivity radius). We will not use the fact that these manifolds have uniformly

bounded injectivity radius in this chapter, but this fact turns out to be crucial when proving other flavour

of theorems in optimisation of manifolds that involve exp−1
p or parallel transport along geodesics or a

retraction.

5.4.3 Curvature bounds

We start by recalling the following lemma that gives a closed formula for the curvature tensor of

manifolds of constant sectional curvature. In its more general form, it says that the Riemannian curvature

tensor is completely specified by the sectional curvature.

Lemma 5.4.9 (Riemann, 1854). Let (M, g) be a Riemannian manifold of constant sectional curvature

κ ∈ Rn. The curvature tensor takes the form

R(x, y)z := Rκ(x, y)z = κ(〈z, y〉x− 〈z, x〉y) ∀x, y, z ∈ TpM.

To be able to bound the terms in the differential equation, we will need some estimates on the norm of

the curvature tensor in terms of the sectional curvature. We will use 4 inequalities that can be regarded

as a generalisation of Berger’s lemma (Berger 1960). The first three inequalities are announced—the last

one with a worse constant—in (Kaul 1976) citing for their proof a monograph by Karcher that was never

published. We provide original proofs for these inequalities. The third inequality appears in (Karcher

1970), but with a different proof. The last inequality is entirely from (Karcher 1970).

Proposition 5.4.10. Let (M, g) be a Riemannian manifold with bounded sectional curvature δ ≤ sec ≤ ∆

and define

ε = ∆− δ
2 µ = ∆ + δ

2 K = max{|∆|, |δ|}.

Given a point p ∈M , we have the following inequalities

|R(x, y, y, w)−Rµ(x, y, y, w)| ≤ ε‖x‖‖y‖2‖w‖ ∀x, y, w ∈ TpM (5.11)

|R(x, y, z, w)−Rµ(x, y, z, w)| ≤ 4
3ε‖x‖‖y‖‖z‖‖w‖ ∀x, y, z, w ∈ TpM (5.12)

The constants 1 and 4
3 are tight.

Furthermore, if e ∈ TpM is a unitary vector, defining R⊥(x, y)z as the component of the curvature

tensor perpendicular to e, we have that for every y, z perpendicular to e

‖R⊥(e, y)z‖ ≤ 4
3ε‖y‖‖z‖ (5.13)

‖R(e, y)z‖ ≤ 2K. (5.14)

100

Proof. We may assume that the vectors x, y, z, w are of norm 1 by linearity. For (5.11), since the curvature

tensor is skew-symmetric in the first two components and the last two components, we may assume that

x,w are perpendicular to y. Fix a vector y and consider the bilinear form

Ty(x,w) = R(x, y, y, w)−Rµ(x, y, y, w).

This application is symmetric, and as such, it attains its maximum at an eigenvector x1 of norm one

orthogonal to y so that for every x

|Ty(x,w)| ≤ |R(x1, y, y, x1)−Rµ(x1, y, y, x1)| = |sec(x1, y)− µ| ≤ ε.

For the second inequality, by linearity we can assume that all the vectors have the same norm. By

polarisation, we have that

6R(x, y, z, w) = R(x, y + z, y + z, w)−R(x, y − z, y − z, w)

−R(y, x+ z, x+ z, w) +R(y, x− z, x− z, w).

We then apply the triangle inequality to the expression for (R−Rµ)(x, y, z, w) together with (5.11) to get

6|(R−Rµ)(x, y, z, w)| ≤ ε
(
‖x‖‖w‖(‖y + z‖2 + ‖y − z‖2) + ‖y‖‖w‖(‖x+ z‖2 + ‖x− z‖2)

)
and using the parallelogram law together with the fact that all the vectors have the same norm, we get

that

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) = 4‖x‖‖y‖

and the second inequality follows.

These two inequalities are tight on CPn seen as a real manifold (Karcher 1970).

The bound on the normal part of the curvature tensor follows directly from (5.12), since Rµ(e, y, z, w) =

0 whenever y, z, w are perpendicular to e, so choosing w as the unitary vector in the direction of R⊥(e, y)z

we get that

‖R⊥(e, y)z‖ = |R(e, y, z, w)| ≤ 4
3ε‖y‖‖z‖.

The last inequality is proved in (Karcher 1970).

5.4.4 A comparison lemma

We shall proceed in a very similar way to how we did in the case of the first order equation. We will

simplify the differential equation to one in one dimension, and there, we will use a comparison theorem

for functions of real variable. The only difference is that, in this case, we will not be able to simplify

the computations to a Riccati equation. We start by proving the second order version of the Riccati

comparison lemma but for the Jacobi equation. This lemma is stated in (Kaul 1976), but the reference

given is in German and does not prove this inequality. We provide here a proof for completeness.

Lemma 5.4.11 (Jacobi comparison lemma). Fix a real number κ ∈ R, and let f, g : [0, r] → R+ be

two functions such that

f̈ + κf ≤ g̈ + κg f(0) = g(0), ḟ(0) ≤ ġ(0).

Then f ≤ g on [0,min{r, πκ}].

101

Proof. Let h = g − f and ζ = ḧ + κh ≥ 0. Let us show that the solution to the linear inhomogeneous

initial value problem

ḧ+ κh = ζ h(0) = 0, ḣ(0) ≥ 0

is indeed positive on the given interval. Solving the equation, we find that the solution is given by

h(x) = snκ(x)
∫ x

0
sn′κ(t)ζ(t) dt− sn′κ(x)

∫ x

0
snκ(t)ζ(t) dt+ ḣ(0) snκ(x)

=
∫ x

0
snκ(x− t)ζ(t) dt+ ḣ(0) snκ(x).

where we have used the trigonometric identity

snκ(x− t) = snκ(x) sn′κ(t)− sn′κ(x) snκ(t).

From this we see that h(x) ≥ 0 on [0,min{r, πκ}] as snκ(x− t), ζ(t), ḣ(0) and snκ(x) are positive in this

interval.

We can now show how to estimate the inhomogeneous differential equation for the Hessian of the

exponential, taking advantage of the fact that the initial conditions are both zero.

Proposition 5.4.12 (Kaul, 1976). Let (M, g) be a Riemannian manifold with bounded sectional curva-

ture δ ≤ sec ≤ ∆. Let γ : [0, r] → M be a geodesic, and let X,Y be vector fields along γ with X,Y ⊥ γ̇

such that

Ẍ +R(X, γ̇)γ̇ = Y X(0) = 0, Ẋ(0) = 0.

Assume that there exists a continuous η function such that ‖Y ‖ ≤ η on [0, r]. Then, we have that ‖X‖ ≤ ρ

on [0,min{r, π∆+δ
2
}], where ρ is the solution of

ρ̈+ δρ = η ρ(0) = 0, ρ̇(0) = 0.

Proof. We define again the quantities

ε = ∆− δ
2 µ = ∆ + δ

2 .

Fix a t0 ∈ [0, r] and let E be the parallel vector field along γ such that E(t0) = X(t0)
‖X(t0)‖ . The function

f = 〈X,E〉 satisfies the differential equation

f̈ + µf = 〈Ẍ + µX,E〉

= 〈Y −R(X, γ̇)γ̇ +Rµ(X, γ̇)γ̇, E〉

≤ ‖Y ‖+ ε‖X‖

where we have used Lemma 5.4.9 in the first equality and (5.11) for the bound.

Define g as the solution to the differential equation

g̈ + µg = ‖Y ‖+ ε‖X‖ g(0) = ġ(0) = 0.

102

Using that f(t0) = ‖X(t0)‖ and that f(0) = ḟ(0) = 0, by Lemma 5.4.11, we get that ‖X(t0)‖ ≤ g(t0),

and since the definition of g does not depend on the chosen t0, we may do this for any t0 ∈ [0, r] getting

that ‖X‖ ≤ g on [0,min{πµ, r}]. Now, Using that ‖X‖ ≤ g, we get that g satisfies the inequality

g̈ + δg ≤ ‖Y ‖ ≤ η.

So, for the solution of

ρ̈+ δρ = η ρ(0) = 0, ρ̇(0) = 0.

we have that g ≤ η on [0,min{πδ, r}] ⊇ [0,min{πµ, r}], getting the result.

5.4.5 A second order version of Rauch’s theorem

We are now ready to give bounds on the Hessian of the exponential map. We first note that, since our

goal is to bound the norm of the Hessian of f ◦ expp, as this Hessian is symmetric, it attains its maximum

at an eigenvector. As such, we just need to bound the quantity

(∇d expp)v(w,w) v ∈ seg0(p), w ∈ TpM.

For this reason, we will start by giving bounds on the diagonal of the Hessian of the exponential map. We

will then see that, since the Hessian is a symmetric bilinear map, we can leverage these bounds to give

bounds on the full Hessian for any pair of vectors w1, w2 ∈ TpM .

We give the second order bounds on the exponential map for a manifold of (δ,∆,Λ)-bounded geometry

(cf. Definition 5.4.6).

Theorem 5.4.13 (Second order bounds for the exponential map). Let (M, g) be a Riemannian

manifold with (δ,∆,Λ)-bounded geometry. For a geodesic γ : [0, r]→M with initial unit vector v, and a

vector w ∈ TpM , we have that

• If w is radial to γ̇(0),

(∇d expp)rv(w,w) = 0.

• If w is normal to γ̇(0), the radial part of the Hessian is bounded as(1
r
− sn4δ(r)

r2

)
‖w‖2 ≤ 〈(∇d expp)rv(w,w), γ̇(r)〉 ≤

(1
r
− sn4∆(r)

r2

)
‖w‖2

for r < π∆ for the upper bound and r < rconj(v) for the lower bound.

The normal part of the Hessian is bounded for r < π∆+δ
2

as

‖(∇d expp)rv(w,w)⊥‖ ≤ ρ(r)‖w‖2

where

ρ(t) = 8
9r2 snδ

(t
2
)2(3Λ snδ

(t
2
)2 + 2(∆− δ) snδ(t)

)
.

Both bounds and their radii are tight in spaces of constant curvature.

Furthermore, the radius of convergence for the normal part is tight for SO(n).

103

Proof. As in Proposition 5.4.1, we write

J̃(t, s) = (d expp)t(v+sw)

(t
r
w
)

J(t) = J̃(t, 0)

K(t) = (∇d expp)tv
(t
r
w,

t

r
w
)
.

By linearity of the Hessian, it is enough to prove the result for ‖w‖ = 1.

If w is radial, in Proposition 5.4.1 we have that Y = 0, so K is a solution of the equation

K̈ +R(K, γ̇)γ̇ = 0 K(0) = 0, K̇(0) = 0

and since it is a homogeneous second order linear equation with zero as the initial condition, its solution

is K(t) = 0 for t ∈ [0, r].

If w is normal, we need to bound the quantity ∇J J̃ . Note that this is a vector field along γ, but to

take the derivative in the direction of J we need to have J̃ defined in that direction as well. We start by

bounding its radial part

〈∇J J̃ ,∇r〉 = DJ〈J̃ ,∇r〉 − 〈J̃ ,∇J∇r〉 = DJ〈J̃ ,∇r〉 −Hess r(J, J). (5.15)

We can compute the first term directly. By Gauss’s lemma we can simplify this derivative to one on TpM

DJ〈J̃ ,∇r〉(γ(t)) = 1
r

d
ds

∣∣∣∣
s=0

〈 t
r
w,

t(v + sw)
‖t(v + sw)‖TpM

〉
TpM

= t

r2 .

Using the bounds on the Hessian of the distance function given in Theorem 5.3.16 we can bound the

second term in (5.15). Evaluating these two quantities at r and using the bounds on the size of the Jacobi

fields together with the trigonometric identity

snκ(t) sn′κ(t) = snκ(2t)
2 = sn4κ(t) (5.16)

we get the bounds on the tangential part of the Hessian of the exponential.

Finally, for its normal part, consider the differential equation given by Proposition 5.4.1. Since

〈K, γ̇〉′ = 〈K̇, γ̇〉, the radial (resp. normal) part of the derivative is the derivative of the radial (resp.

normal) part. For this reason, we have that

(K⊥)′′ +R(K⊥, γ̇)γ̇ = −Y ⊥.

Therefore, we just have to bound ‖Y ⊥‖ to be able to use Proposition 5.4.12 and finish.

We start by giving a bound on the norm of J̇ . Using that J̇ = ∇J∇r = Hess r(J),

‖J̇‖ ≤ ‖Hess r‖‖J‖. (5.17)

We can then bound the norm of Y ⊥ as

‖Y ⊥‖ ≤ ‖(∇γ̇R)(J, γ̇)J + (∇JR)(J, γ̇)γ̇‖+ 4‖R⊥(J, γ̇)J̇‖

≤ 2Λ‖J‖2 + 8(∆− δ)
3 ‖J‖‖J̇‖

≤
(

2Λ + 8(∆− δ)
3 ctδ(t)

)
‖J‖2

≤
(

2Λ + 8(∆− δ)
3 ctδ(t)

) snδ(t)2

r2

= 2
r2

(
Λ snδ(t)2 + 2(∆− δ)

3 snδ(2t)
)
.

104

where we have used (5.13)—given that since J is perpendicular to γ̇, so is J̇—to bound the normal part

of the curvature tensor. We have also used the first order bound on the differential of the exponential

for perpendicular initial conditions to bound the norm of the Jacobi fields and (5.17) to bound their

derivative. In the last equality we have used (5.16) again.

The result follows by noting that ρ is the solution to the differential equation

ρ̈+ δρ = η ρ(0) = ρ̇(0) = 0

where η is the bound on ‖Y ⊥‖ and applying Proposition 5.4.12.

We will see that the radius for the bound of the normal part is tight in the case of SO(n) in Example 5.5.4.

The first thing to note is that these bounds go to zero as r tends to zero. This is exactly what we

expect, as the Christoffel symbols in normal coordinates vanish at the origin.

The bounds in this theorem provide a notable improvement compared to the best bounds previously

known (cf. (Kaul 1976)). For one, these bounds are tighter. We also have that these bounds are explicit,

compared to the previous bounds, which were given in terms of a solution of a differential equation that

did not have an explicit integral. We also simplified the technical tools necessary to get to these bounds.

We finish this section by giving a bound on the full Hessian of the exponential.

Theorem 5.4.14 (Bounds on the Full Hessian). Let (M, g) be a Riemannian manifold with (δ,∆,Λ)-

bounded geometry. For a geodesic γ : [0, r]→M with initial unit vector v, r < π∆+δ
2

, and any two vectors

w1, w2 ∈ TpM , we have that

‖(∇d expp)rv(w1, w2)‖ ≤ 8
3r2 snδ

(r
2
)2(Λ snδ

(r
2
)2 + 2 max{|∆|, |δ|} snδ(r))‖w1‖‖w2‖.

Furthermore, the radius π∆+δ
2

is tight for SO(n).

Proof. To bound the full Hessian we first see that it is just enough to bound its diagonal part. For any

symmetric bilinear form and any two vectors we have the polarisation formula

4Φ(u, v) = Φ(u+ v, u+ v)− Φ(u− v, u− v).

By linearity, we may assume that ‖u‖ = ‖v‖ = 1. Taking absolute values and applying the triangle

inequality and Cauchy–Schwarz, we get that

4‖Φ(u, v)‖ ≤ ‖Φ|diag‖(‖u+ v‖2 + ‖u− v‖2) = 4‖Φ|diag‖

where ‖Φ|diag‖ is the operator norm of the application u 7→ Φ(u, u). For this reason, it is enough to bound

the map u 7→ (∇d expp)tv(u, u).

Let w be a vector normal to v. As we did in Theorem 5.4.13, we consider the differential equation for

K(t) = (∇d expp)tv
(t
r
w,

t

r
w
)
.

This is exactly the same differential equation that we had for K⊥, only that rather than having to bound

the normal part of the curvature tensor, we bound the full curvature tensor. For that we use (5.14), and

105

following with the bounds as we did in Theorem 5.4.13 and solving the resulting equation we get that for

w perpendicular to v, the norm of K is bounded by the solution of the differential equation

ρ̈+ δρ = 2
r2 (Λ snδ(t)2 + 2 max{|∆|, |δ|} snδ(2r)) ρ(0) = ρ̇(0) = 0

which is solved by

ρ(t) = 8
3r2 snδ

(t
2
)2(Λ snδ

(t
2
)2 + 2 max{|∆|, |δ|} snδ(t)).

Remark 5.4.15 (Tighter bounds). Another way to obtain bounds on the full Hessian of the exponential

would be to take the bounds from Theorem 5.4.13 for the normal and parallel part of the Hessian and

using the Cauchy–Schwarz inequality to get bounds of the form

‖(∇d expp)rv(w1, w2)‖ ≤
√
σ2 + ρ2‖w1‖‖w2‖.

Where ρ is the bound of the normal part defined in Theorem 5.4.13 and

σ = 1
r2 max{|r − sn4δ(r)|, |r − sn4∆(r)|}

that is, σ is the bound on the norm of the parallel part of the Hessian.

This bound, although tighter in most specific examples, might be more difficult to manipulate and

lacks the simplicity of that presented in the theorem above.

5.5 Concrete Second Order Bounds
5.5.1 Constant curvature

The simplest family to evaluate these bounds in is that of the spaces of constant curvature such as the

sphere, the hyperbolic plane, the Euclidean space or the flat torus.

For a manifold of constant curvature κ, since the curvature is constant, the derivative of the curvature

tensor is zero. If we further assume that their injectivity radius is positive2, as is the case of the hyperbolic

space and the sphere, we have that they have (κ, κ, 0)-bounded geometry. Instantiating the bounds for

these spaces we see that

〈(∇d expp)rv(w,w), γ̇(r)〉 =
(1
r
− sn4κ(r)

r2

)
‖w‖2

‖(∇d expp)rv(w,w)⊥‖ = 0

for r < πκ. As a first sanity check, we see that for the flat case κ = 0, the radial part is exactly equal to

zero, as the whole Hessian of the exponential map is everywhere zero in this case—the second derivative

of an affine function is zero.

To check that this solution is actually correct, we can solve the differential equation in Proposition 5.4.1

for these spaces for

K(t) := (∇d expp)tv(tw1, tw2).
2This is not really used to prove the bounds, but it is part of the definition of bounded geometry.

106

Using Lemma 5.4.9, together with the fact that, since the sectional curvature is constant, ∇R = 0, and

the trigonometric identity

snκ(t) sn′κ(t) = snκ(2t)
2 = sn4κ(t)

we have that the differential equation for the constant curvature case is given by

K̈(t) + κK⊥(t) = 4κ sn4κ(t)γ̇(t) K(0) = 0, K̇(0) = 0

We can split this equation into its normal and radial part. The normal part is clearly zero, since the

right-hand side is zero, and the remaining equation is linear with zero as the initial condition. For the

radial part, setting x = 〈K, γ̇〉 we get

ẍ(t) = 4κ sn4κ(t) x(0) = 0, ẋ(0) = 0.

Finally, x(r)
r2 = r−sn4κ(r)

r2 is exactly the value announced before.

5.5.2 Locally symmetric spaces

Locally symmetric spaces define a large family of particularly well-behaved Riemannian manifolds.

Examples of these spaces are the flat torus, the orthogonal group (or any compact Lie group with a

bi-invariant metric), the space of symmetric positive definite matrices, the Grassmannian, the oriented

Grassmannian and the hyperbolic Grassmannian.3

We recall the algebraic definition of a locally symmetric space.

Definition 5.5.1. A Riemannian manifold (M, g) is locally symmetric if the curvature tensor is

covariantly constant, that is, ∇R = 0.

Locally symmetric spaces were introduced and studied by Cartan in 1926, who also gave a complete

classification of these in 1932.

The most notable examples of locally symmetric spaces are symmetric spaces which are one of the

most important families of real manifolds in Riemannian geometry. These were intensively studied by

Sigurður Helgason (Helgason 1978).

Definition 5.5.2. A Riemannian manifold (M, g) is a symmetric space if, for every point p ∈M there

exists an involutive isometry σp that fixes p, that is

σp(p) = p (dσp)0 = −Id.

As the name implies, one may prove that symmetric spaces are indeed locally symmetric spaces.

For these manifolds we have the following result.

Proposition 5.5.3. A symmetric space with bounded sectional curvature δ ≤ sec ≤ ∆ is of (δ,∆, 0)-

bounded geometry.

Proof. Since it is a locally symmetric space, we have that ∇R = 0, so the first order bound is clear. Since

symmetric spaces are Riemannian homogeneous spaces, for every two points there exists an isometry

taking one to the other. As such, the injectivity radius is constant throughout the manifold and thus,

positive.
3All these manifolds are to be regarded as Riemannian manifolds with the metric inherited from their quotient structure

107

From this, we get that we just need to compute bounds on the sectional curvature for these manifolds

in order to give second order bounds for the exponential map. Now, bounds on the sectional curvature of

these manifolds are well-known. We give here some examples that are particularly useful in the context of

optimisation.

Example 5.5.4 (The special orthogonal group). The sectional curvature for a Lie group with a

bi-invariant metric, after identifying any pair of tangent vector with vectors in the Lie algebra, is given for

a pair of orthonormal vectors X,Y ∈ g

sec(X,Y) = 1
4‖[X,Y]‖2.

In the special case of SO(n) for n > 2, we have that g ∼= Skew(n). It is clear that the sectional curvature

is non-negative for any bi-invariant metric. In the case of SO(n) this bound is tight.

Consider the bi-invariant metric given by the Frobenius norm—the metric inherited from Rn. For the

upper bounds, if we work with a matrix Lie group, it is enough to bound the norm of XY − Y X for

matrices X,Y of Frobenius norm 1. In the general case, this inequality is called the Böttcher–Wenzel

inequality and it reads

‖[X,Y]‖ ≤ 2‖X‖‖Y ‖ ∀X,Y ∈ Rn×n.

For a review of this inequality and a particularly clean proof see (Lu 2012).

For the case of SO(n), that is, when X,Y are skew-symmetric, this inequality can be improved (Bloch

and Iserles 2005)

‖[X,Y]‖ ≤ ‖X‖‖Y ‖ ∀X,Y ∈ Skew(n).

For n = 3 the constant can be further improved to 1
2 . These constants are tight.

Wrapping all this together, we get that the bounds for SO(n) with n > 2 are given by

0 ≤ 〈(∇d expp)rv(w,w), γ̇(r)〉 ≤
(1
r
− sin(r)

r2

)
‖w‖2 r < 2π

‖(∇d expp)rv(w,w)⊥‖ ≤ r

9‖w‖
2 r < 2

√
2π.

Note that the radius of definition of the normal part of the Hessian are tight, as the conjugate radius of

SO(n) is exactly 2
√

2π. This can be seeing by noting that the exponential of matrices is not full rank at

matrices with two eigenvalues that are 2πi apart.

In particular, we can give a bound on the full Hessian by bounding the derivative of
√
σ2 + ρ2 where

σ and ρ are the bounds on the tangential and normal part of the Hessian. This gives

‖(∇d expp)rv(w1, w2)‖ ≤ 2r
9 ‖w1‖‖w2‖ r < 2π.

We can see that Theorem 5.4.14 gives us a coarser bound, but on the other hand, the bound is defined on

a larger radius. In particular, we get

‖(∇d expp)rv(w1, w2)‖ ≤ r

3‖w1‖‖w2‖ r < 2
√

2π.

This radius is tight, as there are points that are 2
√

2π apart from any given point which are conjugate

to it. This can be seen by computing the eigenvalues of the differential of the exponential map (see for

example Lezcano-Casado and Martínez-Rubio 2019, Theorem D.2).

108

Better bounds are possible by using a tighter version of the bounds on the curvature tensor at the

expense of having an uglier numeric constant. For example, the 1
3 constant can be improved this way to

√
61

36 .

These same ideas can be generalised to symmetric spaces. We will use this to compute bounds for the

Hessian of the exponential map in the Grassmannian.

Example 5.5.5 (Sectional Curvature of a Symmetric space). Let G/H be a symmetric space.

Since a symmetric space is a Riemannian homogeneous space, we just need to bound the sectional point

at one point, as the space has the same sectional curvature at every point. Denote by m = h⊥ ⊆ g the

orthogonal complement of the Lie algebra of H with respect to the metric at the identity in G. This

complement to h is not a Lie algebra itself and in fact [m,m] ⊆ h, as G/H is a symmetric space. This set

m may be identified isometrically with the tangent space at π(e), the projection of the identity element

e ∈ G, in other words, the map

(dπ)e|m : m→ Tπ(e)G/H

is a linear isometry. Via this identification we may treat vectors X,Y ∈ Tπ(e)G/H as vectors X,Y ∈ m ⊆ g.

Now, by O’Neill’s formula (O’Neill 1966, Ch. 7, Thm. 47), the sectional curvature for these manifolds has

a particularly simple formula for orthonormal vectors X,Y ∈ Tπ(e)G/H

secG/H(X,Y) = secG(X,Y) + 3
4‖[X,Y]‖2

where we have used that [m,m] ⊆ h.

If G is a Lie group with a bi-invariant metric we say that G/H is a normal symmetric space. For

a normal metric, the sectional curvature simplifies to

secG/H(X,Y) = ‖[X,Y]‖2.

Trough the study of symmetric spaces of non-compact type and their duality, it is not difficult to prove

that the sectional curvature on any symmetric space is either the norm or minus the norm of the Lie

bracket of a pair of vectors, although we will not prove that as we will not need it.

Example 5.5.6 (The real Grassmannian). The real Grassmannian as a symmetric space is given by

the quotient Gr(n, k) = SO(n)/(SO(k)× SO(n− k)), where the metric on SO(n) is the bi-invariant metric

generated by the scalar product 〈X,Y 〉 = 1
2 tr(XᵀY) on the Lie algebra. For this symmetric space we

have that

h = so(k)⊗ so(n− k) =
{(B 0

0 C

) ∣∣∣B ∈ Skew(k), C ∈ Skew(n− k)
}

m =
{(0 A
−Aᵀ 0

) ∣∣∣A ∈ Rn−k×k
}

Note that the metric is chosen so that for X ∈ m we have that ‖X‖ = ‖X‖, where X ∈ Rn−k×k. This is

so that this norm agrees with the usual norm in the projective plane as Gr(n, 1) ∼= RPn.

Since the metric on G = SO(n) is bi-invariant, the Grassmannian is a normal symmetric space, so the

sectional curvature is given by the norm of the commutator of elements in m. Using the bound on the

109

norm of the Lie bracket for skew-symmetric matrices, we would get

0 ≤ sec(X,Y) ≤ 4.

As it can be seen by (Ge 2014, Lemma 2.5), these bounds are not tight. They can be refined as announced

in (Wong 1968, Theorem 3a) and proved in (Hildebrandt, Jost, and Widman 1980, p.292) via an application

of Cauchy–Schwarz as

0 ≤ sec(X,Y) ≤ 2.

Using these bounds, we get analogous bounds for the Hessian of the exponential map for the Grassmannian,

0 ≤ 〈(∇d expp)rv(w,w), γ̇(r)〉 ≤
(1
r
− sin(2

√
2r)

2
√

2r2

)
‖w‖2 r <

π√
2

‖(∇d expp)rv(w,w)⊥‖ ≤ 8r
9 ‖w‖

2 r < π.

Note that for the real Grassmannian rinj = π
2 (Kozlov 2000), so the radii of these equations should be

enough for any practical purposes. As in the case of SO(n), it is also direct to get linear bounds on the

full Hessian.

5.6 Convergence Rates for Dynamic Trivialisations

We now have all the necessary tools to be able to complete the program stated in the introduction.

In particular, we can prove the conditional convergence of the dynamic trivialisation framework for any

stopping rule. We first recap the results of the previous two sections in the following proposition.

Proposition 5.6.1. Let (M, g) be a connected and complete Riemannian manifold of (δ,∆,Λ)-bounded

geometry and let f be a function of α-bounded Hessian on it. Fix a point p ∈ M , and let X ⊆ Up be a

convex subset of M with diam(X) ≤ 2r ≤ 2π∆+δ
2

, and at least one critical point of f in it. Denote the

pullback of X under the exponential as X := exp−1
p (X) ⊆ TpM . Then, the map f ◦ expp : X → R is of

α̂r-bounded Hessian with constant

α̂r = α(C1,r + C2,r)

C1,r = max
{

1, snδ(r)2

r2

}
C2,r = 8

3 snδ
(r

2
)2(Λ snδ

(r
2
)2 + 2 max{|∆|, |δ|} snδ(r)).

Proof. We will bound the Hessian of the map f ◦ expp for an arbitrary p ∈M . By the Leibnitz rule, we

have that

∇d(f ◦ expp) = ∇(df ◦ d expp) = ∇df ◦ d expp +df ◦ ∇d expp .

Taking norms, and since the left-hand side is a symmetric tensor, its maximum value—i.e., its norm—is

reached at a singular vector. As such, writing the bound explicitly

‖∇d(f ◦ expp)‖X =

max
v∈exp−1(X)

w∈TpM, ‖w‖=1

[
(∇df)expp(v)((d expp)v(w), (d expp)v(w)) + (df)expp(v)((∇d expp)v(w,w))

]
.

110

Since there exists a critical point of f in Up, and by the α-bound on the Hessian, we have that f is

αr2-Lipschitz on X . Using this, the triangle inequality and Cauchy–Schwarz, we can bound this quantity

as

‖∇d(f ◦ expp)‖X ≤ α max
v∈exp−1(X)

w∈TpM, ‖w‖=1

‖(d expp)v(w)‖2 + αr2 max
v∈exp−1(X)

w∈TpM, ‖w‖=1

‖(∇d expp)v(w,w)‖.

From Theorems 5.3.18 and 5.4.14, we have that C1,r, C2,r come from the bounds for the square of the

norm of the differential and the norm of the Hessian of the exponential respectively.

After the heavy work of giving bounds on the Hessian of the pullback of a function along the exponential

map, we are in a position to prove convergence rates for different instances of the dynamic trivialisation

framework in terms of α̂r. We start with one of the simplest ones, namely static trivialisations. This is

the algorithm that comes from choosing stop ≡ False in Algorithm 2. Equivalently, this is the algorithm

coming from solving

min
v∈TpM

f(expp(v))

using gradient descent on TpM .

The critical assumption in this result is that iterates remain bounded inside a compact set X ⊆ TpM .

This assumption is restrictive, but it is standard in previous work (Bonnabel 2013; Sato, Kasai, and

Mishra 2019; Tripuraneni et al. 2018; Ahn and Sra 2020).

Theorem 5.6.2 (Convergence of static trivialisations). Let (M, g) be a connected and complete

Riemannian manifold of (δ,∆,Λ)-bounded geometry and let f be a function of α-bounded Hessian on it.

Fix a point p ∈ M , and let X ⊆ Up be a convex subset of M with diam(X) ≤ R ≤ 2π∆+δ
2

, and at least

one critical point of f in it. Consider Algorithm 2 with the stopping rule stop ≡ False and fixed step-size

ηi,k = 1
α̂R/2

where α̂R/2 is as in Proposition 5.6.1. If all the iterates of the method stay in X , the method

will find a point v0,t ∈ TpM such that ‖∇(f ◦ expp)(v0,t)‖ < ε in at most⌈2α̂R/2

ε2 (f(expp(v0,0))− f∗)
⌉

steps, where f∗ is a lower-bound of f on X .

Proof. We proved in Proposition 5.6.1 that the map f ◦ expp is of α̂R/2-bounded Hessian on X . This

can be regarded as a function on a Euclidean space, for which the convergence rate is well-known (cf.,

Theorem 2.2.6).

Remark 5.6.3 (The hypotheses of this convergence theorem). The condition X ⊆ Up might seem

scary at first, but it should not be since its complement—the cut locus cut(p) = M\Up—has (Borel)

measure zero (Corollary 4.4.9). Also, as explained in Section 4.4.2, the cut locus is, in some sense, as far

as possible from p, so it should not pose any problems in practice.

As we can see, the point p ∈M does not play any role in the proof of Theorem 5.6.2, besides for the

technical condition of the iterates being bounded in Up. Generalising this assumption, we can prove at

once the convergence of the scheme of dynamic trivialisations, for an arbitrary stopping rule.

111

Theorem 5.6.4 (Convergence of dynamic trivialisations). Let (M, g) be a connected and complete

Riemannian manifold of (δ,∆,Λ)-bounded geometry and let f be a function of α-bounded Hessian on it.

Assume that in the algorithm Algorithm 2 with an arbitrary stopping rule stop, all the iterates vi,k are

contained in convex sets Xi ⊆ Upi with diam(Xi) ≤ R ≤ 2π∆+δ
2

, with at least one critical point of f in

each of them. Then, for the choice ηi,k = 1
α̂R/2

, the algorithm will find a point vi,k ∈ TpiM such that

‖∇(f ◦ exppi)(vi,k)‖ < ε in at most ⌈2α̂R/2

ε2 (f(expp(v0,0))− f∗)
⌉

steps, where f∗ is a lower-bound of f on X .

Proof. Analogous to Theorem 5.6.2, as the proof does not depend on the pullback point p.

This theorem can be considered as a building block to then be used in specific examples to get actual

convergence rates under weaker assumptions. In plain words, this result asserts that if the algorithm is

converging to a critical point, it is fine to change the trivialisation point, as the exponential map will not

distort the metric too much.

Remark 5.6.5 (Practical considerations). Of course, these bounds are worst-case bounds, but one

can do better in practice. As we have bounds for the distortion of the exponential map at every point,

we can choose a dynamic step-length that accounts for this. For example, at a point with ‖vi,k‖ = s, we

could consider

ηi,k = 1
α̂s
.

This is not likely to give any improvement in a real-world problem, as the constant α is itself an upper-

bound on the norm of the Hessian of the function itself, and the exponential map may incur in large

variations of this second derivative on points far from 0.

This is particularly true when using a dynamic stopping rule that controls how much the norm of the

gradient of the pullback deviates from the actual norm of the gradient of the function. In this case, one

could consider having a rule similar to the one that we outlined in the introduction, but that does not

only account for the case in which the algorithm is converging to the cut locus, which will mostly happen

if the sectional curvature is positive, but also accounts for the case when the gradient of the pullback is

much larger than that of the function, which might happen in cases of negative curvature

stop ≡
(‖∇(f ◦ exppi)(vi,k)‖

‖∇f(xi,k)‖ < ε
)

or
(‖∇(f ◦ exppi)(vi,k)‖

‖∇f(xi,k)‖ >
1
ε

)
.

This rule can be read as “change the trivialisation point when we detect that expp has deviated too much

from being an isometry in the direction of the gradient”. Of course, this rule can be adapted using the

information that one has a priori about the geometry of the manifold and, in particular, its cut locus,

conjugate locus or injectivity radius.

112

5.7 When Is a Retraction an Exponential Map?

As we have seen throughout this chapter and the previous one, both the exponential and retractions

may be used to pullback problems to a tangent space, although it is the exponential map for which we

can have more a-priori information in the general setting.

It is clear that the exponential map associated to an affine connection—not necessarily the Levi-Civita

connection of a metric—is a retraction (Definition 4.1.1). A natural question is the converse: When is a

retraction the exponential map associated to some connection? We give an algebraic way to check this in

practice.

Theorem 5.7.1. Let r : TM → M be a retraction on a differentiable manifold. This retraction is the

exponential map associated to an affine connection on M if and only if r induces a flow. In symbols,

writing γp,v(t) := rp(tv) for (p, v) ∈ TM , then r comes from a connection if and only if

γ̇p,v(t+ s) = γ̇γp,v(t),γ̇p,v(t)(s) ∀t, s > 0.

Proof. By definition, the exponential map is the projection of the geodesic spray flow on TTM , so the

exponential map defines a flow in the sense specified above.

For the reverse implication, assume that r defines a flow. Define the curves on TM

σp,v = (γp,v, γ̇p,v)

and define the vector field on TM for (p, v) ∈ TM

Sp,v := σ̇p,v(0) = (γ̇p,v(0), d
dt

∣∣∣
t=0

γ̇p,v(t)) = (v, d
dt

∣∣∣
t=0

γ̇p,v(t)) ∈ TTM

where we have used that r is a retraction on the last equality. Note that for s > 0

d
dt

∣∣∣
t=0

γ̇p,sv(t) = s
d
dt

∣∣∣
t=0

γ̇p,v(st) = s2 d
dt

∣∣∣
t=0

γ̇p,v(t)

so the second term is 2-homogeneous. This makes S into a spray, and by the Ambrose–Palais–Singer

theorem (Ambrose, Palais, and I. M. Singer 1960), there exists an affine connection that has S as its spray

with its exponential map being the projection of the flow of the spray evaluated at time 1.

To finish, we are just missing checking that the curves σp,v are the integral curves of S, but this is

direct by using that r comes from a flow

σ̇p,v(t) = d
ds

∣∣∣
s=0

σp,v(t+ s)

= (γ̇p,v(t),
d
ds

∣∣∣
s=0

γ̇p,v(t+ s))

= (γ̇p,v(t),
d
ds

∣∣∣
s=0

γ̇σp,v(t)(s))

= Sσp,v(t).

The result for retractions that are just defined on an open neighbourhood of the zero section of TM is

analogous.

Remark 5.7.2. The connection on the previous proof is not unique as connections such as their difference

is a skew-symmetric tensor induce the same spray. In particular, the connection in the proposition above

can be chosen to be torsion-free.

113

Chapter 6

GeoTorch: A Library for
Optimisation on Manifolds at Scale

In this chapter, we describe some practical applications of the dynamic trivialisation framework

developed in Chapter 4. We show how to implement it with gpu efficiency and flexibility in mind.

These ideas have led to the development of the free-software library GeoTorch. GeoTorch allows for

coupling manifold constraints with the gpu/tpu-friendly PyTorch library to allow performing optimisation

on manifolds at scale. The library can be found under the mit license at

https://github.com/Lezcano/geotorch

Some of these ideas were published in the papers (Lezcano-Casado and Martínez-Rubio 2019; Lezcano-

Casado 2019) at ICML 2019 and NeurIPS 2019.

The main idea presented in Section 6.2.2 has been submitted to be added to core PyTorch, and it is

currently being discussed at

https://github.com/pytorch/pytorch/pull/33344

It is hoped to be accepted and merged into core PyTorch in the next release (1.9.0).

The work in Section 6.3.2 led to the implementation of the matrix exponential in core PyTorch, which

was implemented by Nikitaved in

https://github.com/pytorch/pytorch/pull/40161

This implementation yields a ×12 speed-up over its Tensorflow counterpart.

Outline of the chapter. We start by giving a detailed overview of how to implement some first-order

optimisation methods on SO(n) and an introduction to orthogonal constraints in rnns in Section 6.1.

In Section 6.2, we show how GeoTorch compares against the other open libraries to perform optimisation

on manifolds, and we go over how to implement the core features that allow for its flexibility and simplicity.

In Section 6.3, we show how to use these ideas to stabilise the training of rnns. We also provide a literature

review on the topic. Finally, in Section 6.4, we test experimentally on rnns the dynamic trivialisation

framework, comparing the efficiency of the methods presented in this thesis to previous methods from the

literature.

114

https://github.com/Lezcano/geotorch
https://github.com/pytorch/pytorch/pull/33344
https://github.com/pytorch/pytorch/pull/40161

6.1 Orthogonal Constraints within Neural Networks

We start by looking at the practical ideas that first motivated this whole thesis. In particular, we

look at orthogonality constraints in the context of recurrent neural networks. These constraints help to

alleviate the problems of vanishing and exploding gradients.

6.1.1 Vanishing and exploding gradient problems

Training deep neural networks presents many difficulties. Arguably the most important hindrances are

the exploding and vanishing gradient problems, as first observed in (Bengio, Simard, and Frasconi 1994).

This problem arises from the ill-conditioning of the function defined by a neural network as the number of

layers increases. This issue is particularly problematic in Recurrent Neural Networks (rnns).

Recall the definition of an rnn (cf., Definition 2.3.4), for t = 1, . . . , T

zt = Bht−1 + Cxt

ht = σ(zt),

where B ∈ Rd×d, C ∈ Rd×k and σ is a non-linearity applied coordinate-wise. Suppose that we choose the

last output vector hT as the encoding of the sequence, and that we have a loss function ` that maps the

encoding hT and a label in the set Y onto the real numbers. Starting on h0 = 0, we have a function

` ◦ rnnB,C : (Rk)∗ × Y → R

(x1, . . . , xT), y 7→ `(hT , y)

We will denote the differential of this function with respect to the hidden states as ∂`

∂ht
and the gradients

of the hidden states with respect to the canonical metric on the Euclidean space as
(
∂`

∂ht

)∗
. Note that

the adjoint with respect to this metric is simply the transpose, so this notation should be clear.

We can compute the differential iteratively using the chain rule,

∂`

∂hi
= ∂`

∂hT

∂hT
∂hT−1

· . . . · ∂hi+1

∂hi
= ∂`

∂hT

T∏
t=i+1

DtB (6.1)

where Dt = diag(σ′(zt)). This formula hints at the general problem that happens in rnns. When the

matrix B has eigenvalues of norm different from 1, computing the gradient is similar to computing powers

of B, which becomes numerically unstable. For example, if σ′(x) is uniformly bounded by γ > 0 and the

largest eigenvalue of B is less than 1
γ , the norm of ∂`

∂hi
goes to zero exponentially fast in T .

This is problematic when computing the gradient of the recurrent kernel B which is given by

(
∂`

∂B

)∗
=

T∑
t=1

ht−1 ⊗
(
∂`

∂zt

)∗
=

T∑
t=1

ht−1 ⊗
(
DtB

ᵀDt+1B
ᵀ . . . BᵀDT

(
∂`

∂hT

)∗)
. (6.2)

Note that, for σ = relu—or, in general, for a simple piecewise linear function—the term Dt barely encodes

any information about xt. For the relu case Dt is simply a matrix with ones in some elements of the

diagonal and zeros everywhere else. As such, most of the information about xt in the gradients comes

from the term ht.

115

Figure 6.1: Vanishing gradient problem in an rnn. Each plot shows the evolution of the norm of
the gradient

(
∂`

∂hT−i

)∗
for T = 220, throughout 1000 update iterations of an rnn without a non-

linearity. In each plot, the recurrent kernel B of the rnn has singular values restricted to the interval
[1 −m, 1 + m] for m = 0, 10−3, 10−2, and m = 10−1, 1,∞ respectively. We see that, as the eigenvalues
deviate from 1, the gradient flow degrades exponentially fast. Gradient norms are normalised across the
time dimension (Vorontsov et al. 2017).

Since we often work with the relu activation for which d
dtrelu(t) = 1≥0(t), let’s assume for the

rest of the section that Dt = In to simplify the discussion.

Under this assumption, the i+ 1-th term of the sum in (6.2) is given by

hi ⊗ ((Bᵀ)T−ix), (6.3)

for the vector x =
(
∂`

∂hT

)∗
. In other words, if the norms of some of the eigenvalues of B are larger than

1, the norm of the gradient will explode—exploding gradient problem—while if the norms of all the

eigenvalues of B are too small, the gradient will effectively vanish—vanishing gradient problem.

In practice, since the entries of the matrix B are often initialised according to a normal distribution

of mean zero and small variance (Glorot and Bengio 2010), the eigenvalues of Bᵀ tend to be small,

meaning that we often encounter the vanishing gradient problem in practice. This translates to a very

slow training, as the rnn learns the signal coming from the last elements of the sequence (. . . , xT−1, xT),

for which ‖B‖T−i is not too small and the norm of (6.3) is not too small, but it often struggles to recall

the information coming from the first element (x1, x2, . . .) of the sequence.

The exploding gradient problem is often encountered when tuning the learning rate. If one uses a

learning rate that is too large, the gradients may explode at the beginning of the training, which leads to

overflows and the appearance of NaNs, which renders the rest of the training useless. In contrast, if the

learning rate is too small, then the training will either converge very slowly or would just get stuck in

a local minimum. To alleviate these problems, practitioners often resort to learning rate schedulers

where the learning rate is changed throughout the optimisation process to try to avoid these scenarios.

Vanishing gradient problems (cf., Figure 6.1) and exploding gradient problems are often encountered in

practice (Pascanu, Mikolov, and Bengio 2013).

Another thing that can be deduced from Equation (6.2) is that we should be looking to choose a

non-linearity such that limx→±∞|σ′(x)| = 1.1 This condition allows the gradients to flow back when
1This is a relaxation of the stronger condition of choosing σ to have derivative of absolute value 1.

116

backpropagated2.

One way of mitigating the stability problems of Equation (6.1) is to decree B to be orthogonal. This

was first noted in practice in (Arjovsky, Shah, and Bengio 2016). After this, optimisation methods over

the unitary and orthogonal group have found rather fruitful applications in rnns. We will do a literature

review of these methods in Section 6.3.1. In parallel to this work, there has been an increasing interest in

optimisation over the orthogonal group and the Stiefel manifold in neural networks (Ozay and Okatani

2016; L. Huang et al. 2018). As shown in these papers, orthogonal constraints in linear and cnn layers

can be rather beneficial for the generalisation of the network as they act as a form of regularisation of the

Lipschitz constant of the neural network.

6.1.2 Optimisation with orthogonal constraints

In this section, we will make explicit every detail about how to implement some first-order optimisation

algorithms on SO(n). All the ideas in this section were already presented in an abstract way in Chapter 4,

and specialised to the Stiefel manifold in Section 3.5.1, so the computations should already be familiar to

the reader. We will flesh out every detail of these computations for SO(n), as it is the main building block

used to implement optimisation in many other different manifolds.

Let f : Rn×n → R be a function and define f := f |SO(n). We are interested in approximating a solution

to the problem

arg min
B∈SO(n)

f(B).

The classical way to approach this problem would be to apply Riemannian gradient descent (rgd).

Let A be a skew-symmetric matrix and let B = expm(A) ∈ SO(n). We will fix canonical metric on Rn×n

and the induced bi-invariant metric on SO(n). For these metrics, we have the gradient on the total space

∇f(B) ∈ Rn×n and the gradient on the manifold ∇f(B) ∈ TB SO(n).

rgd works by following the geodesic defined by the direction −∇f(B) at the point B for a time η > 0,

that is,

Bt+1 = expBt(−η∇f(Bt)).

The tangent space to SO(n) at a matrix B is

TB SO(n) = {X ∈ Rn×n |BᵀX +XᵀB = 0}

and, as we showed in Section 3.5.1, the projection onto the tangent space takes the form

πB : Rn×n → TB SO(n)

X 7→ 1
2(X −BXᵀB)

Since SO(n) is an embedded submanifold of Rn×n, the gradient of f is just the tangent component of the

gradient on the ambient space

∇f(B) = πB(∇f(B)) = 1
2(∇f(B)−B∇f(B)ᵀB).

2The idea of the gradients “flowing back” during the backpropagation process—while computing the gradients using the
chain rule—is often used in the deep learning context to describe that the gradients are computed from the end of the neural
network all the way to the beginning of the neural network.

117

Writing for short Bt = expm(At), we have that the rgd update rule for SO(n) is given by

Bt+1 = expm(At) expm(−ηBᵀ
t ∇f(Bt)) = expm(At) expm(−ηπIn(Bᵀ

t ∇f(Bt))).

or more succinctly

Bt+1 = expm(At) expm(−ηπIn(∇(f ◦ LBt)(In))).

It is now easy to see how this equation is implemented by the autodiff engine when using the dynamic

trivialisations. Consider the Riemannian exponential on SO(n)

expB = LB ◦ expm ◦πIn : Rn×n → SO(n)

where we have used left-invariant vector fields to identify TB SO(n) with so(n) and we have used πIn to

parametrise the skew-symmetric matrices. We then have that

∇f(B) = ∇(f ◦ expB)(0n) = ∇(f ◦ LB ◦ expm ◦πIn)(0n).

Remark 6.1.1 (Frames). It is perhaps now easier to see the idea that we mentioned in Section 4.5 about

how, after a choice of parametrisation of the tangent space—i.e., a choice of frame ζ : TpM → Rn—the

dynamic trivialisation framework automates the gradient computations. It should be now clear that different

frames change the representation of the tangent space, but they do not change the optimisation algorithm.

Here we are using the projection from the total space—that is, a linear Riemannian submersion—given by

πIn : Rn×n → so(n).

Alternatively, we could have used the frame frame_skew : Rn×n → Skew(n) which takes the lower

triangular part of a matrix and uses it to form a skew-symmetric matrix A − Aᵀ. This frame has the

advantage that, even though we are working with matrices in Rn×n to parametrise skew-symmetric

matrices, we are effectively just modifying the lower n(n−1)
2 entries. This leaves the upper and diagonal

n(n+1)
2 entries untouched, and they can be used to make the model more expressive without requiring any

extra memory. We use this extensively in some parts of the GeoTorch library, such as when we parametrise

low-rank matrices via their svd using two matrices on Stiefel manifolds. In this case, one of them is

parametrised using the upper triangular part of the matrix and the other one uses the lower-triangular

part.

Another way to attack the problem of optimisation over SO(n) is through static trivialisations as

described in Section 4.4. As the matrix exponential is surjective onto SO(n), we can use it as a static

trivialisation, pulling back the problem as

min
B∈SO(n)

f(B) = min
A∈Skew(n)

f(expm(A)). (6.4)

We call this the exponential parametrisation of SO(n). The update rule, applying gradient descent

to this problem, is then given by

At+1 = At − η∇(f ◦ expm)(At)

Bt+1 = expm(At+1).

118

To initialise this method, we sample a matrix B0 ∈ SO(n) according to some probability measure and let

A0 := logm(B0).

It is also natural to consider the dynamic trivialisation framework discussed in Section 4.5, having, for

a fixed B0 ∈ SO(n), the problem

min
B∈SO(n)

f(B) = min
A∈Skew(n)

f(B0 expm(A)). (6.5)

which has an update rule

At+1 = At − η∇(f ◦ LB0 ◦ expm)(At)

Bt+1 = B0 expm(At+1).

As mentioned in Section 4.5, we sample B0 according to a probability measure on SO(n) and start at the

point A0 = 0. Then, we may update B0 according to some stopping rule. In practice, we compute the

gradient of f ◦ LB0 ◦ expm ◦frame_skew which is computed automatically by the autodiff engine.

Remark 6.1.2 (rgd and trivialisations agree on commutative Lie groups). It is quite revealing

to put side by side the update rule for rgd and the static trivialisation framework3

rgd: Bt+1 = expm(At) expm(−η∇f(expm(At)))

Static Triv. at In: Bt+1 = expm(At − η∇(f ◦ expm)(At))

Static Triv. at B0: Bt+1 = B0 expm(At − η∇(f ◦ LB0 ◦ expm)(At)).

We can see here that the difference between rgd and the static trivialisation method at the identity

stems from the fact that the Lie exponential is not a Lie group homomorphism, that is, in general we have

that expm(A1 +A2) 6= expm(A1) expm(A2). In fact, it is not difficult to show4 that the Lie exponential

is a homomorphism if and only if the Lie group is commutative. Examples of commutative Lie groups are

the torus or Rn—in fact, every commutative Lie group is a direct product of these two.

The geometric reason for this equality stems from the fact that a bi-invariant metric on a Lie group is

flat if and only if the group is commutative. Therefore, pulling back by the Lie exponential accounts for

lifting the problem to its universal cover being the Riemannian exponential the cover map, which is a

Riemannian submersion in this case. This behaviour happens more generally on any Hadamard manifold

as per the Cartan–Hadamard theorem (cf., Section 4.4.2.1).

Remark 6.1.3 (Different optimisation algorithms). Both the static trivialisation and the dynamic

trivialisation pullback the problem to a Euclidean space. As such, we could use any Euclidean optimisation

method to solve (6.4) and (6.5). This is a big advantage in practice, given that virtually all the methods

developed to improve the stability and convergence of optimisation algorithms for neural networks have

been devised having the Euclidean space in mind. We will go over these and other advantages of this

method over rgd in the context of neural networks in this next section.
3Note that the gradient in rgd is the gradient taken with respect to the metric on the manifold, and the gradient in the

trivialisation framework is taken with respect to the flat metric on TpM .
4For example, using the Baker–Campbell–Hausdorff formula.

119

6.2 GeoTorch

In this section, we go over some implementation details of the library GeoTorch. This library allows

for performing optimisation on manifolds within PyTorch. This library is built upon a few core ideas:

1. gpu efficiency and parallelism by design

2. Automatic computation of Riemannian gradients and Hessians

3. Functorial design benefiting from code reuse

4. Seamless interoperability with PyTorch

We will show how these ideas are implemented in practice in Section 6.2.2.

6.2.1 Libraries for optimisation on manifolds

We start by reviewing the current available frameworks for performing optimisation on manifolds.

At the time of writing, the most important library to perform constrained optimisation and optimisation

on manifolds is Manopt (Boumal, Mishra, et al. 2014). This is a matlab library maintained by Nicolas

Boumal and Bamdev Mishra. This tool is widely used in papers within the field of optimisation on manifolds,

being the reference when it comes to theoretical optimisation on manifolds. The main differences between

Manopt and GeoTorch stem from the audience the library is targeting. Manopt targets a specialised

audience that works on optimisation and may want to compare a new research line with pre-existing

optimisation algorithms. In contrast, GeoTorch targets a more mainstream audience that wants to integrate

constraints into a pre-existing model to regularise it, without having to change much of their initial model.

As mentioned, Manopt is designed to provide the researcher with a framework to showcase the

performance of their algorithms in simple settings. While this approach has been invaluable to the

researchers doing optimisation on manifolds for the last 10 years, it is not designed to be used in large

models. Manopt has been ported to several other languages in packages like Manopt.jl and PyManopt,

but these ports suffer of similar drawbacks.

GeoTorch comes to fill in this gap. GeoTorch is built on top of PyTorch, the most widely used deep

learning library. As such, it takes advantage of the efficiency improvements and gpu, tpu, amp, distributed

training support that PyTorch offers natively, among others. It also supports autodiff natively. All these

are systems that GeoTorch is designed to interact with seamlessly.

This integration with PyTorch also heavily simplifies the maintenance required for the library. Not

only does one not need to implement the gradients or Hessians, but it also benefits from all the numerical

analysis algorithms (qr, svd, Cholesky. . .) together with their derivatives implemented natively on gpu

by the PyTorch community. We will showcase this idea in Section 6.3.2, where we will note the advantage

of a gpu implementation of the matrix exponential, obtaining a ×2.5 wall-clock time improvement over

the non-native gpu implementation and a ×12 wall-clock time improvement over the implementation in

Tensorflow. This implementation is now in core PyTorch as of PyTorch 1.7.0, and it can be used by any

other library or researcher that uses PyTorch.

120

The first attempt to integrate constrained optimisation together with a deep learning library was

McTorch (Meghwanshi et al. 2018), lead by Bamdev Mishra. The project was discontinued, as their

approach required forking the whole PyTorch project and adding their software on top. We will sidestep

this problem by using the dynamic trivialisation framework and a number of metaprogramming tricks.

Geoopt is another package that aims to be compatible with PyTorch. Its implementation relies on

the user using their Tensor and Parameter classes, rather than that of PyTorch. This reason make this

library difficult to use for the general audience, as they would have to commit to the use of these custom

classes in their models, which is already a very big drawback. For example, if the user already uses a

different tensor class in their model, it would be impossible for her to use this library. Even more, the

user needs to wrap every parameter of a deep model using these special classes, which can be somewhat

tedious and difficult to maintain.

6.2.2 The design of GeoTorch

The main idea driving GeoTorch is to use the static and dynamic trivialisation framework to pullback

an optimisation problem from a manifold onto a Euclidean space. As described in Chapter 4, if we have a

map ϕ : M →M , we may use it to pullback the problem from M to M . In practice, we will often choose a

map with domain M ∼= Rn, such as the Riemannian exponential map or a retraction, to be able to apply

Euclidean optimisation methods to the pullback problem. Even then, in this section we will not delve into

the different maps used for the different manifolds, as most of these are standard in the literature. In turn,

we will look at the ideas necessary for the modular implementation behind GeoTorch.

Before delving into the implementation details, which might at times be too technical, we would like

to start by showing the simplicity of GeoTorch in action.
1 import torch
2 import torch .nn as nn
3 import geotorch
4

5 class Model (nn. Module):
6 def __init__ (self):
7 super (Model , self). __init__ ()
8 self. linear = nn. Linear (64 , 128)
9 self.cnn = nn. Conv2d (16 , 32, 3)

10 # Make the linear layer into a low rank layer with rank at most 10
11 geotorch . low_rank (self.linear , " weight ", rank =10)
12 # Also works on tensors . Makes every kernel orthogonal
13 geotorch . orthogonal (self.cnn , " weight ")
14

15

16 def forward (self , x):
17 # self. linear has rank at most 10 and every 3x3 kernel in the CNN is orthogonal
18

19 # Nothing fancy from here on. Use the model as you would normally do.
20 model = Model ()
21

22 # Any optimiser works out of the box with any parametrisation
23 optim = torch . optim .Adam(model . parameters () , lr =0.01)

Listing 6.1: Example of the integration of GeoTorch with PyTorch

GeoTorch implements optimisation on 16 spaces in a way that is compatible with any pre-existing

PyTorch model and allows for constraining any PyTorch module with just one line of code. These spaces

are listed in Table 6.1.

121

Real numbers General linear group Positive definite
Symmetric Special orthogonal group Positive semidefinite

Skew-symmetric Stiefel manifold Positive semidefinite low rank
Low rank Grassmannian Positive semidefinite fixed rank

Fixed rank Sphere Product manifolds
Matrices with singular values in (a, b)

Table 6.1: List of spaces that GeoTorch currently implements.

We will illustrate how to implement such a simple api using the example of orthogonal optimisation.

We will implement a linear layer with orthogonal weights (cf., Definition 2.3.3)

fB(x) = Bx B ∈ SO(n).

We will do so by pulling back the problem along the matrix exponential to a Euclidean space as we did

for exprnn. We will then point out the flaws that a naïve implementation has and we will motivate the

implementation in GeoTorch by correcting these.

Example 6.2.1 (A naïve implementation). Assume that we have the following simplified implemen-

tation of a square linear layer
1 class SquareLinear (nn. Module):
2 def __init__ (self , n_features):
3 super (). __init__ ()
4 self. weight = nn. Parameter (torch . Tensor (n_features , n_features))
5

6 def forward (self , x):
7 return x @ self. weight # Right - multiply as x is of size [batch , n_features]

Listing 6.2: Basic SquareLinear layer

We can modify this implementation to make it into an orthogonal linear layer by pulling back the problem

by the matrix exponential:
1 class Orthogonal (nn. Module):
2 def __init__ (self , n_features):
3 super (). __init__ ()
4 self. weight = nn. Parameter (torch . Tensor (n_features , n_features))
5

6 def forward (self , x):
7 A = self. weight
8 A = A - A.T # A is skew - symmetric
9 B = A. matrix_exp () # B is special orthogonal

10 return x @ B # Right - multiply as x is of size [batch , n_features]

Listing 6.3: Orthogonal v.1. Basic implemenation.

Note that here we are using the frame πIn(A) = A−Aᵀ (cf., Section 6.1.2). If we replaced Line 7 with

A = self.weight.tril() we would have an implementation of frame_skew as described in Remark 6.1.1.

This ad hoc implementation is good enough in most scenarios, but it has three main drawbacks:

1. To implement a parametrisation on a layer we effectively need to reimplement the whole layer

2. The parametrisation is implemented in the layer itself. We would have to repeat the implementation

of the parametrisation for every layer that we want

3. If we use the layer several times, like one does in an rnn, the matrix exponential would be computed

multiple times on the same matrix

122

We will solve the first and second problem in two steps. First, we will show how solve the first

one by using inheritance and Python properties. Then, we will show how to use some advanced

metaprogramming techniques to decouple the implementation of the class from the implementation of

the constraints.

The third one calls for the implementation of a caching mechanism, which is somewhat tricky in the

context of autodiff systems. We will show a working solution, but we should warn the reader that, even

though the final solution looks simple, similar-looking solutions yield problems related to the propagation

of gradients. We will not mention these here to avoid making the section even more technical.

6.2.2.1 Reusing pre-existing classes

Let us continue with the example of the Orthogonal layer. We will show now how to use inheritance

and Python properties to reuse the code from SquareLinear.

Python properties are often called computed attributed. They allow for using functions to define

an attribute of a class. As an example, consider that we have an attribute in a class in centimetres, but

we also want to have it in inches. We could implement this as follows:
1 class Length :
2 def __init__ (centimetres):
3 self. centimetres = centimetres
4

5 @property
6 def inches (self):
7 return self. centimetres / 2.54
8 l = Length (2.)
9 print (l. centimetres) # Will print 2.0

10 print (l. inches) # Will print 0.787402

Properties allow having computed attributes, which is exactly what trivialisations are. It is now easy

to modify the code of Orthogonal to reuse the code from SquareLinear.
1 class Orthogonal (SquareLinear):
2 def __init__ (n_features):
3 super (). __init__ (n_features)
4 # Rename weight attribute to _weight
5 self. _weight = self. weight
6 delattr (self , " weight ")
7

8 @property
9 def weight (self):

10 A = self. _weight
11 A = A - A.T
12 return A. matrix_exp ()

Listing 6.4: Orthogonal v.2. Reuse code through properties and inheritance.

Even better, we can get rid of SquareLinear altogether and use the PyTorch implementation nn.Linear

without having to reimplement it. As such, we can simply implement Orthogonal as
1 class Orthogonal (nn. Linear):
2 def __init__ (n_features):
3 super (). __init__ (n_features , n_features , bias= False)
4 # Rename weight attribute to _weight
5 self. _weight = self. weight
6 delattr (self , " weight ")
7

8 @property
9 def weight (self):

10 A = self. _weight
11 A = A - A.T

123

12 return A. matrix_exp ()

Listing 6.5: Orthogonal v.2.1. Use the native nn.Linear from PyTorch.

By doing this, whenever we call Orthogonal.forward, it will call the nn.Linear.forward, which will

call self.weight, which will call the property and return an orthogonal matrix. Furthermore, all these

operations are differentiable, so the gradients are computed automatically by the autodiff engine with no

extra work from our side.

Remark 6.2.2 (On the above implementation). The attentive reader will have spotted that the

implementation in Listing 6.5 does not work in practice. This is because the parameter weight is renamed

in __init__ after the property is defined during the parsing of the class body. A correct implementation

of this idea would involve the use of metaclasses. We omit this as metaclasses are quite technical and

would not add much to the exposition.

6.2.2.2 Caching tensors

To solve the problem of having to compute the matrix exponential several times, we have to implement

a caching system. A caching system simply accounts for saving an output of a deterministic function

ϕ(x) for certain value x, so that if ϕ(x) has to be recomputed for the same x, we simply return the result.

Note that in our case x = self.weight ∈ Rn×n and ϕ = expm ◦πIn is the parametrisation of SO(n) using

of skew-symmetric matrices so that ϕ(x) ∈ SO(n).

Remark 6.2.3 (A word on automatising the caching system). The caching mechanism has to be

aware of two particular moments in the optimisation process: The moment when it has to compute and

cache the value, and the moment when it has to discard the result. The first is simple to detect: If we look

at the cache and it does not have the value computed, we compute it and store it in the cache. Detecting

when the cache is dirty—i.e., when does it have to recompute the value in the cache—is much tricky. In

particular, it accounts for detecting when the parameter x has been modified.

In optimisation problems, we know that the tensor that we are parametrising is often just going to be

updated by the optimiser after a full optimisation step. A model very rarely modifies its own weights. As

such, it would be natural to ask for a system that automatically detects this and it automatically discards

the cache value after the optimiser has modified the parameters.

On the other hand, if we want to implement this in a generic way, we have to be able to provide a

mechanism that works for every possible model. In particular, it should be able to detect the notably

rare case when the model modifies its own parameters before the optimisation step. To do this, we would

have to be able to detect when self.weight has been modified. This poses two problems. First, it would

have to check for equality of the full tensor every time the tensor is accessed, which is not only very

expensive, but also equality on floating-point numbers is unstable at best. Second, even though in Python

it is possible to detect in some situations when a member of a class has been modified, it is not so easy to

do so in PyTorch. PyTorch is mostly implemented in C++, so it is close to impossible to differentiate

when a member of a class has been modified versus when it has just been accessed. To close this discussion,

we quote again the Zen of Python:

124

Explicit is better than implicit.

For all these reasons, we opted for a simpler solution along the lines of similar solutions adopted in

core PyTorch. We implement a caching system that can be activated and deactivated by the user in

their model via a global flag managed through a context manager. For example, assume that we have a

parametrisation in place on an rnn that makes the recurrent kernel orthogonal. The user would then

activate the caching system as
1 with geotorch . cached ():
2 for x in inputs :
3 hidden_state = self.rnn(x, hidden_state)

This can also be done at a level of the whole model in the training loop (cf., Listing 2.1), by guarding the

forward pass
1 for idx , (batch_x , batch_y) in enumerate (loader):
2 batch_x , batch_y = batch_x .to(device), batch_y .to(device)
3

4 with geotorch . cached ():
5 out = model (batch_x)
6 loss = F. nll_loss (out , batch_y)
7

8 optim . zero_grad ()
9 loss. backward ()

10 optim .step ()

This guard effectively signals the whole model when should it start caching values and when are the

cached values not valid any more.

In order to take advantage of this mechanism, we would have to simply check whether one should use

the cache value or not. For example, for the class Orthogonal we could write
1 _cache_enabled = False
2 _cache = {}
3

4 class Orthogonal (nn. Linear):
5 def __init__ (n_features):
6 super (). __init__ (n_features , n_features)
7 # Rename weight attribute to _weight
8 self. _weight = self. weight
9 delattr (self , " weight ")

10

11 def compute_weight (self):
12 A = self. _weight
13 A = A - A.T
14 return A. matrix_exp ()
15

16 @property
17 def weight (self):
18 global _cache
19 key = id(self)
20 if _cache_enabled :
21 if key not in _cache :
22 # If we have not cached the value , we compute it and store it
23 _cache [key] = self. compute_weight ()
24 return _cache [key]
25 else:
26 # If the cache is not enabled , simply return the matrix
27 return self. compute_weight ()
28

29 class cached :
30 def __enter__ (self):
31 global _cache_enabled
32 _cache_enabled += 1
33

34 def __exit__ (self , exc_type , exc_value , traceback):

125

35 global _cache_enabled
36 _cache_enabled -= 1
37 if not _cache_enabled :
38 _cache = {}

Listing 6.6: Orthogonal v.3. Integrating the caching system.

Note that the implementation does not consider _cache_enabled to be a boolean but an integer, to

be able to handle correctly nested calls to the cached context manager.

6.2.2.3 Injecting properties into classes

To approach the second and third problem of reusing code, we resort to metaprogramming. Metapro-

gramming is the ability of a language of treating code as data. That is, a metafunction could take some

parameters and return not an instance of a class, but a whole new class.

In our case, we will use to create the code class Orthogonal given a class that just implements the

orthogonality code, and the class that we want to put the parametrisation on. We would like to have an

Orthogonal class that looks exactly like a PyTorch module, that is
1 class Orthogonal (nn. Module):
2 def forward (self , A):
3 A = A - A.T
4 return A. matrix_exp ()

Listing 6.7: A class that implements the orthogonal parametrisation

The desideratum is to have a metafunction that takes an instance of this class and an instance of

nn.Linear and returns an instance of a class that looks like the Orthogonal layer from Listing 6.6.

Even though this can be implemented in about 50 lines of code, the details are very technical. We will

summarise them here for the interested reader, but they may be regarded as a convenient implementation

detail for the general reader.

In order to implement the caching system and the parametrisation system automatically, we would

have to inject a property into a given object. Sadly, this is not possible in Python, as properties are

stored at a class level, not at an instance level. One way of overcoming this issue is to dynamically create

a new class that inherits from nn.Linear, inject the property in this class and then replace the class

from our initial object with this custom class. This trick was suggested to us by Adam Paszke, and it is

implemented in the following piece of code:
1 def _inject_new_class (module):
2 r""" Sets up the parametrization mechanism used by parametrizations .
3 This works by substituting the class of the module by a class
4 that extends it to be able to inject a property
5

6 Args:
7 module (nn. Module): module on which to inject the property
8 """
9

10 # We create a new class so that we can inject properties in it
11 cls_name = " Parametrized " + module . __class__ . __name__
12

13 param_cls = type(
14 cls_name ,
15 (module .__class__ ,) ,
16 {
17 " __qualname__ ": cls_name + str(id(module)),
18 },
19)

126

20

21 # Declare the class globally to be able to pickle it
22 globals ()[param_cls . __qualname__] = param_cls
23 module . __class__ = param_cls

6.2.2.4 Initialising parametrisations

Once we have a way to change the class to one that is virtually identical but different, we may simply

inject the property. While doing so, we take the chance of defining not only a getter for the property, but

also a setter.
1 def _inject_property (module , _name):
2 r""" Injects a property into the class of a given module .
3 It assumes that the tensor under ‘‘module [tensor_name]‘‘
4 has already been moved
5

6 Args:
7 module (nn. Module): module on which to inject the property
8 tensor_name (string): name of the property
9 """

10

11 # Define the getter
12 def get_parametrized (module):
13 global _cache_enabled
14 global _cache
15

16 key = _key(module , tensor_name)
17 # If the _cache is not enabled or the caching was not enabled for this
18 # tensor , this function just evaluates the parametrization
19 if _cache_enabled and key in _cache :
20 if _cache [key] is None:
21 _cache [key] = module . parametrizations [tensor_name]. evaluate ()
22 return _cache [key]
23 else:
24 return module . parametrizations [tensor_name]. evaluate ()
25

26 # Define the setter
27 def set_value (module , value):
28 module . parametrizations [tensor_name]. initialize_ (value)
29

30 setattr (module .__class__ , tensor_name , property (get_parametrized , set_value))

This allows to assign to the properties provided that we implement an initialize_ method.
1 class Skew(nn. Module):
2 def forward (self , X):
3 X = X.triu (1)
4 return X - X.T
5

6 def is_skew (self , X):
7 # Skew modulo rounding errors
8 return torch . allclose (X, -X.T)
9

10 def initialize_ (self , X):
11 if not self. is_skew (X):
12 raise ValueError ("The input matrix is not skew - symmetric ")
13 return X.triu (1)
14

15 model = nn. Linear (5, 5)
16 geotorch . register_parametrization (model , " weight ", Skew ())
17 # Just computes ‘model .weight ‘ and checks that the weight is and checks that the weight

is skew - symmetric
18 with geotorch . cached ():
19 assert (torch . allclose (model .weight , -model . weight .T))
20 # Sample a skew matrix X and initialise the parametrised model . weight
21 X = torch .rand (5, 5)
22 model . weight = X - X.T
23 assert (torch . allclose (model .weight , X))

127

In most cases, the method initialize_ is simply a right-inverse of the forward method, which exists

locally whenever forward is a submersion. It is at this point where the theory and practice meet to give a

particularly modular design for the static and dynamic trivialisation framework.

We are missing to show how to put all these ideas together to allow composing parametrisations—i.e.,

calling several times the method register_parametrization on the same tensor—and also finish the

implementation of register_parametrization in terms of the auxiliary methods presented here. We

spare the reader all those details, as they are a matter of a few lines of software engineering, and they are

not particularly interesting. A fully working implementation can be found in

https://github.com/Lezcano/geotorch/blob/master/geotorch/parametrize.py

All these ideas have been submitted to be added to core PyTorch, and it is currently being discussed in

https://github.com/pytorch/pytorch/pull/33344

It is hoped to be accepted and merged into core PyTorch in the next release (1.9.0).

6.2.2.5 Class system

In this section, we will touch on the class system designed for GeoTorch. The idea here is to abstract

most of the patterns used in the context of optimisation on manifolds into Python constructions.

Before starting with the explanation, it is worth quickly summarising what we have accomplished so

far: We have a way of injecting a function to parametrise a tensor in our model.

This may not seem like too much on its own, but it is truly powerful tool due two main reasons and a

third one that allows to put them together.

1. The whole PyTorch package is designed around being able to define differentiable functions as classes

inheriting from nn.Module.

2. We have detailed in Chapters 3 and 4 how fibred manifolds provide a compositional way to pullback

problems via pre-composing by frames and post-composing by submersions.

3. Python’s inheritance system is designed around pre and post-composition of functions (decoration

of methods).

We shall now show how to put these three ideas together to implement a class system on manifolds that

uses optimisation simple manifolds to perform optimisation on more complex ones. We will do it again

continuing our example of orthogonal optimisation, extending it to non-square orthogonal optimisation.

Example 6.2.4 (Stiefel manifold). At the moment, we have the following implementation of a map

from Rn×n to SO(n) via the Riemannian exponential map, which can be injected into any parameter of a

model.
1 class SO(nn. Module):
2 def __init__ (self , n):
3 super (). __init__ ()
4 # Initialise self.base to a matrix sampled according to the Haar measure on SO(n)
5 self. register_buffer ("base", nn.init. orthogonal_ (torch . empty (n, n)))
6

128

https://github.com/Lezcano/geotorch/blob/master/geotorch/parametrize.py
https://github.com/pytorch/pytorch/pull/33344

7 def frame (self , X):
8 X = X.tril (-1)
9 return X - X.T

10

11 def exponential (self , B, A):
12 return B @ torch . matrix_exp (A)
13

14 def forward (self , X):
15 A = self. frame (X)
16 return self. exponential (self.base , A)

Listing 6.8: Final version of the parametrisation of SO(n)

Note that the map has two separate maps: A linear frame, and the computation of the Riemannian

exponential. Denote the frame that we have used to map the lower-triangular part of a matrix onto a

skew-symmetric matrix as

frame_skew : Rn×n → Skew(n)

The SO class defined in Listing 6.8 can then be defined mathematically denoting Q = self.base as

LQ ◦ expm ◦frame_skew : Rn×n → SO(n)

Let us now implement optimisation on St(n, k) based on this. Recall that the tangent space of the

Stiefel manifold at a point Q ∈ St(n, k) may be identified with m ⊆ so(n) ∼= Skew(n) (Section 3.5.1),

where m is given by

m =
{(S −Aᵀ

A 0n−k,n−k

) ∣∣∣ S ∈ so(k), A ∈ R(n−k)×k
}
.

To implement optimisation on St(n, k), we just have to embed a matrix Rn×k into m. We may do this

by simply considering the map ι : Rn×k → Rn×n that given a matrix appends an n× (n− k) matrix of

zeros to it. If we then denote by π : SO(n)→ St(n, k) the projection of a matrix onto its first k columns,

we have that we may implement optimisation on St(n, k) as

expSt(n,k)
U = π ◦ expSO(n)

U
◦ι = π ◦ LU ◦ expm ◦frame_skew ◦ ι.

In particular, we may reuse all the implementation of SO(n) to implement the exponential on St(n, k)

and simply implement ι and π.
1 class Stiefel (SO):
2 def __init__ (self , n, k):
3 super (). __init__ (n)
4 self.n = n
5 self.k = k
6

7 def frame (self , X):
8 # X \in R^{n x k}
9 # We embed X into R^{n x n} by forming Y = [X, 0] \in R^{n x n}

10 Y = torch .cat ([X, X. new_zeros (self.n, self.n - self.k)], dim =1)
11 return super (). frame (Y)
12

13 def exponential (self , B, A):
14 U_total = super (). exponential (B, A)
15 # Project onto the first k components
16 return U_total [:, :self.k]

Listing 6.9: Stiefel manifold from SO(n)

Furthermore, the Riemannian gradients at U = π(U) may be obtained by letting the autodiff engine

differentiate the mapping at zero, as we have previously mentioned.

129

Example 6.2.5 (Grassmannian). It should be clear that there is nothing special about the Stiefel

manifold in this construction. For example, we could go one step further and implement the exponential

on the Grassmannian manifold in terms of that of the Stiefel manifold in just two lines. We start by

recalling that, for the Grassmannian

m =
{(0k,k −Aᵀ

A 0n−k,n−k

) ∣∣∣A ∈ R(n−k)×k
}
,

that is, it is the same set as that of the Stiefel manifold but with the top square zeroed-out. As such,

to parametrise the Grassmannian in terms of the Stiefel manifold, we simply have to implement the

embedding ι2 that, given a matrix in Rn×k, zeroes out its first k rows, so that ι ◦ ι2 is a map from Rn×k

onto the set m from the Grassmannian. This translates to the code:
1 class Grassmannian (Stiefel):
2 def frame (self , X):
3 # X \in R^{n x k}, we zero -out its first k rows
4 Y = torch .cat ([X. new_zeros (self.k, self.k) , X[self.k:, :]] , dim =0)
5 return super (). frame (Y)

Listing 6.10: Grassmannian manifold from St(n, k)

Note that these three lines of code provide a complete implementation of the Riemannian exponential

map on the Grassmannian.

More generally, this idea of composing on the right by a linear immersion and composing on the left

by a map—preferably a submersion—is a very flexible one. Consider now that we have implemented the

Stiefel manifold and optimisation on R>0 (which can be done by pulling back the problem to R). We can

then form the submersion
π : SO(n)× Rn>0 × SO(n)→ GL+(n)

U,Σ, V 7→ UΣV ᵀ

The immersion for this map would simply be the map that splits a matrix into its strictly lower-triangular,

strictly upper triangular and diagonal parts, while the submersion is the multiplication map.

This pattern of using fibred spaces together with product spaces allows for a rather compact imple-

mentation of optimisation on virtually any manifold. We implement a class that, given a list of manifolds,

creates a product manifold. This is as simple as writing the following functor
1 class ProductManifold (nn. ModuleList):
2 def forward (self , Xs):
3 return tuple (mani(X) for mani , X in zip(self , Xs))

Listing 6.11: Implementation of a product manifold

Through the abstraction of a ProductManifold, Python’s inheritance, and the mathematical description

of the Riemannian exponential and submersions as a concatenation of linear immersions and submersions,

we were able to keep the implementation of every manifold to less than 20 lines on average with no

code duplication. All the manifolds support the dynamic trivialisation framework so, in particular, they

implement static trivialisations and rgd with no extra work.

130

6.3 Exponential Recurrent Neural Networks (exprnn / dtriv)

Given a sequence of inputs (x1, . . . , xT) with xi ∈ Rk, we define an orthogonal exponential rnn

(exprnn) with hidden size d > 0 as

ht = σ(expm(A)ht−1 + Cxt), t = 1, . . . , T

where A ∈ Skew(d), C ∈ Rd×k are parameters of the model and σ is a non-linearity. This equation is

exactly that of a regular rnn (Definition 2.3.4) using the matrix exponential to impose orthogonality

constraints on the recurrent kernel.

We also define the dynamic trivialisation architecture (dtriv), which rather than using the Lie

exponential uses the Riemannian exponential to pullback the problem

ht = σ(B expm(A)ht−1 + Cxt), t = 1, . . . , T

where B ∈ SO(n) is a fixed matrix—we do not optimise B. In general, we write dtrivK for K ∈

{1, 2, . . .} ∪ {∞} for the case where we update base B after K steps. This is an instance of the dynamic

trivialisation framework (Algorithm 1) with stopping rule stop ≡ k = K. For the case dtriv∞, we

recover the rule stop ≡ False, that is, dtriv∞ is effectively a static-trivialisation along expB0 for a fixed

matrix B0 ∈ SO(n). In particular, if B0 = In, dtriv∞ recovers exprnn.

Note that generalising this architecture to the complex unitary case simply accounts for considering A

to be skew-Hermitian rather than skew-symmetric and letting B ∈ U(n). Note that this same pattern can

be used on any naturally reductive homogeneous space, lifting the problem to the linear space m of the

Lie algebra of the total space.

This split the study of these models in three parts which will be treated in three different sections:

1. The approximation of expm

2. The choice of non-linearity σ

3. The initialisation of the model

But before delving into these, we start by reviewing the previous approaches used in literature to

enforce exact orthogonal constraints in this kind of models.

6.3.1 Comparison with previous approaches

A number of approaches have been presented to perform optimisation with orthogonal and unitary

constraints in the context of rnns previous to the introduction of the static and dynamic trivialisation

framework. These approaches can be separated into two main categories: Those that use rgd and those

that parametrise the special orthogonal group using unconstrained parameters. The latter ones are

pullback problems along maps from Rk for some k > 0. As there are no submersions between R
n(n−1)

2

and SO(n)—since this map would be a covering map, and the universal cover of SO(n) is not trivial—we

know that such maps will have singularities or will not be surjective. We will comment on these properties

for some of these algorithms.

131

6.3.1.1 Riemannian Gradient Descent (rgd)

This approach was used in the papers (Wisdom et al. 2016; Vorontsov et al. 2017). Recall that the

update step for rgd in SO(n) with step-size η > 0 and a map ϕ : so(n)→ SO(n) is given by

Bt+1 = Btϕ(−ηBᵀ
t ∇f(Bt)),

that is, we use the Lie group structure to construct the step map rB := LB ◦ ϕ ◦ (dLB)∗. If (dϕ)0 = Id,

then rB is a retraction

In these two papers, they perform this update step using a variation of the Cayley map as the retraction

ϕ : so(n)→ SO(n)

A 7→
In + 1

2A

In − 1
2A

.

rgd presents the issue of needing a step map that lies exactly on the manifold. In the case of SO(n),

we need a function ϕ whose output lies exactly on the manifold. Our static-trivialisation approach does

not require this, allowing for the use of approximations to the matrix exponential on Skew(n) whose

result is not orthogonal, like truncating the Taylor series of the matrix exponential at a low degree. These

approaches could be useful when the efficiency of the parametrisation is more important in comparison to

the orthogonality of the resulting matrix.

A related problem of rgd arises from the numerical approximations inherently present in numerical

algorithms. The Cayley map—and sometimes the matrix exponential—is often computed as a solution

of a system of the form BX = C. For example, in the case of the Cayley map, we set C = In + 1
2A,

B = In − 1
2A. These systems are solved via an lu decomposition and the solution of two triangular

systems, which gives an approximate solution. As such, the resulting matrix is not exactly orthogonal

due to numerical and rounding errors. To account for this loss of orthogonality, implementations of rgd

perform a projection onto SO(n) after certain number of iterations. The orthogonal projection onto SO(n)

for a matrix B ∈ Rn×n is given by a projection onto the orthogonal component of its polar decomposition.

This is sometimes implemented through the svd decomposition B = UΣV ᵀ as

πSO(n)(B) = UV ᵀ.

Leaving aside the fact that this is a fairly expensive operation on a gpu, this projected gradient descent is

problematic when doing non-convex optimisation. Recall that rnns are particularly bad-behaved functions,

as discussed in Section 6.1.1. As such, the projection step often results on a great increase on the value of

the objective function, often precluding the convergence of the algorithm.

6.3.1.2 Parametrisations

There are four main parametrisations of the orthogonal and unitary group presented in the literature

that have been used to maintain the orthogonality of layers within a neural network.

132

Unitary rnn (urnn) (Arjovsky, Shah, and Bengio 2016) This was the first paper to introduce

unitary constraints to tackle the vanishing and exploding gradient problem in rnns. It parametrises U(n)

using the following product of matrices

B = D3T2F−1D2ΠT1FD1.

Dk = diag(eiωk) where ωk ∈ Rn are parameters. Tk = In − 2vk⊗vk‖vk‖2 where vk ∈ Rn are parameters. F

and F−1 are Fourier transform and inverse Fourier transform matrices. Π is a fixed permutation matrix.

The final matrix B is unitary since it is a product of unitary matrices. One of the problems of this

parametrisation is that it cannot represent every unitary matrix as dimR(U(n)) = n2, while the model

has just 5n parameters.

Efficient Unitary nn (eunn) (Jing et al. 2017) This paper tried to address this surjectivity

problem that urnn presents by proposing a different parametrisation. Their parametrisation is based on

the decomposition of a unitary matrix via Givens rotations

B = D

N∏
i=2

i−1∏
j=1

Ri,j ,

where Ri,j are Givens rotation matrices and D = diag(eiω) for a parameter ω ∈ Rn. They propose an

efficient computation of this decomposition using ideas related to the fast Fourier transform (fft), having

B as a product of log(n) matrices. They do not provide any guarantee for the critical points of this

parametrisation.

Householder reflections (Mhammedi et al. 2017) In this case, the authors propose to parametrise

O(n) by using a product of n Householder reflections

B =
n∏
i=1

[
In − 2vi ⊗ vi

‖vi‖2
]
.

This is a surjective parametrisation of the matrices in O(n) with determinant (−1)n. On the other hand,

it presents a number of problems.

Given that this parametrisation is not locally unique, it will inherently have critical points on those

points. For example, this happens at points where vi = vj for i 6= j, or more generally, at points at which

the matrix V = (v1/‖v1‖, . . . , vn/‖vn‖) is singular.

Another problem that this parametrisation has is that it is not defined at vi = 0. This may induce

unstable gradients around those points. We believe that this is the reason why different papers have

reported that they were not able to reproduce the results of the experiments presented in this paper. We

also observed that this parametrisation does not work well in practice. As such, we will not include it in

the comparison in the experiments.

Remark 6.3.1 (Parametrisations as long products of matrices). These three parametrisations

have a problem in common: They are all given by a product of matrices. For this reason, whenever the

parameters are updated, one has to compute the product of matrices sequentially, which is rather costly

in a gpu. This is a problem that our parametrisation does not present.

133

Remark 6.3.2 (Complex parametrisations). Some of these parametrisations only work in the complex

case, like those involving the fft. This created the artificial burden of having to implement complex-valued

layers. At the moment of this writing, the support for complex valued networks in PyTorch is rather

limited, so putting this extraneous constraints in the model may heavily hinder the adoption of these

parametrisations.

Scaled Orthogonal / Unitary rnn (scornn / scurnn) (Helfrich, Willmott, and Ye 2018;

Maduranga, Helfrich, and Ye 2019) These parametrisations are the closest in spirit to ours. They

use the Cayley transform as a map between so(n) and SO(n) and pullback the problem to so(n) (resp. u(n)

and U(n)). The problem with this map is that orthogonal matrices which have −1 as an eigenvalue are

not covered by the map. On the other hand, this does not seem to be particularly problematic in practice.

Even then, they implement certain overparametrisation trick in the papers to deal with this case,

although it is not clear whether the performance gain that they get comes from the soundness of their

trick or the fact that, because of this trick, their model has some extra structure and is overparametrised.

Matrix Exponential (Hyland and Rätsch 2017) This paper presented a basic version of the idea

of using the matrix exponential to map u(n) surjectively onto U(n). On the other hand, the authors write:

The matrix exponential appearing in Equation 7 poses an issue for gradient calculations. In

general, the derivative of the matrix exponential does not have a closed-form expression, so

computing gradients is intractable.

It turns out that this claim is not accurate, as we will show in the following section.

6.3.2 The exponential map on a gpu

Most of both the theoretical and practical work in this thesis uses the matrix exponential as the main

building block. In this section, we will look at how to efficiently implement this map on a gpu.

There are a myriad of methods to approximate the exponential of a matrix (Moler and Van Loan 1978;

Moler and Van Loan 2003). Some of the most important ones are the following:

Diagonal Padé approximants. Diagonal Padé approximants, or simply Padé approximants, are

rational approximations of the form expm(A) ≈ pn(A)qn(A)−1 for polynomials pn, qn of degree n. A Padé

approximant of degree n agrees with the Taylor expansion of the exponential to degree 2n. It is easy to

show that the diagonal Padé approximant of the exponential map applied to a skew-symmetric matrix is

always orthogonal. In particular, the Padé approximant of degree 1 is the Cayley map. These methods

and their implementations are described in detail in (Higham 2009).

Taylor approximants. A Taylor approximant simply accounts for truncating the series defining the

matrix exponential at a given term. These methods had been historically disregarded in the literature in

favour of the Padé approximants as on cpu, they are slower than their Padé counterparts.

134

Scale-squaring trick. The error of the Padé approximant scales as O(‖A‖2n+1). If ‖A‖ > 1 and we

have an approximant ψ, the scale-squaring trick accounts for computing ψ(A2k)2k for the first k = 0, 1, . . .

such that ‖A‖2k < 1
2 to lower the norm of the matrix fed into the approximant. Most types of approximants,

like Padé’s or Taylor’s, can be coupled with the scale-squaring trick to reduce the error (Higham 2009).

Machine-precision approximant. Combining one of the approximants together with the scale-

squaring trick, and bounding the error, it is possible to get an efficient approximation of the exponential

to machine-precision. The one implemented in most standard numerical libraries is based on the pa-

per (Al-Mohy and Higham 2009). It accounts for an efficient use of the scale-squaring trick and a Padé

approximant, in the sense of trying to compute the lowest degree Padé approximant such that it gives an

error less than the machine-precision.

On the other hand, we note that the fact that the Padé approximant is faster than the Taylor

approximant due to its lower degree is no longer true in the context of gpus. On a gpu, solving a system

of the form BX = C with B = qn(A) and C = pn(A) is much slower than performing a few more matrix

multiplications. This idea is leveraged in the paper (Bader, Blanes, and Casas 2019). The authors factor

the Taylor approximants to compute them using the smallest possible number of multiplications. By doing

so, together with a careful backwards analysis of the algorithm, they are able to provide an algorithm

that needs of at most 5 matrix multiplications to compute any approximant.

We implemented this algorithm in PyTorch, and we were able to get a ×6 speed-up in matrices of

size 1024 × 1024 over the Padé approximant. We also helped Nikitaved, a PyTorch core developer, to

implement this algorithm natively on cuda, obtaining a further ×2.5 speed improvement, totalling a

×14.5 speed-up against the Padé approximant.

We compare in Tables 6.2 and 6.3 the efficiency of the Padé approximant on gpu compared with an

optimised implementation of the algorithm from (Bader, Blanes, and Casas 2019). We can see that, on

sizes of 1024× 1024 we get a speed-up of ×14.5 with respect to the Padé implementation.

This implementation is even faster than the usual retraction used on SO(n), the Cayley map, as we can

see in Table 6.4. We see that for larger sizes, the matrix exponential is still faster than the Cayley map. We

see this even though the lu decomposition needed for the Cayley map is implemented entirely in Magma

which handles batching in parallel, while the exponential map simply handles the batch sequentially.

For reference, all the tests were implemented in the PyTorch benchmark framework to ensure the

accuracy of the results.5

Machine-precision gradients. These algorithms give an approximation to the matrix exponential,

but we still need to approximate its adjoint. We showed that this accounts for computing the differential

of expm: gl(n)→ GL+(n) at the transpose (Theorem 4.4.12). To finish the implementation, we use the

following theorem to approximate the differential of an analytic matrix function.
5https://pytorch.org/docs/master/benchmark_utils.html

135

https://pytorch.org/docs/master/benchmark_utils.html

Batch 64× 64 256× 256 1024× 1024
16 0.7 0.6 11.1
32 0.7 1.0 22.2
64 0.7 1.7 44.3
128 0.7 3.1 88.9

Table 6.2: Machine-precision matrix exponential
on gpu. Used the current implementation in Py-
Torch 1.7.0. Times in milliseconds.

Batch 64× 64 256× 256 1024× 1024
16 1.4 4.0 195.0
32 1.4 6.0 347.0
64 1.5 10.6 557.0
128 1.5 24.0 1288.0

Table 6.3: Padé approximant on gpu. Used
the current implementation in Tensorflow 2.3.0.
Times in milliseconds.

Batch 64× 64 256× 256 1024× 1024
16 0.5 2.5 24.1
32 0.5 2.8 34.6
64 0.5 3.6 55.6
128 0.6 5.7 100.0

Table 6.4: Cayley map on gpu implemented in
PyTorch 1.7.0. Times in milliseconds.

Theorem 6.3.3 (Differential of a Matrix Function (Mathias 1996)). Let U ⊆ C be open and let

ψ : U → C be an analytic function. Let X ∈ C be a matrix with spectrum contained in U then, for any

A ∈ Cn×n, denoting by the same letter the associated matrix function, we have that

ψ

(
X A
0 X

)
=
(
ψ(X) (dψ)X(A)

0 ψ(X)

)
.

From Theorems 4.4.12 and 6.3.3 we have that, if we know how to approximate an analytic matrix

function, such as the matrix exponential, we can approximate its adjoint on matrices of size n × n by

computing the value of the function on a 2n× 2n matrix.

This way, we can use the fast matrix exponential implementation to implement its adjoint. We helped

to implement the matrix exponential in PyTorch. It is now part of PyTorch 1.7.0, so all these ideas are

open to be used by the machine learning community.

6.3.3 Non-linearities

As we already pointed out in Section 6.1.1, the non-linearity used in the recurrent neural network has

a big influence on the vanishing-gradient problems. We see the interaction of the non-linearity with the

gradient when we compute the differential of the loss function with respect to the hidden states

∂`

∂hi
= ∂`

∂hT

T−1∏
t=i

Dt+1B.

where Dt = diag(σ′(zt)) and zt+1 = Bht + Cxt+1. Given that in our case B is orthogonal, there is a

trade-off between the deviation of σ from a function with |σ′(x)| = 1 and some possible exploding or

vanishing gradient problems suffered by the rnn.

In the simplest case, we could choose σ(x) = x. The resulting rnn works surprisingly well for many

examples, but falls short when used in more complex experiments, like the timit experiment presented

in Section 6.4.

136

In the paper that introduced the unitary rnn (Arjovsky, Shah, and Bengio 2016), the authors

introduced the modrelu non-linearity

modrelub : C→ C

z 7→ z

|z|
relu(|z|+ b)

where relu(x) := max(x, 0) is the rectified linear unit and b ∈ Rn is a parameter. This is the non-linearity

that was used for this model in all the other papers mentioned before. As such, it will be the one that we

will use in our experiments.

Even then, we also propose a novel non-linearity that explicitly models the trade-off between being

close to the identity and expressiveness. We define the dynamic soft shrink function as

dynsoftshrinka,b(x) =


x+ b(a− 1) for x > b

ax for x ∈ [−b, b]
x− b(a− 1) for x < −b.

for two parameters a ∈ R, b ∈ R≥0. In other words, this non-linearity is continuous, piecewise linear, and

has constant derivative 1 outside of the interval [−b, b] and derivative a inside of this interval. We initialise

it to b = 0.5, a = 1, so that initially dynsoftshrink1,0.5(x) = x.

Even though we will not show experiments with this non-linearity in Section 6.4, as the purpose of

that section is to compare the orthogonality optimisation process, we report here that have seen large

improvements when using this non-linearity instead of the modrelu. That being said, we leave the design

of better recurrent models for further research.

6.3.4 Initialisation

For the initialisation of the layer with a matrix A0 ∈ Skew(p), we drew ideas from (Henaff, Szlam, and

LeCun 2016). The initialisations considered sample blocks of the form(
0 −si
si 0

)
.

for si i.i.d. with respect to some probability measure on [−π, π] and then form A0 as a block-diagonal

skew-symmetric matrix with these blocks.6

The uniform initialisation accounts for sampling si ∼ U [−π, π]. This defines a block-diagonal orthogonal

matrix expm(A) with uniformly distributed blocks on half of the torus of block-diagonal 2× 2 rotations.

Initialising the matrix on the main torus seemed to help convergence when compared with other less

spare measures such as the Haar measure and others. This was already noted in (Henaff, Szlam, and

LeCun 2016). While we do not have a theoretical explanation for this phenomenon, we hypothesise that

such initialisation, that acts locally in two coordinates at a time, couples well with the element-wise

non-linearities that are present in the rnn.

We chose h0 = 0 as the initial hidden vector of the rnn for simplicity, as we did not observe any

empirical improvement when using the initialisation given in (Arjovsky, Shah, and Bengio 2016).
6Recall that exp(2πA) = exp(A) for A ∈ Skew(n) since the eigenvalues of a skew-symmetric matrix are purely imaginary.

137

6.4 Experiments

In this section, we assess the effectiveness of the exponential rnn (exprnn) and dynamic trivialisations

using the matrix exponential (dtrivK) in the context of orthogonal optimisation in rnns. We test the

dynamic trivialisations with the basis changed every K = 1, 100,∞ steps.

We compare the performance of our parametrisation for orthogonal rnns with the following approaches:

• Long short-term memory (lstm) (Hochreiter and Schmidhuber 1997).

• Unitary Recurrent Neural Networks (urnn) (Arjovsky, Shah, and Bengio 2016).

• Efficient Unitary Recurrent Neural Network (eunn) (Jing et al. 2017).

• Real Cayley Parametrisation (scornn) (Helfrich, Willmott, and Ye 2018).

• Complex Cayley Parametrisation (scurnn) (Maduranga, Helfrich, and Ye 2019).

• Riemannian Gradient Descent (rgd) (Wisdom et al. 2016).

Remark 6.4.1. Note that (stochastic) rgd is equivalent to dtriv1 together with the optimiser sgd.

Furthermore, exprnn is equivalent dtriv∞ with B = In and ϕ = expm, while dtriv∞ has the base at

a randomly sampled matrix. At the same time, scornn and scurnn fall into the context of dynamic

trivialisations, but using B = In and the Cayley map as a retraction.

We use three tasks that have become standard to measure the performance of rnns and their ability

to deal with long-term dependencies. These are the copying memory task, the pixel-permuted mnist task,

and the speech prediction on the timit dataset (Arjovsky, Shah, and Bengio 2016; Wisdom et al. 2016;

Henaff, Szlam, and LeCun 2016; Mhammedi et al. 2017; Helfrich, Willmott, and Ye 2018).

Remark 6.4.2. We found empirically that having a learning rate for the orthogonal parameters that

is between 5–10 times larger than that of the non-orthogonal parameters yields a good performance in

practice.

For the other experiments, we executed the code that the other authors provided with the best

hyperparameters that they reported and a batch of 128. The results for eunn are those reported in (Jing

et al. 2017), and for rgd and urnn are those reported in (Helfrich, Willmott, and Ye 2018).

The code with the exact configuration and seeds to replicate these results can be found here:

https://github.com/Lezcano/expRNN

6.4.1 Copying memory task

The copying memory task was first proposed in (Hochreiter and Schmidhuber 1997). The task can

be defined as follows. Let A = {ai}Ai=1 be an alphabet and let <blank>, <start> be two symbols not

contained in A. For a sequence length of S and a spacing of length L, the input sequence would be S

ordered characters (b1, b2, . . . , bS) sampled i.i.d. uniformly at random from A, followed by L repetitions

of the character <blank>, the character <start> and finally S − 1 repetitions of the character <blank>

again. The output for this sequence would be S +L times the <blank> character and then the sequence of

138

https://github.com/Lezcano/expRNN

0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

0.00

0.01

0.02

0.03

0.04

C
ro

ss
en

tr
op

y

Baseline

EURNN

LSTM

scoRNN

expRNN

0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

0.000

0.005

0.010

0.015

0.020

C
ro

ss
en

tr
op

y

Baseline

EURNN

LSTM

scoRNN

expRNN

Figure 6.2: Cross entropy of the different algorithms in the copying problem for L = 1000 (left) and
L = 2000 (right).

characters (b1, b2, . . . , bS). In other words, the system has to recall the initial S characters and reproduce

them after detecting the input of the character <start>, which appears L time-steps after the end of

the input characters. For example, for A = 4, S = 5, L = 8, if we represent <blank> with a dash and

<start> with a colon, and the alphabet A = {1, 2, 3, 4}, the following sequences could be an element of

the (synthetic) dataset:

Input: 14221--------:----
Output: -------------14221

The loss function for this task is the cross entropy. The standard baseline for this task is the output of

S + L <blank> symbols, followed by the remaining S symbols being outputted at random. This strategy

yields a cross entropy of S log(A)/(L+ 2S).

In the experiments we set A = 9, S = 10, as it was done in the previous papers.

We observe that the training of scornn is unstable, which is probably due to the degeneracies

explained in Section 6.3.1. In the follow-up paper (Maduranga, Helfrich, and Ye 2019), scurnn presents

the same instabilities as its predecessor. As explained in Section 6.3.1, exprnn does not suffer from

this, and can be observed in our experiments as a smoother convergence. In the more difficult problem,

L = 2000, exprnn is the only architecture that is able to fully converge to the correct answer.

6.4.2 Pixel-by-pixel mnist

Table 6.5 is structured so that architectures with the same number of parameters are compared

together. The number n represents that we are working with a matrix of hidden size n× n.

In this experiment we observed that exprnn and dtriv models were able to saturate the capacity of

the orthogonal rnn model for this task much faster than any other parametrisation, as per Table 6.5. We

conjecture that coupling the exponential parametrisation with an lstm cell or a gru cell would yield a

superior architecture. We leave this for future research.

As we can see, the addition of any dynamic trivialisation to the Lie parametrisation improves the

results on this experiment by 0.4% out of the 1.3% possible in the largest size. Moreover, it always improves

the previous results, suggesting that it is always a better option to use dynamic trivialisations rather

139

0 10 20 30 40 50 60 70

Epochs

0.80

0.85

0.90

0.95

1.00

T
es

t
A

cc
u

ra
cy

LSTM n=256

scoRNN n=170

scoRNN n=360

scoRNN n=512

expRNN n=170

expRNN n=360

expRNN n=512

0 10 20 30 40 50 60 70

Epochs

0.80

0.85

0.90

0.95

1.00

T
es

t
A

cc
u

ra
cy

LSTM n=256

scoRNN n=170

scoRNN n=360

scoRNN n=512

expRNN n=170

expRNN n=360

expRNN n=512

Figure 6.3: Test losses for several models on pixel-by-pixel mnist (left) and permuted mnist (right).

than just plain trivialisations. In general, we saw that dtriv100 and dtriv∞ gave the highest stability

and the best results across the experiments. We conjecture that this is due to the fact that changing too

often the base is detrimental for the accumulated momentum and adaptive term that the algorithm stores

internally.

6.4.3 timit speech dataset

We performed speech prediction on audio data with our model. We used the timit speech dataset (Garo-

folo et al. 1993) which is a collection of real-world speech recordings. The task accounts for predicting the

log-magnitude of incoming frames of a short-time Fourier transform as it was first proposed in (Wisdom

et al. 2016).

We use the separation in train / test proposed in (Garofolo et al. 1993), having 3640 utterances for the

training set, a validation set of size 192, and a test set of size 400. The validation / test division and the

whole preprocessing of the dataset was done according to (Wisdom et al. 2016). The preprocessing goes

as follows: The data is sampled at 8kHz and then cut into time frames of the same size. These frames

are then transformed into the log-magnitude Fourier space and finally, they are normalised according

to a per-training set, test set, and validation set basis. The result of this process gives sequences of 129

complex numbers per step, and a variable length between 61 and 490.

In this experiment we see a similar behaviour of the dynamic trivialisations as the one already seen in

the mnist and p-mnist experiments. We also see in this experiment that dtriv100 and dtriv∞ always

improve the performance of their static counterparts with base at the identity (exprnn). They also greatly

improve over vanilla rgd.

Remark 6.4.3 (Computing the correct loss on timit). As a side note, we must say that the

results in this experiment should be interpreted under the following fact: We had access to two of the

implementations for the tests for the other architectures regarding this experiment, and neither of them

correctly handled sequences with different lengths present in this experiment. We suspect that the other

implementations followed a similar approach, given that the results that they get are of the same order. In

particular, the implementation released by Wisdom, which is the only publicly available implementation

140

Table 6.5: Best test accuracy at mnist and
p-mnist.

Model n mnist p-mnist

dtriv1 170 98.3 95.2
dtriv100 170 98.2 95.1
dtriv∞ 170 98.1 95.0
exprnn 170 98.0 94.9
scornn 170 97.2 94.8
scurnn 116 97.6 94.9
lstm 128 81.9 79.5
rgd 116 94.7 92.5
eunn 512 − 93.7
urnn 512 97.6 94.5

dtriv1 360 98.4 96.3
dtriv100 360 98.8 96.4
dtriv∞ 360 98.9 96.5
exprnn 360 98.4 96.2
scornn 360 98.1 95.9
scurnn 250 98.3 96.2
lstm 256 88.8 88.8
rgd 256 96.1 93.9
urnn 2170 98.4 95.3

dtriv1 512 98.7 96.7
dtriv100 512 99.1 96.7
dtriv∞ 512 99.0 96.8
exprnn 512 98.7 96.6
scornn 512 98.2 96.5
lstm 512 91.9 91.8
rgd 512 97.3 94.7

Table 6.6: Test mse at the end of the epoch with
the lowest validation mse for the timit task.

Model n Val. mse Test mse

dtriv1 224 6.55 6.54
dtriv100 224 4.80 4.77
dtriv∞ 224 4.75 4.71
exprnn 224 5.34 5.30
scornn 224 9.26 8.50
scurnn 128 9.42 7.23
lstm 84 15.42 14.30
rgd 128 15.07 14.58
eunn 158 15.57 18.51

dtriv1 322 4.56 4.55
dtriv100 322 3.80 3.76
dtriv∞ 322 3.39 3.76
exprnn 322 4.42 4.38
scornn 322 8.48 7.82
lstm 120 13.93 12.95
rgd 192 15.10 14.50
eunn 256 15.90 15.31

dtriv1 425 4.21 4.17
dtriv100 425 2.02 1.99
dtriv∞ 425 2.00 1.97
exprnn 425 5.52 5.48
scornn 425 7.97 7.36
scurnn 258 4.40 3.39
eunn 378 16.00 15.15
lstm 158 13.66 12.62
rgd 256 14.96 14.69

of this experiment, divides by a larger number than it should when computing the average mse of a batch,

hence reporting a lower mse than the correct one. Even in this unfavourable scenario, our parametrisation

is able to get results that are twice as good—the mse loss function is a quadratic function—as those from

the other architectures.

In the experiments in scurnn they explicitly mention that they are computing the mse without

discarding the zeros used to pad the variable-length sequences (Maduranga, Helfrich, and Ye 2019). As

such, when computing the mse, they are dividing by an incorrect number—the longest element in the

batch times the elements in the batch—rather than by the correct one—the sum of the lengths of all the

elements in the batch. We computed the correct validation and test loss in Table 6.6.

141

Bibliography

Absil, Pierre-Antoine, Robert Mahony, and Rodolphe Sepulchre (2009). Optimization algorithms on matrix
manifolds. Princeton University Press. isbn: 978-0-691-13298-3. doi: 10.1515/9781400830244.

Agarwal, Naman et al. (2020). “Adaptive regularization with cubics on manifolds”. In: Mathematical
Programming. issn: 0025-5610. doi: 10.1007/s10107-020-01505-1.

Ahn, Kwangjun and Suvrit Sra (2020). “From Nesterov’s estimate sequence to Riemannian acceleration”.
In: Conference on Learning Theory, COLT, pp. 84–118.

Alexandrino, Marcos M. and Renato G. Bettiol (2015). Lie groups and geometric aspects of isometric
actions. Springer. isbn: 978-3-319-16612-4. doi: 10.1007/978-3-319-16613-1.

Allen-Zhu, Zeyuan (2018). “Natasha 2: Faster non-convex optimization than SGD”. In: Advances in
Neural Information Processing Systems, NeurIPS, pp. 2680–2691.

Allen-Zhu, Zeyuan and Yuanzhi Li (2018). “Neon2: Finding local minima via first-order oracles”. In:
Advances in Neural Information Processing Systems, NeurIPS, pp. 3720–3730.

Ambrose, Warren Arthur, Richard Sheldon Palais, and Isadore Manuel Singer (1960). “Sprays”. In: Anais
da Academia Brasileira de Ciências 32, pp. 163–178. issn: 0001-3765.

Arjovsky, Martin, Amar Shah, and Yoshua Bengio (2016). “Unitary evolution recurrent neural networks”.
In: International Conference on Machine Learning, ICML, pp. 1120–1128.

Arora, Sanjeev, Nadav Cohen, and Elad Hazan (2018). “On the optimization of deep networks: Implicit
acceleration by overparameterization”. In: International Conference on Machine Learning, ICML,
pp. 244–253.

Arsigny, Vincent, Olivier Commowick, et al. (2006). “A log-Euclidean framework for statistics on dif-
feomorphisms”. In: International Conference on Medical Image Computing and Computer-Assisted
Intervention, MICCAI, pp. 924–931.

Arsigny, Vincent, Pierre Fillard, et al. (2006). “Geometric means in a novel vector space structure on
symmetric positive-definite matrices”. In: SIAM Journal on Matrix Analysis and Applications 29.1,
pp. 328–347. issn: 0895-4798. doi: 10.1137/050637996.

Bačák, Miroslav (2014). Convex analysis and optimization in Hadamard spaces. Vol. 22. Nonlinear Analysis
and Applications. De Gruyter, Berlin. isbn: 978-3-11-036103-2. doi: 10.1515/9783110361629.

Bader, Philipp, Sergio Blanes, and Fernando Casas (2019). “Computing the matrix exponential with an
optimized Taylor polynomial approximation”. In: Mathematics 7.12. issn: 2227-7390. doi: 10.3390/
math7121174.

Bah, Bubacarr et al. (2019). “Learning deep linear neural networks: Riemannian gradient flows and
convergence to global minimizers”. In: arXiv: 1910.05505.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural machine translation by jointly
learning to align and translate”. In: International Conference on Learning Representations, ICLR.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2, pp. 157–166. issn:
1045-9227. doi: 10.1109/72.279181.

Bento, Glaydston C., Orizon P. Ferreira, and Jefferson G. Melo (2017). “Iteration-complexity of gradient,
subgradient and proximal point methods on Riemannian manifolds”. In: Journal of Optimization
Theory and Applications 173.2, pp. 548–562. issn: 0022-3239. doi: 10.1007/s10957-017-1093-4.

Bérard-Bergery, Lionel (1975). “Sur certaines fibrations d’espaces homogènes riemanniens”. In: Compositio
Mathematica 30, pp. 43–61. issn: 0010-437X.

Berg, Rianne van den et al. (2018). “Sylvester normalizing flows for variational inference”. In: Uncertainty
in Artificial Intelligence, UAI, pp. 393–402.

Berger, Marcel (1960). “Sur quelques variétés riemanniennes suffisamment pincées”. In: Bulletin de la
Société Mathématique de France 88, pp. 57–71. issn: 0037-9484. doi: 10.24033/bsmf.1543.

142

https://doi.org/10.1515/9781400830244
https://doi.org/10.1007/s10107-020-01505-1
https://doi.org/10.1007/978-3-319-16613-1
https://doi.org/10.1137/050637996
https://doi.org/10.1515/9783110361629
https://doi.org/10.3390/math7121174
https://doi.org/10.3390/math7121174
https://arxiv.org/abs/1910.05505
https://doi.org/10.1109/72.279181
https://doi.org/10.1007/s10957-017-1093-4
https://doi.org/10.24033/bsmf.1543

Besse, Arthur L. (2008). Einstein manifolds. Classics in Mathematics. Reprint of the 1987 original. Springer.
isbn: 978-3-540-74120-6. doi: 10.1007/978-3-540-74311-8.

Bloch, Anthony M. and Arieh Iserles (2005). “Commutators of skew-symmetric matrices”. In: International
Journal of Bifurcation and Chaos in Applied Sciences and Engineering 15.3, pp. 793–801. issn: 0218-
1274. doi: 10.1142/S0218127405012417.

Bonnabel, Silvère (2013). “Stochastic gradient descent on Riemannian manifolds”. In: IEEE Transactions
on Automatic Control 58.9, pp. 2217–2229. issn: 0018-9286. doi: 10.1109/TAC.2013.2254619.

Boumal, Nicolas, Pierre-Antoine Absil, and Coralia Cartis (2019). “Global rates of convergence for
nonconvex optimization on manifolds”. In: IMA Journal of Numerical Analysis 39.1, pp. 1–33. issn:
0272-4979. doi: 10.1093/imanum/drx080.

Boumal, Nicolas, Bamdev Mishra, et al. (2014). “Manopt, a MATLAB toolbox for optimization on
manifolds”. In: Journal of Machine Learning Research, JMLR 15.1, pp. 1455–1459. issn: 1533-7928.
doi: 10.5555/2627435.2638581.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex optimization. Cambridge University Press. isbn:
0-521-83378-7. doi: 10.1017/CBO9780511804441.

Brockett, Roger Ware (1972). “System theory on group manifolds and coset spaces”. In: SIAM Journal on
Control and Optimization 10.2, pp. 265–284. issn: 0363-0129. doi: 10.1137/0310021.

Brown, Tom B. et al. (2020). “Language models are few-shot learners”. In: Advances in Neural Information
Processing Systems, NeurIPS.

Bubeck, Sébastien and Nicolò Cesa-Bianchi (2012). “Regret analysis of stochastic and nonstochastic
multi-armed bandit problems”. In: Foundations and Trends in Machine Learning 5.1, pp. 1–122. issn:
1935-8237. doi: 10.1561/2200000024.

Buchner, Michael A. (1977). “Simplicial structure of the real analytic cut locus”. In: Proceedings of the
American Mathematical Society 64.1, pp. 118–121. issn: 0002-9939. doi: 10.2307/2040994.

Burer, Samuel and Renato D. C. Monteiro (2003). “A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization”. In: Mathematical Programming 95.2, Ser. B, pp. 329–
357. issn: 0025-5610. doi: 10.1007/s10107-002-0352-8.

— (2005). “Local minima and convergence in low-rank semidefinite programming”. In: Mathematical
Programming 103.3, Ser. A, pp. 427–444. issn: 0025-5610. doi: 10.1007/s10107-004-0564-1.

Carmon, Yair et al. (2017). “‘Convex until proven guilty’: Dimension-free acceleration of gradient descent
on non-convex functions”. In: International Conference on Machine Learning, ICML, pp. 654–663.

— (2020). “Lower bounds for finding stationary points I”. In: Mathematical Programming 184.1–2, pp. 71–
120. issn: 0025-5610. doi: 10.1007/s10107-019-01406-y.

Cartan, Élie (1928). Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars.
— (1946). Leçons sur la géométrie des espaces de Riemann. Second. Gauthier-Villars.
Cartis, Coralia, Nicholas I. M. Gould, and Philippe L. Toint (2010). “On the complexity of steepest descent,

Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems”. In:
SIAM Journal on Optimization 20.6, pp. 2833–2852. issn: 1052-6234. doi: 10.1137/090774100.

Chavel, Isaac (1970). “A class of Riemannian homogeneous spaces”. In: Journal of Differential Geometry
4, pp. 13–20. issn: 0022-040X. doi: 10.4310/jdg/1214429272.

Cheeger, Jeff and David Gregory Ebin (2008). Comparison theorems in Riemannian geometry. Reprint of
the 1975 original. AMS Chelsea Publishing. isbn: 978-0-8218-4417-5. doi: 10.1090/chel/365.

Chentsov, Nikolai N. (1956). “Weak convergence of stochastic processes whose trajectories have no
discontinuities of the second kind and the ‘heuristic’ approach to the Kolmogorov–Smirnov tests”. In:
SIAM Theory of Probability and Its Applications 1.1, pp. 140–144. issn: 0040-585X. doi: 10.1137/
1101013.

Chung, Junyoung et al. (2014). “Empirical evaluation of gated recurrent neural networks on sequence
modeling”. In: arXiv: 1412.3555.

Ciresan, Dan Claudiu et al. (2010). “Deep, big, simple neural nets for handwritten digit recognition”. In:
Neural Computation 22.12, pp. 3207–3220. issn: 0899-7667. doi: 10.1162/NECO_a_00052.

Cohen, Taco S. and Max Welling (2016). “Group equivariant convolutional networks”. In: International
Conference on Machine Learning, ICML, pp. 2990–2999.

Collobert, Ronan et al. (2011). “Natural language processing (almost) from scratch”. In: Journal of Machine
Learning Research, JMLR 12, pp. 2493–2537. issn: 1533-7928. doi: 10.5555/1953048.2078186.

Criscitiello, Chris and Nicolas Boumal (2019). “Efficiently escaping saddle points on manifolds”. In:
Advances in Neural Information Processing Systems, NeurIPS, pp. 5985–5995.

Cybenko, G. (1989). “Approximation by superpositions of a sigmoidal function”. In: Mathematics of
Control, Signals, and Systems 2.4, pp. 303–314. issn: 0932-4194. doi: 10.1007/BF02551274.

143

https://doi.org/10.1007/978-3-540-74311-8
https://doi.org/10.1142/S0218127405012417
https://doi.org/10.1109/TAC.2013.2254619
https://doi.org/10.1093/imanum/drx080
https://doi.org/10.5555/2627435.2638581
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1137/0310021
https://doi.org/10.1561/2200000024
https://doi.org/10.2307/2040994
https://doi.org/10.1007/s10107-002-0352-8
https://doi.org/10.1007/s10107-004-0564-1
https://doi.org/10.1007/s10107-019-01406-y
https://doi.org/10.1137/090774100
https://doi.org/10.4310/jdg/1214429272
https://doi.org/10.1090/chel/365
https://doi.org/10.1137/1101013
https://doi.org/10.1137/1101013
https://arxiv.org/abs/1412.3555
https://doi.org/10.1162/NECO_a_00052
https://doi.org/10.5555/1953048.2078186
https://doi.org/10.1007/BF02551274

Deng, Jia et al. (2009). “ImageNet: A large-scale hierarchical image database”. In: Conference on Computer
Vision and Pattern Recognition, CVPR, pp. 248–255.

Du, Simon S. et al. (2017). “Gradient descent can take exponential time to escape saddle points”. In:
Advances in Neural Information Processing Systems, NeurIPS, pp. 1067–1077.

Duchi, John C., Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods for online learning
and stochastic optimization”. In: Journal of Machine Learning Research, JMLR 12.Jul, pp. 2121–2159.
issn: 1533-7928. doi: 10.5555/1953048.2021068.

Dudley, Richard M. (1967). “The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes”. In: Journal of Functional Analysis 1, pp. 290–330. doi: 10.1016/0022-1236(67)90017-1.

Edelman, Alan, Tomás A. Arias, and Steven Thomas Smith (1998). “The geometry of algorithms with
orthogonality constraints”. In: SIAM Journal on Matrix Analysis and Applications 20.2, pp. 303–353.
issn: 0895-4798. doi: 10.1137/S0895479895290954.

Ehresmann, Charles (1952). “Les connexions infinitésimales dans un espace fibré différentiable”. In:
Séminaire Bourbaki: Années 1948–1951, exposés 1-49. Ed. by Nicolas Bourbaki. Séminaire Bourbaki 1.
Talk 24. Société mathématique de France, pp. 153–168.

Eichhorn, Jürgen (1991). “The boundedness of connection coefficients and their derivatives”. In: Mathe-
matische Nachrichten 152, pp. 145–158. issn: 0025-584X. doi: 10.1002/mana.19911520113.

Eldan, Ronen and Ohad Shamir (2016). “The power of depth for feedforward neural networks”. In:
Conference on Learning Theory, COLT, pp. 907–940.

Eldering, Jaap (2012). “Persistence of noncompact normally hyperbolic invariant manifolds in bounded
geometry”. In: Comptes Rendus Mathématique. Académie des Sciences. Paris 350.11-12, pp. 617–620.
issn: 1631-073X. doi: 10.1016/j.crma.2012.06.009.

Eschenburg, Jost-Hinrich (1994). Comparison theorems in Riemannian geometry. Dipartimento di Matem-
atica: Lecture notes series. Università delli studi di Trento, Dipartimento di matematica.

Eschenburg, Jost-Hinrich and Ernst Heintze (1990). “Comparison theory for Riccati equations”. In:
Manuscripta Mathematica 68.2, pp. 209–214. issn: 0025-2611. doi: 10.1007/BF02568760.

Falorsi, Luca et al. (2019). “Reparameterizing distributions on Lie groups”. In: International Conference
on Artificial Intelligence and Statistics, AISTATS, pp. 3244–3253.

Ferreira, Orizon P., Mauricio Silva Louzeiro, and Leandro F. Prudente (2019). “Iteration-complexity of
the subgradient method on Riemannian manifolds with lower bounded curvature”. In: Optimization
68.4, pp. 713–729. issn: 0233-1934. doi: 10.1080/02331934.2018.1542532.

Ferreira, Orizon P. and Benar F. Svaiter (2002). “Kantorovich’s theorem on Newton’s method in Riemannian
manifolds”. In: Journal of Complexity 18.1, pp. 304–329. issn: 0885-064X. doi: 10.1006/jcom.2001.
0582.

França, Guilherme, Michael Irwin Jordan, and René Vidal (2020). “On dissipative symplectic integration
with applications to gradient-based optimization”. In: arXiv: 2004.06840.

Fukushima, Kunihiko and Sei Miyake (1982). “Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition”. In: Proceedings of the U.S.-Japan Seminar in Competition and
Cooperation in Neural Nets (Kyoto). Springer, pp. 267–285. doi: 10.1016/0031-3203(82)90024-3.

Gallier, Jean and Jocelyn Quaintance (2020). Differential geometry and Lie groups. A computational
perspective. University of Pennsylvania. url: https://www.seas.upenn.edu/~jean/diffgeom-spr-
I.pdf.

Garofolo, John S. et al. (1993). DARPA TIMIT acoustic phonetic continuous speech corpus. LDC Catalog
No. LDC93S1. doi: 10.35111/17gk-bn40.

Ge, Jianquan (2014). “DDVV-type inequality for skew-symmetric matrices and Simons-type inequality
for Riemannian submersions”. In: Advances in Mathematics 251, pp. 62–86. issn: 0001-8708. doi:
10.1016/j.aim.2013.10.010.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training deep feedforward
neural networks”. In: International Conference on Artificial Intelligence and Statistics, AISTATS,
pp. 249–256.

Goodfellow, Ian J., Yoshua Bengio, and Aaron C. Courville (2016). Deep learning. The MIT Press. isbn:
978-0-262-03561-3. doi: 10.1038/nature14539.

Goodfellow, Ian J., Jean Pouget-Abadie, et al. (2014). “Generative adversarial nets”. In: Advances in
Neural Information Processing Systems, NeurIPS, pp. 2672–2680.

Graves, Alex, Greg Wayne, and Ivo Danihelka (2014). “Neural Turing machines”. In: arXiv: 1410.5401.
Greene, Robert E. (1978). “Complete metrics of bounded curvature on noncompact manifolds”. In: Archiv

der Mathematik 31.1, pp. 89–95. issn: 0003-889X. doi: 10.1007/BF01226419.

144

https://doi.org/10.5555/1953048.2021068
https://doi.org/10.1016/0022-1236(67)90017-1
https://doi.org/10.1137/S0895479895290954
https://doi.org/10.1002/mana.19911520113
https://doi.org/10.1016/j.crma.2012.06.009
https://doi.org/10.1007/BF02568760
https://doi.org/10.1080/02331934.2018.1542532
https://doi.org/10.1006/jcom.2001.0582
https://doi.org/10.1006/jcom.2001.0582
https://arxiv.org/abs/2004.06840
https://doi.org/10.1016/0031-3203(82)90024-3
https://www.seas.upenn.edu/~jean/diffgeom-spr-I.pdf
https://www.seas.upenn.edu/~jean/diffgeom-spr-I.pdf
https://doi.org/10.35111/17gk-bn40
https://doi.org/10.1016/j.aim.2013.10.010
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1410.5401
https://doi.org/10.1007/BF01226419

Gromov, Mikhael (1981). Structures métriques pour les variétés riemanniennes. Textes Mathématiques.
CEDIC, Paris. isbn: 2-7124-0714-8.

Gulliver, Robert (1975). “On the variety of manifolds without conjugate points”. In: Transactions of the
American Mathematical Society 210, pp. 185–201. issn: 0002-9947. doi: 10.2307/1997131.

Hamming, Richard Wesley (1962). Numerical methods for scientists and engineers. International Series in
Pure and Applied Mathematics. McGraw-Hill.

Handel, Ramon van (2014). Probability in high dimension. Princeton univesity. url: https://web.math.
princeton.edu/~rvan/APC550.pdf.

Helfrich, Kyle E., Devin Willmott, and Qiang Ye (2018). “Orthogonal recurrent neural networks with
scaled Cayley transform”. In: International Conference on Machine Learning, ICML, pp. 1974–1983.

Helgason, Sigurður (1978). Differential geometry, Lie groups, and symmetric spaces. Vol. 80. Academic
Press. isbn: 0-12-338460-5.

Henaff, Mikael, Arthur Szlam, and Yann LeCun (2016). “Recurrent orthogonal networks and long-memory
tasks”. In: International Conference on Machine Learning, ICML, pp. 2034–2042.

Hermann, Robert (1960). “A sufficient condition that a mapping of Riemannian manifolds be a fibre
bundle”. In: Proceedings of the American Mathematical Society 11, pp. 236–242. issn: 0002-9939. doi:
10.2307/2032963.

Higham, Nicholas J. (2008). Functions of matrices: Theory and computation. Vol. 104. SIAM. isbn:
978-0-89871-646-7. doi: 10.1137/1.9780898717778.

— (2009). “The scaling and squaring method for the matrix exponential revisited”. In: SIAM Review
51.4, pp. 747–764. issn: 0036-1445. doi: 10.1137/090768539.

Hildebrandt, Stefan, Jürgen Jost, and Kjell-Ove Widman (1980). “Harmonic mappings and minimal
submanifolds”. In: Inventiones Mathematicae 62.2, pp. 269–298. issn: 0020-9910. doi: 10.1007/
BF01389161.

Hinton, Geoffrey Everest et al. (2012). “Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups”. In: IEEE Signal Processing Magazine 29. issn: 1053-5888.
doi: 10.1109/MSP.2012.2205597.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural Computation
9.8, pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Hornik, Kurt (1991). “Approximation capabilities of multilayer feedforward networks”. In: Neural Networks
4.2, pp. 251–257. issn: 0893-6080. doi: 10.1016/0893-6080(91)90009-T.

Huang, Lei et al. (2018). “Orthogonal weight normalization: Solution to optimization over multiple
dependent Stiefel manifolds in deep neural networks”. In: AAAI Conference on Artificial Intelligence,
pp. 3271–3278.

Huang, Wen, Kyle A. Gallivan, and Pierre-Antoine Absil (2015). “A Broyden class of quasi-Newton
methods for Riemannian optimization”. In: SIAM Journal on Optimization 25.3, pp. 1660–1685. issn:
1052-6234. doi: 10.1137/140955483.

Huang, Yanping et al. (2019). “GPipe: Efficient training of giant neural networks using pipeline parallelism”.
In: Advances in Neural Information Processing Systems, NeurIPS, pp. 103–112.

Hyland, Stephanie L. and Gunnar Rätsch (2017). “Learning unitary operators with help from u(n)”. In:
AAAI Conference on Artificial Intelligence, pp. 2050–2058.

Iserles, Arieh, Hans Z. Munthe-Kaas, et al. (2000). “Lie-group methods”. In: Acta Numerica 9, pp. 215–365.
issn: 0962-4929. doi: 10.1017/S0962492900002154.

Iserles, Arieh and Syvert P. Nørsett (1999). “On the solution of linear differential equations in Lie groups”.
In: Philosophical Transactions of the Royal Society of London. Series A 357.1754, pp. 983–1019. issn:
1364-503X. doi: 10.1098/rsta.1999.0362.

Itoh, Jin-ichi and Minoru Tanaka (1998). “The dimension of a cut locus on a smooth Riemannian manifold”.
In: Tohoku Mathematical Journal 50.4, pp. 571–575. issn: 0040-8735. doi: 10.2748/tmj/1178224899.

Jing, Li et al. (2017). “Tunable efficient unitary neural networks (EUNN) and their application to RNNs”.
In: International Conference on Machine Learning, ICML, pp. 1733–1741.

Jost, Jürgen (2017). Riemannian geometry and geometric analysis. Seventh. Springer. isbn: 978-3-319-
61859-3. doi: 10.1007/978-3-319-61860-9.

Kalchbrenner, Nal and Phil Blunsom (2013). “Recurrent continuous translation models”. In: Conference
on Empirical Methods in Natural Language Processing, EMNLP, pp. 1700–1709.

Kankaanrinta, Marja (2005). “Proper smooth G-manifolds have complete G-invariant Riemannian metrics”.
In: Topology and its Applications 153.4, pp. 610–619. issn: 0166-8641. doi: 10.1016/j.topol.2005.
01.034.

145

https://doi.org/10.2307/1997131
https://web.math.princeton.edu/~rvan/APC550.pdf
https://web.math.princeton.edu/~rvan/APC550.pdf
https://doi.org/10.2307/2032963
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/090768539
https://doi.org/10.1007/BF01389161
https://doi.org/10.1007/BF01389161
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1137/140955483
https://doi.org/10.1017/S0962492900002154
https://doi.org/10.1098/rsta.1999.0362
https://doi.org/10.2748/tmj/1178224899
https://doi.org/10.1007/978-3-319-61860-9
https://doi.org/10.1016/j.topol.2005.01.034
https://doi.org/10.1016/j.topol.2005.01.034

Karcher, Hermann (1970). “A short proof of Berger’s curvature tensor estimates”. In: Proceedings of the
American Mathematical Society 26, pp. 642–644. issn: 0002-9939. doi: 10.2307/2037127.

Kasai, Hiroyuki, Hiroyuki Sato, and Bamdev Mishra (2018). “Riemannian stochastic recursive gradient
algorithm with retraction and vector transport and its convergence analysis”. In: International
Conference on Machine Learning, ICML, pp. 2521–2529.

Kaul, Helmut (1976). “Schranken für die Christoffelsymbole”. In: Manuscripta Mathematica 19.3, pp. 261–
273. issn: 0025-2611. doi: 10.1007/BF01170775.

Kingma, Diederik P. and Jimmy Lei Ba (2015). “Adam: A method for stochastic optimization”. In:
International Conference on Learning Representations, ICLR.

Kingma, Diederik P. and Prafulla Dhariwal (2018). “Glow: Generative flow with invertible 1x1 convolutions”.
In: Advances in Neural Information Processing Systems, NeurIPS, pp. 10215–10224.

Kingma, Diederik P. and Max Welling (2014). “Auto-encoding variational Bayes”. In: International
Conference on Learning Representations, ICLR.

Kobayashi, Shoshichi and Katsumi Nomizu (1963). Foundations of differential geometry. Vol. I. John
Wiley & Sons.

— (1969). Foundations of differential geometry. Vol. II. John Wiley & Sons.
Kowalski, Oldřich (1980). Generalized symmetric spaces. Vol. 805. Lecture Notes in Mathematics. Springer.

isbn: 3-540-10002-4.
Kozlov, Sergei E. (2000). “Geometry of real Grassmann manifolds. Part III”. In: Journal of Mathematical

Sciences 100.3, pp. 2254–2268. issn: 1072-3374. doi: 10.1007/s10958-000-0009-1.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey Everest Hinton (2012). “ImageNet classification with deep

convolutional neural networks”. In: Advances in Neural Information Processing Systems, NeurIPS,
pp. 1106–1114.

Kuznetsova, Alina et al. (2020). “The open images dataset V4”. In: International Journal of Computer
Vision 128.7, pp. 1956–1981. issn: 0920-5691. doi: 10.1007/s11263-020-01316-z.

Lang, Serge (1999). Fundamentals of differential geometry. Vol. 191. Graduate Texts in Mathematics.
Springer. isbn: 0-387-98593-X. doi: 10.1007/978-1-4612-0541-8.

LeCun, Yann, Corinna Cortes, and Christopher C. J. Burges (1998). The MNIST database of handwritten
digits. Accessed: 2019-02-06. url: http://yann.lecun.com/exdb/mnist/.

Ledoux, Michel and Michel Talagrand (1991). Probability in Banach spaces. Isoperimetry and processes.
Vol. 23. Springer. isbn: 3-540-52013-9. doi: 10.1007/978-3-642-20212-4.

Lee, Jason D. et al. (2016). “Gradient descent only converges to minimizers”. In: Conference on Learning
Theory, COLT, pp. 1246–1257.

Lezcano-Casado, Mario (2019). “Trivializations for gradient-based optimization on manifolds”. In: Advances
in Neural Information Processing Systems, NeurIPS, pp. 9154–9164.

Lezcano-Casado, Mario and David Martínez-Rubio (2019). “Cheap orthogonal constraints in neural
networks: A simple parametrization of the orthogonal and unitary group”. In: International Conference
on Machine Learning, ICML, pp. 3794–3803.

Lichnerowicz, André (1958). Géométrie des groupes de transformations. Travaux et Recherches Mathéma-
tiques, III.

Lu, Zhiqin (2012). “Remarks on the Böttcher-Wenzel inequality”. In: Linear Algebra and its Applications
436.7, pp. 2531–2535. issn: 0024-3795. doi: 10.1016/j.laa.2011.09.016.

Luenberger, David G. (1972). “The gradient projection method along geodesics”. In: Management Science
18, pp. 620–631. issn: 0025-1909. doi: 10.1287/mnsc.18.11.620.

Maduranga, Kehelwala D. G., Kyle E. Helfrich, and Qiang Ye (2019). “Complex unitary recurrent neural
networks using scaled Cayley transform”. In: AAAI Conference on Artificial Intelligence, pp. 4528–
4535.

Magnus, Wilhelm (1954). “On the exponential solution of differential equations for a linear operator”. In:
Communications on Pure and Applied Mathematics 7.4, pp. 649–673. issn: 0010-3640. doi: 10.1002/
cpa.3160070404.

Mahoney, Matt (2006). Large text compression benchmark. Accessed: 18-12-2020. url: http://mattmaho
ney.net/dc/text.html.

Mahony, Robert and Jonathan H. Manton (2002). “The geometry of the Newton method on non-compact
Lie groups”. In: Journal of Global Optimization 23.3-4, pp. 309–327. issn: 0925-5001. doi: 10.1023/A:
1016586831090.

Manton, Jonathan H. (2015). “A framework for generalising the Newton method and other iterative
methods from Euclidean space to manifolds”. In: Numerische Mathematik 129.1, pp. 91–125. issn:
0029-599X. doi: 10.1007/s00211-014-0630-4.

146

https://doi.org/10.2307/2037127
https://doi.org/10.1007/BF01170775
https://doi.org/10.1007/s10958-000-0009-1
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/978-1-4612-0541-8
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-642-20212-4
https://doi.org/10.1016/j.laa.2011.09.016
https://doi.org/10.1287/mnsc.18.11.620
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html
https://doi.org/10.1023/A:1016586831090
https://doi.org/10.1023/A:1016586831090
https://doi.org/10.1007/s00211-014-0630-4

Massart, Estelle and Pierre-Antoine Absil (2020). “Quotient geometry with simple geodesics for the
manifold of fixed-rank positive-semidefinite matrices”. In: SIAM Journal on Matrix Analysis and
Applications 41.1, pp. 171–198. issn: 0895-4798. doi: 10.1137/18M1231389.

Mathias, Roy (1996). “A chain rule for matrix functions and applications”. In: SIAM Journal on Matrix
Analysis and Applications 17.3, pp. 610–620. issn: 0895-4798. doi: 10.1137/S0895479895283409.

McAlpin, John Harris (1965). “Infinite dimensional manifolds and Morse theory”. Ph.D. dissertation.
Columbia University.

Meghwanshi, Mayank et al. (2018). “McTorch, a manifold optimization library for deep learning”. In:
arXiv: 1810.01811.

Mhammedi, Zakaria et al. (2017). “Efficient orthogonal parametrisation of recurrent neural networks using
Householder reflections”. In: International Conference on Machine Learning, ICML, pp. 2401–2409.

Milnor, John Willard (1976). “Curvatures of left invariant metrics on Lie groups”. In: Advances in
Mathematics 21, pp. 293–329. issn: 0001-8708. doi: 10.1016/S0001-8708(76)80002-3.

Mishra, Bamdev et al. (2014). “Fixed-rank matrix factorizations and Riemannian low-rank optimization”.
In: Computational Statistics 29.3-4, pp. 591–621. issn: 0943-4062. doi: 10.1007/s00180-013-0464-z.

Al-Mohy, Awad H. and Nicholas J. Higham (2009). “A new scaling and squaring algorithm for the matrix
exponential”. In: SIAM Journal on Matrix Analysis and Applications 31.3, pp. 970–989. issn: 0895-4798.
doi: 10.1137/09074721X.

Moler, Cleve and Charles Van Loan (1978). “Nineteen dubious ways to compute the exponential of a
matrix”. In: SIAM Review 20.4, pp. 801–836. issn: 0036-1445. doi: 10.1137/1020098.

— (2003). “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later”. In:
SIAM Review 45.1, pp. 3–49. issn: 0036-1445. doi: 10.1137/S00361445024180.

Munthe-Kaas, Hans Z. and Olivier Verdier (2016). “Integrators on homogeneous spaces: Isotropy choice
and connections”. In: Foundations of Computational Mathematics 16.4, pp. 899–939. issn: 1615-3375.
doi: 10.1007/s10208-015-9267-7.

Murty, Katta G. and Santosh N. Kabadi (1987). “Some NP-complete problems in quadratic and nonlinear
programming”. In: Mathematical Programming 39.2, pp. 117–129. issn: 0025-5610. doi: 10.1007/
BF02592948.

Myers, Sumner Byron (1935). “Connections between differential geometry and topology I. Simply connected
surfaces”. In: Proceedings of the National Academy of Sciences of the United States of America 21.4,
p. 225. issn: 0012-7094. doi: 10.1215/S0012-7094-35-00126-0.

Myers, Sumner Byron and Norman Earl Steenrod (1939). “The group of isometries of a Riemannian
manifold”. In: Annals of Mathematics 40, pp. 400–416. issn: 0003-486X. doi: 10.2307/1968928.

Naber, Gregory L. (2011). Topology, geometry, and gauge fields. Second. Vol. 25. Texts in Applied
Mathematics. Springer. isbn: 978-1-4419-7253-8. doi: 10.1007/978-1-4419-7254-5.

Nemirovsky, Arkadi S. and David Berkovich Yudin (1983). Problem complexity and method efficiency in
optimization. Translated from the Russian. John Wiley & Sons. isbn: 0-471-10345-4. doi: 10.1137/
1027074.

Nesterov, Yurii (2004). Introductory lectures on convex optimization: A basic course. Vol. 87. Applied
Optimization. Kluwer Academic Publishers. isbn: 1-4020-7553-7. doi: 10.1007/978-1-4419-8853-9.

Nomizu, Katsumi (1954). “Invariant affine connections on homogeneous spaces”. In: American Journal of
Mathematics 76.1, pp. 33–65. issn: 0002-9327. doi: 10.2307/2372398.

Nomizu, Katsumi and Hideki Ozeki (1961). “The existence of complete Riemannian metrics”. In: Proceedings
of the American Mathematical Society 12.6, pp. 889–891. issn: 0002-9939. doi: 10.2307/2034383.

O’Neill, Barrett (1966). “The fundamental equations of a submersion”. In: Michigan Mathematical Journal
13, pp. 459–469. issn: 0026-2285. doi: 10.1307/mmj/1028999604.

— (1983). Semi-Riemannian geometry. Vol. 103. Pure and Applied Mathematics. Academic Press. isbn:
0-12-526740-1.

Ott, Myle et al. (2018). “Scaling neural machine translation”. In: Conference on Machine Translation,
WMT, pp. 1–9. doi: 10.18653/v1/w18-6301.

Ozay, Mete and Takayuki Okatani (2016). “Optimization on submanifolds of convolution kernels in CNNs”.
In: arXiv: 1610.07008.

Palais, Richard Sheldon (1961). “On the existence of slices for actions of non-compact Lie groups”. In:
Annals of Mathematics 73, pp. 295–323. issn: 0003-486X. doi: 10.2307/1970335.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). “On the difficulty of training recurrent
neural networks”. In: International Conference on Machine Learning, ICML, pp. 1310–1318.

Petersen, Peter (2016). Riemannian geometry. Third. Graduate Texts in Mathematics. Springer. isbn:
978-3-319-26652-7. doi: 10.1007/978-3-319-26654-1.

147

https://doi.org/10.1137/18M1231389
https://doi.org/10.1137/S0895479895283409
https://arxiv.org/abs/1810.01811
https://doi.org/10.1016/S0001-8708(76)80002-3
https://doi.org/10.1007/s00180-013-0464-z
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/1020098
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1007/s10208-015-9267-7
https://doi.org/10.1007/BF02592948
https://doi.org/10.1007/BF02592948
https://doi.org/10.1215/S0012-7094-35-00126-0
https://doi.org/10.2307/1968928
https://doi.org/10.1007/978-1-4419-7254-5
https://doi.org/10.1137/1027074
https://doi.org/10.1137/1027074
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.2307/2372398
https://doi.org/10.2307/2034383
https://doi.org/10.1307/mmj/1028999604
https://doi.org/10.18653/v1/w18-6301
https://arxiv.org/abs/1610.07008
https://doi.org/10.2307/1970335
https://doi.org/10.1007/978-3-319-26654-1

Rasmussen, Carl Edward and Christopher K. I. Williams (2005). Gaussian processes for machine learning.
Adaptive Computation and Machine Learning. The MIT Press. isbn: 978-0-262-18253-9.

Rauch, Harry Ernest (1951). “A contribution to differential geometry in the large”. In: Annals of
Mathematics 54, pp. 38–55. issn: 0003-486X. doi: 10.2307/1969309.

— (1959). Geodesics and curvature in differential geometry in the large. Yeshiva University, Graduate
School of Mathematical Sciences.

— (1966). “Geodesics and Jacobi equations on homogeneous Riemannian manifolds”. In: Proceedings of
the U.S.-Japan Seminar in Differential Geometry (Kyoto). Nippon Hyoronsha, Tokyo, pp. 115–127.

Al-Rfou, Rami et al. (2016). “Theano: A Python framework for fast computation of mathematical
expressions”. In: arXiv: 1410.5401.

Robbins, Herbert and Sutton Monro (1951). “A stochastic approximation method”. In: Annals of Mathe-
matical Statistics 22, pp. 400–407. issn: 0003-4851. doi: 10.1214/aoms/1177729586.

Rossmann, Wulf (2002). Lie groups: An introduction through linear groups. Oxford Graduate Texts in
Mathematics. Oxford University Press. isbn: 0-19-859683-9. doi: 10.1017/S0025557200174716.

Saon, George et al. (2017). “English conversational telephone speech recognition by humans and machines”.
In: INTERSPEECH, pp. 132–136.

Sard, Arthur (1965). “Hausdorff measure of critical images on Banach manifolds”. In: American Journal
of Mathematics 87, pp. 158–174. issn: 0002-9327. doi: 10.2307/2373229.

Sato, Hiroyuki, Hiroyuki Kasai, and Bamdev Mishra (2019). “Riemannian stochastic variance reduced
gradient algorithm with retraction and vector transport”. In: SIAM Journal on Optimization 29.2,
pp. 1444–1472. issn: 1052-6234. doi: 10.1137/17M1116787.

Scarselli, Franco et al. (2009). “The graph neural network model”. In: IEEE Transactions on Neural
Networks 20.1, pp. 61–80. issn: 1045-9227. doi: 10.1109/TNN.2008.2005605.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning: From theory to
algorithms. Cambridge University Press. isbn: 978-1-10-705713-5. doi: 10.1017/CBO9781107298019.

Smith, Steven Thomas (1993). “Geometric optimization methods for adaptive filtering”. Ph.D. dissertation.
Harvard University.

Spivak, Michael (1999). A comprehensive introduction to differential geometry. Third. Vol. III. Publish or
Perish. isbn: 978-0914098720.

Steenrod, Norman Earl (1951). The topology of fibre bundles. Princeton Mathematical Series, vol. 14.
Princeton University Press. doi: 10.1515/9781400883875.

Sun, Yue, Nicolas Flammarion, and Maryam Fazel (2019). “Escaping from saddle points on Riemannian
manifolds”. In: Advances in Neural Information Processing Systems, NeurIPS, pp. 7274–7284.

Talagrand, Michel (1987). “Regularity of Gaussian processes”. In: Acta Mathematica 159.1-2, pp. 99–149.
issn: 0001-5962. doi: 10.1007/BF02392556.

— (1992). “A simple proof of the majorizing measure theorem”. In: Geometric and Functional Analysis
2.1, pp. 118–125. issn: 1016-443X. doi: 10.1007/BF01895708.

— (1994). “Constructions of majorizing measures, Bernoulli processes and cotype”. In: Geometric and
Functional Analysis 4.6, pp. 660–717. issn: 1016-443X. doi: 10.1007/BF01896658.

Tomczak, Jakub M. and Max Welling (2016). “Improving variational auto-encoders using Householder
flow”. In: arXiv: 1611.09630.

Tripuraneni, Nilesh et al. (2018). “Averaging stochastic gradient descent on Riemannian manifolds”. In:
Conference on Learning Theory, COLT, pp. 650–687.

Vandereycken, Bart (2013). “Low-rank matrix completion by Riemannian optimization”. In: SIAM Journal
on Optimization 23.2, pp. 1214–1236. issn: 1052-6234. doi: 10.1137/110845768.

Vandereycken, Bart, Pierre-Antoine Absil, and Stefan Vandewalle (2013). “A Riemannian geometry with
complete geodesics for the set of positive semidefinite matrices of fixed rank”. In: IMA Journal of
Numerical Analysis 33.2, pp. 481–514. issn: 0272-4979. doi: 10.1093/imanum/drs006.

Vapnik, Vladimir Naumovich (1995). The nature of statistical learning theory. Springer. isbn: 978-1-4757-
2442-4. doi: 10.1007/978-1-4757-2440-0.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in Neural Information Processing
Systems, NeurIPS, pp. 5998–6008.

Vershynin, Roman (2018). High-dimensional probability: An introduction with applications in data science.
Vol. 47. Cambridge University Press. isbn: 9781108415194. doi: 10.1017/9781108231596.

Vilms, Jaak (1970). “Totally geodesic maps”. In: Journal of Differential Geometry 4.1, pp. 73–79. issn:
0022-040X. doi: 10.4310/jdg/1214429276.

Vorontsov, Eugene et al. (2017). “On orthogonality and learning recurrent networks with long term
dependencies”. In: International Conference on Machine Learning, ICML, pp. 3570–3578.

148

https://doi.org/10.2307/1969309
https://arxiv.org/abs/1410.5401
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1017/S0025557200174716
https://doi.org/10.2307/2373229
https://doi.org/10.1137/17M1116787
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1515/9781400883875
https://doi.org/10.1007/BF02392556
https://doi.org/10.1007/BF01895708
https://doi.org/10.1007/BF01896658
https://arxiv.org/abs/1611.09630
https://doi.org/10.1137/110845768
https://doi.org/10.1093/imanum/drs006
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1017/9781108231596
https://doi.org/10.4310/jdg/1214429276

Wengert, Robert E. (1964). “A simple automatic derivative evaluation program”. In: Communications of
the ACM 7.8, pp. 463–464. doi: 10.1145/355586.364791.

Wibisono, Andre, Ashia C. Wilson, and Michael Irwin Jordan (2016). “A variational perspective on
accelerated methods in optimization”. In: Proceedings of the National Academy of Sciences of the
United States of America 113.47, E7351–E7358. issn: 0027-8424. doi: 10.1073/pnas.1614734113.

Wilson, Ashia C. (2018). “Lyapunov arguments in optimization”. Ph.D. dissertation. U.C. Berkeley.
Wisdom, Scott et al. (2016). “Full-capacity unitary recurrent neural networks”. In: Advances in Neural

Information Processing Systems, NeurIPS, pp. 4880–4888.
Wong, Yung-chow (1968). “Sectional curvatures of Grassmann manifolds”. In: Proceedings of the National

Academy of Sciences of the United States of America 60, pp. 75–79. issn: 0027-8424. doi: 10.1073/
pnas.60.1.75.

Yu, Tao and Christopher De Sa (2019). “Numerically accurate hyperbolic embeddings using tiling-based
models”. In: Advances in Neural Information Processing Systems, NeurIPS, pp. 2021–2031.

Zhang, Hongyi, Sashank J. Reddi, and Suvrit Sra (2016). “Riemannian SVRG: Fast stochastic optimization
on Riemannian manifolds”. In: Advances in Neural Information Processing Systems, NeurIPS, pp. 4592–
4600.

Zhang, Jiong, Qi Lei, and Inderjit Dhillon (2018). “Stabilizing gradients for deep neural networks via
efficient SVD parametrization”. In: International Conference on Machine Learning, ICML, pp. 5801–
5809.

149

https://doi.org/10.1145/355586.364791
https://doi.org/10.1073/pnas.1614734113
https://doi.org/10.1073/pnas.60.1.75
https://doi.org/10.1073/pnas.60.1.75

	1 Introduction
	1.1 Why this Thesis?
	1.1.1 A practical reason
	1.1.2 A theoretical reason

	1.2 Contributions and Outline

	2 Machine Learning and Neural Networks
	2.1 Offline Statistical Learning
	2.1.1 Framework and terminology
	2.1.2 A note on statistical learning theory

	2.2 First Order Optimisation
	2.2.1 The complexity model
	2.2.2 Convex optimisation
	2.2.3 Non-convex optimisation

	2.3 Neural Network Architectures
	2.3.1 Neural networks
	2.3.2 Feedforward networks
	2.3.3 Recurrent neural networks (rnns)
	2.3.4 Why affine layers?
	2.3.4.1 Graphics Processing Units (gpus)
	2.3.4.2 Auto-differentiation: Forward and backward pass

	2.3.5 An implementation of a feedforward network

	3 Differential and Riemannian Geometry
	3.1 Fibred Manifolds
	3.2 Invariant Metrics and Principal Bundles
	3.3 Homogeneous Spaces
	3.4 Naturally Reductive Homogeneous Spaces
	3.5 Matrix Manifolds
	3.5.1 The Stiefel manifold
	3.5.2 The Grassmannian
	3.5.3 Symmetric positive definite matrices
	3.5.4 Fixed-rank matrices

	4 Fibred Manifolds in First Order Optimisation
	4.1 Optimisation on Manifolds
	4.2 Fibred Manifolds and First Order Structure
	4.3 Riemannian Submersions
	4.4 Static Trivialisations
	4.4.1 Diffeomorphisms
	4.4.2 The Riemannian exponential
	4.4.2.1 Hadamard manifolds
	4.4.2.2 The general case
	4.4.2.3 The adjoint of the Riemannian exponential

	4.5 Dynamic Trivialisations

	5 First and Second Order Bounds on the Riemannian Exponential
	5.1 Introduction
	5.1.1 The problem and overview of assumptions
	5.1.2 Previous work

	5.2 Differential Geometry: Conventions and Notation
	5.3 First Order Bounds for the Exponential Map
	5.3.1 Jacobi fields
	5.3.2 Parallel vector fields
	5.3.3 Rauch's theorem
	5.3.4 The law of cosines on manifolds

	5.4 Second Order Bounds for the Exponential Map
	5.4.1 The differential equation
	5.4.2 Manifolds of bounded geometry
	5.4.3 Curvature bounds
	5.4.4 A comparison lemma
	5.4.5 A second order version of Rauch's theorem

	5.5 Concrete Second Order Bounds
	5.5.1 Constant curvature
	5.5.2 Locally symmetric spaces

	5.6 Convergence Rates for Dynamic Trivialisations
	5.7 When Is a Retraction an Exponential Map?

	6 GeoTorch: A Library for Optimisation on Manifolds at Scale
	6.1 Orthogonal Constraints within Neural Networks
	6.1.1 Vanishing and exploding gradient problems
	6.1.2 Optimisation with orthogonal constraints

	6.2 GeoTorch
	6.2.1 Libraries for optimisation on manifolds
	6.2.2 The design of GeoTorch
	6.2.2.1 Reusing pre-existing classes
	6.2.2.2 Caching tensors
	6.2.2.3 Injecting properties into classes
	6.2.2.4 Initialising parametrisations
	6.2.2.5 Class system

	6.3 Exponential Recurrent Neural Networks (ExpRNN / DTriv)
	6.3.1 Comparison with previous approaches
	6.3.1.1 Riemannian Gradient Descent (rgd)
	6.3.1.2 Parametrisations

	6.3.2 The exponential map on a GPU
	6.3.3 Non-linearities
	6.3.4 Initialisation

	6.4 Experiments
	6.4.1 Copying memory task
	6.4.2 Pixel-by-pixel mnist
	6.4.3 timit speech dataset

	Bibliography

