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Abstract—We discuss the inadequacy of covari-
ances/correlations and other measures in L-2 as relative
distance metrics. We propose a computationally simple
heuristic to transform a map based on standard principal
component analysis (PCA) (when the variables are
asymptotically Gaussian) into an entropy-based map
where distances are based on mutual information (MI).
Rescaling PCA distances using MI allows a representation
of relative correlations. This entropy rescaled PCA,
while preserving order relationships, changes the relative
distances to make them linear to information.

Fig. 1. Transformation of PCA maps to accommodate informational distances

I. INTRODUCTION: THE PROBLEM OF CORRELATION

Correlation between two variables X and Y , even if we
assumed that both variables are normally distributed (or in the
class of rapid convergence to the normal, or "thin tailed" [1]),
does not adequately reflect the information distance between
them. This distortion becomes acute with Principal Component
Analysis, PCA, and the genetic two-dimensional maps where
there is a built-in correlation component.

For instance, if we are correlating 2 vectors X1 and X2

against Y (assuming it is the basis) the information does not
scale linearly (even though correlation reflects a measure of
the noise in a linear dependence). There must be some scaling
of the correlation metric. A .5 correlation is vastly inferior to,
say, .7.

A. Information and correlation
It has been shown that experts can be fooled by their

own metrics under nonlinearity hence the need to "linearize"
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Fig. 2. Entropy rescaled principal component analysis changes the relative
distances to make them linear to information. This is made possible thanks
to the information-theoretic optimality of the PCAs under thin-tailed distri-
butions.

whatever metric is used. For cognitive limitations by experts
are compounded by the nonlinearity of the measure; Soyer
et al [2] showed how great many econometricians, while
knowing their statistical equations down pat, don’t get the
real inferential and practical implications –all interpretation
errors go in one direction, the fooled by randomness one (i.e.
underestimation of noise). That 70 pct. of econometricians
misinterpreted their own results is quite telling. The corre-
sponding author has documented a version of the effect in [3]:
professionals and graduate students failed to realize that they
interpreted mean deviation as standard deviation, therefore
underestimating volatility, especially under fat tails.
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The only cure –visibly the level of statistical education
doesn’t help – is to avoid presenting nonlinear measures
and linearizing whatever is presented to the specialist
before the scientific implication.

Entropy methods being additive (unlike correlation) solve the
problem.

Not all fall for correlation as a relatively uninformational
metric. Machine learning loss functions rely on cross-entropy
methods [4]. Since DNA is, well, information, an information-
theoretic metric would be most certainly preferable to what is
in current standard use.

Since mutual information maps to "how much can I gamble
on X knowing Y ", its information-theoretic quality is most
applicable to genetic distance. Further, in addition to PCA
analysis, entropy methods are helpful to properly scale runs
of homozygosity (ROH) (that is, contiguous lengths of ho-
mozygous genotypes that are present in an individual due to
parents transmitting identical haplotypes to their offspring).

B. Correlation and additivity
It has been shown in [5] that correlation is not additive

across subsections of the domain under consideration –even
when the variables are Gaussian.

C. This discussion
In the rest of this discussion we propose a new way to

map PCs using mutual information. Conveniently, because
PCA vectors for Gaussian variables are orthogonal both for
correlation and mutual information, we can apply a simple
heuristic for the translation.

II. PCA
We observe that conventional principal component analysis

propose distances between groups and variables based on
representation on maps built as follows.

Let (X1, . . . , Xn) be the original vectors (in Rm), and
(π1, . . . , πn) the orthogonal principal components ordered by
decreasing variance. Two–dimensional principal component
representation typically maps Xi in Cartesian coordinates
according to a metric µ such that the coordinates become

di = (µ(Xi, πj), µ(Xi, πj′))

where typically j′ = j + 1. The same logic applies to three
dimensions.

The function µ(.) in common use is expressed by the dot
product < Xi, πj > scaled by 1

m−1 , or its decomposition via
the scaled correlation

µ(Xi, πj) = ρXi,πjσXiσπj (1)

and when the X are normalized,

µ(Xi, πj) = ρXi,πj
√
λj (2)

where λj is the eigenvalue associated with the principal
component πj .

We will revisit with a matrix notation expressing the sug-
gested transformations.

A. Mutual Information

We define IX,Y the mutual information between r.v.s X and
Y .

IX,Y =

∫
DX

∫
DY

f(x, y) log

(
f(x, y)

f(x)f(y)

)
dx dy (3)

and of course

log
f(x, y)

f(x)f(y)
= log

f(x|y)

f(x)
= log

f(y|x)

f(y)
.

In effect mutual information is the Kullback-Leibler diver-
gence between two distributions: the joint distribution f(x, y)
and the product f(x)f(y) evaluated with respect to the joint
distribution, [6].

We note some difficulties translating direct frequencies into
continuous functions but in our case the problem is solved
via the identity further down, allowing us to transfer from the
pairwise correlation.1

Proposition 1

Under normality, the orthogonal principal components
satisfy, for i, j ≤ m

Iπi,πj 6=i = 0.

Proof. For bivariate normal distributions [7], [8] (though not
all distributions in the elliptical class), uncorrelated means
independence. Let Σ be the covariance matrix for X,Y ∼
N (M,Σ) where M is a vector of means and

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

Assume M = (0, 0) to simplify. The PDFs are f(x) = e
− x2

2σ21√
2πσ1

;
the joint PDF:

f(x, y) =
exp

(
−σ

2
2x

2−2ρσ2σ1xy+σ
2
1y

2

2(1−ρ2)σ2
1σ

2
2

)
2πσ1σ2

√
(1− ρ2)

The parametrization ρ = 0 implies the identity f(x, y) =
f(x)f(y), namely that lack of correlation implies indepen-
dence, hence absence of mutual information between X and
Y , that is, IX,Y = 0.

We note that for other elliptical distributions, say the
multivariate Student T or Cauchy, ρ = 0 does not mean
independence [1]. For instance, for X,Y ∼ Multivariate
Student T (α, ρ), the mutual information Iα(X,Y ):

Iα(X,Y ) = −1

2
log
(
1− ρ2

)
+ λα (4)

where λα = − 2
α + log(α) + 2π(α + 1) csc(πα) +

2 log
(
B
(
α
2 ,

1
2

))
−(α+1)H−α2 +(α+1)H−α2−

1
2
−1−log(2π),

1Common practice consists is smoothing the kernel distribution then
computing the mutual information.
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where csc(.) is the cosecant of the argument, B(., .) is the beta
function and H(.)(r) is the harmonic number Hr

n =
∑n
i=1

1
ir

with Hn = H
(1)
n . We note that λα →

α→∞
0, the limit that

corresponds to the Gaussian case.
This makes the proposed heuristic more straightforward

than alternatives to PCA such as the t-distributed stochastic
neighbor embedding (t-SNE) method 2.

We also note Linsker’s result [9] showing that the conven-
tional PCA provides an information-theoretic optimality so
long as the noise is Gaussian.

ϕmetric

1-  (Y X)
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Mutual Information (truncated .99)
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Fig. 3. Various rescaling methods, linerarizing information and putting
correlation in perspective. The function φ is the "proportion of normal-
ized similarity" for Y given X . The function 1 − V(X|Y ) = 1 −
E
(
(X − E(X|Y ))2

∣∣Y )
represents the reduction in uncertainty of X know-

ing Y . While for large values there is no significant differences, these
measures suffer from problems in additivity; only mutual information escapes
such distortions.

Theorem 1
IX,Y is additive across partitions of DX and DY .

Proof. The result is immediate. We have:
IX,Y = E (log f(x, y))−E (log f(x))−E (log f(y)). Con-

sider the additivity of measures on subintervals.

B. Re-scaling PCA distances using Mutual Information

We note that regardless of parametrization of X and Y ,
when the distributions are jointly Gaussian with ρX,Y , IX,Y =
−(ρX,Y ) 1

2 log
(
1− ρ2

)
.

IX,Y the mutual information between r.v.s X and Y and
joint PDF f(., .), because of its additive properties, allows
a representation of relative correlations, via the re-scaling
function

rX,Y = −sgn(ρX,Y )
1

2
log
(
1− ρ2X,Y

)
; (5)

2We also note that the (standard) original stochastic neighbor embedding
technique does not reflect information-theoretic distances; its aim is to reduce
dimensionality.

see Figure 3 for details. Hence Eq. 2 can be modified for
rescaling (marked as µ′)

µ(Xi, πj)
′ = −sgn(ρXi,πj )

1

2
log
(

1− ρ2Xi,πj
)√

λi, (6)

as shown in Figs. 1 and 2.

C. In Matrix Notation

Using matrix notation, we can express the problem in the
following way. Centering and scaling in the correct order
yields a matrix suitable for computing correlations. We start
by defining a matrix G = (gij) features indexed by i ∈ Zm
samples, and j ∈ Zn. 3.

Theorem 2
Define

µi =
1

n− 1

∑
j∈Zn

gij , (7)

σii′ =
1

n− 1

∑
j∈Zn

(gij − µi)(gi′j − µi′), (8)

σ2
i = σii (9)

Z =

(
gij − µi
σi

)
(10)

ρii′ =
σii′

σiσi′
. (11)

Then ZZT = (n− 1) (ρii′).

Proof. ZZT =
(∑

j∈Zn
(gij−µi)(gi′j−µi′ )

σiσi′

)
= (n −

1)
(
σii′
σiσi′

)
= (n− 1) (ρii′).

Therefore the correlation matrix C may be represented 4 by
5

C = (ρii′) =
1

n− 1
ZZT = cov(Z,ZT). (12)

Theorem 3
C is symmetric and positive definite.

Proof. Since, for any vector w, the expression wTCw =
1

n−1 (ZTw)T (ZTw) ≥ 0, it follows C is positive definite.
Also, CT = 1

n−1 (ZZT)T = 1
n−1ZZT = C, and so is

symmetric.

3These features could be biallelic diploid SNPs coded in Z2
4The transpose aims at ascertaining that in some software programs such

as Mathematica, the eigenvectors are presented as the columns of the matrix.
5The centering by rows for genotypic analysis differs from Patterson[10],

but connforms with Price et al.[11]; the “smartpca” app computes the
appropriate correlations with “altnormstyle: NO”.
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The diagonalization of C provides a decomposition of the
feature vectors into an orthogonal set that spans the subspace
containing the samples.

Theorem 4

the UTZ rows are orthogonal, and the covariance
diagonal.

Proof. Given that C is positive definite and symmetric, C is
diagonalized by an orthonormal matrix U of the normalized
orthogonal eigenvectors to yield a diagonal matrix D, so
that CU = UD. S2 = (n − 1)D is in common usage
so that (ZZT)U = US2. Therefore D = UTCU =
cov((UTZ), (UTZ)T) = 1

n−1UTZZTU. Since D is diag-
onal, the UTZ rows are orthogonal, and the covariance D in
that basis is diagonal.

We can identify the n columns, m rows, matrix of n feature-
wise orthogonal principal components πi as:

P = UTZ (13)

Note that, since the covariances of the P are cov(P,PT) =
D is diagonal, the rows are orthogonal, as noted previously.
The matrix

V = (n− 1)−1/2D−1/2P = S−1UTZ (14)

is normalized so that VVT = I. V is half-orthornormal; the
transposes are not: VTV 6= I. The reason for this is that the
number of individual vectors of SNPs for the individuals in Z
does not span the space of SNP vectors since m� n. These
are the familiar matrices in the singular value decomposition

Z = USVT. (15)

This decomposition also shows that the vectors in VT repre-
sent an orthogonal basis in which Z can be represented, and
so spans the subspace spanned by Z.

Also cov(S,ST) = UTcov(Z,ZT)U will be useful.
We define the correlation matrix

M = cor(Z,PT) (16)

Then

Theorem 5

M = U. (17)

Proof. M = [cov(Z,ZT)]−1/2cov(Z,PT)[cov(P,PT)]−1/2.
Noting that cov(Z,ZT) = 1

n−1UTS2U, cov(P,PT) =
1

n−1S2, and cov(Z,PT) = 1
n−1ZZTU = 1

n−1US2, then
M = US−1UTUS2S−1 = U.

This is therefore the standard principal component matrix that
we expect, and, since this is a correlation, this may be re-
scaled as a mutual information. The information re-scaled
version M′ becomes

M′ = R(M) = R(U),

et voilà.

III. DISCUSSION

We showed how, under some conditions satisfied in popula-
tion genetics, to efficiently and effectively convert a principal
components based map to one representing information-based
distance.
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