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Abstract. The Linked Open Data (LOD) cloud contains tremendous
amounts of interlinked instances, from where we can retrieve abundant
knowledge. However, because of the heterogeneous and big ontologies, it
is time consuming to learn all the ontologies manually and it is difficult
to observe which properties are important for describing instances of a
specific class. In order to construct an ontology that can help users easily
access to various data sets, we propose a semi-automatic ontology inte-
gration framework that can reduce the heterogeneity of ontologies and
retrieve frequently used core properties for each class. The framework
consists of three main components: graph-based ontology integration,
machine-learning-based ontology schema extraction, and an ontology
merger. By analyzing the instances of the linked data sets, this framework
acquires ontological knowledge and constructs a high-quality integrated
ontology, which is easily understandable and effective in knowledge ac-
quisition from various data sets using simple SPARQL queries.

Keywords: Semantic Web, linked data, ontology integration, knowl-
edge acquisition, machine learning.

1 Introduction

The Linked Open Data (LOD) is a collection of machine-readable structured
data with over 31 billion Resource Description Framework (RDF) triples in-
terlinked by around 504 million SameAs links (as of Sep. 2011). Instances are
represented using the Uniform Resource Identifier (URI), and identical instances
are linked with the built-in OWL property owl:sameAs [3]. The Web Ontology
Language (OWL) is a semantic markup language developed as a vocabulary ex-
tension of the RDF with more vocabularies for describing properties and classes
[2]. RDF Schema is a simple vocabulary for describing properties and classes of
RDF resources. The OWL 2 Web Ontology Language [16] provides classes and
properties as the old OWL 1[2], but with richer data types, data ranges, and
disjoint properties, etc.

The LOD cloud has been growing rapidly over the past years and many Se-
mantic Web applications have been developed by accessing the linked data sets
[4]. However, in order to use the data sets, we have to understand their heteroge-
neous ontologies in advance. One possible solution for the ontology heterogeneity
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Fig. 1. Interlinked Instances of “France”.

problem is constructing a global ontology that integrates various ontologies in
the LOD cloud. Ontologies commonly consist of classes, properties, and rela-
tions between them. Although the built-in properties owl:equivalentClass and
owl:equivalentProperty are designed to link classes or properties with the same
concept, there are only few links at a class or property level [7]. Hence, it is
difficult to directly retrieve equivalent classes and properties for integrating on-
tologies of various data sets.

In order to integrate ontologies of various data sets, we need to identify re-
lated classes and properties of the ontologies. Since the same instances are linked
by owl:sameAs, we can create undirected graphs with the linked instances. Fig.
[[ shows the interlinked instances of “France” and each instance is described us-
ing properties and objects. As shown in Fig. [} all the properties (labeled on
the dotted line) connected with the grey boxes (objects) represent the name of
“France” and the properties connected to the black boxes represent the popula-
tion. By analyzing the graph patterns, we can observe how the same classes and
properties are represented differently in various data sets and integrate them.

Other than integrating related classes and properties, we also need frequently
used core classes and properties to construct a high-quality integrated ontology.
Machine learning methods such as association rule learning and rule-based clas-
sification can be applied to discover core properties for describing instances in
a specific class. Apriori is a well-known algorithm for learning association rules
in a big database [I], while the rule-based learning method - Decision Table
can retrieve a subset of properties that leads to high prediction accuracy with
cross-validation [10].

In this paper, we propose a framework that semi-automatically integrates
heterogeneous ontologies for the linked data sets. The integrated ontology con-
sists of frequently used core classes and properties that can help Semantic Web
application developers easily understand the ontology schema of the data sets.
Furthermore, the integrated ontology also includes related classes and properties,
with which we can integrate data sets and find missing links between instances.

This paper is organized as follows. In Section |2} we discuss some related
work and the limitation of their methods. In Section |3} we introduce our semi-
automatic ontology integration framework in details. The experiments are dis-
cussed in Section [4] We conclude and propose future work in Section
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2 Related Work

The authors in [11] introduced a closed frequent graph mining algorithm to ex-
tract frequent graph patterns from the Linked Data Cloud. Then, they extracted
features from the entities of the graph patterns to detect hidden owl:sameAs
links or relations in geographic data sets. They applied a supervised learning
method on the frequent graph patterns to find useful attributes that link in-
stances. However, their approach only focused on geographic data and did not
discuss about what kind of features are important for finding the hidden links.

A debugging method for mapping lightweight ontologies is introduced in [I3].
They applied machine learning method to determine the disjointness of any pair
of classes, with the features of the taxonomic overlap, semantic distance, object
properties, label similarity, and WordNet similarity. Although their method per-
forms better than other ontology matching systems, their method is limited to
the expressive lightweight ontologies.

In [I4], the authors focused on finding concept coverings between two sources
by exploring disjunctions of restriction classes. Their approach produces cover-
ings where concepts at different levels in the ontologies can be mapped even
there is no direct equivalence. However, the work is mainly for specific domains
and the alignments of ontologies are limited between two resources.

In contrast to the research described above, our approach retrieves related
ontology schema and frequently used core properties and classes in each data
set. Our method is domain-independent and successfully integrates heteroge-
neous ontologies by extracting related properties and classes that are critical for
interlinking instances. In addition, for the instances of specific classes, we can
recommend core properties that are frequently used for the instance description.

3 Semi-automatic Ontology Integration Framework

Constructing a global ontology by integrating heterogeneous ontologies of the
linked data can help effectively integrate various data resources. In order to
create an integrated ontology and decrease the ontology heterogeneity problem,
we focus on retrieving related classes and properties, top-level classes, and fre-
quent core properties. We can extract related classes and properties from the
interlinked instances using the graph-based ontology integration component. In
addition, we also need the top-level classes and frequent core properties in each
data set, which can be extracted using machine learning methods. For instance,
the Decision Table algorithm can retrieve a subset of properties that leads to
high prediction accuracy with cross-validation and the Apriori algorithm can
discover properties that occur frequently in the instances of top-level classes.

In this paper, we propose a semi-automatic ontology integration framework,
which is an extension of the previous work in [I8]. The semi-automatic on-
tology integration framework is shown in Fig. |2l which consists of three main
components: graph-based ontology integration, machine-learning-based ontology
schema extraction, and an ontology merger. In the following, we will describe
each component in details.
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{l Machine Learning Based Ontology Schema Extraction |

3.1 Graph-Based Ontology Integration.

The graph-based ontology integration component semi-automatically finds re-
lated classes and properties by analyzing SameAs graph patterns in the linked
data sets [I8]. We will briefly describe this component, which is shown in Fig.
This component consists of five processes: graph pattern extraction, <Predicate,
Object> collection, related classes and properties grouping, aggregation for all
graph patterns, and manual revision.

Graph Pattern Extraction. Since the instances which refer to the same thing
are interlinked by owl:sameAs in the LOD cloud, we collect all the linked in-
stances and construct graph patterns according to the SameAs graphs extraction
algorithm introduced in [I8]. All the same SameAs graphs consist of a graph pat-
tern, from which we can detect related classes and properties.

<Predicate, Object> Collection. An instance is described by a collection of
RDF triples in the form of <subject, predicate, object>. Since a SameAs graph
contains linked instances, we collect all the <Predicate, Object> (PO) pairs of
the interlinked instances as the content of a SameAs graph and classify the PO
pairs into five different types: Class, Date, URI, Number, and String.

Related Classes and Properties Grouping. We track subsumption relations
to group related classes and apply different similarity matching methods to group
related properties. In the following, we discuss how to retrieve and group related
classes and properties from different types of PO pairs.

Class. For the PO pairs of type Class, we retrieve related classes from the
most specific classes of the linked instances by tracking the subsumption rela-
tions such as owl:subClassOf and skos:inScheme. The classes and subsumption
relations compose a tree, where the most specific classes are called leaf nodes in
the tree.

Date and URI. We perform exact matching on the types of Date and URI,
because even a slight difference of object values may refer to totally different
properties.

Number and String. For the types of Number and String, the object values
may vary in different data sets. For instance, the population of a country may
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Fig. 3. Graph-Based Ontology Integration.

be slightly different in diverse data sets and the values in String may have dif-
ferent representations for the same meaning. Hence, in order to discover similar
properties for the types of Number and String, we apply similarity matching
approach by extending the methods introduced in [19].

The string-based and knowledge-based similarity matching methods are com-
monly used to match ontologies at the concept level [B]. In our approach, we
adopted three string-based similarity measures, namely, JaroWinkler distance
[1I7], Levenshtein distance, and n-gram, as introduced in [8]. String-based simi-
larity measures are applied to compare the objects of PO pairs that are classified
in String.

The knowledge-based similarity measures are applied to compare the pre-
processed terms of predicates, because most of the terms have semantic mean-
ings that can be recognized as a concept. To extract the concepts of predicate
terms, we pre-process the predicates of PO pairs by performing natural language
processing (NLP). We adopted nine knowledge-based similarity measures [I5],
namely, LCH, RES, HSO, JCN, LESK, PATH,WUP, LIN, and VECTOR, which
are based on WordNet [6] (a large lexical database of English).

Aggregation for All Graph Patterns. In this step, we aggregate the inte-
grated groups of classes and properties from all the graph patterns. An integrated
ontology is automatically constructed with the integrated sets of related classes
and properties, automatically selected terms, and the designed relations that
link groups of related classes and properties to the integrated ontology schema.

Manual Revision. The automatically integrated ontology of this framework
includes related classes and properties from different data sets. However, not all
the terms of classes and properties are properly selected. Hence, we need experts
to work on revising the integrated ontology by choosing a proper term for each
group of properties, and by amending wrong groups of classes and properties.
Since the integrated ontology is much smaller than the original ontology schema,
it is a lightweight work.
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The graph-based ontology integration component can discover related classes
and properties from various data sets. By analyzing the extracted graph patterns,
we detect related classes and properties which are classified into different data
types: Date, URI, Number, and String. Similar classes are integrated by tracking
subsumption relations and different similarity matching methods are applied on
different types of PO pairs to retrieve similar properties. We automatically inte-
grate related classes and properties for each graph pattern, and then aggregate
all of them.

3.2 Machine-Learning-Based Ontology Schema Extraction

Although, the graph-based ontology integration method can retrieve related
classes and properties from different ontologies, it misses some classes and fre-
quent core properties. Therefore, we need another method to find top-level classes
and frequent core properties, which are essential for describing instances.

By applying machine learning methods, we can find frequent core properties
that are used to describe instances of a specific class. The Decision Table algo-
rithm is a rule-based algorithm that can retrieve a subset of core properties and
the Apriori algorithm can find a set of associated properties that are frequently
used for describing instances. Hence, we apply the Decision Table and the Apri-
ori algorithm to retrieve top-level classes and frequent core properties from the
linked data sets.

In order to perform the machine learning methods, we randomly select a fixed
number of instances for each top-level class from the data sets. For the data sets
built based on ontology schema, we track subsumption relations to retrieve the
top-level classes. For instance, we track owl:subClassOf subsumption relation to
retrieve the top-level classes in DBpedia and track skos:inScheme in Geonames.
However, some data sets use categories without any structured ontology schema.
For this kind of data sets, we use the categories as top-level classes. For example,
NYTimes instances are only categorized into people, locations, organizations,
and descriptors. We use this strategy to collect the top-level classes in each data
set, and then extract properties that appear more than the frequency threshold 6.
The selected instances, properties, and top-level classes are used for performing
machine learning methods.

Decision Table. The Decision Table is a simple rule-based supervised learning
algorithm, which leads to high performance with simple hypothesis [10]. The
Decision Table algorithm can retrieve a subset of core properties that can predict
unlabeled instances with a high accuracy. Hence, properties retrieved by the
Decision Table play an important role in the data description.

We convert the instances of linked data sets into data that is adaptable to
the Decision Table algorithm. The data consists of a list of weights of properties
and class labels, where the weight represents the importance of a property in
an instance and the labels are top-level classes. The weight of a property in an
instance is calculated in a similar way as the TF-IDF (Term Frequency - Inverse
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Document Frequency), which is often used as a weighting factor in information
retrieval and text mining [I2]. The TF-IDF value reflects how important a word
is to a document in a collection or corpus. The weight of each property in an
instance is defined as the product of property frequency (PF) and the inverse
instance frequency (IIF) in a similar way as the TF-IDF. The pf(prop,inst) is
the frequency of the property prop in the instance inst.

The inverse instance frequency of the property prop in the data set D is
it f (prop, D), calculated as follows:

D]

iif(prop, D) = log Tinstoron]
prop

where inst,,., indicates an instance that contains the property prop. The value
of i f(prop, D) is the logarithm of the ratio between the number of instances in
D and the number of instances that contain the prop. If prop appears in inst,
the weight of prop is calculated according to the following equation:

weight(prop,inst) = pf(prop,inst) X iif(prop, D)

The properties retrieved with the Decision Table in each data set are critical
for describing instances in the data set. Hence, we use these retrieved properties
and top-level classes as parts of the final integrated ontology.

Apriori. Association rule learning method can extract a set of properties that
occur frequently in instances. Apriori is a classic association rule mining algo-
rithm, which is designed to operate on the databases of transactions. A frequent
itemset is an itemset whose support is greater than the user-specified mini-
mum support. Each instance in a specific class represents a transaction, and the
properties that describe the instance are treated as items. Hence, the frequent
itemsets represent frequently used properties for describing instances of a specific
class. The frequent core properties can be recommended to the data publishers
or help them find missing important descriptions of instances.

For each instance, we collect a top-level class and all the properties that ap-
pear in the instance as a transaction data. The Apriori algorithm can extract
associated sets of properties that occur frequently in the instances of a top-level
class. Hence, the retrieved sets of properties are essential for describing instances
of a specific class. Furthermore, we can either identify commonly used properties
in each data set or unique properties used in the instances of each class. There-
fore, the properties extracted with the Apriori algorithm are necessary for the
integrated ontology.

3.3 Ontology Merger

The third component is an ontology merger, which merges the ontology classes
and properties extracted from the previous two components. The graph-based
ontology integration component outputs groups of related classes and proper-
ties. On the other hand, the machine-learning-based ontology schema extraction
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component outputs a set of core properties retrieved by the Decision Table and
a set of properties along with a top-level class retrieved using the Apriori.

We adopt OWL 2 for constructing an integrated ontology. During the merging
process, we also add relations between classes and properties so that we can easily
identify what kind of properties are used to describe instances of a specific class.
We obey the following rules to construct the integrated ontology, where “ex-
onto” and “ex-prop” are the prefixes of the integrated ontology.

Class. Related classes are collected from the graph-based ontology integration
component and the top-level classes in each data set are collected from the
machine-learning-based ontology schema extraction component.

Groups of classes from graph-based ontology integration. Related classes from
different data sets are extracted by analyzing SameAs graph patterns and grouped
into cgroupy, cgroups, ...,cgroup,. For each group, we automatically define a
term ex-onto:ClassTerm for each group, where the ClassTerm is the most
frequent term in the group. For each class ¢; € cgroup, we add a triple <
ex-onto:ClassTermy,, ex-prop:hasMemberClasses, ¢; >.

Classes from machine-learning-based ontology schema extraction. Top-level
classes in each data set are added to the integrated ontology. If a top-level
class ¢; € cgroupp(l < k < z), we create a new group cgroup,+i1 for ¢; and
a new term ex-onto:ClassTerm,,q for the new group. Then we add a triple
< ex-onto:ClassTerm, 1, ex-prop:hasMemberClasses, ¢; >.

Property. The extracted properties from two components are merged according
to the following rules. At first, we extract the existing property type and domain
information of each property from the data sets. The property type is mainly
defined as rdf:Property, owl:DataTypeProperty, and owl:ObjectProperty. If the
type is not clearly defined, we set the type as rdf:Property.

Groups of properties from graph-based ontology integration. Related proper-
ties from various data sets are extracted by analyzing SameAs graph patterns
and grouped into pgroup:, pgroups, ..., pgroup,. For each group, we choose the
most frequent term ex-onto:prop Term. Then, for each property prop; € pgroup;
(1 <t <p), weadd a triple < ez-onto:prop Term,, ex-prop:hasMemberProperties,
prop; >.

Properties from machine-learning-based ontology schema extraction. We au-
tomatically add domain information for the properties retrieved using the Apriori
method. For each property prop extracted from the instances of class ¢, we add
a triple < prop, rdfs:domain, ¢ >, if it’s not defined in the data set.

The ontology merger constructs an integrated ontology using the triples cre-
ated as above. The global integrated ontology constructed with the ontology
merger can help us easily access to various data sets and discover missing links.
Furthermore, the domain information of the properties are automatically added
using the results of the Apriori algorithm.
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Table 1. Data Sets for Experiments.

Data Set Instances Selected Class Top-level Property Selected

Instances Class Property
DBpedia 3,708,696 64,460 241 28 1385 840
Geonames 7,480,462 45,000 428 9 31 21
NYTimes 10,441 10,441 5 4 8 7
LinkedMDB 694,400 50,000 53 10 107 60

4 Experiments

In this section, we introduce the experimental data sets. Then we discuss whether
we successfully retrieved related classes and properties using the graph-based
ontology integration. We also discuss experimental results with the Decision
Table and the Apriori algorithm that retrieve top-level classes and frequent core
properties. Comparison with the previous work introduced in [I8] and other
ontology matching tools is also discussed in this section. At last, we discuss use
cases with the integrated ontology and propose possible applications.

4.1 Data Sets

We selected DBpedia (v3.6), Geonames (v2.2.1), NYTimes and LinkedMDB
from the LOD cloud to evaluate our framework. DBpedia is a cross-domain
data set with about 8.9 million URIs and Geonames is a geographic domain
data set with more than 7 million distinct URIs. NYTimes and LinkedMDB are
both from media-domain with 10,467 and 0.5 million URIs, respectively.

The number of instances in our database are listed in the second column of
Table [1} The graph-based ontology integration component uses all the instances
in the data sets. For the machine learning methods, we randomly choose samples
of the data sets to speed up the modeling process as well as to concern unbi-
ased data size for each top-level class. We randomly selected 5000 instances per
top-level class in Geonames and LinkedMDB, 3000 instances per top-level class
in DBpedia, and used all the instances in NYTimes. The number of selected
instances of DBpedia is less than 84,000, because some classes include less than
3000 instances.

The original number of classes and properties, the number of top-level classes
and selected properties for the machine learning methods are listed in the Table
We track the subsumption relations such as owl:subClassOf and skos:inScheme
to collect the top-level classes. Since there are a big number of properties in the
data sets, we filter out infrequent properties that appear less than the frequency
threshold . For each data set, we manually set a different frequency threshold
0 as y/n, where n is the total number of instances in the data set.
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Table 2. Results for the Decision Table Algorithm.

Data Set Average Precision Average Recall Average F-Measure Selected Properties

DBpedia 0.892 0.821 0.837 53
Geonames 0.472 0.4 0.324 10
NYTimes 0.795 0.792 0.785 5
LinkedMDB 1 1 1 11

4.2 Graph-Based Ontology Integration

The graph-based ontology integration component uses all the interlinked in-
stances in the data sets. With this component, we retrieved 13 different graph
patterns from the SameAs Graphs [I8]. In total, we extracted 97 classes from
the data sets and grouped them into 48 new classes. Each group contains at least
two classes and one class can belong to several groups. For instance, the schema
in NYTimes is too general, so that the nyt:nytd_geo belongs to any group that
has geographical information. Here, we give an example of the integrated class ex-
onto:Country, which contains geo-onto:A.PCLI, geo-onto:A.PCLD, mdb:country,
db-onto:Country, and nyt:nytd_geo. This group contains the classes about a
country from Geonames, LinkedMDB, and DBpedia, except the general geo-
graphic class nyt:nytd_geo from NYTimes.

We retrieved 357 properties from the graph patterns using exact or similarity
matching, which are integrated into 38 groups. Because of the heterogeneous in-
fobox properties in DBpedia, some groups contain more than one DBpedia prop-
erty. For instance, the properties geo-onto:population, mdb:country_population,
db-onto:populationTotal, db-prop:populationTotal, and other eight DBpedia prop-
erties are integrated into the property ex-prop:population.

The graph-based ontology integration can retrieve related classes and prop-
erties from directly or indirectly linked instances by analyzing graph patterns.

4.3 Decision Table

The Decision Table algorithm is used to discover a subset of features that can
achieve high prediction accuracy with cross-validation. Hence, we apply the De-
cision Table to retrieve core properties that are essential in describing instances
of the data sets. For each data set, we perform the Decision Table algorithm to
retrieve core properties by analyzing randomly selected instances of the top-level
classes.

In Table 2] we listed the percentage of the weighted average of precision,
recall, and F-measure. Precision is the ratio of correct results to all the results
retrieved, and recall is the percentage of the retrieved relevant results to all the
relevant results. The F-measure is a measure of a test’s accuracy, that considers
both the precision and the recall. The F-measure is the weighted harmonic mean
of precision and recall, calculated as:

2 X Precision x Recall

F-measure =
Precision + Recall
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The F-measure reaches its best value at 1 and worst value at 0. A higher F-
measure value means the retrieved subset of properties can well classify instances
with unique and core properties. A lower F-measure fails to classify some in-
stances, because the retrieved properties are commonly used in every instance.
In the following, we will discuss the experimental results in each data set using
the Decision Table algorithm.

DBpedia. The Decision Table algorithm extracted 53 DBpedia properties from
840 selected properties. For example, the properties db-prop:city, db-prop:debut,
db-onto:formationYear, and db-prop:stateName are extracted from DBpedia in-
stances. The precision, recall, and F-measure on DBpedia are 0.892, 0.821, and
0.837, respectively.

Geonames. We retrieved 10 properties from 21 selected properties, such as
geo-onto:alternateName, geo-onto:countryCode, and wgs84_post:alt, etc. Since
all the instances of Geonames are from geographic domain, the Decision Table
algorithm can not well distinguish different classes with these commonly used
properties. Hence, the evaluation results on Geonames are very low with 0.472
precision, 0.4 recall, and 0.324 F-measure.

NYTimes. Among 7 properties used in the data set, 5 properties are retrieved
using the Decision Table algorithm. The extracted properties are skos:scopeNote,
nyt:latest_use, nyt:topicPage, skos:definition, and wgs84 _pos:long. In NYTimes,
there are only few properties for describing news articles and most of them are
commonly used in every instance. The cross-validation test with NYTimes are
0.795 precision, 0.792 recall and 0.785 F-measure.

LinkedMDB. The algorithm can classify all the instances in the LinkedMDB
correctly with the 11 properties selected from 60 properties. Other than the
commonly used properties such as foaf:page, rfs:label, we also extracted some
unique properties such as mdb:performance_performanceid, mdb:writer_writerid,
and director_directorid, etc.

The Decision Table algorithm retrieves a subset of core properties that are
important to distinguish instances. We feed the extracted properties to the inte-
grated ontology. However, the Decision Table can not find all the core properties
in each data set.

4.4 Apriori

The Apriori algorithm is a classic algorithm for retrieving frequent itemsets
based on the transaction data. For the experiment, we use the parameters upper
and lower bound of minimum support as 1 and 0.2, respectively. We use the
default minimum metric as 0.9 for the confidence metric. With a lower minimum
support, we can retrieve more properties that frequently appear in the data.
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Table 3. Examples of Retrieved Properties with the Apriori Algorithm.

Data Set Class Properties

db:Event db-onto:place, db-prop:date, db-onto:related/geo.
DBpedia db:Species  db-onto:kingdom, db-onto:class, db-onto:family.
db:Person  foaf:givenName, foaf:surname, db-onto:birthDate.

Geonames geo:P geo-onto:alternateName, geo-onto:countryCode.
geo:R wgs84_pos:alt, geo-onto:name, geo-onto:countryCode.
. nyt:nytd_geo wgs84 _pos:long.
NYTimes nyt:nytd_des skos:scopeNote.
LinkedMDB mdb:actor mdb:performance, mdb:actor_name, mdb:actor_netflix_id.

mdb:film mdb:director, mdb:performane, mdb:actor, dc:date.

We retrieved frequently appeared core properties using the Apriori algorithm.
Some examples are listed in Table[3] The first column lists the experimental data
sets, and the second column lists samples of the top-level classes in each data
set. The third column lists some of the retrieved interesting or unique prop-
erties from each top-level class. As we can see from Table [3] the place, date
and geographic properties are important for describing events. The best-known
taxonomies such as kingdom, class, and family are also extracted by analyzing
the data of species. From the LinkedMDB, we extracted mdb:actor_netflix_id,
mdb:actor_name, and mdb:performance, that are critical for distinguishing dif-
ferent instances. Furthermore, the properties of director, performance, actor and
date of a film are extracted from instances in the class mdb:film.

In DBpedia and LinkedMDB, we retrieved some unique properties in each
class. However, for Geonames and NYTimes, we only retrieved commonly used
properties in the data sets. From the instances of Geonames, we found com-
monly used properties such as geo-onto:alternateName, wgs84_pos:alt, and geo-
onto:countryCode, etc. NYTimes only has few properties that are commonly
used in every instance, except the wgs84_pos:long in the nyt:nytd_geo class and
skos:scopeNote in the nyt:nytd_des class. Hence, the weighted average F-measure
of nyt:nytd_geo and nyt:nytd_des are much higher than other classes.

We retrieved frequent sets of properties in most of the cases except in the
db:Planet class. Because db:Planet contains 201 different properties for describ-
ing instances, which are sparsely used. In addition, we only retrieved db-onto:title
and rdfs:type from db:PersonFunction and only rdfs:type property from db:Sales.
This is caused by the lack of descriptions in the instances: most of the instances
in db:PersonFunction and db:Sales only defined the class information without
other detailed descriptions.

The set of properties retrieved from each class imples that the properties are
frequently used for instance description of the class. Hence, for each property
prop retrieved from the instances of class ¢, we automatically added <prop,
rdfs:domain, ¢> to assert that prop can be used for describing instances in the
class c¢. Therefore, we can automatically recommend missing core properties for
an instance based on its top-level class.
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Table 4. Extracted Classes and Properties

Previous Work Machine Learning Current Work
Graph-Based| Decision Table Apriori| Integrated Ontology
Integration
Class 97 50 (38 new) 50 (38 new) 135 (38 new)
Property 357 79 (49 new) 119(80 new) 453 (96 new)

4.5 Comparison

The graph-based ontology integration framework introduced in [I8] only focuses
on the related classes and properties acquisition, that may miss some core prop-
erties and classes. Hence, we applied machine learning methods to find out core
properties for describing instances. The second column of Table [ lists the num-
ber of classes and properties retrieved with the previous work - graph-based
integration method. The next two columns list the number of classes and prop-
erties retrieved with the machine learning methods - Decision Table and Apriori.
The last column is the final integrated ontology which merged the acquired on-
tological knowledge from two functional components: graph-based ontology inte-
gration and machine-learning-based ontology schema extraction, which includes
Decision Table and Apriori algorithms.

With the graph-based ontology integration framework, we retrieved 97 classes
and 357 properties, which are grouped into 49 and 38 groups, respectively. The
final integrated ontology contains 135 classes and 453 properties that are grouped
into 87 and 97 groups, respectively. Both of the Decision Table and the Apriori
algorithms are performed on 50 selected top-level classes, among them 38 are
not retrieved in the graph-based ontology integration. With the Decision Table,
we extracted 79 properties, where 49 are not found in the graph-based ontology
integration. The Apriori algorithm discovered 119 properties in total, where 80
properties are newly added. Based on the same data sets, Apriori can retrieve
more properties than the Decision Table algorithm. Among the newly retrieved
properties, 33 properties are retrieved from both Decision Table and Apriori.

By adding machine-learning-based ontology schema extraction component to
the graph-based ontology integration, the final integrated ontology become more
concrete with groups of related classes and properties, top-level classes, and core
properties that are frequently used in instances. For each retrieved property,
we automatically added property type definition and for the properties retrieved
with the Apriori results, we automatically added domain information to indicate
the relations between properties and classes.

Since most of the ontology matching tools fail to find alignments for the
datasets that do not have a well designed ontology schema [9], we cannot use
them to find alignments among DBpedia, Geonames, NYTimes, and Linked-
MDB. The failure in the ontology alignment is caused by some ontologies that
have ambiguous meaning of the concepts or the absence of corresponding con-
cepts in the target dataset. However, our approach can find alignments for the
poorly structured datasets by analyzing the contents of the interlinked instances.
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4.6 Case Studies

In this section, we introduce some use cases with our integrated ontology. The
class of db:Actor and mdb:actor are integrated into ex-onto:Actor, which can
be used for discovering missing class information of the linked instances of ac-
tors. For instance, the db:Shingo_Katori is only described as a musical artist,
but in fact he is also an actor and the DBpedia instance has a link to the
mdb-actor:27092. Hence, we should add the class db-onto:Actor to the instance
db:Shingo_Katori, because all the instances linked with mdb-actor should be an
actor unless it is a wrong linkage.

If we want to link a person from different data sets, we can combine the
class which indicates a person with some properties such as the birth date,
the place of birth, and the name, etc. However, there exist various properties
to describe the same kind of property. For example, we integrated 7 different
properties that indicate the birthday of a person into the ex-prop:birthDate.
Among them, only the property “db-onto:birthDate” has the default domain
definition as db-onto:Person and has the highest frequency of usage, that ap-
peared in 287,327 DBpedia instances. From the definitions of the properties and
the number of instances which contain the corresponding properties, we can as-
sume that the properties except “db-onto:birthDate” are mistakenly used when
the data providers publish the DBpedia data. Therefore, we can suggest “db-
onto:birthDate” as the standard property to represent the birthday of a person,
and correct the other properties with this standard property.

Other than recommending standard properties, we also successfully inte-
grated different property descriptions from diverse data sets. For instance, prop-
erties geo-onto:population, mdb:country_population, db-onto:populationTotal and
other nine DBpedia properties are integrated into the property ex-prop:population.
By combining the ex-onto:Country and ex-prop:population, we can detect the
same country or countries with similar population.

5 Conclusion and Future Work

We proposed a semi-automatic ontology integration framework that can inte-
grate heterogeneous ontologies by analyzing graph patterns of the interlinked
instances and by applying machine learning methods. Grouping related classes
and properties can reduce the heterogeneity of ontologies in the LOD cloud. The
integrated ontology consists of related classes and properties, top-level classes
and frequent core properties that can help Semantic Web application developers
easily find related instances and query on various data sets. With the integrated
ontology, we can also detect misuses of ontologies in the data sets and can rec-
ommend core properties for describing instances.

In future work, we plan to apply ontology reasoning methods to automatically
detect and revise mistakes during the ontology merging process. Furthermore, we
plan to automatically detect the undefined ranges of properties by analyzing the
corresponding objects of properties in the data sets. We will test our framework
with more data sets from the public linked data sets.
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