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The computational power of contemporary quantum processors is limited by hardware errors that cause com-
putations to fail. In principle, each quantum processor’s computational capabilities can be described with a
capability function that quantifies how well a processor can run each possible quantum circuit (i.e., program), as
a map from circuits to the processor’s success rates on those circuits. However, capability functions are typically
unknown and challenging to model, as the particular errors afflicting a specific quantum processor are a priori
unknown and difficult to completely characterize. In this work, we investigate using artificial neural networks to
learn an approximation to a processor’s capability function. We explore how to define the capability function,
and we explain how data for training neural networks can be efficiently obtained for a capability function defined
using process fidelity. We then investigate using convolutional neural networks to model a quantum computer’s
capability. Using simulations, we show that convolutional neural networks can accurately model a processor’s
capability when that processor experiences gate-dependent, time-dependent, and context-dependent stochastic
errors. We then discuss some challenges to creating useful neural network capability models for experimen-
tal processors, such as generalizing beyond training distributions and modelling the effects of coherent errors.
Lastly, we apply our neural networks to model the capabilities of cloud-access quantum computing systems,
obtaining moderate prediction accuracy (average absolute error around 2-5%).

I. INTRODUCTION

The information processing capabilities of modern quan-
tum computers are limited by a wide variety of hardware and
implementation errors [1–17]. These a priori unknown errors
accumulate during a quantum computation, leading to results
that are corrupted in ways that are difficult to predict in ad-
vance [3]. A quantum processor’s ability to implement a par-
ticular quantum algorithm depends on its ability to execute
that algorithm’s quantum circuits with low error. So, a quan-
tum processor’s computational power can be captured by a
capability function that quantifies its execution error on quan-
tum circuits.

A capability function is a map s from quantum circuits c
to a measure of how successfully the processor can execute
each circuit. Possible measures of “success” include the total
variation distance (TVD) between c’s ideal and actual output
probability distributions, the trace distance between the ideal
and actual quantum states output by c, or the process fidelity
between the ideal and actual quantum processes implemented
by c. For any circuit c and any reasonable definition of s(c),
s(c) can be estimated simply by repeatedly running the circuit
c—or a family of closely related circuits [7]—on the proces-
sor and then calculating the relevant performance metric from
the data. However, in general, s(c) cannot be estimated effi-
ciently for an arbitrary circuit c, and it is not practical to test a
processor’s performance on every possible circuit of interest.
Accurate surrogate models for a processor’s capability func-
tion, i.e., a classical approximation of s(c), would therefore
aid the understanding of a processor’s capabilities.

Simple heuristics are often used to model capability func-
tions, but they are typically inaccurate. A commonly-used
heuristic approximation to a circuit’s process fidelity, sF(c),
consists of modelling each of a processor’s native gates by a
fidelity, and then estimating sF(c) as the product of the fideli-
ties of the gates in c. This heuristic is accurate for proces-

sors experiencing completely unstructured errors—i.e., uni-
form depolarization—but it is often extremely inaccurate in
practice due to the prevalence of structured errors [3]. For ex-
ample, contemporary processors experience crosstalk errors
[3–5, 11, 15, 16], which cause a native gate’s error process
to depend on what other gates are applied in parallel with it.
They also experience coherent errors [15, 18], which can add
or cancel within a circuit. The complexity of the errors ex-
perienced by contemporary quantum computers necessitates
more complex models for s(c).

An alternative approach to modelling a processor’s capabil-
ity is to do so indirectly by using a parameterized error model
[7, 8]. A parameterized model for a device’s errors is cho-
sen (e.g., process matrices within unknown entries [8]), and
best-fit values for the model’s unknown parameters are esti-
mated from data, using techniques such as gate set tomog-
raphy (GST) [7], randomized benchmarking (RB) [2, 4–6],
or Pauli noise estimation [16, 17]. The estimated model can
then be used to simulate each circuit of interest c, to compute
the model’s prediction for s(c). Parameterized error models
are a principled approach to predicting s(c), e.g., they are of-
ten amenable to rigorous statistical methods and physical in-
terpretation [15]. But they have some important limitations,
including the ubiquitous problem of inaccurate predictions
caused by error models that cannot describe all of the er-
rors a processor experiences [19]. For example, conventional
parameterized error models are based on process matrices,
which means that they cannot model non-Markovian errors,
such as 1/ f noise [14] and drift [12, 13, 20]. Improvements to
parameterized error models may enable accurate modelling of
s(c), but today there are no error models that have consistently
enabled accurate predictions of s(c).

In this paper, we investigate using classical artificial neu-
ral networks to model a quantum computer’s capability func-
tion (see schematic in Fig. 1). Neural networks are general-
purpose function approximators [21] that have shown promise
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for many tasks in quantum physics and computing [22, 23]—
including calibration [24–27], circuit compilation [28], to-
mography [29–31], and solving many-body physics prob-
lems [32]. Neural network models for s(c) are intriguing
because they need not be constrained by the assumptions of
a particular parameterized error model. Instead, neural net-
works can use a many-parameter ansatz for s(c) that is highly
expressive, potentially enabling them to be trained to model
the effect of poorly understood or unexpected error modes.
Furthermore, neural network models for capabilities have the
potential to be scalable: a trained neural network model for
s(c) can be quickly queried even in the many-qubit setting.
This is because neural network models for s(c) need not rely
on explicit classical simulations of quantum circuits, which
contrasts with directly computing s(c) from most parameter-
ized models (e.g., process matrices).

There are many neural network architectures that could
be applied to the problem of capability modelling, and in
this work we use convolutional neural networks (CNNs) [33–
35]. CNNs extract predictive features from their input us-
ing learned convolutional filters, and they have proven use-
ful for image classification [33] and natural language process-
ing [34]. CNNs are a promising architecture for capability
modelling because convolutional filters can pick out partic-
ular patterns of gates in a circuit (encoded as an image, or
tensor), and particular but a priori unknown patterns of gates
can be correlated with s(c) [4, 11]. Furthermore, it is possible
to construct CNNs whose complexity—i.e., the number of pa-
rameters that must be learned—increases only slowly (or even
not at all) with the number of qubits (n) in a processor, mean-
ing that scalable capability modelling with CNNs is feasible.

The contributions and structure of this paper are as follows.
In Section II we introduce the problem of learning an approx-
imation to a capability function s(c). In Section III we in-
troduce the neural network architecture (i.e., CNNs) and the
data encoding that we use in this work. Our representation of
the quantum circuits includes a limited form of error sensitiv-
ity information that is designed to aid our CNNs in the task
of accurately modelling s(c) in the presence of Pauli stochas-
tic errors (our approach is a simple kind of physics-informed
machine learning [36]). In Sections IV and V we show that
CNNs can be trained to accurately model s(c) in the pres-
ence of both Markovian and non-Markovian Pauli stochastic
errors, including in the many-qubit setting (n = 49). In Sec-
tion VI we highlight some important challenges to creating
useful and reliable models for s(c) using neural networks. We
demonstrate the difficulties presented by coherent errors, the
challenge of generalizing beyond training distributions, and
the challenge of extending beyond the limited error sensitivity
information included within our data encoding. In Section VII
we demonstrate the application of s(c) learning using CNNs to
data from cloud-access quantum computers, obtaining models
with moderate prediction accuracy. Finally, we conclude in
Section VIII.

This paper is the culmination of work previously presented
(but unpublished) [37]. It is also not the only paper to propose
modelling s(c) using neural networks. Independent works by
Wang et al. [38], Vadali et al. [39] and Amer et al. [40] have

investigated using neural networks for a variety of prediction
problems closely related to modelling s(c). Core differences
are the capability metrics, network architectures, and encod-
ing schemes used (see Appendix A for further details).

II. LEARNING A QUANTUM COMPUTER’S CAPABILITY

In this section we introduce the central problem considered
in this work: modelling capability functions. The purposes of
this section are to (1) introduce the general capability learning
problem, and (2) specify the particular form of this problem
that we address herein. A capability function s for a quan-
tum processor maps a circuit c to how successfully that circuit
is executed on that processor, s(c). Therefore, defining s(c)
necessitates specifying: (i) what we mean by “quantum cir-
cuit,” i.e., the domain of s (see Section II A); and (ii) what
we mean by “success” (see Section II B-II C). There are many
well-motivated capability functions s(c), each corresponding
to a different way to quantify the difference between the ideal
and actual implementation of c, and so we identify a particular
choice—the process fidelity—that is particularly promising in
this context (see Section II D). As we explain, process fidelity
is both a useful metric for a processor’s performance on a cir-
cuit c and it is possible to efficiently gather training data, i.e.,
it is possible to efficiently estimate the process fidelity for any
circuit c. We then introduce the problem that we address for
the remainder of this paper: predicting the success probabili-
ties of definite outcome circuits (see Section II E). We explain
why predicting success probabilities is closely related to the
problem of predicting process fidelities, and why we choose
to consider the problem of predicting success probabilities.

A. Quantum circuits

Here we define what we mean by a quantum circuit, which
enables defining capability functions s(c). Quantum circuits
are typically defined as a sequence of layers of quantum logic
gates. In this work, a w-qubit logic layer (l) is an instruction
to apply physical operations that ideally implements a par-
ticular unitary evolution U(l) ∈ SU(2w) on w qubits. This
definition excludes logic operations that are intended to be
non-unitary, such as mid-circuit measurements. A quantum-
input quantum-output (QIQO) w-qubit circuit (c) over a w-
qubit logic layer set Lw = {l} is a sequence of d ≥ 0 layers

c = ldld−1 · · · l2l1, (1)

where each li ∈ Lw [4]. The circuit c is an instruction to apply
its constituent logic layers, l1, l2, . . . , in sequence, implement-
ing the unitary evolution

U(c) = U(ld) · · ·U(l2)U(l1). (2)

Below, it will be convenient to use the superoperator represen-
tation of this unitary [U(c)] given by:

U(c)[ρ] = U(c)ρU†(c), (3)
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FIG. 1. Modelling a quantum computer’s capability using neural networks. (a) Many quantum circuits (c) are intended to sample from
some distribution (purple histogram), which, in principle, can be calculated by simulating c on a classical computer (purple arrow). However,
when c is run on a real quantum processor (blue arrow), hardware errors mean that we sample from a different distribution (blue histogram).
The difference between the ideal and actual distributions (red histogram) encodes how well the processor ran c, which can be summarized
by, e.g., TVD (red bar). We can quantify how well a processor can run any circuit using a capability function (s) that maps any circuit c
to how well the processor runs c [s(c)]. In this work, we aim to construct a model for s(c) using classical artificial neural networks (orange
arrows). We input circuits into convolutional neural networks (CNNs) by representing them as three-dimensional tensors that encode which
gates are applied in each layer of a circuit (lower orange arrow) and some information about what kinds of errors a circuit is sensitive to (upper
orange arrow). In this work, we also define capability functions for circuits that ideally create a quantum state (i.e., they can end with any
measurement), or implement a unitary (i.e., they also have an unspecified input), which is not denoted here. (b) The predictions of a CNN
trained on random circuits from a hypothetical 5-qubit processor subject to strongly biased local stochastic Pauli errors (see Section IV for
details). This demonstrates that CNNs can accurately model s(c) for a relatively simple but ubiquitous family of errors. To train these CNNs
we must gather training data (predictions on training data are shown in red), i.e., a set of circuits each labelled with s(c), and we explain how
to do this efficiently in this paper.

and to denote the perfect action of any circuit c by γ(c), i.e.,
for a QIQO circuit

γ(c) = U(c) = U(ld) · · ·U(l2)U(l1). (4)

A QIQO circuit can be embedded within other quantum
circuits—i.e., any w-qubit quantum state can be input into the
circuit, and any map can be applied to its output w-qubit quan-
tum states. However we may intend to apply a circuit to a
fixed input state, followed by a fixed basis measurement. This
is important here, because a circuit’s intended use impacts the
appropriate metric for quantifying how well a processor can
run that circuit. A circuit’s intended use can be formalized by
specifying the intended input space for a circuit as well as the
intended set of maps on its outputs. QIQO circuits map quan-
tum states to quantum states. We specify two other impor-
tant choices for input/output spaces by defining standard-input
quantum-output (SIQO) and standard-input classical-output
(SICO) circuits [4]. A w-qubit SIQO circuit c = ld · · · l1linit
is a QIQO circuit (ld · · · l1) with the addition of an initial in-
struction (linit) to initialize each of w qubits in the |0〉 state. Its
perfect action [γ(c)] creates the pure w-qubit quantum state
|ψ(c)〉〈ψ(c)| given by:

γ(c) = |ψ(c)〉〈ψ(c)| = U(ld · · · l1)[|0〉〈0|⊗w]. (5)

A w-qubit SICO circuit c = lreadoutld · · · l1linit is a SIQO circuit
(ld · · · l1linit) with the addition of a final instruction (lreadout) to

measure all of the qubits in the computational basis. Its per-
fect action is to draw a sample from a probability distribution
γ(c) = P(c) over length-w bit strings x, whereby the probabil-
ity to obtain the bit string x (denoted P(c)[x]) is given by

P(c)[x] = Tr
(
|x〉〈x|U(ld · · · l1)[|0〉〈0|⊗w]

)
. (6)

The three kinds of circuits we consider are summarized in Ta-
ble I. All three of these circuit families are part of a broader
class of circuits, with mixed quantum-classical inputs and out-
puts (MIMO), which we do not consider further.

For the purposes of this paper, operations across multiple
layers in a circuit must not be combined (compiled) together
by implementing a physical operation that enacts their com-
posite unitary. This is accomplished by adding in “barriers”
between circuit layers. These barriers between circuit layers
are often used in benchmarking and characterization methods
[2–4, 7], and it simplifies our prediction task. This is because
the inclusion of barriers within circuits removes the need to
learn the behaviour of any classical algorithms used to com-
pile together circuit layers [41], which can be arbitrarily com-
plex.

B. Modelling an imperfect quantum circuit

The definition of capability functions (below) uses a mathe-
matical model [γ̃] for a processor’s imperfect implementation
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of a circuit, and we now introduce this model. Our mathe-
matical model γ̃ does not rely on the most widely-used as-
sumptions about a processor’s errors (e.g., Markovianity). We
avoid encoding those assumptions into our definition of ca-
pability functions because methods for learning capabilities
have the potential to be accurate even when those assump-
tions are violated. Our model γ̃ assumes that a processor’s
imperfect implementation of a circuit c depends on c and pos-
sibly some auxiliary classical observable “context” variable[s]
(e.g., time) from some state space A. (No quantum degrees of
freedom are allowed.) That is, we use a function γ̃(c, a) to
represent the imperfect implementation of c ∈ C with context
a ∈ A. Specifically (as summarized in Table I):

1. γ̃(c, a) is an unknown probability distribution over w-bit
strings [P̃(c, a)] if c is a SICO circuit,

2. γ̃(c, a) is an unknown w-qubit quantum state [ρ(c, a)] if
c is a SIQO circuit, and

3. γ̃(c, a) is an unknown w-qubit completely positive and
trace preserving (CPTP) map [Λ(c, a)] if c is a QIQO
circuit.

This framework encompasses all Markovian errors (as de-
fined in Appendix B and Ref. [7]), as well as a wide variety
of (but not all) non-Markovian errors. Because γ̃ is a gen-
eral function from circuits to distributions, states, or CPTP
maps, this framework can represent the effect of complex er-
ror processes within circuits, including: gate errors that in-
crease over the course of a circuit (caused by, e.g., heating
in ion-traps); gate error processes that depend on what gates
were applied earlier in a circuit (known as serial context de-
pendence); and general crosstalk errors [11]. Because γ̃ also
depends on observable context variable[s] a ∈ A, this frame-
work can model the effects of many non-Markovian errors,
such as time-varying error processes [12–14, 20] like slow
drift (by letting a include wall-clock time, or the time since
the last calibration), or the impact of measurable control or
environmental parameters.

C. A quantum computer’s capability function

We now define capability functions, which we aim to learn
approximations to. Capability functions are intended to quan-
tify how close a processor’s implementation of each circuit c,
within some circuit set C, is to c’s ideal action [γ(c)]. A ca-
pability function is defined using (1) a set C of circuits, (2)
our mathematical model γ̃ for a processor’s imperfect imple-
mentation of a circuit, and (3) a function ε that quantifies the
difference between the perfect and imperfect implementations
of a circuit. The capability function is a map from circuits
(C), and any observable context variables (A) on which γ̃ de-
pends, to ε[γ(c), γ̃(c, a)]. Specifically, the capability function
for metric ε is

sε(c, a) = ε[γ(c), γ̃(c, a)]. (7)

There are many well-motivated choices for ε, including: the
TVD, cross-entropy, or Hellinger (classical) fidelity [for SICO

Circuit Type Action γ(c) γ̃(c, a)
QIQO Applies a quantum process U(c) Λ(c, a)
SIQO Creates a quantum state |ψ(c)〉〈ψ(c)| ρ(c, a)
SICO Samples from a distribution P(c) P̃(c, a)

TABLE I. A summary of the three types of quantum circuit consid-
ered herein, their action (the kind of process they produce), and the
mathematical objects and the corresponding notation we use to rep-
resent their perfect [γ(c)] and imperfect [γ̃(c, a)] implementations.
See Section II for the definition of each element in this table.

circuits, where γ(c) and γ̃(c, a) are probability distributions];
the trace distance or quantum state fidelity [for SIQO circuits,
where γ(c) and γ̃(c, a) are quantum states]; or the diamond
distance [42], total error [15], or process fidelity [43] [for
QIQO circuits, where γ(c) and γ̃(c, a) are CPTP maps]. Each
metric has a different interpretation—e.g., diamond distance is
a form of worst-case error—and the ideal metric with which
to define sε will depend on the intended uses for a model for
sε .

D. Evaluating a capability function

To directly learn an approximation to sε we require labelled
training data, i.e., a dataset consisting of a set of circuits {c}
and (when relevant) contexts {a} with each (c, a) paired with
an estimate of sε(c, a). Creating such a dataset requires a
method for estimating sε(c, a). We now discuss whether and
how this estimation can be done efficiently. Note that evalu-
ating sε(c, a) is closely related to the well-known problem of
verifying the correctness of the results of a quantum compu-
tation.

In principle, a capability function sε(c, a) can be estimated
to any desired precision for any circuit c ∈ C and any control-
lable context a ∈ A using a tomographic method. This method
consists of (1) running experiments that enable the estimation
of γ̃(c, a), and then estimating γ̃(c, a) from the data, (2) com-
puting γ(c) by simulating c on a classical computer, and then
(3) computing ε[γ(c), γ̃(c, a)]. For example, if c is a SICO cir-
cuit then γ̃(c, a) is the probability distribution that a sample is
drawn from in each execution of c in context a. In principle,
this can be estimated simply by running c many times, in con-
text a. Similarly, if c is a QIQO or SIQO circuit, then γ̃(c) is
a quantum process or quantum state, respectively, which can
be estimated to any desired precision using process or state
tomography [7], respectively (or, to avoid known inconsisten-
cies in state and process tomography, using GST [7]). This
procedures consist of embedding c within a variety of circuits
and then inferring γ̃(c, a) from the data. However, for a gen-
eral circuit c, the tomographic method for evaluating sε(c, a) is
well-known to be inefficient. In general, this method for eval-
uating sε(c, a) requires classical computations (to simulate c)
that are exponentially expensive in the number of qubits (n)
on which c acts, and a number of circuit executions that is
also exponentially large in n. So capability learning based on
a tomographic approach to estimating sε(c, a) is inefficient, in
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general.
Direct and efficient methods for estimating the value of a

capability function sε(c, a) are critical for direct learning of
capability functions. The circumstances under which sε(c, a)
can be efficiently estimated is an interesting open question,
i.e., for which ε and under what assumptions about a proces-
sor’s errors [which includes assumptions about γ̃(c, a)] is there
an efficient method for estimating sε(c, a)? However, there is a
well-motivated choice for ε for which an efficient method for
estimating sε(c, a) is known: process fidelity. Process fidelity
(F) is defined as [44]

F[γ(c), γ̃(c, a)] = 〈ϕ|γ†(c)γ̃(c, a)[|ϕ〉〈ϕ|]|ϕ〉, (8)

where ϕ is any maximally entangled state in a doubled Hilbert
space [43]. Almost any circuit’s process fidelity can be
efficiently estimated using mirror circuit fidelity estimation
(MCFE) [45] (under certain assumptions about the underlying
error processes, detailed in Ref. [45]). Because a capability
function defined by process fidelity can be evaluated using a
method that is efficient in the number of qubits n, it is feasible
that an approximation to sF can be learned even in the many-
qubit setting, where approximate capability function models
will be most useful.

E. The capability function for definite outcome circuits

The capability function defined by process fidelity (sF) is
well-motivated, and learning an approximation to sF is feasi-
ble, in the sense that training data can be efficiently obtained.
However, in this work we apply neural networks to a different
but related problem. Instead we consider the problem of learn-
ing a capability function for definite outcome circuits (defined
below), which are a subclass of SICO circuits—that is, we
consider s defined over a circuit set C containing only definite
outcome circuits. In Appendix C we explain why we choose
to address this problem, rather than process fidelity learning,
and why we conjecture that a neural network method that can
accurately model s for definite outcome circuits will, with mi-
nor adaptions, be able to accurately model sF when trained on
circuit process fidelities.

A SICO circuit c is a definite outcome circuit if and only
if its error-free output distribution γ(c) has support only on a
single “success” bit string xs(c), i.e.,

γ(c)[xs(c)] = 1. (9)

For definite outcome circuits, the probability that a circuit c
outputs its success bit string xs(c) is the single natural choice
for ε [46]. Therefore, the unique well-motivated definition for
the capability function of definite outcome circuits is simply

s(c, a) = γ̃(c, a)[xs(c)], (10)

which is the circuit’s “success probability”. The success prob-
ability of a definite outcome circuit c can be efficiently esti-
mated whenever the success bit string xs(c) can be efficiently

computed on a classical computer. In particular we can es-
timate s(c, a) [denoted ŝ(c, a)] from Nshots executions of c in
context a as

ŝ(c, a) =
Nxs(c)

Nshots
(11)

where Nxs(c) is the number of times the bit string xs(c) is output
from the circuit.

Almost any circuit c can be turned into a definite outcome
“mirror circuit” m(c) [3–6] for which xs[m(c)] can be effi-
ciently computed, and all the circuit sets used in our numerical
experiments—i.e., the applications of our CNNs to simulated
or experimental data—contain only mirror circuits m(c). Cir-
cuit mirroring is a motion-reversal circuit or Loschmidt echo
(i.e., following c by its inverse) that is modified to prevent the
systematic cancellation of errors that can occur within stan-
dard motion-reversal circuits.

III. PREDICTING CAPABILITIES USING
CONVOLUTIONAL NEURAL NETWORKS

In this section we introduce our method for predicting cir-
cuit success probabilities using convolutional neural networks
(CNNs). In this work we aim to predict the success proba-
bilities [s(c)] of definite outcome circuits, run on a specific
quantum processor, and we consider no context information
(i.e., A from Section II is trivial). So, the input of our neural
networks is a definite outcome circuit c, and the output is a
prediction for the success probability s(c) that would be ob-
served if c were run on the processor that we are modelling.
To address this prediction problem using neural networks we
must choose: (1) the set of quantum circuits whose success
probabilities we aim to predict (see Section III A); (2) a rep-
resentation for the circuits that enables inputting them into
a neural network (see Section III B); (3) a structure for the
neural networks (see Section III C); (4) methods for training
the parameters [i.e., weights] of the neural network (see Sec-
tion III D, and tuning its hyperparameters (see Section III E);
and (5) methods for evaluating the final model’s performance
(see Section III F).

A. Circuit selection

Training, hyperparameter tuning, and evaluation of our neu-
ral networks requires training, validation, and test datasets.
These datasets each consist of circuits {c} that are each la-
belled with an estimate [ŝ(c)] of that circuit’s success proba-
bility [s(c)]. We denote these datasets by Dtrain, Dvalidate, and
Dtest herein. Here we explain how we select the training, vali-
dation, and test circuit sets (in Sections II E-II D we explained
how we estimate s(c) for any circuit c). Each of these circuit
sets is sampled from a set C defining the set of all possible
circuits (the set C used in our examples is introduced below).

We construct training, validation, and (in-distribution) test
circuit sets using a parameterized distribution p(α) : C → R.
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First a circuit set Dcombined is constructed by (1) either system-
atically varying the distribution’s parameters α (correspond-
ing, e.g., to the circuits’ depths) or randomly sampling the dis-
tributions parameters, and (2) drawing independent samples
from p(α) for each selected parameter value α. The sampled
circuit set Dcombined is then randomly partitioned into training,
validation, and (in-distribution) test circuit sets. This is con-
sistent with standard practices in machine learning.

Evaluating a model’s prediction accuracy on test circuits
drawn from the same distribution as the training circuits corre-
sponds to standard practice, and neural network models often
do not generalize well to data drawn from a different distri-
bution. However, the utility of a neural network model for
s(c) will depend on its ability to accurately predict the per-
formance of those circuits that are of most interest to a user
of this model for s(c) (e.g., perhaps only circuits that imple-
ment a particular algorithm are of interest), and the relevant
circuit set[s] might not be known at the time of model train-
ing (therefore preventing the relevant circuit set[s] from being
used to define p). In Sections VI A we explore whether CNN
models for s(c) generalize to additional test data (Dtest), con-
taining circuits drawn from a distribution p′ that differs from
p. This is an example of what is known as out-of-distribution
prediction or generalization.

Specific circuit sets are sampled from the set of all possi-
ble circuits (C) and we now specify how C is defined in this
work. We consider circuit sets for an n-qubit processor (we
label the qubits by Q = {1, . . . , n}) with a set of logic layers
that is specified by a directed connectivity graph (G) over the
qubits Q, a two-qubit gate set G2, and a one-qubit gate set G1.
We consider all w ≤ n qubit (SICO) circuits, over a w-qubit
subset of Q (Qw), consisting of layers that contain parallel ap-
plications of gates from G1 and two-qubit gates from G2 that
respect the processor’s connectivity graph. Our circuit encod-
ing (see Section III B) assumes a connectivity graph that can
be embedded in a square grid (however, extensions to other
connectivity graphs are simple). Our circuit encoding assumes
a single two-qubit gate, and in all our numerical examples

G2 = {CNOT}. (12)

The circuit encoding assumes a single-qubit gate set in which
each gate can (but need not be) parameterized by a continuous
variable. For all our simulated datasets

G1 = {Z(θ), Xπ/2, X−π/2}, (13)

where Z(θ) is a Z rotation by θ, i.e., U[Z(θ)] = exp(−iθZ/2),
and Xπ/2 and X−π/2 are X rotations by π/2 and −π/2, respectively.
For all datasets from cloud-access quantum computers

G1 = C1, (14)

where C1 is the set of 24 single-qubit Clifford gates. Finally,
our current circuit encoding requires that every gate in every
circuit is a Clifford gate [so, for the gate set of Eq. (13), this
means θ ∈ {−π/2, 0, π/2, π}]. The restriction to Clifford circuits
is necessary for an optional part of our circuit encoding that
we conjecture can be adapted to general circuits (see the dis-
cussion in Section III B and Section VI C).

Throughout this paper our training, validation and test cir-
cuit sets are sampled from two families of parameterized dis-
tributions over circuits: randomized mirror circuit [3–6] and
periodic mirror circuits [3] (see Fig. 1 of Ref. [3] for a di-
agrammatic representation of these circuits, and the supple-
mental material therein for comprehensive definitions). Depth
d randomized mirror circuits consist of d/2 independently sam-
pled layers of gates, followed by d/2 layers consisting of the
inverse of that circuit (with some added randomization to
prevent systematic error cancellation). In contrast, periodic
mirror circuits consist of repeating the same short (randomly
sampled) sequence of gates many times, followed by the in-
verse circuit (again with some added randomization to pre-
vent systematic error cancellation). Randomized mirror cir-
cuits are highly disordered—and they are similar in nature
to the random circuits used in many benchmarking methods
(e.g., [1, 2, 10])—whereas periodic mirror circuits can am-
plify coherent errors. Each distribution is parameterized by:
(1) circuit width [w]; (2) circuit depth [d]; (3) the subset
Qw ⊂ {1, . . . , n} of w connected qubits that the circuit runs on;
and (4) expected two-qubit gate density [ξ]. We aim to model
s(c) for variable w, d and Qw, so we either systematically vary
these three parameters or sample them randomly.

B. Circuit encoding

To learn an approximation to a capability function s(c) we
must choose a mathematical representation I(c) for the circuits
that can be input into the chosen neural network architecture.
The neural network is tasked with approximating s(c) given
I(c), so the complexity of its learning task depends on the
choice for this representation. The learning problem is eas-
ier if we use a representation of the circuits that makes it easy
for the chosen neural network architecture to extract features
of circuits that are highly predictive of s(c) [47]. We represent
a w × d circuit for an n-qubit processor (where w ≤ n) using
a n × d image with multiple “color channels”, as illustrated in
Fig. 1. That is, we represent the circuit c by an n×d×h tensor
I(c) where h is the number of channels. The (i, j) “pixel” of
the image [Ii j(c)], meaning the vector

Ii j(c) =
(
Ii j1[c], Ii j2[c], . . . , Ii jh[c]

)T
, (15)

stores information about what happens to qubit i in layer j of
the circuit. So this encoding preserves the locality of consec-
utive layers in the circuit. However, it does not encode in-
formation about the spatial arrangement of the physical qubits
(our labelling of the qubits is arbitrary). The channels are split
into two kinds of channel: gate channels and error sensitivity
channels, introduced in turn below.

The gate channels are used to encode which gate is being
applied to each qubit in each layer, using a modified one-hot
encoding. Our encoding uses hgate = |G1| + 4 gate channels:
one for each single-qubit gate in G1 and four channels to en-
code CNOT gates [48]. We use four channels for the CNOT
gates as each qubit has at most four neighbours in the connec-
tivity graph, so four channels is sufficient for a lossless encod-
ing of the CNOT gates. The channels correspond to a CNOT
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gate with a neighbour that is to the left, to the right, above, or
below the qubit in question [which is qubit i for pixel Ii j(c)].
If in layer j of circuit c the gate G is applied to qubit i and G
is encoded in channel k then Ii jk(c) = v(G), with the value in
all other channels set to zero (as in one-hot encoding). If G is
a single-qubit parameterized gate then v(G) = θ where θ is the
gate’s parameter value [so, e.g., v(G) = θ for a Z(θ) gate], and
if G is a single-qubit gate with no parameters then v(G) = 1.
If G is a CNOT gate then v(G) = 1 (v(G) = −1) if qubit i is
the control (target) qubit. Therefore, the value v(G) stored in
a channel includes any information about the identity of the
gate that is being applied that is not encoded into the channel
index.

Machine learning techniques applied to physics problem
are often more accurate if known physics is encoded into the
methods [36] (known as physics-informed machine learning).
We implement a simple form of physics-informed machine
learning by encoding into I(c) some information about what
errors the circuit c is sensitive to. This is the role of our error
sensitivity channels. The error sensitivity channels are used
to encode, into pixel Ii j(c), information about which kinds of
errors qubit i is sensitive to when layer j of c is applied. In
our encoding, we utilize three error sensitivity channels hX ,
hY and hZ . For P ∈ {X,Y,Z}, hP encodes whether the single-
qubit Pauli error P on qubit i at layer j would transform the
qubits into an orthogonal state when applied to the ideal state
of the system after layer j. Specifically, letting

|ψ j〉 = U(l j) · · ·U(l1)|0〉⊗n, (16)

for the circuit c = ld . . . l1, then

I(c)i jhP = 1 − |〈ψ j|Pi|ψ j〉|. (17)

Thus, I(c)i jhP = 0 if |ψ j〉 is an eigenstate of Pi and otherwise
I(c)i jhP = 1. Here Pi denotes Pauli P operator on qubit i (ten-
sored with an identity on all other qubits).

A complete description of ψ j could be encoded into I(c) us-
ing O(n) bits (at each pixel) that specify a set of generators for
ψ j’s stabilizer group. This is because ψ j is a stabilizer state,
as we consider only Clifford circuits herein. We do not do
so for two reasons. First, our encoding provides a CNN with
easy access to information about the impact of a particular im-
portant kind of errors—local stochastic Pauli errors—which
is not easily extracted from an arbitrarily chosen set of gen-
erators for ψ j’s stabilizer group. Second, we conjecture that
limited error sensitivity information similar to that encoded
here can be obtained even for general, non-Clifford circuits,
whereas encoding a complete but efficient description of the
state ψ j does not generalize to arbitrary non-Clifford circuits.

C. Convolutional neural networks

In this work we use CNNs, which accomplish a regression
or classification task by learning convolutional filters that ex-
tract predictive features out of a dataset [33–35], to model
s(c). Here, we introduce the particular CNNs that we used
in this work, we explain why CNNs are a promising approach

to modelling s(c), and we highlight some limitations of this
approach to modelling s(c). See Goodfellow et al. [35] for a
detailed introduction to CNNs.

Our aim is to learn an approximation to the mapping from
circuits c, encoded into n × d × h images I(c), to s(c) ∈ [0, 1].
Therefore, our CNNs are functions

CNN : Rn×d×h → [0, 1]. (18)

Our CNNs are built out of three kinds of layers: convolutional
layers (conv), pooling layers (pool), and dense layers (dense).
These CNNs consist of interleaved convolutional and pooling
layers, followed by a sequence of dense layers, as illustrated
in Fig. 2.

Convolutional layers create feature maps by convolving an
input image with learnable kernels. A convolutional layer for
an input image I(in) ∈ Rnin×din×hin is specified by an activa-
tion function f , a kernel shape (kw, kd), and hout convolutional
filters Rnin×din×hin → Rnin×din containing learnable parameters.
The convolutional layer is a map

conv : Rnin×din×hin → Rnin×din×hout (19)

constructed by “stacking” the output of the hout filters. Each
convolutional filter is defined by a learnable kernel K(h) ∈

Rkw×kd×hin and a learnable bias bh ∈ R. The filter turns the
three-dimensional input image I(in) into a two-dimensional
feature map, by convolving the kernel with I(in)—i.e., by slid-
ing the kernel across the image and, at each location, taking
the inner product of the kernel with the local image patch—
then adding the bias (bh) to each pixel in the resultant two-
dimensional image, and finally applying the activation func-
tion ( f ). So the three-dimensional image output by the convo-
lutional layer [I(out)] is given by

I(out)
i jh = f

 dkw/2e∑
i′=−bkw/2e

dkd/2e∑
j′=−bkd/2c

hin∑
h′=1

K(h)
i′ j′h′ I

(in)
(i+i′),( j+ j′),h′ + bh

 , (20)

for i = 1, . . . , nin, j = 1, . . . , din, and h = 1, . . . , hout. Note
the edges of the input image are padded with zeros, e.g., by
definition I(in)

−1 jh = 0. In our work, the activation function f :
R→ R is the rectified linear unit (ReLU):

ReLU(x) = max(0, x). (21)

Convolutional layers are useful for extracting predictive
features from quantum circuits I(c) because they can create
feature maps that identify the locations (and the number of
instances) of specific patterns of gates in c. This is relevant
to predicting s(c) because particular patterns of gates can in-
crease the failure rate of circuits [4, 11]. For example, error
rates can increase when a particular gate is repeated multiple
times in a row (known as serial context dependence) or when
certain gates are applied in parallel (known as parallel context
dependence or crosstalk) [11]. Convolutional filters exist that,
e.g., find all instances of sequential applications of the same
gate in I(c) (see Section V D and Appendix F). Furthermore,
in Appendix D we present convolutional filters that extract
feature maps from our circuit encoding that are sufficient to
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FIG. 2. A convolutional neural network for predicting circuit success probabilities. In this work we explore using CNNs to predict a
circuit c’s success probability s(c) when run on a particular quantum computer. Here we provide an example of a CNN architecture that we
use for modelling s(c). The input to our CNNs is an image representation I(c) of a circuit c, where I(c) ∈ Rn×d×h and n is the number of
qubits (c’s width), d is c’s depth, and h is the number of channels used in the encoding. In this example, n = 5, d = 1825 and h = 10. Our
CNNs consist of one or more layers of convolutional filters (here there is one convolutional layer, with 15 kernels of shape (1, 4)), interspersed
with dimension-reducing average pooling layers (here there is one pooling layer, which averages across the depth dimension), followed by a
multi-layer perceptron consisting of dense layers of neurons (here there are two dense layers). The final dense layer contains a single neuron
with a sigmoid activation function, so that the output—the model’s prediction for s(c)—is within [0, 1]. Convolutional and dense layers contain
parameters (weights and biases) that are learned in the training process: the example shown here contains 2,305,640 parameters. The structure
of the CNN is selected using hyperparameter tuning. The example shown here is the CNN used for the local Pauli stochastic error model
trained on Ncircuits = 14940 and Nshots = ∞ (see Fig. 3). The image was generated using [49].

approximate s(c) under a local stochastic Pauli error model
(this family of parameterized models is defined in Section V),
and local stochastic Pauli errors constitute a significant pro-
portion of the total error in many systems.

In our networks, each convolutional layer is followed by a
pooling layer (see Fig. 2)

pool : Rnin×din×hin → Rnout×mout×hout , (22)

where nout ≤ nin and dout ≤ dout. Pooling layers reduce the size
of an image, by partitioning the image into distinct (pw, pd)-
shaped segments and, in each channel h, replacing each such
segment with the maximum or average value within that seg-
ment. Pooling layers, which contain no learnable parame-
ters, are included in the networks for dimensionality reduction
[50].

The dense layers of a CNN (see Fig. 2) are used to process
the final feature maps in order to make a prediction. Each
dense layer is a map

dense : Rnin → Rnout (23)

that consists of nout artificial neurons {ui}
nout
i=1 and a non-linear

activation function f : R → R (we again used ReLU, except
for the final layer). Each neuron u : Rnin → R is defined by
a learnable weight vector, w ∈ Rnin , and a learnable bias, b.
The mapping defined by a neuron is u(v) = f (wT v + b), and
the output of the layer is v′ = (u1(v), . . . , unout (v))T . Our net-
works terminate with a dense layer containing a single neuron
with a sigmoid activation function. This guarantees that our
network’s output is in [0, 1], and thus represents a probability.

D. Network training

CNNs are trained to approximate a function by iteratively
modifying all of their learnable parameters, to improve the

model’s predictions on training data. We optimize a network’s
weights using the Adam optimization algorithm, a gradient-
based optimization method [51]. A round of training consists
of: (1) evaluating the network’s predictions on Dtrain using a
loss function and (2) updating the network’s weights to mini-
mize the training loss. This process is repeated for some num-
ber of epochs (the number of training epochs is a hyperparam-
eter, as discussed below).

The loss function that we use is the average binary cross-
entropy (BCE). The average BCE of a modelM’s predictions
sM = {sM(c)} to a set of observations ŝ = {ŝ(c)} is

H(ŝ, sM) = −
1

Ncircuits

∑
c

sM(c) log[ŝ(c)],

where Ncircuits is the number of circuits in the dataset. A
circuit’s success probability s(c) is estimated using ŝ(c) =

Nxs(c)/Nshots [see Eq. (11)] where Nshots is the number of times
each circuit is repeated. Whenever Nshots is finite and equal
for all the circuits in a dataset then H(ŝ, sM) is equal to the
log-likelihood of the data given the model’s predictions mul-
tiplied by a multiplicative factor (of −NshotsNcircuits). These
conditions are satisfied for many of our datasets, and in those
cases minimizing the average BCE is equivalent to maximiz-
ing the likelihood of the model given the data.

E. Hyperparameter tuning

A CNN’s weights and biases are optimized when training
the network, but there are many other parameters that can
also affect a CNN’s prediction accuracy. Such parameters
are called hyperparameters. Hyperparameters include (but are
not limited to): (i) the number of convolutional, pooling, and
dense layers, (ii) the number of neurons in each dense layer,
(iii) the shape of each kernel in the convolutional layers, and
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(iv) the number of training epochs. Optimal values for hyper-
parameters are searched for by hyperparameter tuning.

Hyperparameter tuning consists of searching over a space
of candidate values for the hyperparameters (we used
Bayesian optimization [52, 53]). At each step in the search
process, a CNN is created with the candidate hyperparame-
ter values and trained using the training dataset (Dtrain). Each
model is evaluated on the validation dataset (Dvalidate), and the
hyperparameters with the smallest loss on Dvalidate are chosen.
A separate validation set is used because it mitigates the ef-
fects of over-fitting each CNN’s weights to the training data.
After hyperparameter tuning is complete, a new CNN is cre-
ated using the hyperparameters associated with the lowest loss
on Dvalidate. This network is trained on Dtrain ∪ Dvalidate (this
is standard practice in machine learning). For expediency, we
often refer to the combined training and validation dataset as
the “training” data when no confusion will arise.

The hyperparameter spaces used in our numerical experi-
ments are provided in the supplementary data and code. Our
hyperparameter optimizations included varying the shape of
the convolutional kernels, as different kernel shapes (kw, kd)
can create feature maps that extract circuit features that are
relevant for different kinds of error. We varied the width of
the kernels, as width-kw kernels jointly analyze the gates ap-
plied to kw qubits, so they can extract circuit features that are
relevant for modelling the effects of kw-qubit crosstalk. As our
encoding does not preserve the spatial locality of qubits, for
few qubit processors (small n) we include kernels of width up
to kw = n. We varied the length (kd) of the kernels, as length-
kd kernels jointly analyze kd circuit layers, so they can extract
circuit features that are relevant for modelling the effects of
errors that depend on kd sequential layers (e.g., serial context
dependence).

F. Evaluating model performance

To evaluate the performance of a model we quantify its pre-
diction accuracy on one or more test datasets (Dtest), which
were not used during training or hyperparameter tuning. We
used three complimentary figures of merit to evaluate the per-
formance of a model on test data: Kullback-Leibler (KL) di-
vergence, the mean absolute error (L1 error), and the Pearson
correlation coefficient (r). KL divergence is defined by

dKL(ŝ, sM) = H(ŝ, sM) − H(ŝ),

where H(ŝ) = H(ŝ, ŝ) is the entropy of ŝ. We use KL diver-
gence as a figure of merit in part because the mean H(ŝ, sM) is
the loss function in the training. The KL divergence removes
the entropy of the dataset from H(ŝ, sM), facilitating easier
comparisons between a model’s performance on datasets with
different entropies. The mean absolute error (or L1 error) de-
fined by

dL1 (ŝ, sM) =
1

Ncircuits

∑
c

|sM(c) − ŝ(c)|,

and the Pearson correlation coefficient (r) were chosen due to
their straightforward interpretations, and to allow comparison

to other work. Note, however, that r = 1 does not imply per-
fect prediction accuracy. This is because r quantifies the linear
correlation between a model’s predictions and the data.

G. Predicting capabilities using error rates models

Neural network models for s(c) will be useful if their pre-
dictions are sufficiently accurate. A particular task may re-
quire a model [sM(c)] for s(c) that achieves a certain accu-
racy threshold (e.g., 1% or less absolute error on every cir-
cuit within some circuit set), and whether a particular neural
network model for s(c) satisfies such a criteria can be judged
given that task. But a neural network model for s(c) is also
only useful if its prediction accuracy is at least as good as
other available and equally convenient (e.g., as fast to query)
models for s(c). This can be assessed without a particular
use-case for sM(c). Herein, we compare the predictions of
our CNNs to that of an error rates model (ERM) [3], which
we now introduce.

An ERM is a parameterized error model for a processor
that consists of modelling each of a processor’s logic opera-
tion by an error rate (ε). The model’s prediction for s(c) ap-
proximately corresponds to multiplying together the success
rates (1− ε) for every logic operation in c. An ERM’s parame-
ters consist of one-qubit gate error rates {ε(G, i)}i∈Q,G∈G1 , two-
qubit gate error rates {ε(G, i, j)}(i, j)∈E,G∈G2 where E is the set of
all connected pairs of qubits, and readout error rates {ε(i)}i∈Q.
An ERM’s prediction for s(c) is approximately given by

s(c) =
∏
i∈Qw

(1 − ε(i))
∏
g∈c

(1 − ε(g)), (24)

where Qw is the set of qubits on which c acts, and g ∈ c runs
over all the gates (labelled with the qubits on which they act)
in c. The exact formula for predicting s(c) from an ERM is
obtained by using the error rates {ε} to construct a global de-
polarization model [54] [and it differs from Eq. (24) only by
O(1/2n) factors]. That formula can be found in Ref. [3] (see
Eqs. (54)-(55) in the supplemental material of Ref. [3]).

ERMs are useful models against which to compare our
CNNs because an ERM’s parameters can be efficiently esti-
mated from data (for any number of qubits n), ERMs are fast
to query, and (unlike CNNs) ERMs have interpretable param-
eters. ERMs have these properties because (1) they contain at
most O(n2) parameters that must be learned from data [and, if
the qubit’s connectivity is a planar graph then an ERM con-
tains only O(n) parameters], and (2) the prediction for s(c) can
be quickly evaluated for any circuit c. For these reasons, an
ERM is arguably preferable to a neural network model for s(c)
if the two models have equal prediction accuracy. Throughout
this work, we fit an ERM to the same data used to train a
neural network (we use maximum likelihood estimation to fit
ERMs).
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FIG. 3. Modelling the effect of stochastic errors with CNNs. The prediction accuracy of CNNs trained on simulated data from few-qubit
random circuits with a stochastic Pauli errors model. We constructed a circuit set consisting of 16600 randomized mirror circuits on 1-5 qubits,
split it into training, validation and testing circuits (a 70%, 20%, 10% split), simulated each circuit under a single biased stochastic Pauli errors
model to compute s(c), and then trained and tuned CNNs on sub-sampled datasets of varying quality—constructed by independently varying
the training dataset size (Ncircuits) and the shot count (Nshots), i.e., the number of repetitions of each circuit c used to estimate s(c). We also
fit an ERM (error rates model) to the same training data, for comparison. Each subplot shows the true success probabilities s(c) versus the
predictions of the CNN (orange) and the fit ERM (f-ERM, blue) evaluated on the full set of 1660 test circuits, for a single (nested) training
dataset instance at each (combined validation and) training dataset size and shot count. We observe that the CNN’s predictions improve as the
dataset size increases and shot noise decreases. Legends show each model’s correlation coefficient r (note that r = 1 implies perfect linear
correlation, not perfect predictions). The improvement in the CNN’s accuracy with improving dataset quality is quantified in Fig. 4.

IV. PREDICTING CAPABILITIES WITH FEW QUBITS
AND STOCHASTIC ERRORS

Accurate modelling of capability functions for real quan-
tum processors using neural networks will require an archi-
tecture that can (1) model the effects of common kinds of
errors, and (2) be trained with feasible amounts of data. In
this and the following two sections, we use data from sim-
ulations of noisy quantum computers to investigate the cir-
cumstances under which CNNs can accurately predict s(c).
Markovian stochastic Pauli errors–such as uniform depolar-
ization or dephasing—are ubiquitous in experimental quan-
tum computing systems and their effects are relatively simple

to model. So we first study whether CNNs can model s(c)
in the presence of Markovian stochastic Pauli errors. In this
section we show that CNNs can learn to accurately predict the
success probabilities of few-qubit random circuits (n = 5) that
are subject to local stochastic Pauli errors. We demonstrate
that, given sufficient data, a CNN will outperform an ERM fit
to the same data. We explore the impact of dataset size, and
we find that (1) increasing the training dataset size improves
the CNNs predictions, and (2) CNNs perform well even with
fairly small training datasets (e.g., ∼1000 circuits).
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A. Error models and datasets

We constructed a dataset consisting of 16600 randomized
mirror circuits (see Section III A), for a 5-qubit device with a
“T” topology:

The circuits varied in width from 1 to 5, with a circuit of width
w designed for and applied to a randomly chosen set of w
connected qubits. The circuits varied in depth from 3 to 1825
layers [55].

We simulated the circuits under a single error model, con-
sisting of local stochastic Pauli errors that are maximally bi-
ased: for each gate on each qubit, only one of X, Y or Z errors
occurs with non-zero probability. The exact error model was
randomly selected, i.e., which error can occur for a particular
gate and qubit, and the rate of that error, was chosen at ran-
dom (see Appendix E for the selection protocol). We chose
to simulate biased errors because larger bias makes the task
of modelling s(c) harder in the following sense: when Pauli
stochastic errors are biased the success probability of a cir-
cuit s(c) not only depends upon the number of times each gate
appears in a circuit, but also on the state of the qubits when
that gate is applied (e.g., a Z error has no impact on a qubit
in a Z eigenstate). The one-qubit and two-qubit error rates
were selected to ensure a wide distribution of success proba-
bilities s(c). Each sampled circuit c was simulated under the
selected error model to compute its exact success probability
s(c), resulting in the dataset D = {(c, s(c))}. This dataset was
then randomly partitioned into training, validation, and testing
subsets—with a split of 70%, 20%, 10%, respectively.

To explore how model performance depends on the amount
of training data, and on the number of times each circuit was
run, we used D to create datasets with fewer total circuits,
and with estimates of each s(c) calculated from a finite num-
ber of repetitions (Nshots) of each circuit c [56]. We created
11 instances of circuit sets containing 100 circuits (i.e., 70
training, 20 validation, and 10 test circuits) and 5 instances
of circuit sets containing 300, 500, and 1000 circuits, by sub-
sampling from our 16600 circuits [57]. This results in datasets
in which the number of combined training and validation cir-
cuits (Ncircuits) is equal to 90, 270, 450, 900, and 14940. For
each dataset size, we created datasets with Nshots = 100, 1000,
10000, as well as datasets without shot noise (denoted by
Nshots = ∞), i.e., datasets containing s(c) rather than estimates
for s(c).

B. Results

For each dataset, we trained a CNN and fit an ERM on the
same data. The prediction accuracy for the trained CNNs and
the fit ERMs (f-ERMs) on the test data are summarized in
Figs. 3 and 4. Each CNN’s hyperparameters were tuned us-
ing the procedure described in Section III E. For every dataset

FIG. 4. Modelling the effect of stochastic errors with CNNs
(cont.) Quantifying the prediction error of CNNs and f-ERMs (fit
error rates models) trained on simulated data from few-qubit random
circuits with a stochastic Pauli errors model (see the caption of Fig. 3
for details). (a) The KL divergence and (b) the L1 error for the CNN’s
predictions (outer squares) and f-ERM’s predictions (inner squares),
averaged over multiple randomly sub-sampled datasets of each size.
The CNN’s prediction accuracy surpasses that of the f-ERM in the
region above the white line. In contrast with the f-ERM, we observe
that the accuracy of the CNNs continues to increase up to the largest
dataset size we used.

partition, we evaluated the performance of both the CNN and
the f-ERM on the full set of test circuits (1660 circuits) us-
ing the true success probabilities s(c) (i.e., the test data for
Ncircuits = 14940 and Nshots = ∞). Fig. 3 shows the predic-
tions of trained CNNs and f-ERMs for a single instance of a
dataset of each size and shot count. We observe that the pre-
diction accuracy of the CNNs generally increases with both
increased dataset size (increasing Ncircuits) and reduced shot
noise (increasing Nshots). The CNN outperforms the f-ERM
for sufficiently large Nshots and Ncircuits. An arguably neces-
sary condition for a neural network model for s(c) to be useful
is that its prediction accuracy is better than a f-ERM (fitting
ERMs is efficient and scalable, and an ERM’s parameters can
be interpreted), and we observe that our CNNs are satisfy-
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ing this necessary criteria for sufficiently high-quality training
datasets.

To quantify the accuracy of each model’s predictions, in
Figs. 4 (a-b) we show the mean KL divergence (dKL) and mean
L1 error (dL1 ) for each dataset size and shot count, averaged
over the multiple dataset instances (at each value for Ncircuits
and Nshots). The outer and inner squares show the predic-
tion error for the CNN and f-ERM, respectively, as a function
of Ncircuits and Nshots. The CNN’s prediction error decreases
with increasing training set size and shot count, as quanti-
fied by both the KL divergence and the L1 error. For exam-
ple, dL1 = 0.047 and dKL = 0.017 averaged over the datasets
with Ncircuits = 90 and Nshots = 100, whereas dL1 = 0.08 and
dKL = 0.0006 averaged over the datasets with Ncircuits = 900
and Nshots = 10000. A moderately accurate ERM can be
obtained by fitting to few data (see the blue data in the first
column of Fig. 3). This is because (1) the ERM is a few-
parameter model (in this case it has 28 parameters [58]), and
(2) the f-ERM captures significant aspects of the true, data-
generating process (the f-ERM fails to capture the bias in the
errors, but it does capture the average error in each gate when
applied to a random input state). In particular, (when n � 1)
the success rate s(c) of a typical randomized mirror circuit
c under a stochastic Pauli error model is well-approximated
(although not exactly modelled) by multiplying the probabil-
ity of a gate causing no error over all the gates in a circuit.
The f-ERM therefore significantly outperforms the CNN in
the small dataset regime.

We find that the CNNs are more accurate than the ERMs
when the datasets are moderately sized and have moderately
low shot noise (see Fig. 4 for the precise boundaries). An
ERM cannot exactly represent the true data-generating pro-
cess (a biased Pauli stochastic error model), so its perfor-
mance is intrinsically limited even in the large dataset limit.
These results imply that CNNs are able to learn features of
circuits that are more predictive of circuit success probabili-
ties than those encoded into an ERM (gate and readout error
rates). The accuracy of the CNN models continues to increase
up to the largest dataset size we used (Ncircuits in the com-
bined training and validation sets). However, the prediction
error will converge to a non-zero value as Ncircuits → ∞ if the
CNN’s ansatz does not contain the exact s(c) function (or if
the optimizer cannot find this function).

V. PREDICTING CAPABILITIES WITH MANY QUBITS
AND NON-MARKOVIAN ERRORS

Neural network approaches to modelling a quantum com-
puter’s capability s(c) are appealing because it is plausible
that they can circumvent some important limitations of con-
ventional approaches to modelling s(c). The conventional ap-
proach to predicting the success probability s(c) of some cir-
cuit c is to learn the parameters of a parameterized error model
(e.g., process matrices with unknown entries) and to then pre-
dict s(c) by simulating the circuit c under this learned error
model (e.g., by multiplying together the error model’s pro-
cess matrices). This approach has two important limitations:

(1) a parameterized model evidently cannot account for ef-
fects that are outside of its model, and (2) it is often infea-
sible to compute s(c) via simulation of c under the learned
error model, beyond the few-qubit regime. In this section, we
explore whether neural network approaches to approximating
s(c) can avoid these two limitations. We investigate whether
CNNs can accurately model s(c) in (1) the many-qubit regime
and (2) the presence of errors that cannot be described by the
most common kinds of parameterized error models (i.e., error
models that are restrictions on the maximal Markovian model,
as defined in Appendix B). Using simulated data, below we
show that CNNs can learn to accurately predict the success
probabilities s(c) of many-qubit random circuits (n = 49) that
are subject to stochastic Pauli errors, and that accurate pre-
dictions are still possible with the addition of non-Markovian
stochastic errors.

A. Datasets

One of the aims in this section is to explore whether CNNs
can accurately predict s(c) outside of the few-qubit setting.
We therefore focus on a hypothetical 49-qubit system, with a
7× 7 grid connectivity. We again consider the task of predict-
ing s(c) for randomized mirror circuits. We created a circuit
set containing 10000 randomized mirror circuits, for our hy-
pothetical 49-qubit device, with a training-validation-test split
of 37.5%, 12.5%, and 50% (we limited the number of training
and validation circuits to 5000 to speed up the model training
and hyperparameter tuning). The circuit widths ranged from 1
to 49 qubits, and a w-qubit circuit is designed for a randomly
selected set of w connected qubits. The circuit depths ranged
from 4 to 272 layers.

B. Predicting many-qubit circuits

First we explore whether CNNs can predict circuit suc-
cess probabilities in the many-qubit setting. To address this
question we generated a many-qubit dataset by simulating the
49-qubit circuit set (described above) under a local stochas-
tic Pauli error model with randomly selected error rates (the
model parameters). We used this kind of error model for
two reasons: (1) it enables direct comparisons with the per-
formance of CNNs trained on the 5-qubit data presented in
Fig. 3, and (2) it isolates the problem of predicting s(c) for
larger circuits c from the problem of predicting more complex
kinds of errors, e.g., non-Markovian stochastic errors (see
Sections V C and V D) or coherent errors (see Section VI B).
In this error model, each gate on each qubit is assigned in-
dependent error rates for the three possible Pauli errors, re-
sulting in a data-generating model that is described by 1498
parameters [59] (the specific error model used is provided in
the supplementary data and code [60]). We can denote the pa-
rameters of this model by εP(g, i) where P indexes the Pauli
error (X, Y , or Z), g denotes the gate (a single-qubit gate or
CNOT, implicitly index by the qubit[s] on which it acts), and i
denotes one of the qubits that g can act on. We computed s(c)
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FIG. 5. Predictions for non-Markovian errors. The prediction
accuracy of CNNs trained on simulated data from random circuits
for a hypothetical 49-qubit system with three different models. (a)
A Pauli stochastic error model, with gate- and qubit-dependent error
rates. This model forms the basis for two non-Markovian models in
which (b) a two-qubit gate’s error rate increases if it is preceded by
a two-qubit gate on either of its qubits, and (c) gate errors increase
over the duration of a circuit. Each main plot within (a-c) shows s(c)
versus the prediction error [δ(c) defined in Eq. (25)] on test data, for
a CNN and an ERM fit to the same dataset (f-ERM). The CNN and f-
ERM have similar prediction error for the Markovian model, but the
CNN significantly outperforms the f-ERM for both non-Markovian
models. This is summarized by the δ(c) histograms [lower right, (a-
c)] as well as the KL divergence and L1 error for each model [upper
right, (a-c)]. Each subfigure also contains a histogram of the test data
[upper left, (a-c)].

using a simulator that uses the approximation that two or more
stochastic errors never cancel (see the supplemental data and
code for details [60]). This approximation enables fast simu-
lation, and it is a very good approximation for random circuits
with low gate error rates [61] as is the case here. We trained a
CNN and fit an ERM using this dataset. For all datasets pre-
sented in this section, the CNN’s hyperparameters were tuned
using the procedure described in Section III E (the hyperpa-
rameter space that we used is provided in the supplementary
data and code [60]).

Figure 5 (a) shows the prediction error δ(c) on the test data
for both the CNN and the f-ERM. The prediction error is sim-
ply

δ(c) = ŝ(c) − sM(c), (25)

where sM(c) is the model’s prediction. The CNN’s predic-
tion error is small (dL1 = 4.34 × 10−3), demonstrating that
CNNs can accurately predict success probabilities for many-
qubit circuits and that the CNN can be trained using data from
a practically feasible number of circuits (5000 circuits). This
CNN’s prediction error is similar to that observed when we
trained a CNN on simulated data from a hypothetical 5-qubit
system with a similar error model (see Fig. 3), while the num-
ber of parameters required to describe the true data-generating
process has increased to around 1498. However, note that the
f-ERM exhibits nearly the same prediction error as the CNN
(dL1 = 4.18 × 10−3), demonstrating that this prediction prob-
lem is relatively easy. Furthermore, note that these results
demonstrate that a CNN can be successfully trained on many-
qubit circuits to predict s(c) for one category of errors—local
stochastic Pauli errors—but they do not imply that CNNs will
be able to accurately model the effects of more complex kinds
of errors that plague many-qubit quantum computing systems,
such as crosstalk.

C. Non-Markovianity: temporal context dependence

We now investigate whether CNNs can accurately predict
circuit success probabilities in the presence of effects that can-
not be modelled by conventional parameterized models for
quantum computers (including ERMs). Conventional param-
eterized models are constructed by placing restrictions on the
maximal Markovian model (see Appendix B), so they can-
not model non-Markovian errors. We conjecture that neural
network methods for modelling s(c) can learn good approx-
imations to s(c) even in the presence of many kinds of non-
Markovian errors. To test this conjecture, we created a dataset
for each of two different non-Markovian models. Each of
these models is a modification to the Markovian error model
described above, in Section V B.

One kind of non-Markovianity is gates that get worse over
the course of a circuit (e.g., this can occur in ion-trap systems
due to heating). To investigate whether CNNs can accurately
model s(c) in the presence of this kind of error, we created a
simple model (“Growing Pains") where the error rate of each
gate monotonically increases as a function of layer depth. In
particular, for each error rate εP(g, i) in the Markovian model
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(see above), we replace the static error rate with an error rate
that is indexed by the layer in the circuit in which the gate
occurs:

εGP,P(g, i, l) =
2εP(g, i) + εmax

P (g, i)[elτ − 1]
elτ + 1

, (26)

where l denotes the layer index. Here εP(g, i) is the rate of the
Pauli error P = X,Y,Z when the gate at circuit location (i, j) is
applied to qubit i in the base Markovian error model [note that
εGP,P(g, i, 0) = εP(g, i)], εmax

P (g, i) is a parameter that specifies
the error rate at l → ∞ [we choose εmax

P (g, i) = 9εP(g, i)], and
τ is a parameter that controls the rate of increase in the error
rates (we choose τ = 1/350) [62]. We created a dataset for the
Growing Pains error model, by simulating the set of 10000
circuits described in Section V A to compute each circuit’s
s(c), and we tuned and trained a CNN on this data (and fit an
ERM).

Figure 5 (c) shows the prediction error for the CNN and
f-ERM, on the test data for the Growing Pains error model.
The CNN’s prediction error is low (dKL = 2.65 × 10−3 and
dL1 = 4.22 × 10−3), and it is similar to the CNN’s predic-
tion error on the Markovian model (dKL = 1.82 × 10−3 and
dL1 = 4.34×10−3). We find that 95% of the CNN’s predictions
fall within ±0.012 of s(c), with consistently good performance
across circuits of different depths, widths, and values for s(c).
Convolutional layers are translationally invariant—each con-
volutional filter does not distinguish between the same gate
pattern that appears near the start of circuit and near the end
of a circuit—but the data generating model is not. However,
some circuit location information is preserved by the convolu-
tional layers of the network (the convolutional portion of the
network outputs an image). Therefore, the subsequent dense
network can learn weights that enable the complete network
to model the effect of increasing gate error rates.

The CNN vastly outperforms the f-ERM—the L1 error for
the f-ERM (dL1 = 0.075) is almost twenty times larger than
the L1 error for the CNN trained on the same data. No con-
ventional Markovian error model, including an ERM, can de-
scribe gates whose performance gets worse over the dura-
tion of a circuit. So, when fit to this dataset (which con-
tains circuits of various depths, making this non-Markovianity
visible), the best-fit error rates produce a f-ERM with over-
optimistic predictions for deep circuits and over-pessimistic
predictions for shallow circuits. This is the cause of the bias
in the predictions of the f-ERM for high and low success prob-
abilities circuits seen in Fig. 5 (b) [s(c) is anti-correlated with
circuit depth].

D. Non-Markovianity: serial context dependence

We now apply CNNs to learn a capability function in the
presence of another kind of non-Markovian error: serial con-
text dependence. In an error model with serial context depen-
dence, a gate’s error process depends on the gates that precede
or follow it. To investigate whether CNNs can model s(c) in
the presence of serial context dependence, we constructed a
simple model (“Double Trouble”) for this kind of error. We

modified our Markovian error model so that a qubit’s error
rates for a two-qubit gate are increased if that qubit is acted
on by another two-qubit gate in the preceding layer. Specifi-
cally, a gate g’s rate of Pauli P errors on qubit i in layer l of
circuit c is given by

εDT,P(g, i, l) = 1 − [1 − εP(g, i)](1 − εadd)Ncnot(i,l)Ncnot(i,l−1), (27)

where Ncnot(i, l) = 1 if location (i, l) in circuit c is a CNOT
gate and otherwise Ncnot(i, l) = 0. We choose εadd = 0.005, so
if a qubit is involved in two consecutive CNOT gates, the er-
ror rate of the second CNOT gate increases by approximately
0.005.

Figure 5 (c) shows the prediction error for a CNN, trained
and tuned on data from the Double Trouble error model, and
a ERM fit to the same data (f-ERM). The CNN’s prediction
error on test data is significantly larger than it is for a CNN
trained and tested on the base Markovian model (the L1 error
is approximately three times larger: dL1 = 0.015 compared to
dL1 = 4.34 × 10−3). However, the CNN still significantly out-
performs the f-ERM, as the CNN’s L1 error is approximately
three times smaller (dL1 = 0.015 compared to dL1 = .05).
We find that 95% percent of the CNN’s predictions are within
±0.045 of s(c).

Convolutional layers can pick out localized pattern of gates,
by learning convolutional filters (and biases) that return a non-
zero value if and only if that pattern of gates appears. Se-
quential CNOT gates can therefore be identified by a convolu-
tional filter applied directly to the input image representation
of a circuit (i.e., a convolutional filter in the first convolutional
layer). In particular, there exists a set of four convolutional fil-
ters that enable a convolutional layer to identify all instances
of sequential CNOT gates (these filters are provided in Ap-
pendix F). This suggests that the CNN training and hyperpa-
rameter tuning process that we have used is finding signifi-
cantly sub-optimal convolutional filters in this case.

VI. CHALLENGES TO USEFUL NEURAL NETWORK
MODELS FOR CAPABILITIES

In this section we explore some important challenges to
creating useful neural network models for a quantum com-
puter’s capability s(c). We explore the problem of predicting
s(c) for circuits sampled from a different distribution to the
training data (Sections VI A); we highlight the difficulty of
modelling the impact of coherent errors using neural networks
(Section VI B); and we investigate the importance of includ-
ing error sensitivity information within the neural network’s
input (Section VI C).

A. Generalizing to out-of-distribution circuits

Each practical application for a model of s(c) will require
that the model’s predictions are accurate for some set of
circuits of interest C, and this circuit set will generally be
application-specific. For example, one application for a model
of s(c) is finding a low-error compilation for some algorithm
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A. There are many circuits that implement an algorithm A,
and the primary aim in compilation is to find the circuit c in
the set of all such circuits (CA) that maximizes s(c). Using
a model for s(c) to inform this compilation (e.g., to define a
cost function to be used by an optimizer) requires that it is ac-
curate for the circuit set CA. The relevant set of circuits will
vary between applications of our model for s(c). For each cir-
cuit set C of interest, a neural network can be trained on data
from circuits sampled from C. However, retraining a neural
network is expensive (it requires new training data, and net-
work training can be slow). Therefore, it is interesting to ex-
plore whether neural network models can accurately predict
s(c) for circuit sets C that are sampled from a different distri-
bution to the training data—a task that is often referred to as
out-of-distribution generalization [63]. Below we present two
examples of out-of-distribution generalization.

First, we consider the problem of predicting wide circuits
(here w > 25 active qubits) using a CNN trained on data con-
taining only narrow circuits (w ≤ 25 active qubits). This is a
simple example with which to explore out-of-distribution gen-
eralization, but it also has practically relevance. In particular,
for some definitions for s(c) (such as TVD) there is no known
method for efficiently measuring s(c) in an experiment if c is
a wide and deep circuit (see Section II). We use the data sim-
ulated under the Growing Pains noise model (see Section V).
We trained a CNN on only the narrow circuits in the training
dataset (n-CNN), and we fit an ERM to the same data (nf-
ERM). No automated hyperparameter tuning was performed,
except to select the number of training epochs (see the supple-
mental data and code [60] for the architecture) [64]. In this er-
ror model, gate performance gets worse later in a circuit, but a
gate’s error rate is independent of width. In particular, the pa-
rameters of the data generating error model (Growing Pains)
can be learned from the w ≤ 25 qubit circuits data. It is there-
fore plausible that a CNN trained on data from narrow cir-
cuits will generalize to accurately predict s(c) for wide circuit
(whereas we could not expect a model trained on few-qubit
circuits data to accurately predict the success probabilities of
many-qubit circuits if there are additional errors that only ap-
pear in those many-qubit circuits, e.g., many-qubit crosstalk
effects [5]).

Figure 6 displays the n-CNN’s out-of-distribution predic-
tions on the wide circuit test data (purple points) alongside
the predictions of the CNN that was trained on all of the
training data (a-CNN, orange points), which includes narrow
and wide circuits. The n-CNN generalizes moderately well
in the sense that the prediction error of n-CNN is reasonably
small (dL1 = 0.02). However, the prediction error for the n-
CNN is approximately twenty times larger than for a-CNN
(dL1 = 0.001), so the relative increase in the prediction er-
ror when removing wide circuits from the training dataset is
large. There is also a bias in the out-of-distribution network’s
predictions: the n-CNN systematically underestimates s(c) on
the out-of-distribution circuits [i.e., typically δ(c) > 0]. In-
terestingly, the n-CNN still achieves low prediction error on
those test circuits with small s(c), even though circuits with
small s(c) are underrepresented in the narrow circuit training
data.

FIG. 6. Generalizing to out-of-distribution circuits. Two examples
of generalizing a neural network to predict circuits that are drawn
from a distribution that differs significantly from the training distri-
bution. (a) The prediction accuracy [δ(c)] of a CNN (n-CNN, purple)
trained on narrow circuits (w ≤ 25 qubits) evaluated on a test dataset
containing wide circuits (w > 25 qubits). The data was simulated un-
der an error model in which gate errors increase with circuit depth, so
narrow circuits reveal all important aspects of the error model, mean-
ing that accurate generalization to wider circuits is feasible. The pre-
diction error δ(c) for n-CNN is much smaller than for an ERM fit to
the same training data (nf-ERM, pink). However, δ(c) is larger for n-
CNN than for a CNN trained on a dataset containing both narrow and
wide circuits (a-CNN, orange). (b) The prediction error of a CNN (r-
CNN, purple) trained on random circuits and evaluated on periodic
circuits. The r-CNN has an L1 error of dL1 = 0.005 on test data drawn
from the same distribution as the training data (random circuits), but
it increases to dL1 = 0.052 on periodic circuit data, resulting in worse
predictions than provided by an ERM fit to the same training data
(rf-ERM, blue). However, the CNN’s performance can be substan-
tially improved by re-training the CNN on periodic circuit training
data (p-CNN, yellow), while maintaining the same architecture that
was found by hyperparameter tuning using the random circuits data.

Our second example of out-of-distribution generalization
considers the problem of predicting s(c) for circuits with dif-
ferent structures to those in the training dataset. In this work
we have so far considered training CNNs on data from ran-
dom circuits. In particular, we have used data from random-
ized mirror circuits (see Section II), and these circuits are de-
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fined by a distribution that has support on all possible mirror
circuits. However, a circuit sampled from this distribution is
almost certainly highly disordered [3], e.g., it will almost cer-
tainly not contain repeated patterns of gates. It is not a priori
clear whether a CNN trained only on highly disordered cir-
cuits (e.g., randomized mirror circuits) will generalize to ac-
curately predict s(c) for highly ordered circuits (e.g., periodic
circuits, or algorithmic circuits). However, error propagation
in disordered circuits (where errors are scrambled, and coher-
ent errors add quadratically) [61] differs substantially from er-
ror propagation in highly ordered circuits (where errors can
be amplified or echoed away, and coherent errors can add lin-
early) [7], suggesting that neural networks trained only on dis-
ordered circuits will generalize poorly to structured circuits.

To explore whether CNNs trained on random circuits gen-
eralize to ordered circuits we created a dataset of 5-qubit pe-
riodic mirror circuits and simulated them under the Marko-
vian error model described and used throughout Section IV
(our simulation used Nshots = ∞ shots). We used a CNN that
was trained on data from Ncircuits = 14940 random mirror cir-
cuits (also with Nshots = ∞) to predict s(c) for these periodic
mirror circuits (we denote this CNN by r-CNN). Figure 6 (b)
shows r-CNN’s prediction error on the test dataset (i.e., the
periodic mirror circuits). The prediction error for r-CNN is
large and it is approximately ten times larger on this out-of-
distribution test data (dL1 = 0.052) than for in-distribution test
data (dL1 ≈ 0.004).

To quantify the performance of the r-CNN we compare it
to two alternative models: an ERM fit to the random circuit
data (rf-ERM) and a CNN trained on periodic mirror circuit
data (p-CNN). As shown in Fig. 6 (b), the rf-ERM outper-
forms the r-CNN on the out-of-distribution test data, even
though CNNs trained on random circuit data have substan-
tially lower prediction error than fit ERMs on in-distribution
test data (see Fig. 4). However, if we retrain the CNN us-
ing the periodic mirror circuit training data, we obtain signif-
icantly better model performance (p-CNN in Fig. 6). These
results suggest that CNNs learn features that encode how a
specific error model interacts with the specific class of circuit
used in the training. This is both a strength—as it enables
CNNs to outperform ERMs, which cannot model the interac-
tion between circuit structure and a specific error model—and
a weakness—as it limits the prediction accuracy of CNNs on
out-of-distribution circuits. We conjecture that two comple-
mentary approaches will improve a CNNs out-of-distribution
prediction accuracy: (1) fine-tuning a trained neural network
using a small amount of data for each circuit family of inter-
est, e.g., by retraining only some of a network’s weights; (2)
encoding known physics for how errors propagate through cir-
cuits within a neural network’s architecture and/or within the
circuit encoding.

B. Prediction in the presence of coherent errors

Techniques for modelling capability functions will only be
useful in practice if they can learn a good approximation to
s(c) in the presence of all the types of errors that real pro-

FIG. 7. Inaccurate capability models when errors are purely co-
herent. The prediction accuracy of a CNN and a f-ERM trained on
randomized mirror circuit data (n = 5 qubits) generated from an error
model with purely coherent (i.e., Hamiltonian) errors. We find that
neither model accurately predicts the test data (dL1 ≈ 0.06 for both
models). Predicting s(c) in the presence of coherent errors is chal-
lenging because coherent errors can add or cancel across an entire
circuit.

cessors commonly experience. In this paper so far, we have
only considered modelling s(c) in the presence of (Marko-
vian and/or non-Markovian) stochastic Pauli errors, but real
quantum processors also experience many other kinds of error
(e.g., see Ref. [12]). Coherent errors are ubiquitous and their
effect on s(c) is particularly challenging to predict, because
they can coherently add or cancel within circuits. We there-
fore investigated whether CNNs can accurately model s(c) in
the presence of coherent errors.

We simulated a set of 5-qubit randomized mirror circuits
(the circuits of Section IV) under an error model consisting of
purely coherent errors on each gate. We randomly sampled
the error model, using the procedure provided in Appendix E.
Figure 7 shows the prediction accuracy for a CNN (with tuned
hyperparameters) and a f-ERM. The CNN has a slightly larger
prediction error (dL1 = .06) than the f-ERM (dL1 = .0599), and
neither model’s predictions are accurate. For both models,
there are circuits within the test set for which the L1 error is
over 0.5, which is arguably a catastrophic prediction failure.
Coherent errors are a significant proportion of the total error
in many contemporary quantum computing systems (see, e.g.,
Refs. [12, 65]), and so CNNs’ inability to model s(c) in the
presence of coherent errors will limit the prediction accuracy
of CNN models for s(c) that are trained on experimental data
(this is consistent with our results in Section VII).

Low prediction accuracy for CNN models of s(c) in the
presence of coherent errors can be explained as follows. The
impact of coherent errors on a particular circuit c is difficult
to predict because coherent errors can coherently add or can-
cel across the entire circuit. Whether two coherent errors at
two circuit locations (i, j) and (i′, j′) coherently add or can-
cel strongly depends both on these errors (their magnitudes
and directions) as well as the unitary evolution caused by the
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circuit layers between j and j′. Furthermore, because coher-
ent errors at any two circuit locations can cancel (or add),
their combined effect likely cannot be modelled by a CNN
that has convolutional filters that are much smaller than the
circuit size. Exact classical modelling of the effect of coher-
ent errors on a general circuit c likely requires simulating the
unitary evolution of each circuit layer, and it is perhaps infea-
sible for a neural network to learn a good approximation to
s(c) when coherent errors dominate. However, it is possible
that improvements to the circuit encoding (see below) or the
neural network architecture may greatly improve the accuracy
of neural network models for s(c) in the presence of coher-
ent errors, as we discuss briefly in Sections VI C and VIII.
Furthermore, note that coherent errors can be converted into
stochastic Pauli errors using randomized compiling [65, 66]
or Pauli frame randomization [67].

C. The role of error sensitivities in capability learning

Our encoding [I(c)] for a circuit c includes a limited amount
of information about the sensitivity of that circuit to errors.
In particular, pixel Ii j(c) encodes information about whether
a Pauli X, Y , or Z error on qubit i after layer j will change
the state of the qubits (see Section III B). This information is
stored in three “error sensitivity” channels, that correspond to
these three kinds of error. We included these three channels
in our encoding as we conjectured that they make it easier for
a CNN to learn an accurate model for s(c) in the presence
of local stochastic Pauli errors (including non-Markovian lo-
cal stochastic Pauli errors). This conjecture is supported by
the observation that there exists a CNN (an architecture with
specific weights) that is a good approximation to any local
stochastic Pauli error model and that our construction for such
a CNN (see Appendix D) uses the information in these error
sensitivity channels.

To examine the importance of the error sensitivity channel,
we trained a CNN on a dataset that removed the error sensi-
tivity channels from our circuit encoding I(c). We used the
5-qubit local Pauli stochastic errors dataset from Section IV
(we used the Nshots = ∞ and Ncircuits = 14940 dataset). We did
not perform hyperparameter tuning (using instead the network
architecture found when performing hyperparameter tuning
with the error sensitivity channels included). Figure 8 shows
the predictions of the CNN trained on datasets that do and do
not include the error sensitivity channels. The performance
of the CNN without access to the error sensitivity information
is significantly worse (dL1 = 0.011 versus dL1 = 0.004), sup-
porting our hypothesis that this error sensitivity information
significantly reduces the difficulty of the learning problem.

Our results suggest that channels that encode a circuit’s
sensitivity to local Pauli stochastic errors improve a CNN’s
ability to model s(c) in the presence of local Pauli stochastic
errors. This suggests a promising path forward for accurate
modelling of s(c) in the presence of more general classes of
error, including coherent errors: the inclusions of additional
error sensitivity information in the circuit encoding. There
are, however, significant challenges to this approach. First, the

FIG. 8. Error sensitivity information improves model accuracy.
The prediction error of CNNs trained with and without the error sen-
sitivity channels—which we use to encode information about each
qubit’s sensitivity to the three single-qubit Pauli errors at each circuit
location—on randomized mirror circuit data (n = 5 qubits) simulated
under a Pauli stochastic error model. We observe significantly better
performance (the KL divergence is an order of magnitude smaller)
for the CNN that has access to the error sensitivity channels. This
suggests that error sensitivity information is important for accurate
capability learning.

impact of some kinds of errors—including coherent errors—
cannot be localised to each circuit location, because their over-
all effect depends on how they combine. Second, our current
method for including error sensitivity information within I(c)
relies on the circuit containing only Clifford gates—but a use-
ful model for s(c) arguably also needs to predict s(c) for non-
Clifford circuits. We therefore suggest that an interesting open
problem is the development of a representation of circuits that
includes partial or approximate error sensitivity information
for a broad range of errors errors in general circuits.

VII. DEMONSTRATION ON EXPERIMENTAL DATA

In this section we explore how accurately CNNs can model
the capabilities of cloud-access quantum computing systems.

A. Datasets

We used data from an existing publicly-available dataset
[68] that consists of success probabilities for varied width and
depth randomized and periodic mirror circuits, run on various
cloud-access quantum processors. We used data from seven
different IBM Q processors: a 14-qubit system (IBM Q Mel-
bourne), and six different 5-qubit systems. Each processor’s
dataset was obtained by running 40 shape (w, d) randomized
mirror circuits and 40 shape (w, d) periodic mirror circuits,
with w and d varied systematically (w took every possible
value, and d was exponential spaced). For each processor,
all w-qubit circuits were run on the same set of w qubits. The
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FIG. 9. Predicting the capabilities of cloud-access IBM Q processors. We trained CNNs to predict circuit success probabilities for seven
cloud-access IBM Q processors (which are all 5-qubit or 14-qubit systems), using a dataset that consists of success probability estimates ŝ(c)
for approximately 3000 (5-qubit processors) or 5000 (14-qubit processors) periodic and randomized mirror circuits of varying widths and
depths. We show the prediction error on the test data (for three processors) for the CNN (top row, orange), an ERM fit to the same training data
(f-ERM, second row, blue), an ERM that uses the gate error rates provided by IBM (d-ERM, third row, red), and a “stability baseline model”
(SBM) that quantifies the stability of the processor (fourth row, brown). The CNN and f-ERM’s prediction error are comparable and constitute
moderate prediction accuracy, although the CNN outperforms the f-ERM in most cases (see Fig. 10). Prediction error is separated into periodic
mirror circuits (black outline) and randomized mirror circuits (no outline), and for all but one processor we observe lower prediction error for
the randomized mirror circuits (see r values reported in legends). Both the CNN and f-ERM are substantially more accurate than the d-ERM
(the d-ERM’s error rates are known to miss important sources of error [5]). The SBM model (fourth row) is a baseline that quantifies how
stable each circuit’s success probability is over time (see main text for details), and it is unlikely that a CNN (or another model) will outperform
the SBM without including additional context information in the training data (e.g., timestamps). We observe that neither the CNN nor the
ERMs achieve the prediction accuracy of the SBM, but for all but two processors the average L1 error of the CNN is less that two times the
average L1 error of the SBM (see Fig. 10).

number of circuits in each dataset is approximately 3000 (for
the 5-qubit systems) or approximately 5000 (for IBM Q Mel-
bourne). Each set of circuits was run, in a randomized order,
obtaining an estimate ŝ(c) for each circuit’s success proba-
bility s(c) from Nshot = 1024 executions of the circuit. The
entire circuit list was then immediately run again, obtaining
a second estimate ŝ′(c) (with Nshot = 1024) for each circuit.
We use the data from the first pass through the circuits (“pass
1”) for training and evaluating our CNNs, and the data from
the second pass through the circuits (“pass 2”) to quantify sta-
bility. Further details of these datasets and experiments are
presented in Ref. [3] (the datasets used here are referred to
as “experiment 2” in the supplementary information therein

[69]). We randomly separated the circuits for each processor
into training, validation, and test circuits, with an 80%, 10%,
10% split.

B. Results

We trained and tuned CNNs separately for each processor,
using that processor’s training and validation datasets. Fig-
ure 9 (top row) shows the prediction accuracy of the CNNs
on the test data for three of the seven processors, separated
into periodic and randomized mirror circuits. Equivalent plots
for the other four processors can be found in Appendix G (see
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FIG. 10. Prediction accuracy of capability models for cloud-
accessible IBM Q processors. The prediction accuracy on test data
for CNNs trained on data from seven different cloud-access IBM Q
processor, quantified by (a) KL divergence and (b) L1 error. We also
show the prediction accuracy for f-ERMs, d-ERMs, and SBMs. See
Fig. 9 and Section VII for further details. (In all cases, error bars are
too small to be visible.)

Figs. 11 and 12). We observe moderate prediction accuracy—
the average L1 error on the test data ranges from 0.04 to 0.08,
and the KL divergence ranges from 0.01 to 0.09 (see Fig. 10).
This prediction accuracy is similar to or better than that ob-
tained in other recent work that applies neural networks to
model s(c) on cloud-access quantum processors [38, 40], but
note that those papers apply neural networks to slightly differ-
ent tasks and different circuit families, so meaningful quanti-
tative comparisons are not possible. For all but one proces-
sor, the prediction error for the randomized mirror circuits is
smaller than the prediction error on the periodic mirror cir-
cuits (compare the r values in the legends of Figs. 9, 11 and
12). The success probabilities of periodic circuits are typi-
cally harder to predict, due to the interactions between the
(unknown) structure in a processor’s errors and the circuit’s
structure. Note that we observed lower prediction accuracy
on periodic circuits than on random circuits with simulated
data (see Section VI A).

To explore how the accuracy of our CNNs compares to al-
ternative models for s(c), we compare their predictions to two
classes of ERMs. One of these ERMs has parameters (i.e.,
error rates) obtained from the processor’s performance data
provided by IBM Q [70], which we call the “device error rates
model” (d-ERM). The CNN substantially outperforms the d-

ERM for every dataset, as shown in Fig. 9 (compare the top
and third rows) and Fig. 10. This large improvement in the
prediction accuracy compared to a d-ERM highlights the lim-
itations of using parameterized error models obtained from
only one- and two-qubit RB experiments (IBM Q’s perfor-
mance data), as they miss many important sources of error in
many-qubit circuits (e.g., crosstalk). As throughout this paper,
we also compare each CNN’s predictions to an ERM whose
parameters are also fit to the training data (f-ERMs). For most
processors, the CNN’s prediction error is lower than the f-
ERM, but it is only a slightly improvement (see Fig. 10, and
compare the top and second row of Fig. 9). For one dataset
(from IBM Q London), the f-ERM actually outperforms the
CNN, even though a good approximation to the f-ERM ex-
ists within the CNN’s parameter space (see Appendix D). For
all seven datasets, the CNN’s increase in accuracy over the
f-ERM is too small to be of any practical significance. Like
most contemporary quantum computing systems, IBM Q pro-
cessors experience a mixture of coherent and stochastic er-
rors, and the prediction accuracy of these CNNs is between
what we observed in simulations with purely stochastic errors
(Sections IV and V) and purely coherent errors (Section VI B).
We therefore conjecture that a neural network method that can
accurately predict s(c) when coherent errors are a significant
proportion of the total error budget is the primary advance re-
quired to obtain useful neural network models for s(c).

Real quantum processors are not stable, i.e., their error pro-
cesses vary with time [12, 13, 20], which implies that a pro-
cessor’s capability function s(c) depends on time t (and pos-
sibly other context variables—see Section II). Because our
datasets do not include execution time in the data encoding,
it is infeasible to learn the impact of any processes that vary
over time scales that are longer than the time for running in-
dividual circuits (processes that varying within the execution
time of a single circuit can be learned, as demonstrated above).
Therefore the magnitude of a processor’s instability provides a
lower bound on how accurate a model trained on that data can
be. The magnitude of a processor’s instability can be quan-
tified by using the estimate of s(c) for each circuit from the
second pass through all the circuits—denoted by ŝ′(c)—as a
prediction for s(c) on the test data (obtained in pass 1). This
prediction for s(c), which we call the stability baseline model
(SBM), is shown in the fourth row of Fig. 9. We observe that
the CNNs (and the f-ERMs) do not achieve the prediction ac-
curacy of the SBMs. However, for all but two processors the
average L1 error of the CNN is less than two times the average
L1 error of the SBM (see Fig. 10).

VIII. CONCLUSIONS

Understanding a quantum processor’s computational power
requires knowledge of what quantum circuits it can run with
low probability of error, and this can be formalized using the
concept of a capability function s(c). But modelling a quan-
tum processor’s capability s(c) is hard, as s(c) depends on a
processor’s unknown errors and how those errors interact with
each circuit c. Parameterized error models can be used to pre-
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dict s(c), but simple, scalable error models fail to accurately
model s(c). More complex error models like process matri-
ces are not scalable—yet they still often fail to model s(c)
accurately [19]. In this work we have investigated using neu-
ral networks to learn an approximation to s(c). We have for-
malised this prediction problem [i.e., defining s(c)], and we
have shown how to efficiently obtain training data for a par-
ticular definition of s(c): process fidelity.

We have presented a CNN architecture and circuit encod-
ing for modelling s(c), and we have shown that these CNNs
can accurately model s(c) in the presence of Markovian or
non-Markovian local Pauli stochastic noise. Interestingly, we
have demonstrated that a CNN vastly outperforms an ERM
(error rates model) on some simple non-Markovian error mod-
els, demonstrating the power of neural networks to model the
impact of errors that are outside the standard framework of pa-
rameterized error models. However, a practical technique for
modelling s(c) must be able to learn a good approximation to
s(c) in the presence of all the kinds of error that real processors
commonly experience, and this is not the case with our CNNs.
We find that they cannot model s(c) when coherent errors are
dominant, and this severely limits the applicability of these
networks to real systems. A promising approach to solving
this problem is to use a circuit encoding (and a correspond-
ing network architecture) that contains detailed error sensi-
tivity information, generalizing the error sensitivity channels
in our encoding. Our error sensitivity channels encode a cir-
cuit’s sensitivity to local Pauli stochastic errors, and they help
our CNNs perform excellently on local Pauli stochastic error
models. However, whether it is possible to efficiently summa-
rize general error sensitivity information for general circuits
is an open problem.

The CNN architecture we have employed is well-suited to
our prediction problem in a number of ways, e.g., a convo-
lutional filter jointly analyzes information from a temporal
neighbourhood of a gate. But this architecture also has some
features that likely limit its ability to accurately model s(c).
Firstly, spatial relationships between qubits are not explicitly
encoded, yet it is likely to be of significance for predicting s(c)
due to the importance of effects like localized crosstalk errors.
Second, each convolutional filter in a CNN is transitionally in-
variant, yet error processes in quantum computers are not: dif-
ferent qubits experience different errors and at different rates.
So, although we have found that a CNN can accurately learn
to predict s(c) under error models that are not spatially in-
variant, it is not optimized for this task. We therefore con-
jecture that alternative neural network architectures—such as
graph neural network—will substantial outperform CNNs on
the capability learning problem. Indeed, a promising method
for predicting s(c) using a graph neural network was recently
demonstrated by Wang et al. [38]. It is possible that a neu-
ral network and data encoding that combines error sensitiv-
ity information with graph neural networks—i.e., a physics-
informed neural network model of s(c)—could learn accurate
models for s(c) on real quantum processors, enabling fast and
accurate predictions of a processor’s computational capabili-
ties.
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Appendix A: Previous Work

In this appendix, we contextualize our work by summariz-
ing other efforts to model a quantum processor’s capability
function using neural networks. First, we focus on attempts
to model a circuit’s probability of successful trial, which can
be thought of as a kind of fidelity estimation. Probability of
successful trial (PST) is a generalization of a definite outcome
circuit’s success probability to arbitrary circuits. For an arbi-
trary quantum circuit c, PST(c) is defined as the success prob-
ability of the definite outcome circuit created by concatenating
c with c−1. PST is strongly correlated with state fidelity [38],
although PST(c) is not a reliable estimate of state fidelity (er-
rors can echo away in Loschmidt echos). Two works have
used neural networks to predict PST for arbitrary quantum
circuits. Liu et al. [74] used shallow neural networks to pre-
dict the PST of both random and algorithmic circuits, while
Wang et al. [38] used graph neural networks to perform the
same task. Both of these works are complementary to ours,
as Refs. [38, 74] use different neural network architectures.
A consequence of this is that Refs. [38, 74] use circuit en-
codings that differ from our image-based encoding. Liu et
al. represented each circuit as a tuple containing: (i) the width
of the circuit; (2) the depth of the circuit; (3) the total num-
ber of each single-qubit and two-qubit gates in the circuit; (4)
the number of measurements; and (5) a dictionary listing the
target and control qubits for each two-qubit gate in the circuit.
Wang et al. represented each circuit as a colored undirected
graph, with colored vertices representing gates. Additional
information, like one- and two-qubit gate error rates were also
embedded in the graph.

To our knowledge, this paper is the first to use CNNs to
predict circuit success probability, but other papers have used
CNNs for state fidelity estimation. Amer et al. [40] used one-
dimensional CNNs to predict the state fidelity between the
output state of shallow (3 to 5 layers) 1, 3, and 5-qubit circuits
run on IBM Q devices. Vadali et al. [39] similarly focused on
shallow circuits, but instead chose to predict state fidelity us-
ing a 3-dimensional CNNs. They also analyzed wider circuits
(up to 25 qubits), which limited their efforts to working with
simulated local depolarization and crosstalk errors. In com-
mon with our work, Amer et al. and Vadali et al. use a modi-
fied version of one-hot encoding to encode circuits. However,
the differences in the dimensions of the CNNs lead to different
encoding schemes. Amer et. al flatten each circuit into a one-
dimensional vector, while Vadali et. al maintain local connec-
tivity information by assigning each gate a two-dimensional
coordinate on a grid.

Scalability is a significant problem when using neural net-
work to model state fidelity. Amer et al. avoid this problem by
focusing on short, few-qubit circuits, although it is arguable
that useful neural network models for a processor’s capability
will need to be able to predict deep, many-qubit circuits. This
allows Amer et al. to perform state tomography to gather their
training and test data (state tomography on states produced by
general n-qubit circuits is inefficient in n). Vadali et al. instead
focus on Clifford and Clifford-reducible circuits (two classes
of efficiently classically simulable circuits) simulated under

symmetric local depolarization noise with two-qubit gate ZZ-
crosstalk. They then investigate how well their networks’ ex-
tend to generic circuits simulated under the same noise model.
Our work differs from that of Amer et al. and Vadali et al. in
several important ways. In this work we examine how robust
our CNNs are (e.g., how well does a CNN model general-
ize to out-of-distribution circuits?) as well as how a CNN’s
performance scales as a function of dataset size and quality.
We also include error sensitivity information in the circuit en-
coding, we demonstrate the successful application of a neural
network approach to modelling s(c) with non-Markovian er-
rors, and we show that CNNs fail to accurately model s(c) in
the presence of coherent noise.

Appendix B: Parameterized error models

Conventional approaches to modelling a capability function
s(c) do so indirectly using a parameterized error model. In this
appendix we review the maximal Markovian error model. The
most widely-used models for a quantum computer’s errors—
including the ERMs used in this work—can be constructed by
placing constraints on the maximal Markovian error model. In
the maximal Markovian model each imperfect n-qubit layer of
gates l ∈ Ln is modelled by a fixed but unknown CPTP map on
n-qubits, a state preparation by a n-qubit density matrix ρ, and
a measurement by an n-qubit POVM M. Each n-qubit CPTP
map has 4n(4n − 1) parameters. So, the maximal Markovian
model contains

Np(n) = 4n(4n − 1)NL + NSPAM = O(16nNL) (B1)

parameters where NL is the number of possible circuit layers
and NSPAM is the number of parameters in ρ and M.

In principle, the parameters of the maximal Markovian
model can learned from GST (up to a gauge freedom [7]),
and the elements of the learned model can be composed to
compute the model’s prediction for s(c) for any circuit c [7].
But it is infeasible to estimate all O(16nNL) of this model’s
parameters when n � 1. Tractable models with a polyno-
mial number of parameters can be obtained by placing re-
strictions on the parameters of this model. This is the basis
for the existing and nascent scalable models for a quantum
computer’s errors, including “low-weight” error models [8],
restricted Pauli stochastic models [16], crosstalk-free models
[11], and the ERMs we use in the main text.

Appendix C: The motivation for success probability learning

In this appendix we briefly expand on our explanation for
why we focus on predicting the success probabilities of mir-
ror circuits in this work. Methods that can accurately predict
the success probabilities of mirror circuits are of little direct
utility—no useful algorithms are mirror circuits, most quan-
tum circuits are not definite outcome circuits, and we can-
not a priori assume that a neural network trained on mirror
circuits will generalize to other families of circuit. We have
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chosen to consider the problem of modelling s(c) for definite
outcome circuits because it is a convenient setting in which
to explore capability learning methods for the following two
reasons. First, training data is easy to gather: estimating s(c)
with precision δ for a circuit c simply requires sampling from
that circuit’s probability distribution (either in simulation, or
on a real system) O(1/δ) times. In contrast, although mirror
circuit fidelity estimation (MCFE) is efficient in n, MCFE re-
quires running many circuits to estimate sF(c) [45]. Second,
the problem of predicting circuit success probabilities retains
many of the aspects of fidelity learning, and we conjecture that
a neural network method that can accurately model s(c) when
trained on circuit success probabilities will, with only minor
adaptions, be able to accurately model sF(c) when trained on
circuit process fidelities. One reason for this conjecture is that
MCFE estimates a circuit c’s process fidelity by simple data
processing on estimations of the success probabilities from a
set of mirror circuits based on c.

Appendix D: CNNs can approximate local stochastic Pauli error
models

In this appendix we provide CNN filters that approximate
a local stochastic Pauli errors model, under the assumption of
no parameterized gates. This is a proof that such a network
exists. We are not claiming that a network with this structure
and these weights is learned when we train a CNN on data
from a local Pauli stochastic error model (and indeed it is not).
For a stochastic Pauli errors model,

s(c) ≈
∏

I(c)i jhP (1 − εP(ci j)). (D1)

This approximate formula for s(c) accounts for bias in the er-
rors (i.e., that a particular Pauli operator does not change the
state of the qubits if it is applied to a state that is an eigenstate
of that Pauli operator), by making using of the error sensitiv-
ity channels. The approximation used here is that two Pauli
errors, that occur at different circuit locations, never cancel,
which is a very good approximation in random circuits when
n � 1 [61].

To demonstrate that we can approximately reproduce
Eq. (D1) using a CNN we will specify a convolution filter
for every possible gate and qubit pair and every possible P.
Assume that I(c) has shape w× d × nchannels. For a gate G (en-
coded by a 1 in channel ch(G)) qubit i and Pauli P we define
the following filter K, which we use with a bias of −1: K is
shape w× 1× nchannels and it contains zeros everywhere except
on qubit i. For that qubit, it contains a 1 in the error sensitivity
channel for P and εP(G, i) in the channel for the gate G. Con-
sider the single convolutional layer that is a collection of these
kernels. This produces an image whereby the elements are all
zero except for d × w elements which are the εP(ci j). We can
then approximate s(c) simply by the sum of all the elements of
this tensor. To obtain the (better) approximation to s(c) stated
in Eq. (D1) we need to take the product of 1 − εP(ci j)—and
a dense network can be trained to approximate the product of
one minus each of its input.

Appendix E: Markovian error models and simulations

This appendix contains additional details on how we con-
structed each of the three simulated Markovian error models
used in this paper. In order, they are: (i) the 5-qubit Marko-
vian local Pauli stochastic error model from Section IV; (ii)
the 5-qubit Markovian local Hamiltonian error model used in
Section VI B; and (iii) the 49-qubit base Markovian local Pauli
stochastic error model from Section V. We first explain how
the 5-qubit Markovian local Pauli stochastic error model was
constructed, before enumerating the alternations made to con-
struct the Markovian local Hamiltonian model. We then con-
clude with a brief description of the 49-qubit base Markovian
local Pauli stochastic error model.

The 5-qubit local Pauli stochastic error model was speci-
fied using the error generator formalism of Ref. [8]. It con-
sists of operation-dependent errors randomly sampled accord-
ing to a two-step process (i.e., there are independently sam-
pled error rates for each gate and qubit[s] pair). First, an error
rate was selected for each type of one- or two-qubit gate by
uniformly sampling a value in [0, 1] and multiplying it by a
pre-determined maximum error rate. Then a single one-qubit
(resp. two-qubit) stochastic error generator was uniformly
sampled for each one-qubit (resp. two-qubit) gate. Each ran-
domly sampled error generator was then assigned its gate’s
error rate. Maximum one- and two-qubit gate error rates of
.25% and 1% were chosen for the Pauli stochastic model. The
exact error generators and rates are available in the Supple-
mentary Materials.

The 5-qubit local Hamiltonian error model (see Sec-
tion VI B) was also specified using the error generator formal-
ism. Operation-dependent Hamiltonian error generators were
uniformly sampled. Each randomly sampled error generator
was assigned an error rate of 5%. The sampled error genera-
tors are available in the Supplementary Materials.

The 49-qubit base Markovian local Pauli stochastic error
model (see Section V) was specified by directly sampling the
rates of Pauli X, Y and Z error rates (this differs slightly from
the parameters in the error generator formalism) for each gate
and each qubit on which that gate acts. Unlike for the 5-qubit
local Pauli stocahstic error model, we did not use maximally
biased errors, so each single-qubit gate and qubit pair is as-
signed three error rates (and each two-qubit gate and qubits
pair is assigned six error rates). These error rates were uni-
formly sampled from [0, .0001]. Readout error rates of .0001
were also assigned to each qubit.

Appendix F: Convolutional filters for Double Trouble

In this appendix we state a set of four convolutional fil-
ters that enable the identification of all instances of sequential
CNOT gates in a circuit. Consider a circuit c and assume that
there is a CNOT gate in layer j that acts on qubit i (and some
other qubit i′). Then, in our tensor encoding I(c) of the cir-
cuit, I(c)i jk = ±1 where k is one of the four channels used to
encode CNOT gates. Therefore, there is also a CNOT gate on
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qubit i in the layer before j (i.e., j − 1) if and only∑
k∈Ccnot

|I(c)i( j−1)k | + |I(c)i jk | = 2, (F1)

where the summation is over the four CNOT channels. There
is a set of four 1× 2× nchannels convolutional kernels K and bi-
ases b whereby one of these four convolutional filters outputs
a non-zero pixel if and only if this criteria is satisfied. These
four filters correspond to K1,1,k = ±1/2 and K1,2,k = ±1/2 if k is
a CNOT channel, with K1,1,k = K1,2,k = 0 otherwise, all with
a bias of b = −1/2. The output p(i, j) when a 1 × 2 × nchannels
kernel is applied at location (i, j) is

p(i, j) = ReLU

 1∑
j′=0

∑
k

I(c)i( j− j′)kKi( j− j′)k − b

 , (F2)

where ReLU is the ReLU activation function. Therefore
if, e.g., K1,1,k = K1,2,k = 1/2 then p(i, j) = 1/2 if∑

k∈Ccnot
[I(c)i( j−1)k + I(c)i jk] = 2 and otherwise p(i, j) = 0.

Appendix G: Additional Experimental Data

In the main text we presented plots of the prediction er-
ror for three of the seven IBM Q processors (see Fig. 9). In
Figs. 11 and 12 of this appendix we present equivalent plots
for the remaining four processors.
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FIG. 11. Predicting the capabilities of cloud-access IBM Q processors (continued). Plots of the prediction errors for two of the four
processors not shown in Fig. 9 of the main text. See the caption of Fig. 9 for details.
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FIG. 12. Predicting the capabilities of cloud-access IBM Q processors (continued). Plots of the prediction errors for two of the four
processors not shown in Fig. 9 of the main text. See the caption of Fig. 9 for details.
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