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Abstract

We present a method to model a discretized time evolution of probabilistic net-
works on gate-based quantum computers. We consider networks of nodes, where
each node can be in one of two states: good or failed. In each time step, probabilities
are assigned for each node to fail (switch from good to failed) or to recover (switch
from failed to good). Furthermore, probabilities are assigned for failing nodes to
trigger the failure of other, good nodes. Our method can evaluate arbitrary net-
work topologies for any number of time steps. We can therefore model events such
as cascaded failure and avalanche effects which are inherent to financial networks,
payment and supply chain networks, power grids, telecommunication networks and
others. Using quantum amplitude estimation techniques, we are able to estimate
the probability of any configuration for any set of nodes over time. This allows
us, for example, to determine the probability of the first node to be in the good
state after the last time step, without the necessity to track intermediate states.
We present the results of a low-depth quantum amplitude estimation on a simulator
with a realistic noise model. We also present the results for running this example
on the AQT quantum computer system PINE. Finally, we introduce an error model
that allows us to improve the results from the simulator and from the experiments
on the PINE system.

1 Introduction

The analysis of networks and their time evolution has applications in several industries,
for example in financial risk management where counterparty risk needs to be evaluated

∗For contact email: thomas.decker@jos-quantum.de or sven.kerstan@jos-quantum.de. Authors are
listed in alphabetical order.
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to calculate regulatory capital requirements. Value at risk (VaR) or expected shortfall
(ES) are common risk measures that need to be calculated by banks, asset managers,
regulators and insurers on a regular basis. For example, we can think of a network of
companies and banks that have financial obligations like credit contracts or that have the
same assets on the balance sheet. A bank needs to control its overall credit exposure by
estimating the likelihood of each counterparty defaulting, called probability of default.
As the financial network is highly correlated, systemic risk needs to be considered as
cascading effects can destabilize the system or parts of it [1–3].

In this publication, we present a method to model a discretized time evolution of
probabilistic networks on gate-based quantum computers. First, we present the model
that evolves over time in section 2 and then extend it to a quantum version in section 3.
The quantum version can be run on gate-based quantum computers, which might lead
to computational benefits, when the quantum computing hardware is available in the
required size and precision. Compared to our previous work for the sensitivity analysis
of business risk models [4], the model for networks and the model for business risks
have in common that there are intrinsic and trigger probabilities. The extended network
model, which we present in this paper, allows for arbitrary network topologies including
cycles as the states in each time step depend only on the states of the previous time
steps. Furthermore, each node comes with a recovery probability that allows a node to
recover after a failure with a certain probability. To evaluate probabilities of default,
Monte Carlo methods can be used to evaluate the model by randomly sampling results.
The error of classical Monte Carlo methods decreases with

√
1/N for N samples. Thus

calculating results with a 10 times higher accuracy, requires 100 times the computational
effort. Depending on the size of the network this can get computational prohibitive.

We can use Monte Carlo methods on quantum computers, which refer to a quantum
algorithm called quantum amplitude estimation (QAE) [5], to calculate risk measures for
the probability of the failure of one node or a group of nodes. Various applications of
QAE have been shown within finance, e.g. risk analysis [4, 6], the pricing of financial
derivatives [7, 8] and many more [9, 10]. Using QAE would achieve a quadratic speedup
compared to its classical counterpart and therefore requires only 10 times the computa-
tional effort for 10 times higher accuracy.

The standard amplitude estimation procedure [5] has hardware requirements that are
challenging for current quantum devices due to noise. An example for a real world business
problem was analyzed in [4]. For that example, it was estimated that the successful
execution on a quantum computer would require it to perform at least 100 million gate
operations before a single error occurs, on average. Furthermore, several assessments of
the necessary overhead for quantum error correction have led to discouraging predictions
for what would be required to achieve solutions that are faster or more cost-efficient than
classical algorithms [11]. Reducing the requirements of a QAE is currently an active area
of research [12–18] offering the possibility to implement QAE with lower requirements
towards hardware fidelity [19].

We assess the viability of the analysis of a small network model with a variant of
low-depth QAE methods in section 4. We introduce a noise model, which can be fitted
to measurement results by gradient descent methods. For example, this allows us to
improve the results of QAE for determining the probabilities of the failure of nodes in
a network. We implement amplitude estimation for the quantum model on a simulator
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with a realistic hardware noise model as well as on real hardware from AQT 1. The result
shows, that low-depth versions of QAE are currently feasible for small networks with one
or two nodes and up to three or four time steps.

To summarize, the main contributions of this paper are the following:

1. The implementation of the time evolution of a probabilistic network model as a
quantum circuit.

2. The execution of low-depth quantum amplitude estimation (QAE) of the model on
a physical quantum computer: AQT’s PINE system.

3. Evaluating the low depth QAE results with a simple noise model to improve the
estimation of the probabilities, which we want to determine.

2 The network model

In this section, we define the network model. For a simple example, we show the results
of a direct calculation of probabilities and compare these to the results of classical Monte
Carlo evaluations. The exact and Monte Carlo evaluations for the network model are
implemented in the Pygrnd library [20] and both methods are explained in detail in
appendix A and B.

2.1 Definition of the model

We model a network by a set N = {1, . . . , k} of k nodes. We consider T time steps and
for each time step t ∈ {1, . . . , T} a node n ∈ N can have the state 0 or 1. We use the
functions sn(t) for n ∈ N and t ∈ {1, . . . , T} to describe the state of node n in time
step t. We set sn(t) = 0 if node n ∈ N is good and sn(t) = 1 if the node has failed. A
configuration c ∈ {0, 1}k at a time step is the sequence c = (sk(t), . . . , s1(t)) of the states
of all nodes 2. We write pc(t) for the probability for configuration c in time step t.

For each node n, we have the intrinsic probability pfail
n to fail in a time step if the

node was good in the previous time step. Each node has also the probability precover
n to

recover if the state was 1 in the previous time step. Furthermore, if a node m ∈ N has
failed in time step t then it might trigger the default of another node n ∈ N in the next
time step with a certain probability. We write this probability as ptrigger

m,n .
We now complete the description of the time evolution of the system. When we

assume that a node n ∈ N has failed in time step t, then we only consider the recovery
probability for setting sn(t + 1) and no intrinsic or trigger probabilities are taken into
account. If a node n ∈ N is good in time step t, then we set it to the failed state with the
probability pfail

n . We also iterate through all nodes m ∈ N in the model with ptrigger
m,n > 0

and we set n to the failed state with this probability. If in this procedure the state turns
to the failed state, then we do not set it to good again in this time step.

Note that the states in a time step depend only on the states of the previous time
step. This separation of time steps allows us to have arbitrary dependencies between the

1AQT’s quantum computer system PINE.
2We use this order of elements to be consistent with the qubit ordering of Qiskit.
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nodes without ambiguities, e.g. it is possible that two nodes can trigger each other. We
assume that time step t = 1 is the initial time step and that all nodes have the state 1
with the corresponding intrinsic probability of failure. This can be seen as the result of
a time step when for t = 0 all nodes are in state 0.

2.2 Network example

In this section, we define the example that we use for most of the following discussions.
We consider a model with two nodes and three time steps, i.e. we have k = 2 and
T = 3. The probabilities of the model are defined in table 1. We would like to find the
probabilities for pc(t) for the configurations c ∈ {00, 10, 01, 11} and time step t = 3. These
are calculated in the following sections with a classical calculation of the probabilities and
Monte Carlo methods and with a quantum circuit.

Table 1: The parameters of the example with 2 nodes.

node pfail
n precover

n

1 0.2 0.3
2 0.7 0.8

ptrigger
m,n n = 1 n = 2

m = 1 - 0.2
m = 2 0.8 -

2.3 Classical evaluation of the model

Following the rules of section 2.1, we can evaluate the probabilities of configurations in a
time step with an exact calculation. The method is described in appendix A. Although
the implemented method is not efficient and cannot be used for models with many nodes
and time steps, we can use it to determine the probabilities of configurations for small
examples. This allows us to assess the precision of the results of Monte Carlo methods
in section 2.4 and to evaluate the performance of the quantum circuits that we define in
section 3. The results3 of the evaluation for the example of section 2.2 with 2 nodes for
all time steps up to 3 are shown in table 2.

Table 2: Time evolution of the probabilities of the configurations of the network model
from section 2.2 with 2 nodes.

t p00(t) p10(t) p01(t) p11(t)
0 1.0 0.0 0.0 0.0
1 0.240 0.560 0.060 0.140
2 0.167 0.174 0.479 0.179
3 0.140 0.219 0.308 0.333

3In this paper, we round all numerical values to three decimal places to simplify the notation.
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2.4 Monte Carlo evaluation of the model

Besides the exact evaluation method of section 2.3, we can obtain the probabilities pc(t)
for each possible configuration c ∈ {0, 1}k after t time steps by Monte Carlo simulations
of the model. A possible implementation is outlined in appendix B.

The results of several Monte Carlo evaluations for the example of section 2.2 can be
seen in figure 1. It shows the results for calculating pc(t) for all configurations c ∈ {0, 1}2

for time step t = 3. The Monte Carlo evaluations were done with 103, 104, 105 and
106 runs. For each number of runs, we performed 20 independent calculations and the
stability of the results depending on the number of runs can be seen in the spread of the
data points. The horizontal lines correspond to the probabilities that are calculated by
the method described in section 2.3.

Figure 1: Results of Monte Carlo simulations for the example of section 2.2. The proba-
bilities of the configurations calculated by the classical method can be found in table 2.

3 Time evolution of networks as quantum circuits

The network model of section 2 can be used to construct quantum circuits, which re-
produce the probabilities pc(t) for all configurations c ∈ {0, 1}k and for all time steps t.
The definition of the networks and the transitions between time steps allows us to build
quantum circuits for any network topology, including cycles in the dependency graph of
the nodes.

3.1 Construction of quantum circuit for a model

A network with k nodes is represented by k qubits for each time step. We write qn(t)
for the qubit corresponding to node n ∈ N in time step t. The states |0〉 and |1〉 of
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the qubit correspond directly to the states 0 and 1 of a node. We consider an iterative
construction with an operator Uinit to initialize a register and an operator Utime that
connects two registers for consecutive time steps t and t + 1 and that calculates the
probability distribution for t + 1. The structure of the circuit corresponding to a model
with k nodes and 3 time steps after the initial time step is shown in figure 2.

k

k

k

t=1 Uinit

Utime

t=2 Uinit

Utime

t=3 Uinit

Figure 2: A circuit that implements three time steps after the initial time step for a
network with k nodes, i.e. we have t = 3. The unitary Uinit initializes the k qubits
corresponding to the intrinsic probabilities pfail

n to fail for each node. The unitary Utime

implements the operator for one time step and it generates the states for the output on
the lower register.

The operator Uinit initializes a register for a time step with the intrinsic probabilities
pfail
n for each node n ∈ N . After applying this operator, each qubit would be measured

in the state 1 with probability pfail
n . A circuit for this consists of an Ry(θn) gate4 on each

qubit as shown in figure 3. A probability of pfail
n corresponds to the angle

θn = 2arcsin
(√

pfail
n

)
. (1)

The operator Utime acts on two consecutive registers. The first register corresponds
to time step t and the second register corresponds to time step t+ 1. We use controlled
operations to change the qubits corresponding to the nodes.

q1(t)

Uinit

qk(t)

= ...

q1(t) Ry(2 arcsin
√

pfail
1 )

qk(t) Ry(2 arcsin
√

pfail
k )

Figure 3: The implementation of Uinit on the register with k qubits for time step t. When
we measure the generated state of this gate then we obtain the result 1 with probability
pfail
k to fail for each node k. We use the notation of Qiskit for the gates Ry(θ).

The operator Utime can be constructed as follows:
4We use the notation of Qiskit [21] for the Ry(θ) gates.
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• If the qubit qn(t) corresponding to node n is in state 1 in time step t, then we apply
the operation Ry(θ) with

θ = 2arcsin
(√

1− precover
n

)
− 2 arcsin

(√
pfail
n

)
(2)

to the corresponding node in time step t+1. This can be done with an 1-controlled
Ry operation, i.e. the operation is performed if the control qubit is in state 1. After
this operation, if the qubit for node n is in state 1 in time step t then the probability
to measure it in state 0 is precover

n for a given configurations of the previous time
steps as expected from the classical model. Note that the second part of the angle
reverts the rotation of a qubit that is performed by Uinit.

• If a node n is in state 0 in time step t, then we apply several controlled operations
Ry(θ) on qubit qn(t+ 1). We define the set

M = {m ∈ N : ptrigger
m,n > 0} (3)

of nodes with non-zero probability to trigger node n and we consider all possible
configurations c ∈ {0, 1}|M | of the nodes in M . For a configuration we calculate the
probability poff that n stays in state 0 by the product of the probabilities 1− ptrigger

m,n

for all m ∈M and 1− pfail
n , i.e. the node is not triggered by another node and also

not intrinsically. Then we add an Ry(θ) gate on qubit qn(t) with angle

θ = 2arcsin(
√

1− poff)− 2 arcsin(
√
pfail
n ) (4)

and the operation is controlled by the state 0 or 1 of qubit qm(t− 1) depending on
the state of the configuration c. After this operation, if the qubit for node n is in
state 0 in time step t then the probability to measure it in state 1 is 1 − poff for
the given configurations of the previous time steps as expected from the classical
model.

The construction that is outlined above can be optimized in several places, e.g. the
separation between Uinit and Utime, which makes the description of the construction sim-
pler, is not necessary and introduces controlled operations in Utime that revert operations
of Uinit.

3.2 Quantum circuit for example

For the example of section 2.2, the operator Utime is shown in figure 4: The first gate
corresponds to the recovery probability of the first node and the angle is determined by

2 arcsin
(√

1− precover
1

)
− 2 arcsin

(√
pfail

1

)
(5)

= 2arcsin
(√

0.7
)
− 2 arcsin

(√
0.2
)
= 1.055. (6)

The second controlled gate with the angle θ2 corresponds to the first node that is in state
0 in time step t and is triggered in time step t + 1 by the second node when its state is
1. The probability that node 1 is not triggered is

(1− pfail
1 )(1− ptrigger

2,1 ) = (1− 0.2)(1− 0.8) = 0.16. (7)
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Therefore, the probability that node 1 is triggered is 0.84 and this leads to the angle

θ2 = 2arcsin(
√
0.84)− 2 arcsin

(√
0.2
)
= 1.391. (8)

The values for θ3 and θ4 can be calculated by replacing node 1 with node 2 and vice versa.
The full circuit for the example is shown in figure 5. When we measure the last two qubits
of the circuit then we obtain the results that are shown in figure 6. The probabilities
from the measurements and the probabilities of the classical calculations are the same
up to the deviations that we expect, because we only performed 1000 repetitions, i.e. we
executed the circuit 1000 times on an error-free simulator. With an increasing number of
repetitions, the probabilities from the measurements would get closer to the exact values.

If we run the circuit many times and calculate the proportions of the result config-
urations then we are not more efficient than classical Monte Carlo methods in terms of
model evaluations. However, the quantum circuit allows us to use QAE or low-depth
QAE methods to evaluate the probability of a configuration with less evaluations of the
model on a quantum computer. This is described in the following section.

4 Quantum amplitude estimation

We can use quantum amplitude estimation (QAE, see [5]) to measure the configuration
probabilities of the network time evolution. On error free hardware, this would lead
to a quadratic speedup compared to Monte Carlo simulations in the number of model
evaluations. In the following, we consider the standard version of QAE and a low-depth
version of it for the example with 2 nodes and 3 time steps that is introduced in section 2.2.
The low-depth version is more suited for Noisy Intermediate-Scale Quantum (NISQ)
devices as it does not use controlled versions of the Grover operators.

4.1 Construction of the Grover operator

The standard version of the quantum amplitude estimation is a phase estimation of the
eigenvalues of a Grover operator. In our case, the network and its time evolution is given
by a unitary U that produces the probabilities of configurations after a number of time
steps. Based on this operator, we can construct the Grover operator by G = −US0U

†Sχ
where S0 applies the phase −1 to the state |0 . . . 0〉 and Sχ applies the phase −1 to all

q1(t)

q2(t)

q1(t+ 1) Ry(θ1) Ry(θ2)

q2(t+ 1) Ry(θ3) Ry(θ4)

Figure 4: The operator Utime for the example from section 2.2. Here, we have the param-
eters θ1 = 1.055, θ2 = 1.391, θ3 = −1.055 and θ4 = 0.135.
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q1(0) U1

q2(0) U2

q1(1) U1 U3 U4

q2(1) U2 U5 U6

q1(2) U1 U3 U4

q2(2) U2 U5 U6

Figure 5: The quantum circuit for the network in section 2.2. We use the unitaries
U1 = Ry(0.927), U2 = Ry(1.982), U3 = Ry(1.055), U4 = Ry(1.391), U5 = Ry(−1.055) and
U6 = Ry(0.135). The operators Uinit are moved to the beginning of the circuit to make
the drawing of the circuit more compact.

Figure 6: Result of the quantum circuit of figure 5 on an error-free simulator when
we measure the qubits q1(2) and q2(2). The probabilities of the measurement results
correspond to the probabilities of the configuration of the model in time step 2.
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Table 3: The eigenvalues of the Grover operators corresponding to the 4 possible config-
urations 00, 01, 10 and 11 for time step t = 3.

c λ± θ pc(3)
00 0.720± 0.694i 0.767 0.140
01 0.384± 0.923i 1.177 0.308
10 0.562± 0.827i 0.975 0.220
11 0.335± 0.942i 1.230 0.333

states that we search. For instance, if we want to find out the probability of a configuration
c ∈ {0, 1}k after t time steps, then we mark all states |c(1) . . . c(t)〉 with c(t) = c with the
phase −1. This phase operation acts only on the register corresponding to time step t.

For our example from section 2.2, we have 6 qubits for 2 nodes and 3 time steps after
the initial configuration. We consider the Grover operators for all 4 possible configurations
00, 01, 10 and 11 after the last time step. The eigenvalues of the Grover operators5 besides
+1 and −1 are given in table 3. We can write

λ± = cos(θ)± i · sin(θ) (9)

with the values in table 3 and we obtain the corresponding probabilities

pc(t) = sin2(θ/2) . (10)

We see that for each configuration c the non-trivial eigenvalues of the Grover operator
lead to the correct probability of the configuration.

4.2 Standard quantum amplitude estimation

We can use the standard version of QAE to estimate the probability of the states that
are marked by the operator Sχ. The circuit for an example for the standard version of
QAE is given in figure 7.

The unitary operation U is the model and it is used to initialize the registers, on which
the controlled Grover operators G` act. The measurements after the Fourier transform
lead to a binary encoding of the probability, which we want to find. For an increasing
number of qubits we obtain an increasingly better approximation of the result. For a
resolution of three qubits as in figure 7 we obtain eight possible binary results along with
the angles θ and the corresponding probabilities sin2(θ/2) that are shown in table 4.

In figure 8, we show the results of a QAE depending on the number of qubits that
are used for the resolution of the output. The resulting probabilities are the values that
correspond to the binary result with the highest number of counts. We see that with an
increasing number of qubits the results are getting closer to the exact value.

The disadvantage of this method for amplitude estimation is that we need controlled
operators, which are the powers of Grover operators. Without finding an exploitable
structure of a Grover operator, we can only apply a Grover operator ` times for performing
the operator G`. This means that for a QAE with b qubits of precision we have in total

5We used the function numpy.linalg.eig to calculate the eigenvector from the unitary, which we
obtained with the unitary simulator of quantum circuits from Qiskit.
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H

U G1 G2 G4

Figure 7: The quantum circuit for a standard QAE with a resolution of 3 qubits. Here,
the unitary U is the model of the network and G is the corresponding Grover operator
that marks all states depending on the configuration, which we want to analyze.

Table 4: The binary results with their corresponding angles θ and probabilities for a QAE
with 3 bits resolution.

res 000 001 010 011 100 101 110 111
θ 0.0 0.785 1.571 2.356 3.142 3.927 4.712 5.498

prob 0.0 0.146 0.500 0.854 1.0 0.854 0.500 0.146

2b − 1 controlled Grover operators in the circuit. Each Grover operator contains the
model and its inverse along with additional operators to mark states with the phase −1.
The model typically contains operations on qubits that are controlled by several control
qubits and the controlled version of the Grover operator adds an additional qubit to this.
As a consequence, the implementation of a QAE for even very simple models and for very
few time steps on currently available hardware appears to be impossible.

For small circuits, the replacement of operators, which have several control qubits,
with more elementary gates adds a significant overhead to a circuit. For circuits with
many control qubits, the problem is less severe as there are techniques to reduce gates
with several control qubits to more elementary gates with a linear overhead [22].

An alternative to the QAE is given by low-depth versions of QAE. These methods
try to avoid the additional control qubit for the Grover operators and they trade this
reduction of quantum complexity for a higher post-processing complexity. One of such
methods is described and applied in the following section.

4.3 Low-depth quantum amplitude estimation

In this section we use a method for amplitude estimation that is inspired by [12] to
reduce the necessary hardware requirements. The main advantage of this construction is

11



Figure 8: The probabilities obtained by QAE depending on the number of qubits of the
precision.

q
U G G G

Figure 9: Circuit for low-depth QAE for a model U and a Grover operator G on a register
with q qubits. The number of Grover operators depends on the chosen specific low-depth
method. We use the measurement results to determine the proportion of states, which
are marked by Sχ of the Grover operator.

that controlled versions of the Grover operators are not needed. Besides this, we also do
not need the additional qubits for the controlled operations and the Fourier transform.
We execute several Grover operators directly on a qubit register after an initialization
with the model and measure the number of good results. The fact that we do not need
controlled Grover operators makes it reasonable to run such quantum circuits on current
hardware.

A simple schematics for a low-depth QAE is shown in figure 9. As an example, we
calculate the probabilities pc(t) of section 2.2 of all four possible configurations after 3
time steps. For this, we use the 4 different Grover operators from section 4.1 and we run
the series of experiments for each case on an error-free simulator. We execute the Grover
operators G` for all ` ∈ {0, 1, . . . , 8} after the initialization of the register with U and for
each such power we run the circuit 30 times6. In table 5 we list the obtained counts m`

for all configurations.
For instance, the value of m2 denotes the number of measurements of marked configu-

rations out of the 30 repetitions when we apply two Grover operators after the initializa-
tion. For an angle θ, which we want to determine, and the power ` of a Grover operator

6Note that this simple choice of the powers of the Grover operators and the constant number of
repetitions is chosen to give a good overview of the method.
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Table 5: The counts for the low-depth QAE with 0 to 8 Grover operators after the
initialization with U for all possible configurations of the example with 2 nodes and 3
time steps of section 2.2 on a noise-free simulator.

c m0 m1 m2 m3 m4 m5 m6 m7 m8 θ pc(3)
00 5 29 26 5 4 21 27 6 6 0.390 0.144
01 8 27 2 22 19 0 30 10 7 0.588 0.308
10 6 29 10 1 25 18 0 24 25 0.487 0.219
11 7 28 0 22 16 7 30 2 23 0.612 0.330

we obtain the corresponding probability

sin2((2`+ 1)θ/2) (11)

for measuring the good result. Therefore, for any angle θ we can compare the deviation
of the expected values m` from the measured results. This deviation can be used to
perform a gradient descent search for the angle θ. The angles and probabilities in table 5
were obtained by this method7. In figure 10 we show the measured points together with
the probabilities based on the correct angle θ, which we derived from the exact classical
calculation. The results show that the method works for an error-free simulation of the
quantum circuits for low-depth QAE.

Note that the function of equation (11) has two solutions for each probability value,
e.g. we obtain the probability 0.3 for θ = 1.159 and θ = 1.982. If θ is an angle, then
2π − θ is the other angle that leads to the same probability. In the following, we always
take the smaller angle of both.

4.4 Low-depth quantum amplitude estimation with noise

We can try to extract a useful result from the output of a noisy quantum computer by
using our knowledge of the output functions. An example for such an approach, which
differs from ours, was presented in [26]. The authors derived the shape of the distributions
of the measurement results for low-depth QAE on a noisy machine by assuming that each
rotation angle of a Grover picks up a normally distributed error. Other results for the
output of low-depth QAE on noisy hardware were presented in [23] for parallel versions of
QAE. An approach to noise that is similar to the one in this section was discussed in [16]
for three different low-depth QAE algorithms. Two of those algorithms were tested on
quantum hardware in [27].

Here, we want to model the number of results, which are marked by Sχ, that we
measure at the end of a noisy low-depth QAE circuit. We start from the assumption,
that even a single error in a Grover operator will cause the output of the Grover operator
to be essentially random. Therefore, when one or more errors occur, we expect that the
ratio of marked states, which we measure at the end of the circuit, is the fraction f of
states, which are marked by Sχ, among all possible states.

7The corresponding functions for the gradient descent method are implemented in the Pygrnd module
pygrnd.qc.lowDepthQAEgradientDescent.
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Figure 10: The results of the low-depth QAE with 30 repetitions for ` Grover oracles
with ` ∈ {0, . . . , 8} on an error-free simulator. We consider the Grover oracles for the
configurations 00, 01, 10 and 11 separately. The solid curves are sin2((2`+1)θ/2) for the
correct values of θ from the exact classical calculation. We show the correct values for
real-valued ` instead of integer values to show the origin of the values more clearly.

Furthermore, we assume that for circuits of the low-depth QAE as in figure 9 with
only the M operator and no Grover operators the effect of noise can be neglected, i.e.
we expect the results from equation (11). We also know that the probability that at
least one error occurs during the execution of a circuit grows exponentially with the gate
count. Therefore, we add an exponential decay factor to the expected output probability
of equation (11). For a circuit QAE with angle θ and ` Grover operators we denote by
r(θ, `, a, f) the expected probability for measuring a marked result, where a approximates
the probability of one Grover operator to incur an error when executed. This probability
is given by the following equation:

r(θ, `, a, f) = e−a`sin2((2`+ 1)θ/2) + (1− e−a`)f (12)

We can use equation (12) to fit the output of a quantum computer and extract the angle
θ and therefore the probability to find good states. We apply this method to an example
in section 4.6.

The expected benefits of using this model of a dampened oscillation over the naive
approach of fitting the results to a pure sine wave are two-fold: First, the fitter should
have an advantage due to the fact that the data points are generally closer to the fit, due
to the dampening. Second, the dampening changes the wave length of the oscillation and
this introduces an error in the naive fitting. The wavelength we find is too long and the
corresponding probabilities are too low. For example, this effect can be seen in figure 13).
With the error model, this problem should not arise.

4.5 Implications of the noise model

It is instructive to think of the simple error model of section 4.4 as the sum of two different
error models. The first one determines if one or more errors do occur in a circuit. This is
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modeled by the e−a` terms in equation (12). The second model determines the output in
case there is an error. If we assume that an error makes the output completely random,
which is the simplest possible approximation, then the factor f in equation (12) is the
expectation value of our second error model.

When we explicitly model these errors as a sum over Bernoulli random variable with
expected value f , then we see that the factor f leads to the standard deviation

σ =

√
f(1− f)

N
. (13)

We want to determine the number ` of consecutive Grover operators, which we can
expect to execute and which allows us to still measure a useful signal at the end of the
circuit. This number depends on the noise level and we can simply compare the amplitude
max`e

−a` of the signal in equation (12) with the mean absolute deviation σ, which is

σ =

√
2

π
σ , (14)

where N denotes the number of repetitions, which we perform for a circuit. If the mean
absolute deviation is bigger than the amplitude of the signal, then we cannot hope to
extract the sine wave from our measurements anymore. This means that if the inequality√

2

π
·
√
f(1− f)

N
< e−a` (15)

does not hold, then we cannot expect to measure useful results. Solving this for N tells
us how many repetitions we need to find a useful signal for a given noise level a and
number of Grover operators `. If we solve it for `, we find how many Grover operators
we can have in a low-depth QAE for a given noise level a and number of repetitions N .

We can now try and use those insights to obtain optimal results on actual quantum
hardware. This means building a protocol which, after the initial circuit with just the
model evaluation, determines the optimal number of Grover operators and repetitions
for the next experiment, based on the results known so far. We can also determine an
estimation for an upper limit for the circuit with the largest number of Grover operators
already after the second experiment. Some results related to such ideas have been worked
out in [16].

4.6 Evaluation of results from simulator with noise model

The example of section 2.2 with 2 nodes and 3 time steps is too complex for current
hardware due to the need of several gates in each Grover operator that are controlled by
more than one qubit. For most of the currently available hardware types, these operators
have to be decomposed into single-qubit operators, which are uncontrolled or which are
controlled by a single qubit [22]. This decomposition introduces an overhead, which
makes the evaluation of the low-depth QAE infeasible.

We analyze the behavior of the low-depth version of QAE as described in section 4.4.
For this, we consider a simpler network and we run it on the AQT simulator [24], which
uses a realistic noise model for ion-trap quantum computers [25]. The model has only
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q1(1) Ry(1.159)

q1(2) Ry(1.159) Ry(1.339)

q1(3) Ry(1.159) Ry(1.339)

q1(4) Ry(1.159) Ry(1.339)

Figure 11: Circuit for the network model with 1 node and 3 time steps after the initial-
ization. We are interested in the probability that the qubit q1(4) is in state 1.

Table 6: The probabilities that we have state 1 after t time steps for the example with
one node from the exact classical calculation.

t 1 2 3 4
probability 0.300 0.480 0.588 0.653

one node and we consider up to 3 time steps after the initial step. The node has the
probabilities pfail

1 = 0.3 and prevover
1 = 0.1. The probability that the node is in state 1

after t time steps is shown in table 6. The quantum circuit for the model is shown in
figure 11.

We construct the Grover operators for all time steps t ∈ {1, 2, 3, 4} and we run the
low-depth version along with the gradient descent search for the parameters a and f and
the probabilities as described in section 4.4. We use the AQT simulator with noise and
we make 2000 repetitions for each operator and each number of Grover operators in the
low-depth circuit. The results are shown in table 7.

Table 7: The counts for the low-depth QAE with 0 to 8 Grover operators after the
initialization with U for the example with 1 node and different time steps on the AQT
simulator with noise model with 2000 repetitions for each t and m`. The values a and f
and the probabilities result from the gradient descent when we have the measured values
m`.

t m0 m1 m2 m3 m4 m5 m6 m7 m8 a f prob
1 617 1958 121 1265 1516 12 1817 928 344 -0.001 0.003 0.300
2 981 1181 760 1365 595 1384 717 1283 807 0.162 0.513 0.459
3 1236 841 1153 931 1033 988 983 1018 979 0.977 0.504 0.596
4 1423 969 991 1026 979 1002 983 1012 986 1.813 0.506 0.703

We see that for one or two time steps the values for the probability are accurate.
However, for 3 and 4 time steps the exponential error factor a is much higher and this
shows that there is a significant amount of error. This can be explained by the fact that in
the circuit with 3 time steps we have the operator S0 that is an X gate that is controlled
by two qubits. After compiling to 1- and 2-qubit gates, this leads to a much longer circuit
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compared to the circuit for 2 time steps. The measurement results with the values of
equation (11) for the correct values without error model, which are calculated with the
exact classical method, are shown in figure 12 along with the values of equation (12) for
the values, which we found with gradient descent for the error model.

Figure 12: Measurement results (simulator with noise model) for the model with 1 node
(filled circles) and expected probabilities to find the state 1 for the values, which are
calculated by the exact classical method (dotted curves). The solid curves are the ex-
pected probabilities from equation (12) with values θ, a and f after gradient descent
optimization. For t = 1, only one curve can be seen as both are very close.

4.7 Evaluation of results from hardware

In addition to the evaluation of a network model on a simulator in section 4.6, we also
evaluated the model on the AQT ion trap quantum computer PINE. The PINE system
was configured to work with a register of 8 qubits for our implementation. We used the
Qiskit function transpile with optimization level 3 to convert the circuits into native
gates for this machine.8 For t = 1 and t = 2 we considered up to 8 Grover operators
after the initialization and for t = 3 and t = 4 we used up to 4 Grover operators. For
each number t of time steps and number ` of Grover operator we gathered statistics from
executing a circuit 8000 times. We used the simple error model from section 4.4 to obtain
an estimation of the probabilities. The counts and the values a and f of the model, which
we fitted with gradient descent, and the resulting estimated probabilities to find the node
in state 1 after t time steps are shown in table 8.

8With this optimization level, the circuits for t = 1 consist of a single uncontrolled gate.
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Table 8: The counts for the low-depth QAE with 0 to 8 Grover operators for t = 1 and
t = 2 and with 0 to 4 operators for t = 3 and t = 4 after the initialization with U for the
example with 1 node on the AQT system PINE. The values a and f and the probabilities
result from the gradient descent when we have the given values m`. The values in the
column pcor are the results from the exact calculation.

t m0 m1 m2 m3 m4 m5 m6 m7 a f prob pcor

1 2386 7867 494 5107 6283 84 7450 3689 -0.006 0.060 0.300 0.300
2 4545 4275 3133 5118 3110 5316 1639 6446 -0.076 0.526 0.487 0.480
3 5211 2505 5171 2336 5353 - - - 0.286 0.476 0.581 0.588
4 5609 2695 4678 3510 4171 - - - 0.884 0.497 0.664 0.653

We see that the estimation based on the error model is quite close to the correct
values from the exact classical evaluation, which are in the first table in section 4.6. The
data points, the exact values and the function of the simple error model, which is fitted
with gradient descent, are shown in figure 13. Note that for t = 2, we have negative
probabilities9 from the model after fitting. Despite this result, the estimation of the
probability is very close.

We tried to improve the fitting of the error model to the data by setting f = 0.5,
which corresponds to the proportion of states, which are marked by Sχ, to all states, but
this did not improve the estimation.
As can be seen from table 8, for t = 3 and t = 4, our noise model results were within about
1 and 2 percentage points of the exact results. In contrast to this, without noise model
we could not even get to within 5 and 14 percentage points (for details see the notebook
probabilisticNetworks.ipynb in Pygrnd [20]). This illustrates the value added by the
noise model.

5 Conclusion and outlook

We showed how a simple model for the discrete time evolution of networks can be formu-
lated as quantum circuits. We used the circuits to apply quantum amplitude estimation
and a low-depth version of it to find the probabilities of different network configurations
and their time evolution for simple examples. We introduced a simple error model for
the expected measurement results on noisy hardware, which can be used to improve the
post-processing of the measurement results. We used this approach to analyze a simple
example on a simulator with a realistic noise model as well as on real hardware.

It is straightforward to extend the model to more dependencies between the nodes, e.g.
a recovered node could lead to the recovery of another node with a certain probability.
Another useful extension would be to allow dependencies over several time steps.

It is encouraging to see that already today, simple but non-trivial models can be eval-
uated not just on simulators, but on real life quantum computing hardware, AQT’s PINE

9The assumption that the complexity of the circuits increases with the number of Grover operators
does not hold for t = 1 and t = 2. The reason for this is that the optimizer is able to reduce the number
of gates to a constant number.
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Figure 13: Measurement results (on PINE) for the model with 1 node (filled circles) and
expected probabilities to find the node in state 1 for the correct value (dotted curves).
The solid curves are the expected probabilities from equation (12) with values θ, a and
f after gradient descent optimization. For t = 1, only one curve can be seen as both are
very close. Note that the wavelength of the oscillation of the solid curves for t = 3 and
t = 4 are shorter, which illustrates the advantage of the error model, see section 4.4.

machine in this case. The impact of the error model seems worth further investigations,
even though significant hardware advances will be required before quantum computing
will find practical applications for evaluating models like the one presented here.
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Appendix A

Pygrnd implementation of the exact evaluation

In this section, we describe the algorithm of Pygrnd [20], which calculates the exact
probabilities with a classical algorithm. This evaluation is implemented in the function
classicalEvaluation in the module pygrnd.qc.probabilisticNetworks.

We can simplify the description of the algorithm by defining the following data struc-
ture. For a subset M ⊆ N and for a time step t, we denote by CM(t) a data structure,
which stores pairs (b, c) ∈ {0, 1}k × {0, 1}k along with their corresponding probabilities
after processing the nodes in M . A pair can occur more than once with different prob-
ability values. Here, the parameter M denotes the structure after all the nodes in M
are already processed. The structure C{}(t) denotes the data before processing a node in
this time step. The configuration b in the pair (b, c) is used to keep track of the history
of a configuration during calculations, e.g. if we start with the configuration 00 and we
calculate the probabilities of 00 and 10 for the next time step by considering first the
probabilities for the first node, then we need to know the original configuration of 10
because the probabilities of the second node depend only on the configuration of the
previous time step. The value b of the pair gives us this information.

The following iterative method makes use of this data structure and the method
allows us to calculate the probabilities pc(t+ 1) when we have the probabilities pc(t) for
all possible configurations c ∈ {0, 1}k:

• We start with the configuration c = (0, . . . , 0) and assign the probability pc(0) = 1
for time step t = 0 to it. This is the initialization of the procedure. It means that
in CM(0) we have only the element (c, c) with probability 1.

• For each new time step t + 1, we iterate over all configurations (b, c) ∈ CN(t), i.e.
the data structure after processing all nodes in time step t. We store the pairs (c, c)
along with the probability of p(b,c)(t) in C{}(t + 1). If during the iteration over all
elements of CN(t) a pair (c, c) is already in C{}(t+1) then we add the corresponding
probability to the existing value.

• When the nodes in the current subset M ⊆ N are already processed, then we
consider the next node n ∈ N . We start with an empty CM ′(t + 1) where M ′ =
M ∪ {n}.

• We iterate through all elements (b, c) ∈ CM(t + 1). The elements have the form
(b, c) and b is the original configuration from the previous time step.

– If node n is set to 1 in the value b, then we add (b, c) to CM ′(t + 1) with the
probability value 1−precover

n and the value (b, c′) with probability prevocer
n , where

c′ = (s′1(t), . . . , s
′
k(t)) with s′n(t) = 0 and s′m(t) = sm(t) for m ∈ N \ {n}.

– If node n is set to 0 in the value b, then we calculate the probability poff that
the node stays off in time step t + 1. This is the product of 1 − pfail

n and the
probabilities 1 − ptrigger

a,n for all nodes a that are set to 1 in value b. We add
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(b, c) to CM ′(t + 1) with probability value poff and (b, c′) with 1 − poff where
c′ = (s′1(t), . . . , s

′
k(t)) with s′n(t) = 1 and s′m(t) = sm(t) for m ∈ N \ {n}.

• If all entries of CM(t+1) are processed then we move to the next node. If all nodes
are processed for a time step t then we can set C{}(t+ 1) to CM(t) and start with
iterating over the nodes again.

• Note that for a pair (b, c) of a configuration the element b stays constant through
all nodes for a time step. We use b to keep track of the configuration of the nodes
in the previous time step and we only change the values for the current time step
while iterating over the nodes.

Appendix B

Pygrnd implementation of the Monte Carlo evaluation

In this section, we describe the Monte Carlo implementation of Pygrnd [20] for calculating
the probabilities of the configurations. The function is monteCarloEvaluation and it is
in the module pygrnd.qc.probabilisticNetworks.

• We start with the configuration (0, . . . , 0) for time step t = 0.

• For each new time step we iterate through all nodes.

• If a node had state 1 in the previous time step, we set it to 0 for the next time step
with probability precover

k .

• If a node had state 0 in the previous time step, we set it to 1 for the next time step
with probability pfail

k .

• Furthermore, we iterate over all ancestor nodes m in the network that had state 1
in the previous time step and we set the node n to state 1 in the next time step
with probability ptrigger

m,n .

• After iterating over all nodes this gives us a configuration for time step t+ 1.

• We repeat the procedure above until we obtain a configuration for the desired time
step.

• Once we reach the desired time step we store the configuration.

• We repeat the procedure above to generate statistics on generated configurations.

• We approximate the probability of a configuration by dividing the number of oc-
currences of a configuration by the total number of repetitions.
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