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Abstract—Text line detection is crucial for any application
associated with Automatic Text Recognition or Keyword Spotting.
Modern algorithms perform good on well-established datasets
since they either comprise clean data or simple/homogeneous
page layouts. We have collected and annotated 2036 archival
document images from different locations and time periods.
The dataset contains varying page layouts and degradations
that challenge text line segmentation methods. Well established
text line segmentation evaluation schemes such as the Detection
Rate or Recognition Accuracy demand for binarized data that
is annotated on a pixel level. Producing groundtruth by these
means is laborious and not needed to determine a method’s
quality. In this paper we propose a new evaluation scheme that
is based on baselines. The proposed scheme has no need for
binarization, it can handle skewed and rotated text lines and its
results correlate with Handwritten Text Recognition accuracy.
The ICDAR 2017 Competition on Baseline Detection and the
ICDAR 2017 Competition on Layout Analysis for Challenging
Medieval Manuscripts make use of this evaluation scheme.

I. INTRODUCTION

Layout analysis (LA) is considered an open research topic
especially for historical collections in the document analy-
sis community and is a major pre-processing step for e.g.
Keyword Spotting (KWS) or Handwritten Text Recognition
(HTR). In the last years several competitions were organized to
evaluate the performance of layout analysis algorithms: Some
focusing purely on LA [1]–[6], some requiring a good LA
as pre-processing step to achieve competitive results [7]–[9].
The ongoing effort in organizing such competitions strongly
indicates that there is still a need for improvement concerning
LA.

Even state-of-the-art algorithms have problems if they are
faced with degradations related to historical documents [6],
e.g. faded-out ink, bleed-through, marginalia, skewed and
touching/overlapping text lines. In contrast, reported results
of LA algorithms perform surprisingly well with accuracies
far better than 90% [10]–[17]. This is basically due to the fact
that the well established easily accessible datasets (like the
IAM-HistDB consisting of Saint Gall Database [18], Parzival
Database [19] and Washington Database [19], as well as the
datasets provided via the competitions [1], [3], [5], the datasets

introduced in [14] and even newly proposed datasets like the
collection of Southeast Asian palm leaf manuscript images
[20]) are not covering the full range of difficulties present in
historical documents. The datasets contain either modern, well
aligned handwritten texts without any serious difficulties for
state-of-the-art algorithms at all or very homogeneous layouts
within a dataset, hence it is an ease to adapt algorithms to
such datasets to achieve high accuracy.

Since state-of-the-art methods achieve high accuracies on
well-established datasets, there is a need for a newly annotated
dataset with more challenging page layout and a greater variety
in terms of script, time range and place of origin. A huge
variety of degradation as well as different resolutions and ori-
entations should be present. Since the landscape of document
analysis has changed over the last years, and machine learning
based algorithms get more and more popular not only for KWS
[21] and HTR [22] but also for LA [23]–[25], the dataset
should consist of hundreds of pages to provide an appropriate
amount of training samples.

Besides the characteristics of the images the kind of
groundtruth (GT) provided is essential. The variety of GT
given for different datasets ranges from origin points [6] over
polygons surrounding the text lines [18], [19] and groundtruth
on pixel level [1], [3], [14] to detailed information about text
region entities [4] and reading order [8]. Since in the most
application scenarios LA is mainly a pre-processing step for
HTR, it is meaningful to provide goal-oriented GT. Modern
HTR systems require text lines as inputs [21], [22], that is why
we will restrict ourselves to the text line detection scenario
and ignore issues like entity classification and reading order.
Nevertheless in complex layout scenarios (e.g. tables, multi-
column texts, present marginalia), it is mandatory to detect
the page layout to achieve correct text line segmentation
results. Ignoring the page layout typically leads to an underseg-
mentation of text lines. Therefore, the text line segmentation
scenario somehow comprises the page segmentation scenario
as a required intermediate processing step.

To characterize the text lines using solely origin points is in
our opinion not sufficient since they don’t cover the character-
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Fig. 1. Illustration of a baseline.

istics, e.g. skew, orientation, dimension, ... , of the text lines at
all. On the other hand, [26] showed that the HTR accuracy is
not significantly effected by the polygon surrounding the text
lines. Even simple strategies to construct surrounding polygons
given baseline representations lead to satisfying results [26].
Therefore, GT based on baseline representations for the text
lines is in our opinion a reasonable compromise. Furthermore,
annotating baselines is less cumbersome than surrounding
polygons and therefore cheaper.

Since the widely-used evaluation schemes rely on surround-
ing polygons and use area (or foreground pixel) based methods
to calculate the accuracy of text line segmentation results, there
is a need for an evaluation scheme suitable for baselines.

In this paper, we introduce a new dataset containing 2036
pages of historical documents with annotated baselines. Fur-
thermore, we propose a newly developed, goal-oriented eval-
uation scheme working with baseline representations of the
text lines. The remaining paper is structured as follows, in
Section II the dataset is described in detail, a meaningful
subdivision is explained and some example pages as well as
statistics are shown. Section III describes the newly proposed
evaluation scheme along with some examples demonstrating
the functionality of the scheme. Section IV concludes the
paper.

II. DATASET

The ICDAR 2017 Competition on Baseline Detection
(cBAD) dataset [27] consists of 2036 document page images
that were collected from 9 different archives. It is to the best
of our knowledge the first text line segmentation dataset that
relies on baselines only.

A. Baseline Definition

A baseline is defined in the typographical sense as the
virtual line where most characters rest upon and descenders
extend below (see Figure 1). Any text line that contains
textual information is annotated by one single baseline. Hence,
non-textual symbols (including decorations lines, dotted lines,
images, noise/stains, initials, bleed-through text) are not anno-
tated. Curved text lines are approximated by a baseline using
multiple points. Baselines are split if
• they span different columns (see Figure 2).
• they span different document pages (see Figure 2).
• between marginalia and the body text (see Figure 2 top).

If a text line is clearly not part of a table (column) system, a
single baseline is annotated (see Figure 2).

..... indicates a split

Baseline must be split between di�erent columns and pages
Correct: context clearly indicates that this is one text line

Fig. 2. Example of complex text lines where red (bold) baselines indicate
wrongly annotated text lines.

B. The cBAD Dataset

About 2000 document images written between 1470 and
1930 were collected from 9 different European archives. We
sampled 250 images from each archival collection using a
freely available python script1. A more detailed description
of the document collections is given below.

Archive Bistum Passau (ABP): collection contains 16,000
images photographed at 300 dpi. The documents include parish
registers of baptisms, marriages, and funerals.

Bohisto - Bozen State Archive: 77,000 page images of
council minutes written between 1470 and 1804.

Venice Time Machine (EPFL): about 5000 pages from
indexes of records, records of real property transactions, and
daily death registrations written between the 16th and 18th

century.
Humboldt University Berlin (HUB): 3600 student notes of

lectures given by Alexander von Humboldt between 1827 and
1829.

National Archive Finland (NAF): 2186 page images from
account books, a court book, a census book, and a church
book that cover a time period from 1774 until the 1930s.

Marburg State Archive: 36,000 page images from the
Grimm collection comprising letters, postcards, and greeting
cards.

University College London (UCL): the Bentham papers
include 55,000 pages. Most pages were written by the British
philosopher Jeremy Bentham between 1760 and 1832.

C. Data Annotation

In total 2250 images were collected. Before groundtruthing
we removed 132 images due to poor quality and content (e.g.
music scores). The 2118 remaining images were annotated by
DigiTexx. Afterwards, the GT was inspected by two indepen-
dent operators who removed another 82 images because of
wrong baseline annotations resulting in a final dataset size of
2036 images.

1https://github.com/TUWien/Benchmarking



Fig. 3. Two examples of document images of TRACK A Simple Documents
(left) and TRACK B Complex Documents (right) with annotated baselines and
text regions.

The annotated dataset is split into two tracks: Simple Doc-
uments and Complex Documents. The former includes only
pages with simple page layouts and annotated text regions.
Hence, this track is used to evaluate the text line segmentation
only, thus neglecting issues that arise from the page layout.
The second track Complex Documents includes full page
tables, multi column text and rotated text lines. The challenge
is not only to robustly detect baselines but also to split
baselines correctly with respect to the page layout.

Since there are supervised baseline detection methods, we
split both tracks into a training and a test set. For training 30
images are taken from each collection resulting in 216 training
images for Simple Documents and 270 images for Complex
Documents. The data along with the GT is publicly available
[27] for both training sets. For the test sets, the GT will be
released after the competition deadline.

The well-known PAGE XML2 scheme is used for storing
text regions and baselines.

III. EVALUATION SCHEME

Since baseline detection is basically a pre-processing step
for HTR, there are special requirements regarding the evalua-
tion scheme:
• Results should correlate with HTR accuracy (there is not

an unique correct baseline, slightly different baselines
lead to the same HTR accuracy)

• The evaluation scheme should reflect how much of the
text – ignoring layout issues – was detected (we call
the value reflecting this R value, since it has similar
properties as the well established recall value)

• The evaluation scheme should reflect how reliable the
structure of the text lines (the layout) of the document was
detected (we call the value reflecting this P value, since

2http://www.primaresearch.org/tools

it has similar properties as the well established precision
value)

• The evaluation scheme should not rely on binarization,
because there are various algorithms explicitly avoiding
binarization [12], [15], [24]

• The evaluation scheme should be able to handle skewed
and oriented text lines

• The evaluation scheme should not rely on a reading order
To our knowledge there is no well-established evaluation
scheme meeting these requirements. Hence, we propose a
newly developed scheme to evaluate the performance of base-
line detection algorithms. The proposed algorithm is imple-
mented in java and available as a standalone command line
tool, which licensed as LGPLv3 and publicly available3.

A. Single Page Evaluation

In the following the calculation of R and P for a single
page is explained. Let P be the set of all polygonal chains
(each polygonal chain represents a baseline and contains a
finite number of vertices characterized by two coordinates).
G = {g1, ..., gM} ⊂ P is the set of given (GT) polygonal
chains representing the baselines for a single page and H =
{h1, ...,hK} ⊂ P is the set of hypothesis (HY) polygonal
chains calculated by a baseline detection algorithm for the
same page, Fig. 4a. The following describes the calculation of
R and P for the two sets G and H.

1) Polygonal Chain Normalization: In a first step each
chain is normalized, so that two adjacent vertices are in the
8-neighborhood of each other (have a distance ≤

√
2), Fig. 4b.

The resulting sets of normalized chains are G̃ and P̃ . For better
readability we omit the tilde. In the following G and P are
the sets of normalized polygonal chains.

2) Tolerance Value Calculation: In a second step for each
chain g ∈ G a tolerance value tg is calculated. As mentioned
above, the evaluation scheme should not penalize HY baselines
which are slightly different to the GT baselines. Hence, some
kind of tolerance is necessary. Page (and text line) dependent
tolerance values are calculated, because within a collection
various resolutions and layout scenarios could be present. A
single pre-defined tolerance value can hardly cover all these
scenarios in a satisfying fashion. Since the y-coordinates of the
vertices are typically “wrongly” oriented in computer vision
scenarios they have to be negated for the following procedure.
To calculate tg , the orientation αg ∈ [0, π) of g is estimated
using linear regression. o(αg) = (cos(αg), sin(αg))

T is the
vector of length 1 of orientation αg . Given the set V of all
vertices of the chains in G \ {g}, the subset Vg ⊂ V is
calculated such that for any v ∈ Vg there are at least two
vertices v1, v2 ∈ g satisfying

(v − v1)
To(αg) · (v − v2)

To(αg) ≤ 0. (1)

Condition (1) means that the projections of (v−v1) and (v−
v2) into the direction of o(αg) have different algebraic signs
(or have length zero). In Fig. 4c the set Vg2

of vertices for

3https://github.com/Transkribus/TranskribusBaseLineEvaluationScheme

http://www.primaresearch.org/tools


(a) Depicted are the sets G = {g1, g2, g3, g4} of four GT baselines (blue) and H = {h1, h2, h3, h4} of four HY baseline (red).

(b) The same baselines as shown in Fig. 4a but represented by normalized polygonal chains (for better clarity only every 25th vertex is shown).

(c) The vertices, which are taken into account to calculate the minimum distance of GT line 2 to the other GT lines, are displayed as green points.
Green lines are the orthogonal (to GT line 2) distances of the green vertices.

(d) Shown in light blue are the tolerance areas for the different GT baselines, for all four baselines the estimated tolerance value is roughly 20.

Fig. 4. Depicted is a snippet of an example document and intermediate steps of the evaluation scheme.

GT baseline 2 is shown (green points). For each v ∈ Vg one
vertex vm(v) ∈ g is determined for which the projection of
(v − vm(v)) into the direction of o(αg) has minimal length

vm(v) = argmin
vg∈g

∣∣(v − vg)
To(αg)

∣∣ .
The minimum distance of g to another chain is calculated by

dg = min
v∈Vg

|(v − vm(v))xo(αg)y − (v − vm(v))yo(αg)x| .

Subscripts vx and vy are the x- and y-coordinate of vector v.
dg is the minimal length of the projections of all (v−vm(v))
into the direction orthogonal to o(αg), see Fig. 4c (green
lines). For Vg = ∅ there are no other baselines allowing a
meaningful calculation of dg , hence it is set to some default
value (250 was chosen). Condition (1) is essential since Vg
is the basis for the estimation of the minimal distance of
g to another chain. For instance the yellow vertex Fig. 4c
has a significantly shorter orthogonal projection to GT line 2,
but of course would falsify the statistics. The mean dG over
the dg (g ∈ G) with a value different to the default value is
calculated. Finally, the GT baseline dependent tolerance values
are calculated, facilitating

tg = 0.25 ·min(dg, dG).

25% of the estimated interline distance yields a reasonable
compromise between accuracy and flexibility. T = T (G) is

Algorithm 1 Coverage Function
1: procedure COV(p, q, t)
2: c← 0
3: for p = (px, py) vertex of p do
4: dmin ← minq∈q(‖p− q‖2)
5: if dmin ≤ t then
6: c← c+ 1
7: else if dmin ≤ 3t then
8: c← c+ 3t−dmin

2t
9: end if

10: end for
11: c← c

|p| . |p| is the number of vertices of p
12: return c
13: end procedure

the set containing the resulting tolerance values, in Fig. 4d the
blue areas show the individual tolerance areas for the different
GT baselines.

3) Coverage Function: Employing the (tolerance depen-
dent) COV : P × P × R → R function implemented via
Alg. 1, one can determine a value representing the fraction of
chain p for which there is a vertex of chain q within a certain
tolerance area (skew-invariant). Alg. 1 counts the number of
vertices of p for which there is a vertex of q with a distance
less than the given tolerance value t. Furthermore a smooth



(linear) transition is performed for vertices with a distance
between t and 3t. A vertex with a distance less than t counts
1, with a distance of 1.5t it counts 0.75, with a distance of
2t it counts 0.5, ... Finally, a vertex with a distance of 3t and
more counts 0. The resulting value is normalized using the
number of vertices of p.

Let COVS : P ×P(P)× R→ R be the generic extension
of COV to sets of polygonal chains as second argument. The
minimum from line 4 in Alg. 1 is calculated over a set of
chains instead of a single chain. To clarify the functionality
of the coverage functions a few exemplary values are shown
in Tab. I. Especially, the function COV is not commutative in
the first two arguments.

TABLE I
EXAMPLE VALUES OF THE COVERAGE FUNCTIONS APPLIED TO

NORMALIZED POLYGONAL CHAINS SHOWN IN FIG. 4B WITH A FIXED
TOLERANCE VALUE OF 20 (AS SHOWN IN FIG. 4D). gi MEANS THE

NORMALIZED VERSION OF THE i-TH GT BASELINE.

p q r COV(p, q, 20) COVS(p, {q, r}, 20)

h3 g4 – 1.0 –
g4 h3 h4 0.65 0.96

g3 h2 – 0.76 –
h1 g1 g2 0.26 0.95

4) R and P Calculation: The tolerance dependent R value
of G and H is finally calculated by

R(G,H, T ) =
∑

g∈G COVS(g,H, tg)
|G|

. (2)

The R value indicates for what fraction of the GT baselines
there are detected HY baselines within a certain tolerance
area. Segmentation (page layout) errors are not penalized at
all, because no alignment between GT and HY baselines is
enforced.

These segmentation errors are penalized in the P value. Let
M(G,H) ⊂ G × H be an alignment of GT and HY chains
where each element of G as well as of H occurs at most once.
The tolerance dependent P value of G and H is calculated as
follows

P(G,H, T ) =
∑

(g,h)∈M(G,H) COV(h, g, tg)

|H|
. (3)

An alignment ensures that segmentation errors are penalized.
E.g. if a text line is splitted into two equally sized parts, a R
value of 1.0 is calculated (the two detected chains cover the
entire GT chain), but the expected P value is 0.5 (the GT chain
is aligned with exactly one of the HY chains with a P value of
1, this is divided by 2, because there are two HY chains). We
want to mention that for both cases (R and P) short text lines
have the same impact as long ones, because in (2) and (3) the
line specific R and P values are divided by the number of GT
respectively HY lines. This prevents the proposed evaluation
scheme from underestimating the importance of short text
lines, which often contain essential information in the context
of historical documents, e.g. dates.

5) Greedy-based Alignment: To evaluate (3) an P-optimal
alignment is necessary. Therefore a P matrix C ∈ RM×K

is calculated with elements cij = COV(hi, gj , tgj
). Based

on this, the alignment is calculated in a greedy manner
M(G,H) = ALIGN(C,G,H), see Alg. 2. A greedy approach
was chosen, because there is no reading order available (no
dynamic programming possible) and the greedy solution is in
most practical cases the exact solution.

Algorithm 2 Alignment Function
1: procedure ALIGN(C,G,H)
2: M← ∅
3: C ′ ← C
4: while C ′ is not empty do
5: m← one of the maximal elements of C ′

6: if m > 0 then
7: //create a new matching pair
8: g ← element of G belonging to m
9: h← element of H belonging to m

10: M←M∪ (g,h)
11: C ′ ← take C ′ and delete row/col of m
12: else
13: return M
14: end if
15: end while
16: return M
17: end procedure

6) Harmonic Mean (F value): Finally, the harmonic mean
of R and P, we call it F value,

F =
2 · R · P
R + P

is calculated.

B. Multi Page Evaluation

Since the dataset is very heterogeneous, each page is eval-
uated on its own. The average is calculated for this page-wise
results. This prevents an overbalance of pages with dozens
of baselines (like pages containing a table) and yields results
representing the robustness of the evaluated algorithms over
various scenarios.

C. Examples

Results for different subsets of the GT and HY baselines of
Fig. 4a are shown in Tab. II and explained in the following.
The small difference between Ex. 1 and Ex. 2 is due to the
fact, that in both cases h1 is aligned to g2 for the P calculation.
Hence, there is no effect on P if g1 is removed. R is nearly
the same, because g1 and g2 are both completely covered by
h1. By removing g2 instead of g1 (Ex. 3), h1 is now aligned
to g1 yielding a lower P value, because g2 covers much more
of h1 than g1. In Ex. 4 one gets a high P value, because
the remaining HY baselines are very well covered by the GT
baselines. By adding h4 (Ex 5) we of course increase R, but
decrease P. This is due to the fact that h3 is aligned to g4 (as
in Ex. 4) and h4 is not aligned at all and gets a P value of 0.



TABLE II
EXAMPLE VALUES FOR R, P AND F1 FOR DIFFERENT SUBSETS OF THE GT

AND HY BASELINES SHOWN IF FIG. 4A, FOR ALL EVALUATIONS THE
TOLERANCE PARAMETER WAS FIXED TO 20.

Ex. G H R P F1

1 {g1, g2, g3, g4} {h1, h2, h3, h4} 0.91 0.61 0.73

2 {g2, g3, g4} {h1, h2, h3, h4} 0.9 0.61 0.73

3 {g1, g3, g4} {h1, h2, h3, h4} 0.89 0.51 0.65

4 {g1, g2, g3, g4} {h2, h3} 0.35 0.88 0.5

5 {g1, g2, g3, g4} {h2, h3, h4} 0.43 0.6 0.5

IV. CONCLUSION

We have introduced a new dataset consisting of 2036 pages
of archival documents with annotated baselines. A wide span
of different times as well as locations is covered. The dataset
contains documents with various degradations and complex
layouts. Along with the dataset a goal-oriented evaluation
scheme based on baseline descriptions is introduced. In our
opinion this work provides new challenges as well as a solid
basis for competitive evaluations for the document layout
community.
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