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ABSTRACT

This work presents a new perspective on characterizing the similarity between elements of a database or, more

generally, nodes of a weighted, undirected, graph. It is based on a Markov-chain model of random walk through

the database. More precisely, we compute quantities (the average commute time, the pseudoinverse of

the Laplacian matrix of the graph, etc) that provide similarities between any pair of nodes, having the nice

property of increasing when the number of paths connecting those elements increases and when the “length” of

paths decreases. It turns out that the square root of the average commute time is a Euclidean distance and that

the pseudoinverse of the Laplacian matrix is a kernel (it contains inner-products closely related to commute

times). A procedure for computing the subspace projection of the node vectors of the graph that preserves as

much variance as possible in terms of the commute-time distance – a principal components analysis (PCA) of the

graph – is also introduced. This graph PCA provides a nice interpretation to the “Fiedler vector”, widely used

for graph partitioning. The model is evaluated on a collaborative-recommendation task where suggestions are

made about which movies people should watch based upon what they watched in the past. Experimental results

on the MovieLens database show that the Laplacian-based similarities perform well in comparison with other

methods. The model, which nicely fits into the so-called “statistical relational learning” framework, could also

be used to compute document or word similarities, and, more generally, could be applied to machine-learning

and pattern-recognition tasks involving a database.
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1. Introduction

A.. General introduction

Exploiting the graph structure of large repositories, such as digital documents repositories, the web environment,

or large databases in general, is relevant to many areas of computer science. For instance, Kleinberg’s suggestion

to distinguish web pages that are hubs and authorities (see [40]; called the HITS algorithm) has been well-received

in the community (for a review, see [2]).

This work views a database as a collection of element sets (tables) connected by relationships. The model

exploits the graph structure of the database to compute a similarity measure between elements (the work could

have been presented as computing dissimilarities instead, and the word “proximities” used as a substitute for

either). All the developments in this paper are valid in the more general context of computing similarities

between nodes of a weighted, undirected, graph.

Computing similarities between pairs of elements allows, for instance, to determine the item that is most

relevant (similar) to a given item. Also, elements in a set can be assigned a category provided by elements from

another set. Computing similarities between elements of the same set amounts to a clustering task.

For example, imagine a simple movie database with three sets of elements people, movie, and movie_category,

and two relationships has_watched, between people and movie, and belongs_to, between movie and movie_category.

• Computing similarities between people allows to cluster them into groups with similar interest about

watched movies.

• Computing similarities between people and movies allows to suggest movies to watch or not to watch.

• Computing similarities between people and movie categories allows to attach a most relevant category to

each person.

The procedure used to compute similarities is based on a Markov-chain model. We define a random walk

through the database by assigning a transition probability to each link. Thus, a random walker can jump from

element to element and each element therefore represents a state of the Markov chain.

The average first-passage time m(k|i) (see for instance [38]) is the average number of steps needed by

a random walker for reaching state k for the first time, when starting from state i. The symmetrized quantity

n(i, j) = m(j|i)+m(i|j), called the average commute time (see for instance [25]), provides a distance measure
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between any pair of states. The fact that this quantity is indeed a distance on a graph was proved independently

by Klein & Randic [39] and Gobel & Jagers [25].

We will see later that [n(i, j)]1/2, which is also a distance between nodes, takes a remarkable form; it will

be called the Euclidean Commute Time Distance (ECTD). We also introduce the average first-passage

cost o(k|i) which generalizes the average first-passage time by assigning a cost to each transition.

Another quantity of interest, closely related to the ECTD, that will play a fundamental role, is the pseu-

doinverse of the Laplacian matrix of the graph (L+). Indeed, it turns out that L+ contains the inner

products of the node vectors in a Euclidean space preserving the ECTD (a Euclidean space where the nodes

are exactly separated by ECTD). It can therefore be considered as a similarity measure between nodes and it

is a valid kernel (a Gram matrix, see for instance [56]).

All these quantities have the nice property of decreasing (or increasing, depending on whether the quantity

is a dissimilarity or a similarity measure) when the number of paths connecting two elements increases and when

the “length” of any path decreases (the communication is facilitated). In short, two elements are considered

similar if there are many short paths connecting them. The “shortest path” or “geodesic” distance does not have

the nice property of decreasing when connections between nodes are added: it does not capture the fact that

strongly connected nodes are at a smaller distance than weakly connected nodes. With a few notable exceptions

(see the related work below), while being interesting alternatives to the well-known “shortest path” distance on

a graph [9], those quantities have not yet been fully exploited in the context of collaborative recommendation or,

more generally, in pattern recognition and machine learning. This fact has, however, already been recognized

in the field of mathematical chemistry where there were attempts to use the “commute time” distance instead

of the “shortest path” distance [39].

B.. Some related work

In [13] and [15], Chebotarev & Shamis proposed a similarity measure between nodes of a graph integrating

indirect paths, based on the matrix-forest theorem. Interestingly enough, this quantity is also related to the

Laplacian matrix of the graph. While the authors prove some nice properties about this similarity measure,

no experiment investigating the effectiveness of this quantity is performed. We will therefore investigate this

matrix-forest based measure, together with the other introduced quantities, in the experimental section (a

precise description of this model can be found in Section 6).
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Some authors recently considered similarity measures based on random-walk models. For instance, Harel

& Koren [28] investigated the possibility of clustering data according to some random-walk related quantities,

such as the probability of visiting a node before returning to the starting node. They showed through clustering

experiments that their algorithm is able to cluster arbitrary non-convex shapes. White & Smyth [62], inde-

pendently of our work, investigated the use of the average first-passage time as a similarity measure between

nodes. Their purpose was to generalize the random-walk approach of Page, Brin & Winograd [47] by capturing

a concept of “relative centrality” of a given node with respect to some other node of interest.

More recently, Newman [44] suggested to use a random-walk model in order to compute the “betweenness

centrality” of a given node in a graph. Newman counts how often a node is traversed during a random walk

between two other nodes (a couple of nodes). Then, this quantity is averaged over every couple of nodes,

providing a general measure of betweenness [61] associated to each node.

Still another approach has been investigated by Faloutsos et al. [22] who extract the “most relevant” con-

nected subgraph relating two nodes of interest, using a method based on electrical flow. Moreover, in [48],

Palmer & Faloutsos define a similarity function between categorical attributes, called “refined escape proba-

bility”, based on random walks and electrical networks concepts. They show that this quantity provides a

reasonably good measure for clustering and classifying categorical attributes. In a recent paper [43], Nadler

et al. proposed a dissimilarity measure between nodes of a graph based on a continuous-time diffusion pro-

cess. They show that there are some interesting links between their model and our approach. We derived the

discrete-time counterpart of their model, and are currently investigating its performance.

Very recently, Brand [8] proposes the use of various quantities derived from the commute time for collab-

orative recommendation. He shows, as we do, that angular-based quantities perform much better than the

commute time because the commute time is quite sensible to the node degree. These conclusions confirm our

experimental results, as will be shown in the experimental section.

Notice finally that our approach based on a random-walk model on a graph is closely related to spectral

clustering and spectral embedding techniques (for a recent account, see [19]), as detailed in [54]. Random-walk

models on a graph also proved useful in the context of learning from labeled and unlabeled data; see for instance

[63].
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C.. Main contributions

In summary, in addition to suggesting quantities for computing similarities between nodes of a graph, this paper

has four main contributions, three more theoretical and one more experimental:

1. We show that all the introduced quantities can be expressed in closed form in terms of the pseudoinverse

of the Laplacian matrix of the graph. This generalizes results obtained by Klein & Randic [39], derived

for the ECTD only, based on the electrical equivalence. Since the pseudoinverse of the Laplacian matrix

plays a key role and has a nice interpretation in terms of random walk on a graph, we prove some of its

properties.

2. We show that the pseudoinverse of the Laplacian matrix of the graph is a valid kernel (a Gram matrix; see

for instance [56]). It therefore defines a kernel on a graph and can be interpreted as a similarity measure.

3. We show that we can project the nodes space of the graph into a Euclidean subspace that approximately

preserves the ECTD. This subspace is optimal in the following sense: it keeps as much variance of the

projected data as possible (in terms of the ECTD). It is therefore an equivalent of principal components

analysis (PCA) and classical multidimensional scaling (MDS), in terms of the ECTD. This provides a nice

interpretation to the “Fiedler vector”, widely used in graph partitioning. Finally, we also show that the

ECTD PCA can be viewed as a special regularized Laplacian kernel, as introduced by Smola & Kondor

[60].

4. From an experimental point of view, we show that these quantities can be used in the context of collab-

orative recommendation. For a recent account of collaborative recommendation techniques, see [17], [29]

or [32]. Indeed, all the introduced concepts are illustrated on a collaborative recommendation task where

movies are suggested for people to watch from a database of previously watched movies. In particular the

inner-product based quantities involving the Laplacian matrix provide good, stable, results. We suggest

that the same model could be used to compute document or word similarities, and, more generally, be

applied to other pattern-recognition and machine-learning tasks involving a database.

Our objective here is not to develop a state-of-the-art collaborative recommendation system; rather, the

application to collaborative recommendation aims to illustrate the interest of Markov-based similarity measures

to nontrivial database-mining tasks. This approach fits quite naturally into the so-called “multi-relational data
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mining” and the “statistical relational learning” frameworks (see for instance [21] and the other papers in the

same issue of the SIGKDD newsletter).

D.. Outline of the paper

The present work is an extended and improved follow-up of two previously published papers: [54], introducing the

theoretical model based a random-walk model, and [24], containing preliminary experimental results obtained

on the collaborative recommendation task. In the present work, all the proofs are included, computational

issues are discussed, and the experiments have been highly expanded.

The paper is structured as follows. Section 2 introduces the random-walk model. Section 3 develops our

similarity measures as well as the iterative formulae to compute them. Section 4 shows how the average first-

passage time, the average first-passage cost, and the average commute time can be computed in closed form from

the pseudoinverse of the Laplacian matrix of the graph. It also derives a number of interesting properties of the

Laplacian pseudoinverse. Section 5 introduces a subspace projection of the nodes of the graph that maximizes

the variance of the projected data. Section 6 specifies our experimental methodology. Section 7 illustrates the

concepts with experimental results obtained on the MovieLens database. Section 8 is the conclusion.

2. A Markov-chain model of database navigation

A.. Definition of the weighted graph

A weighted graph G is associated with a database in the following obvious way: database elements correspond

to nodes of the graph and database links correspond to edges.

In our movie example, each element of the people, movie, and movie_category sets corresponds to a node

of the graph, and each has_watched and belongs_to link is expressed as an edge.

The weight wij of the edge connecting node i and node j should be set to some meaningful value, with the

following convention: the more important the relation between node i and node j, the larger the value of wij ,

and consequently the easier the communication through the edge. We require the weights to be both positive

(wij > 0) and symmetric (wij = wji). For instance, for an has_watched edge, the weight could be set to the

number of times that the person watched the corresponding movie. The elements aij of the symmetric adjacency

matrix A of the graph are defined as usual as: aij = wij if node i is connected to node j, and aij = 0 otherwise.
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Because of the way the graph is defined, people who watch the same kind of movies, and therefore have

similar taste, will be connected by a comparatively large number of short paths. On the contrary, for people

with different interests, there will be fewer paths connecting them and these paths will be longer.

B.. A random-walk model on the graph

The Markov chain describing the sequence of nodes visited by a random walker is called a random walk. A

random variable s(t) contains the current state of the Markov chain at time step t: if the random walker is in

state i at time t, then s(t) = i.

The random walk is defined with the following single-step transition probabilities of jumping from any state

or node i = s(t) to an adjacent node j = s(t+1): P(s(t+1) = j|s(t) = i) = aij/ai. = pij , where ai. =
∑n

j=1 aij .

The transition probabilities depend only on the current state and not on the past ones (first-order Markov

chain). Since the graph is connected, the Markov chain is irreducible, that is, every state can be reached from

any other state. If this is not the case, the Markov chain can be decomposed into closed subsets of states

which are independent (there is no communication between them), each closed subset being irreducible, and the

procedure can be applied independently on these closed subsets.

If we denote the probability of being in state i at time t by πi(t) = P(s(t) = i) and we define P as the

transition matrix with entries pij = P(s(t + 1) = j|s(t) = i), the evolution of the Markov chain is characterized

by π(t+1) = PT
π(t), with π(0) = π

0 and where T is the matrix transpose. This provides the state probability

distribution π(t) = [π1(t), π2(t), ..., πn(t)]T at time t once the initial probability density π
0 is known. For more

details on Markov chains, the reader is invited to consult standard textbooks on the subject (e.g., [38], [46]).

3. Average first-passage time/cost and average commute time

This section reviews two basic quantities that can be computed from the definition of the Markov chain, that

is, from its transition probability matrix: the average first-passage time and the average commute time. We

also introduce the average first-passage cost which generalizes the average first-passage time. Relationships

allowing to compute these quantities are simply introduced without proof (see, e.g., [38] or [46] for a more

formal treatment).
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A.. The average first-passage time and average first-passage cost

The average first-passage time m(k|i) is defined as the average number of steps that a random walker, starting

in state i 6= k, will take to enter state k for the first time [46]. More precisely, we define the minimum time

until hitting state k, when starting from state i, as Tik = min (t ≥ 0 | s(t) = k and s(0) = i) for one realization

of the stochastic process. The random walker will pass through k repeatedly; The minimum time corresponds

to its first passage. The average first-passage time is the expectation of this quantity: m(k|i) = E[Tik|s(0) = i].

In a similar way, the average first-passage cost o(k|i) is the average cost incurred by the random walker

starting from state i to reach state k for the first time. The cost of each transition is given by c(j|i) (a cost

matrix) for any states i, j. Notice that m(k|i) is obtained as a special case where c(j|i) = 1 for all i, j.

The recurrence relations for computing m(k|i) and o(k|i) can easily be obtained by first-step analysis (see

[38], [46] or [53]): 



m(k|k) = 0

m(k|i) = 1 +
n∑

j=1, j 6=k

pij m(k|j), for i 6= k
(3.1)





o(k|k) = 0

o(k|i) =

n∑

j=1

pij c(j|i) +

n∑

j=1, j 6=k

pij o(k|j), for i 6= k
(3.2)

The meaning of these formulae is quite obvious: to go from state i to state k, first go to any adjacent state

j and proceed from there. These quantities can be computed by iterating these recurrence relations, by using

some dedicated algorithms developed in the Markov-chain community (see for instance [38]) or by using the

pseudoinverse of the Laplacian matrix of the graph, as shown in this paper (see Section 4).

B.. The average commute time

A closely related quantity, the average commute time n(i, j) is defined as the average number of steps that

a random walker, starting in state i 6= j, will take to enter state j for the first time and go back to i. That is,

n(i, j) = m(j|i) + m(i|j). Notice that, while n(i, j) is symmetric by definition, m(i|j) is not.

As shown by several authors [25], [39], the average commute time is a distance measure since, for any states

i, j, k: (1) n(i, j) ≥ 0, (2) n(i, j) = 0 if and only if i = j, (3) n(i, j) = n(j, i), and (4) n(i, j) ≤ n(i, k) + n(k, j).

It will be referred to as the “commute-time distance”. Because of a close relationship between the random-

walk model and electrical networks theory, this distance is also called “resistance distance”. Indeed, n(i, j)
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is proportional to the effective resistance between node i and node j of the corresponding network, where a

resistance w−1
ij is assigned to each edge. We will show in Section 4 that [n(i, j)]1/2, which is also a distance on

the graph, takes a remarkable form.

As already mentioned, the commute-time distance between two points has the desirable property of decreas-

ing when the number of paths connecting the two points increases and when the length of paths decreases (see

[20] for a proof based on electrical networks theory). This is indeed an intuitively satisfying property of the

effective resistance of the equivalent electrical network (see [12], [20], or [53]). The usual shortest-path dis-

tance (also called geodesic distance) does not have this property: the shortest-path distance does not capture

the fact that strongly connected nodes are closer than weakly connected nodes.

Methods for computing the quantities defined above are based on algorithms introduced in the Markov-chain

community or on iterative procedures (Equation 3.1). For instance, Kemeny & Snell proposed a general method

in the appendix of their book [38] (see also [33] or [49]).

4. Computation of the basic quantities by means of L+

In this section, we show how formulae for computing the average first-passage time, the average first-passage

cost, and the average commute time can be derived from Equations 3.1 and 3.2, by using the Moore-Penrose

pseudoinverse of the Laplacian matrix of the graph (L+), which plays a fundamental role and has a number

of interesting properties. The developments in this section are inspired by the work of Klein & Randic [39]

who proved, based on the electrical equivalence, that the effective resistance (the equivalent of the average

commute time) can be computed from the Laplacian matrix. We extend their results by showing how the

formula computing the average commute time in terms of L+ can be directly derived from Equation 3.1, and

by providing formulae for the average first-passage time and the average first-passage cost.

A.. The pseudoinverse of the Laplacian matrix

The Laplacian matrix L of the graph is defined in the usual manner, L = D − A, where D = diag(ai.) with

dii = [D]ii = ai. =
∑n

j=1 aij (element i, j of D is [D]ij = dij), if there are n nodes in total.

We suppose that the graph is connected, that is, any node can be reached from any other node. In this

case, L has rank n − 1 [18]. If e is a column vector made of 1’s (i.e., e = [1, 1, ..., 1]T, where T denotes the

matrix transpose) and 0 is a column vector made of 0’s, Le = 0 and eTL = 0T hold: L is doubly centered. The
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null space of L is therefore the one-dimensional space spanned by e. Moreover, one can easily show that L is

symmetric and positive semidefinite (see for instance [18]).

Let us denote by lij the [L]ij element of the Laplacian matrix L. The Moore-Penrose pseudoinverse of L (see

for instance [3]) will be denoted by L+, with elements l+ij = [L+]ij . The concept of pseudoinverse generalizes

the matrix inverse to matrices which are not of full rank, or even rectangular. It provides closed-form solutions

to systems of linear equations for which there is no exact solution (in which case it provides a solution in the

least-square sense) or when there is an infinity of solutions. A thorough treatment of matrix pseudoinverses and

their applications can be found in [6].

In Appendix A, we prove some useful properties of L+; in particular, we show that: (1) L+ is symmetric,

(2) If (λi 6= 0,ui) are (eigenvalues, eigenvectors) of L, then (λ−1
i 6= 0,ui) are corresponding (eigenvalues,

eigenvectors) of L+; on the other hand, if (λj = 0,uj) are (eigenvalues, eigenvectors) of L, then they are also

(eigenvalues, eigenvectors) of L+, (3) L+ is doubly centered, and (4) L+ is positive semidefinite. Moreover it

can be shown that L+ can be computed with the following formula (see [51], chapter 10) involving a standard

matrix inversion:

L+ =

(
L − eeT

n

)−1

+
eeT

n
(4.1)

where n is the number of nodes.

B.. The average first-passage time/cost and average commute time

Appendix B shows that the average first-passage time and the average first-passage cost can be computed in

terms of L+ from Equations 3.1 and 3.2. A similar formula (see Appendix C) is derived for the average commute

time, which is repeated here:

n(i, j) = VG

(
l+ii + l+jj − 2l+ij

)
(4.2)

where VG is the volume of the graph (VG =
∑n

k=1 dkk). This formula was also obtained by using the electrical

equivalent of the average commute time (the effective resistance) in [39]; see also [53].

If we define ei as the ith column of I, ei = [0
1
, ..., 0

i−1
, 1

i
, 0
i+1

, ..., 0
n
]T, we obtain the remarkable form:

n(i, j) = VG (ei − ej)
TL+(ei − ej) (4.3)

where each node i is represented by a unit vector (a node vector), ei, in the node space (the space spanned by

{ei}).
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We easily observe that [n(i, j)]1/2 is a distance in the Euclidean space spanned by the node vectors of the

graph since L+ is positive semidefinite. It will therefore be called the Euclidean Commute Time Distance

(ECTD). This is nothing else than a Mahalanobis distance with a weighting matrix L+.

C.. Computational issues

If the number of nodes is too large, the direct computation based on the pseudoinverse becomes intractable; in

this case, one may use iterative techniques based on Equations 3.1 or 3.2 and on the sparseness of the transition

probabilities matrix [27], [52].

Another alternative that proved useful for computing L+ for sparse graphs is first to compute a sparse

Cholesky factorization of the Laplacian matrix, L = RRT (see [16] for computing the Cholesky factorization

of positive semidefinite matrices). If L is sparse, the lower-triangular factor R is sparse as well, although less

sparse than the original matrix L. It is therefore useful to first compute a permutation of the original matrix

in order to obtain a “band” matrix. Once the factorization has been computed, the ith column of L+ can be

calculated by the following three steps (see [30], pp. 440-441):

1. Compute the projection of the basis vector ei on the column space of L; this projection is provided by

yi = projL(ei) = (I − eeT/n)ei.

2. Find one solution x′
i of Lx = RRTx = yi by back-substitution (R is lower-triangular and sparse).

3. Project x′
i on the row space of L (which is the same as the column space since L is symmetric), x∗

i =

projL(ei) = (I − eeT/n)x′
i. x∗

i corresponds to the ith column of L+ [30].

This procedure allows to compute the columns of L+ “on demand”.

Still another viable approach, based on a truncated series expansion, is proposed by Brand in [8]. The special

case of a bipartite graph (as the movie database) is developed in [31], where the authors propose an optimized

method for computing the pseudoinverse of the Laplacian matrix in this situation.

5. Maximum variance subspace projection of the node vectors

A.. Mapping to a Euclidean space preserving the ECTD

Based on the eigenvector decomposition of L+, the node vectors ei can be mapped into a new Euclidean space

that preserves the ECTD (see Appendix D): n(i, j) = VG (x′
i − x′

j)
T(x′

i − x′
j) = VG ||x′

i − x′
j ||2 where we made
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the transformations ei = Uxi or xi = UTei, x′
i = Λ1/2xi, and where U is an orthonormal matrix made of the

eigenvectors of L+ (ordered in decreasing order of corresponding eigenvalues λk) and Λ = diag(λk). So, in this

new n-dimensional Euclidean space, the transformed node vectors x′
i are exactly separated (according to the

standard Euclidean distance) by ECTD.

In Appendix E, it is shown that the x′
i are centered and that the pseudoinverse of the Laplacian matrix

contains the inner products of the transformed node vectors, l+ij = x′T
i x′

j . Therefore, L+ is a kernel (a

Gram matrix) and can be considered as a similarity matrix between the nodes (as in the vector-space model

in information retrieval). It therefore defines a new kernel on a graph, like the von Neumann kernel [57], the

diffusion kernel [41], and the recently introduced regularized Laplacian kernel [34], [60]. In fact, it can easily be

shown that the L+ kernel can be obtained from the regularized Laplacian kernel by using a special regularization

operator (see the end of the next subsection). This result is worth mentioning since once we have defined a

meaningful kernel on a graph, a number of interesting measures are provided almost for free (kernel PCA, etc.;

see for instance [56]). We are currently comparing various other well-defined kernels on a graph on the same

collaborative recommendation task; this will be the subject of a subsequent paper.

One key issue here is to assess whether the distance-based measures (for instance the ECTD) or the inner-

product based measures (for instance L+) perform best in the context of collaborative recommendation. It is

well-known that in the context of the vector-space model of information retrieval, inner-product based measures

outperform Euclidean distances when computing proximities between documents [1]. In the present case, ECTD

are Euclidean distances, while L+ contains the inner products between the node vectors. In this framework,

another measure of interest is the cosine between node vectors, which is defined as

cos+(i, j) = l+ij/
√

l+ii l
+
jj (5.1)

B.. Subspace projection of the node vectors (the principal components analysis of a graph)

L+ can be approximated by retaining only the m < (n − 1) first eigenvectors (the smallest eigenvalue is 0) of

its eigenvector decomposition:

L̃+ =
m<n−1∑

k=1

λk uku
T
k (5.2)

where the uk are the eigenvectors of L+ and λk the corresponding eigenvalues (see Appendix D for details).

A new transformation of the node vectors is therefore defined by x̃i = ŨTei and x̃′
i = Λ̃1/2x̃i, where Ũ =

[u1,u2, ...,um,0, ...,0] and Λ̃ = diag[λ1, λ2, ..., λm, 0, ..., 0]. The x̃′
i are column vectors containing zeroes from
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position m + 1 on: x̃′ = [x̃′
1, x̃

′
2, ..., x̃

′
m, 0, ..., 0]T. This subspace is thus a m-dimensional space where the

ECTD are approximately preserved. A bound on this approximation is provided in [53]: ||n(i, j) − ñ(i, j)|| ≤

VG

∑n−1
k=m+1 λk.

This decomposition is similar to Principal Components Analysis (PCA) in the sense that the projection of

the node vectors in this subspace has maximal variance (in terms of ECTD) among all the possible candidate

projections (see [54]; see also Appendix F). It can be shown that it has a number of interesting links with both

spectral clustering (see for instance Shi and Malik [58] or Ding [19]; details are provided in [54]) and spectral

embedding [4], [5]; in particular, the ECTD PCA provides a natural interpretation for both spectral clustering

and embedding.

Moreover, it is easy to show that performing a multidimensional scaling on the ECTD gives exactly the

same results as the principal components analysis. Indeed, classical multidimensional scaling [7] amounts to

performing the spectral decomposition of the matrix given by −(1/2) JNJ and to retaining the first m eigen-

values and eigenvectors, where J is the centering matrix (J = I − eeT/n) and N is the ECTD distance matrix

([N]ij = n(i, j)). It is not difficult to show that −(1/2) JNJ is nothing else than L+ (times VG), so that both

formulations are equivalent [7].

As for PCA, we expect that the first few principal components contain most of the information about the

basic structure of the graph; the next components related to small eigenvalues being related to noise. If this

assumption is true, we expect to obtain better performance by keeping only a few components of the PCA. Of

course, keeping only two or three components allows to visualize the graph.

Since both L and L+ have rank (n− 1) and have the same set of eigenvectors but inverse eigenvalues, we do

not need to explicitly compute the pseudoinverse of L in order to find the projection. We only need to compute

the m smallest (except λn = 0 = λ+
n ) eigenvectors (that is, with lowest eigenvalue) of L, which become the

largest of L+.

This last result shows that the L̃+ similarity matrix is a regularized Laplacian kernel (as defined in [41])

with a regularization factor given by r(λi) = λ−1
i for the smallest m (non-null) eigenvalues λi of the Laplacian

matrix and r(λi) = 0 for the remaining eigenvalues. It trivially penalizes the largest eigenvalues of the Laplacian

matrix, by “cutting” them off in the regularized Laplacian kernel.

Finally, notice that this graph PCA provides a nice interpretation to the “Fiedler vector” [23], [42], widely

used for graph partitioning [11], [50]: the Fiedler vector simply contains the projections of the node vectors on
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the first principal component of the graph, u1. Indeed, the Fiedler vector corresponds to the smallest nonzero

eigenvalue of the Laplacian matrix, which is also the first eigenvector u1 of L+.

6. Experimental methodology

Remember that each element of the people and the movie sets corresponds to a node of the graph. Each

node of the people set is connected by an edge to each movie watched by the corresponding person. Our

experiments do not take the movie_category set into account in order to perform fair comparisons between the

different scoring algorithms. Indeed, three standard scoring algorithms (i.e., maximum frequency, cosine and

nearest-neighbours algorithms) cannot naturally use the movie_category set to rank the movies.

A.. Data set

Our experiments were performed on a real movie database from the web-based recommender system MovieLens

(www.movielens.umn.edu). We used a sample of this database proposed in [55]: enough persons (i.e., 943

persons) were randomly selected to obtain 100,000 ratings (considering only persons that had rated 20 or more

movies on a total of 1682 movies).

The experiments were divided into two parts. A preliminary experiment was performed in order to tune the

parameters of several scoring algorithms (we do not show these results in this paper), while the main experiment

aims to further assess the scoring algorithms by cross-validation (see Section 7).

The preliminary experiment allowed to optimize the parameters of various scoring algorithms (see Section

D.), namely parameter α for the Katz method, the number of dimensions for PCA CT, the similarity measure

for the k nearest neighbours algorithm, and the number of neighbours k for each of the scoring algorithm when

using the indirect method (see Section C.). The database was divided into a training set and a test set,

by splitting the data as suggested in [55]. The test set contains exactly 10 ratings for each of the 943 persons

(about 10, 000 ratings), while the training set contains the remainder of the ratings (about 90, 000 ratings).

In the main experiment, the data set was divided into n subsets (n = 10), and the scoring algorithm was

applied n times (10-fold cross-validation). Each time, one of the n subsets was used as the test set while the

other n−1 subsets were merged into a training set. Then the average result across all n trials was computed.

Notice that no link between a specific person and a specific movie belongs both to the training set and to

the test set and that, for each person, the test set may contain any number of movies.
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The results shown here do not take into account the numerical value of the ratings provided by the persons

but only the fact that a person has or has not watched a movie (i.e., entries in the person-movie matrix are 0’s

and 1’s).

For each person, each scoring algorithm described in Section D. extracts from the training set a list of

preferences about movies, computed as similarities (scores) between people nodes and movie nodes. From that

information, we take out a ranked list of all the movies that the person has not watched, according to the

training set. In that list, the movies closest to the person, in terms of the similarity score, are considered the

most relevant.

B.. Performance evaluation

To evaluate the scoring algorithms described in Section D., we compared their performance using three measures

of performance: (1) the degree of agreement (which is a variant of Somers’D [59]), (2) a percentile score, and

(3) a recall score. For each person, the test set contains a set of movies that the person has actually watched

and that have been removed from the training set, i.e., these links have been deleted from the graph. Those

movies are part of the ranked list supplied by each scoring algorithm which contains all the movies that the

person has not watched, according to the training set.

1.. Degree of agreement

To compute the degree of agreement, we consider each pair of movies such that where one movie is in the

test set for that person and the other movie is not in the test set. A scoring algorithm ranks the pair in the

correct order if, in the ranked list, the movie from the test set (a movie that was actually watched) precedes

the movie not in the test set (a movie that was actually not watched). The degree of agreement is thus the

proportion (in %) of pairs ranked in the correct order with respect to the total number of pairs [59]. The idea

here is that the scoring algorithm should favour the movies that have indeed been watched (those belonging to

the test set) by ranking them first.

The results discussed in the next section compute a single degree of agreement for all the persons. A degree

of agreement of 50% (50% of all the pairs are in correct order and 50% are in bad order) is equivalent to a

random ranking. A degree of agreement of 100% means that the proposed ranking is identical to the ideal

ranking (the watched movies are always ranked first).
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2.. Percentile

The percentile score is simply the average (on all persons) of the position (in %) of the median movie from

the test set, with respect to the whole set of ranked movies. For instance, if the test set contains three

movies, ranked in 10th, 15th and 40th position, and there are 100 ranked movies in total, the percentile score

will be 15%. A random ranking would provide a percentile score around 50%. This measure should be as low

as possible for good performance (near 0% for a perfect model).

3.. Recall

The recall score is the average (on all persons) of the proportion (in %) of movies from the test set that appear

among the top n of the ranked list, for some given n. A recall score of 100% indicates that the scoring algorithm

always positioned the movies in the test set among the top n of the ranked list. This measure should be as

high as possible for good performance, with perfect recall obtained at 100%. We will report the recall for the

top 10 and the top 20 movies (for a total of 1682 movies).

C.. Direct versus indirect method

There are three ways to determine which movies to suggest to a particular person based on computing similarities

between pairs of nodes:

• Direct method: use each scoring algorithm to compute the similarities between a given person and all

the movies. The movie on the top of the list is suggested first to the given person.

• User-based indirect method: first, use each scoring algorithm as in the direct method to compute the

similarities between a given person p0 and all the other persons p; then, for the given person, compute

from its k nearest neighbours (in the present case, nearest neighbours are persons) the predicted value of

each movie. The predicted value of person p0 for movie m0 is computed as a sum, weighted by sim(p0, p),

of the values (the link weight, 0 or 1) of movie m0 for the k closest persons p of person p0:

pred(p0,m0) =

∑k

p=1
sim(p0, p) apm0

∑k

p=1
sim(p0, p)

(6.1)

where apm0
is 1 if person p watched the movie m0 and 0 otherwise. The movies that are proposed first

to person p0 are those that have the highest predicted values. For each scoring algorithm, we varied
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systematically the number of neighbours k (= 1, 2, ..., 10, 20, ..., 100) and we keep the value of k giving

the best result. Notice that the value of k depends on the measure used to evaluate the performance (see

Section B.).

• Movie-based indirect method: this corresponds to the methodology proposed by Karypis in its SUG-

GEST approach [36]. First, use each scoring algorithm as in the direct method to compute the similarities

between a given movie and all the other movies; then, for a given person p0, compute from the k nearest

neighbours of the movies he watched (in the present case, nearest neighbours are movies) the predicted

value of each movie. The predicted value of person p0 for movie m0 is computed as a sum, weighted by

sim(m0,m), of the values (the link weight, 0 or 1) of movie m0 for the k closest movies m of movie m0:

pred(p0,m0) =

∑k

m=1
sim(m0,m) ap0m

∑k

m=1
sim(m0,m)

(6.2)

where ap0m is defined as before. The movies that are proposed first to person p0 are those that have the

highest predicted values. As for the user-based indirect method, we optimized the number of neighbours.

Remember that this way to suggest movies is equivalent to the SUGGEST method proposed in [36].

Notice that, if the algorithm provides a dissimilarity dis(i, j), we use (max−dis(i, j))/(max−min) to convert

it into a similarity.

D.. Scoring algorithms

Twelve scoring, or ranking, algorithms are compared. The person-independent maximum-frequency algorithm

(MaxF) will serve as a reference to appreciate the quality of the other scoring algorithms. Six scoring algorithms

are based on our random-walk model: the average commute time (normal and PCA-based), the average first-

passage time (one-way and return, see later), and the pseudoinverse of the Laplacian matrix (normal and

cos+). The other algorithms are standard techniques: k-nearest neighbours techniques, cosine coefficient, Katz’

method, and the shortest-path algorithm. Finally, we also include the random-forest based similarity measure

proposed in [13]. We now describe these algorithms in more details.

Maximum-frequency algorithm (MaxF). This scoring algorithm ranks the movies by the number of

persons who watched them. Movies are suggested to each person in order of decreasing popularity. The ranking

is thus the same for all the persons. MaxF is equivalent to basing the decision only on the a priori probabilities

in supervised classification. Notice that the MaxF algorithm can only be used in the direct method.
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Average commute time (CT). We use the average commute time n(i, j) to rank the elements of the

considered set, where i and j are elements of the database. For instance, if we want to suggest movies to people

using the direct method, we compute the average commute time between people elements and movie elements.

The lower the value is, the more similar the two elements are. In the sequel, this quantity will simply be referred

to as “commute time”.

Principal components analysis based on ECTD (PCA CT). In Section 5, we showed that, based on

the eigenvector decomposition of L+, the nodes can be mapped into a new Euclidean space (with more than

2600 dimensions in this case) that preserves the ECTD, or a m-dimensional subspace keeping as much variance

as possible, in terms of ECTD.

Thus, after performing a PCA and keeping a given number of principal components, we recompute the

distances in this reduced subspace. These approximate ECTD between people and movies are then used to rank

the movies for each person. We varied the dimension m of the subspace from 10 to 2620 by step of 10. The

best results were obtained for 60 principal components (m = 60).

Average first-passage time (One-way). In a similar way, we use the average first-passage time m(i|j),

to compute a similarity score between element i and element j of the database. This quantity will simply be

referred to as “one-way time”.

Average first-passage time (Return). As a similarity between element i and element j of the database,

this scoring algorithm uses m(j|i) (the transpose of m(i|j)), that is, the average time used to reach j when

starting from i. This quantity will simply be referred to as “return time”.

Pseudoinverse of the Laplacian matrix (L+). L+ provides a similarity measure (sim(i, j) = l+ij) since

it is the matrix containing the inner products of the node vectors in the Euclidean space where the nodes are

exactly separated by the ECTD. Once we have computed the similarity matrix, movies are ranked according to

their similarity with the person. In addition, we used the same procedure as for the “PCA CT”: rely on the

principal components analysis subspace. Since we did not observe any improvement in comparison with L+ we

do not show the results here.

Cosine based on L+(cos+). This scoring algorithm computes similarities from Equation 5.1 to rank the

movies.

k-nearest neighbours (kNN). This scoring algorithm can be represented by the following rule: to classify

a new item, choose the most frequent class of the k-nearest example in the training set as measured by a
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similarity metric. Using a nearest-neighbour technique requires a measure of “closeness” or “similarity”. The

choice of a similarity measure (see [35]) includes to consider the nature of the variables (discrete, continuous,

binary), the scales of measurement (nominal, ordinal, interval, ratio), and specific knowledge about the subject

matter.

We now detail the procedure used for performing a k-nearest neighbours in the user-based indirect method

(see Section C.). The procedure used for performing a k-nearest neighbours in the movie-based indirect method

is similar and does not require further explanations. In the case of our movie database, pairs of items are

compared on the basis of the presence or absence of certain features. The presence or absence of a feature is

described mathematically by using a binary variable, which takes the value 1 if the feature is present (i.e., if

person i has watched movie j) and the value 0 if the feature is absent (i.e., if person i has not watched movie

j). More precisely, each person i is characterized by a binary vector vi encoding the movies that that person

watched. The dimension of this vector is equal to the number of movies. The k-nearest neighbours of person

i are computed by taking the k nearest vj according to a given similarity measure between binary vectors,

sim(i, j) = s(vi,vj). We performed systematic comparisons between eight different such measures s (listed in

[35], p.674) and for different values of k (= 1, 2, ..., 10, 20, ..., 100). The best scores (for all the performance

measures) were obtained with the “a ratio of 1-1 matches to mismatches with 0-0 matches excluded”. Notice

that the k-nearest neighbours is an indirect method that cannot be used in the direct method.

Cosine coefficient (Cosine). The cosine coefficient between persons i and j, which measures the

strength and the direction of a linear relationship between two variables, is defined by sim(i, j) = cosine(i, j) =

(vi
Tvj)/(‖vi‖ ‖vj‖). We again systematically varied the number k of neighbours (= 1, 2, ..., 10, 20, ..., 100). The

cosine coefficient algorithm is also an indirect method that cannot be used in the direct method.

Katz. This similarity index has been proposed in the social sciences field and has been recently rediscovered

in the context of collaborative recommendation [32] and kernel methods where it is known as the von Neumann

kernel [56]. Katz proposed in [37] a method of computing similarities, taking into account not only the number

of direct links between items but, also, the number of indirect links (going through intermediaries) between

items. The similarity matrix is

T = αA + α2A2 + ... + αkAk + ... = (I − αA)−1 − I (6.3)

where A is the adjacency matrix and α is a constant which has the force of a probability of effectiveness of a

single link (sim(i, j) = tij = [T]ij). A k-step chain or path, then, has a probability αk of being effective. In this
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sense, α actually measures the attenuation in a link, α = 0 corresponding to complete attenuation and α = 1

to absence of any attenuation. For the series to be convergent, α must be less than the inverse of the spectral

radius of A.

For the experiment, we systematically varied the value of α (α = (0.05, 0.10, ..., 0.95) ∗ (spectral radius)−1)

and we present only the results obtained by the best model (namely, α = 0.05 ∗ (spectral radius)−1).

Random-forest based algorithm (RFA). The similarity matrix introduced by Chebatorev & Shamis in

[13], [15] is

T = (I + L)−1 (6.4)

where L is the Laplacian matrix. This similarity measure has an interesting interpretation in terms of the

matrix-forest theorem [13], [15]. Suppose that F i(G) = F i is the set of all spanning forests rooted on node i

of graph G, and F ij(G) = F ij is the set of those spanning rooted forests for which nodes i and j belong to

the same tree rooted at i. A spanning rooted forest is an acyclic subgraph of G that has the same nodes set

as G and one marked node (a root) in each component. It is shown in [13], [15] that the matrix (I + L)−1

exists and that [(I + L)−1]ij = ǫ(F ij)/ǫ(F i) where ǫ(F ij) and ǫ(F i) are the total weights of forests that belong

to F ij and F i respectively. The elements of this matrix are therefore called “relative forest accessibilities”

between nodes. It can be shown that this matrix is a similarity measure, having the natural properties of a

similarity (triangular property for similarities, among others [14]). It has recently been rediscovered and used in

the context of documents ranking [34]. It is clear that this similarity measure is closely related to L+. Indeed,

(I+L)−1 and L+ have the same set of eigenvectors, and their eigenvalues are related by λRFA
i = λL+

i /(1+λL+

i ).

This operation is similar to a regularization of the Laplacian matrix.

Shortest-path algorithm (Dijkstra). This algorithm solves a shortest path problem for a directed and

connected graph with nonnegative edge weights. As a distance between two elements of the database, we

compute the shortest path between these two elements. We do not show in the sequel the results of the shortest

path algorithm. Indeed, it seems that, for example using the direct method, nearly each movie can be reached

from any person with a shortest path distance of 3. The degree of agreement is therefore close to 50% because

of the large number of ties, and the detailed results are of little interest.
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7. Cross-validation results

A.. Ranking procedure

Thus, for each step of the cross-validation and for each person, we first select the movies that have not been

watched. Then, we rank them according to all the described scoring algorithms and the ways to use them

(direct, user-based indirect or movie-based indirect method). Finally, we compare the proposed ranking with

the test set (if the ranking procedure performs well, we expect watched movies belonging to the test set to

be on top of the list) by using the three measures of performance.

B.. Results

All the results are summarized in Table 8.1, which shows the three performance measures: the degree of

agreement (Agreement), the percentile score (Percentile), and the recall, considering either the top 10 of the

ranked list (Recall 10) or the top 20 of the ranked list (Recall 20). The standard deviation of the results (STD)

across the 10 cross-validation sets is also reported, as well as the optimal number of neighbours (Neighbours),

when applicable.

C.. Discussion of the results

Table 8.1 shows that, when using the direct method to rank the movies for each user, the best results are obtained

by L+, cos+, and RFA. Notice that we use a paired t-test to determine if there is a significant difference (with

a p-value smaller than 10−2) between the results of the various scoring algorithms. The best results, for each

measure of performance and for each method (i.e., direct, user-based indirect, or movie-based indirect), are

displayed in bold in each row of the table.

In the user-based indirect method, the bests results are obtained by L+ and RFA. In particular, the best

degree of agreement and percentile are provided by L+ whereas the best recall scores (either the recall 10, or

the recall 20) are obtained by both scoring algorithms with no significant difference. In the movie-based indirect

method, kNN and RFA provide the best results.

When looking at the global performance (regardless of the direct or indirect way the similarities are com-

puted) of the various scoring algorithms, Table 8.1 shows that L+, kNN, Cosine, cos+, and RFA are the best

scoring algorithms in terms of both performance and stability of the results. The best results overall are

21



obtained by the kNN, used in the movie-based indirect method (as proposed in the SUGGEST method, [36]),

when considering the degree of agreement or the percentile, by L+ and RFA, used in the user-based indirect

method, when considering the recall scores (considering either the top 10 or the top 20). We see that the

user-based indirect method provides better recommendations than the movie-based indirect method for L+ and

RFA, and for both kNN and Cosine but only for recall scores.

All the dissimilarity measures (i.e., CT, One-way and Return) are clearly less efficient (except the Return

in the user-based indirect method) and seem to present a lack of stability (the results highly depends on the

method used). We observe that CT and One-way give better results in the direct method than in the indirect

method and that their direct recommendations are very similar to simply suggest the most popular movies

(MaxF), most likely because they are both dominated by the stationary distribution, as already stated in [8].

Indeed, Brand [8] showed that the commute time is highly sensitive to the degree of the node (which is equal

to the stationary distribution up to a scaling factor when considering a simple random walk on a graph). His

work therefore confirms our results.

The fact that the inner products (L+, cos+, and RFA) provide better results than the corresponding distance

measures (CT, PCA CT, One-way, and Return) shows that, in these experiments, the angle between the node

vectors is a much more predictive measure than the distance between the nodes. The situation is therefore quite

similar to what we observe in information retrieval. This result was also pointed out by Brand [8].

In conclusion, three similarity measures provide very good and stable performance: L+, RFA and the simple

nearest neighbours technique (kNN). We also clearly observe that using the most efficient scoring algorithms

(L+, RFA) in the indirect method improves the results, in comparison with the direct method. It is not clear,

however, which of the two different indirect methods perform best. Indeed, kNN provides slightly better results

in the movie-based indirect method, while we observe the opposite for L+ and RFA.

Correlations between the ranking algorithms. The Kendall rank-order correlation coefficient provides

a measure of the degree of association or correlation between two sets of rankings (see [59] for details; its range

is [0, 1] with 1 corresponding to a perfect correlation and 0.5 corresponding to no association at all). Table 8.2

shows the average correlations between the rankings provided by all the ranking algorithms.

Firstly, we observe that the values of the correlations are quite low (rarely more than 0.75). This can be

partially explained by the features of the database. There are actually many movies that have been watched

by few people (2 or less). These movies have a small influence on the measure of performance (i.e., it is rare to
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find one of them in the movies belonging to the test set for a specific user) whereas they have some influence

on the Kendall scores, because of their quantity (remember that a Kendall score is computed using the whole

rankings provided by the considered scoring algorithms).

We observe that, as discovered in the previous section, MaxF is positively correlated with CT, PCA CT,

and One-way used in the direct method. On the other hand, L+, cos+, Katz, and RFA are negatively correlated

with MaxF. Thus, these methods do not always suggest best-sellers.

D.. Computing times

In this section, we perform a comparison of the computing time (on a Pentium 4, 2.80 GHz) for all the imple-

mented scoring algorithms and the ways defined to use them (direct, user-based indirect or movie-based indirect

method). Notice that we do not use (for none scoring algorithm) the sparseness of the adjacency matrix A in

order to reduce the computing times.

Table 7.1 shows the time, in seconds (using the Matlab cputime function), needed by each scoring algorithm

to compute, from the adjacency matrix A, a n × n matrix whose element i,j is a similarity measure between

node i and node j. Notice that this matrix could be computed offline so that it could take very little time to

provide an online recommendation.

All these scoring algorithms were implemented in Matlab. We used, in order to compute the similarity

matrices, Equation 4.2 for the average commute time, the method suggested by Kemeny & Snell ([38], p.218) for

the average first-passage times (one-way and return), Equation 4.1 for L+ and the derived cos+, and Equations

6.3 and 6.4 (both by inverting the matrix in Matlab) for respectively Katz and RFA similarity matrices. Notice

also that, for the principal components analysis, we first had to compute theL+ matrix, then take out its

eigenvectors and eigenvalues (using the Matlab svd function) and finally compute the derived distances.

MaxF CT PCA CT One-way Return L+ cos+ kNN Cosine Katz RFA

0 327 1308 630 630 25 228 114 202 25 25

Table 7.1: Time (in sec) needed to compute predictions for all the non-watched movies and all the users.

We observe that the slowest methods are the distance-based scoring algorithms (i.e., CT, PCA CT, One-way,

and Return) and the cos+ method. The fastest scoring algorithms (if we do not consider the MaxF algorithm

which provides nearly immediate results) are L+, Katz, and RFA.
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8. Conclusions and further work

We introduced a general procedure for computing similarities between elements of a database. It is based

on a Markov-chain model of random walk through the database. More precisely, we compute quantities (the

average first-passage time, the average commute time, and the pseudoinverse of the Laplacian matrix) that

provide similarity measures between any pair of elements. These similarity measures can be used in order to

compare items belonging to database tables that are not necessarily directly connected. It relies on the degree

of connectivity between these items.

Notice that, while the theoretical framework has been developed in the case of a weighted, undirected, graph,

the notions of average first-passage time and average commute time also apply to directed (although strongly

connected) graphs. Thus, these similarity measures can be used in the case of directed graphs as well. However,

the nice interpretation in terms of the pseudoinverse of the Laplacian matrix does not apply in this case.

We showed through experiments performed on the MovieLens database that inner-product based quantities

perform well in comparison with standard scoring algorithms. In fact, as already stressed by [39], the introduced

quantities provide a very general mechanism for computing similarities between nodes of a graph, by exploiting

its structure.

More precisely, the experiments showed that three similarity measures provide good and stable performance:

the pseudoinverse of the Laplacian matrix, the random-forest based similarity measure, and the simple nearest

neighbour technique (the later used in an item-based indirect method, such as proposed in the SUGGEST

methodology [36]). However, for the nearest neighbour, two parameters need to be adjusted: the number of

neighbours and the similarity between binary vectors. Moreover, the pseudoinverse of the Laplacian matrix, the

random-forest based similarity measure are much more generic than the nearest neighbour since they provide

similarity measures between any two elements of a database.

The main drawback of this method is that it does not scale well for large databases. Indeed, the Markov

model has as many states as elements in the database. For large databases, we have to rely on iterative formula

or approximate algorithms and on the sparseness of the matrix.

We are now working on other generalizations of standard multivariate statistical methods to the mining of

databases, such as discriminant analysis. We are also comparing the different kernels on a graph that have been

proposed in the literature on the same collaborative recommendation task.
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Direct method (in %)

MaxF CT PCA CT One-way Return L+ cos+ kNN Cosine Katz RFA

Agreement 85.98 85.98 86.90 85.96 80.11 91.11 90.52 / / 88.38 91.12

STD 0 .32 0 .33 0 .32 0 .33 0 .32 0 .17 0 .24 / / 0 .30 0 .17

Percentile 10.73 10.73 10.04 10.74 17.88 6.52 7.37 / / 8.93 6.53

STD 0 .45 0 .45 0 .54 0 .45 0 .44 0 .30 0 .39 / / 0 .41 0 .30

Recall 10 11.02 11.11 12.97 11.09 0.34 16.31 17.24 / / 14.97 16.65

STD 0 .23 0 .23 0 .36 0 .24 0 .05 0 .33 0 .45 / / 0 .29 0 .35

Recall 20 17.43 17.57 21.77 17.54 1.07 26.39 26.16 / / 23.11 26.72

STD 0 .43 0 .43 0 .67 0 .44 0 .16 0 .48 0 .50 / / 0 .41 0 .53

User-based indirect method (in %)

Agreement / 81.87 91.66 81.83 92.35 92.90 90.77 92.64 92.66 90.07 92.85

STD / 0 .31 0 .25 0 .31 0 .27 0 .22 0 .18 0 .16 0 .18 0 .30 0 .22

Neighbours / 100 100 100 100 100 40 100 70 30 100

Percentile / 13.07 6.47 13.09 5.65 5.19 7.20 5.53 5.68 7.61 5.41

STD / 0 .53 0 .39 0 .52 0 .34 0 .34 0 .30 0 .48 0 .41 0 .32 0 .36

Neighbours / 100 60 100 100 60 30 50 30 30 60

Recall 10 / 10.93 18.57 10.91 20.56 21.43 17.18 20.76 20.68 17.07 21.32

STD / 0 .35 0 .39 0 .35 0 .23 0 .41 0 .31 0 .33 0 .22 0 .48 0 .38

Neighbours / 100 60 100 80 40 50 50 60 50 50

Recall 20 / 17.35 28.67 17.35 31.14 32.20 26.37 31.13 31.29 25.41 32.28

STD / 0 .36 0 .37 0 .38 0 .30 0 .40 0 .46 0 .39 0 .42 0 .32 0 .49

Neighbours / 100 60 100 60 50 40 50 40 30 40

Movie-based indirect method (in %)

Agreement / 61.28 90.74 85.76 83.25 92.13 89.52 93.27 92.78 86.80 92.21

STD / 1 .06 0 .26 0 .51 0 .24 0 .22 0 .16 0 .22 0 .17 0 .26 0 .17

Neighbours / 50 80 50 100 70 90 100 100 100 100

Percentile / 35.02 7.13 10.91 14.64 5.76 8.72 4.93 5.26 10.41 5.42

STD / 2 .78 0 .40 0 .42 0 .74 0 .24 0 .26 0 .32 0 .26 0 .40 0 .24

Neighbours / 30 40 50 90 40 90 40 40 100 60

Recall 10 / 4.00 12.01 11.13 1.39 16.41 6.65 18.92 17.29 5.82 19.84

STD / 0 .63 0 .34 0 .56 0 .11 0 .65 0 .23 0 .27 0 .26 0 .32 0 .39

Neighbours / 40 20 100 20 40 30 20 20 100 60

Recall 20 / 6.93 20.80 17.45 3.88 27.98 12.59 30.81 28.72 10.77 30.91

STD / 0 .80 0 .34 0 .62 0 .22 0 .50 0 .30 0 .38 0 .44 0 .48 0 .39

Neighbours / 30 20 50 20 40 30 20 30 90 40

Table 8.1: Average results obtained by performing a 10-fold cross-validation by the various scoring algorithms,

and the three methods defined to use them (direct, user-based indirect, and movie-based indirect).
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Direct method

CT PCA CT One-way Return L+ cos+ kNN Cosine Katz RFA

MaxF 0.7468 0.6303 0.7470 0.5248 0.2880 0.2861 / / 0.2762 0.2870

CT 0.6298 0.9526 0.5251 0.2881 0.2861 / / 0.2760 0.2871

PCA CT 0.6297 0.5369 0.3915 0.3873 / / 0.3796 0.3906

One-way 0.5251 0.2882 0.2861 / / 0.2761 0.2871

Return 0.4896 0.4827 / / 0.4796 0.4890

L+ 0.7222 / / 0.7117 0.7309

cos+ / / 0.7137 0.7172

kNN / / /

Cosine / /

Katz 0.7127

User-based indirect method

MaxF 0.2791 0.3263 0.2796 0.3865 0.3579 0.3263 0.3524 0.3502 0.2978 0.3557

CT 0.6695 0.7338 0.6075 0.6360 0.6681 0.6415 0.6442 0.6964 0.6378

PCA CT 0.6696 0.5903 0.6132 0.6494 0.6175 0.6193 0.6565 0.6272

One-way 0.6071 0.6359 0.6681 0.6412 0.6437 0.6961 0.6377

Return 0.5930 0.5988 0.5935 0.5941 0.6022 0.5930

L+ 0.6223 0.6141 0.6148 0.6279 0.6327

cos+ 0.6268 0.6302 0.6561 0.6239

kNN 0.6198 0.6326 0.6151

Cosine 0.6349 0.6159

Katz 0.6301

Movie-based indirect method

MaxF 0.3520 0.4108 0.2749 0.4979 0.4109 0.3435 0.3837 0.3772 0.4570 0.4207

CT 0.5585 0.6547 0.4990 0.5565 0.4238 0.5715 0.5792 0.5363 0.4600

PCA CT 0.5902 0.5065 0.5392 0.5255 0.5492 0.5546 0.5210 0.5143

One-way 0.5023 0.5872 0.6544 0.6124 0.6207 0.5461 0.5748

Return 0.5049 0.5165 0.5029 0.5052 0.5016 0.5048

L+ 0.5699 0.5653 0.5652 0.5269 0.5514

cos+ 0.5848 0.5972 0.5405 0.5621

kNN 0.5897 0.5284 0.5689

Cosine 0.5310 0.5666

Katz 0.5273

Table 8.2: Correlation matrix containing the Kendall score for each pair of scoring algorithms, for the three

methods defined to use them (direct, user-based indirect, and movie-based indirect).
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Appendix: Proof of the main results

A. Appendix: Some useful properties of the pseudoinverse of the Laplacian matrix

In this appendix, we prove some useful properties of L and L+.

A.. L+ is symmetric

Since L is symmetric and, for any matrix M, (MT)+ = (M+)T (see [3]), we easily obtain L+ = (LT)+ = (L+)T.

Therefore, L+ is symmetric.

B.. L is an EP-matrix

An EP matrix M is a matrix which commutes with its pseudoinverse, i.e. M+M = MM+. Since L is real

symmetric, it is automatically an EP-matrix (see [3], p.253). In particular, the following properties are worth

mentioning:

1. If (λi 6= 0,ui) are (eigenvalues, eigenvectors) of L, then (λ−1
i 6= 0,ui) are corresponding (eigenvalues,

eigenvectors) of L+. On the other hand, if (λj = 0,uj) are (eigenvalues, eigenvectors) of L, then they are

also (eigenvalues, eigenvectors) of L+.

2. In particular, L+ has rank n−1 and has the same null space as L: L+e = 0 (e is the eigenvector associated

to λn = 0).

3. The previous property implies that L+ is doubly centered (the sum of its columns and the sum of its rows

are both zero), just like L (see also [51], chapter 10, for a discussion of this topic).

Other properties of EP-matrices are described in [3] or [10].

C.. L+ is positive semidefinite

Indeed, from the previous property, the eigenvalues of L and L+ have the same sign and L is positive semidefinite;

therefore L+ is also positive semidefinite.
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B. Appendix: Computation of the average first-passage time/cost in function of L+

Let us start from Equations (3.2)

o(k|i) =
n∑

j=1

pij [(c(j|i) + o(k|j))] , for i 6= k =
n∑

j=1

pijc(j|i) +
n∑

j=1

pijo(k|j), for i 6= k (B.1)

= ri +

n∑

j=1,j 6=k

pijo(k|j), for i 6= k (B.2)

where ri =
∑n

j=1 pijc(j|i) for i = 1 . . . n , and o(k|k) = 0 for all k. The corresponding n×1 column vector made

of ri is r.

Let us renumber the states so that state k becomes state n, the last state of the Markov model, and rewrite

Equation B.2 in matrix form. Notice, however, that the equation will refer to vectors and matrices where the

nth row and the nth column have been canceled; we denote by ô, r̂ and P̂ the vectors/matrices obtained from

o, r and P by suppressing their nth row and column: ô = r̂ + P̂ô = r̂ + D̂−1Âô, where the column vector

ô has elements [ô]i = o(n|i) and P̂ = D̂−1Â. As long as there is no isolated node (with no edge associated

to it), D̂ can be inverted. If we pre-multiply this last equation by D̂, we obtain D̂ô = D̂r̂ + Âô; therefore

(D̂ − Â)ô = D̂r̂. By defining b = Dr, we finally obtain L̂ô = b̂ and, since L has rank n − 1, L̂ is of full rank.

We therefore have L̂+ = L̂−1 , so that

ô = L̂−1b̂ = L̂+b̂ (B.3)

or o(n|i) =
∑n−1

j=1 l̂−1
ij bj , for i 6= n.

We could solve these equations for all the nodes being node n in turn, but this would be quite inefficient.

Instead, we will express the elements of L̂+ in terms of the elements of L+ in order to obtain a more general

equation (valid for all the nodes). This can easily be done thanks to the general formula computing the

pseudoinverse of a general m × n matrix Mn = [Mn−1 a] obtained by appending a m × 1 column vector a to

the m × (n − 1) matrix Mn−1 (see, e.g., [3], [6]).

Before going into the details, here is a sketch of the main idea. From the (n − 1) × (n − 1) matrix L̂−1,

we construct L+ by first adding a column vector to L̂ and then a row vector, in order to obtain L and its

corresponding pseudoinverse L+. Consequently we first obtain from L̂−1 a new (n− 1)×n matrix, Mn = [L̂ a],

and compute its pseudoinverse M+
n Then we add a row vector a′T to Mn in order to finally obtain L =




Mn

a′T




and its pseudoinverse.

Here is the general formula (see [3] or [6]) allowing to compute the pseudoinverse of a matrix Mn = [ Mn−1 a]
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in terms of the pseudoinverse of Mn−1 :

M+
n =

[
Mn−1 a

]+

=




M+
n−1 − dbT

bT


 (B.4)

where we define d = M+
n−1a, c = a − Mn−1d, and

bT=





c+ if c 6= 0

(1 + dTd)−1dTM+
n−1 if c = 0

(B.5)

with a, b, c and d being column vectors.

In our special case, Mn−1 = L̂ is (n − 1) × (n − 1), and since we must obtain Le = 0 (L is doubly

centered), the appended column a is minus the sum of the columns of L̂; that is, a = −L̂ê. We thus have

d = L̂+a = −L̂−1L̂ê = −ê.

We will show that we do not need to explicitly compute b; indeed, we obtain from Equation (B.4)

M+
n =




L̂+ + êbT

bT


 (B.6)

By looking carefully at (B.6), we observe that L̂+ can be obtained from M+
n by subtracting the nth row of

M+
n (that is, bT) from all the rows of M+

n . Indeed, êbT is a matrix repeating bT on all its rows:

êbT =




1

1

...

1




bT =




bT

bT

...

bT




In other words,

M+
n =




L̂+

0T


 +




bT

bT

...

bT




This means that [L̂+]ij = l̂+ij = [M+
n ]ij − [M+

n ]nj .

Exactly the same reasoning holds when we append a 1 × n row vector a′T to Mn in order to obtain

L =




Mn

a′T


. It suffices to transpose Mn and add a column which verifies a′ = −MT

n ê. Hence, d =
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(MT
n )+a = −(MT

n )+MT
n ê = −ê since the n × (n − 1) matrix MT

n has rank n − 1 and therefore (MT
n )+MT

n = I

(this can be shown easily by computing the SVD form of the pseudoinverse matrix (see Theorem 6.2.16 of [26])).

By using the same trick as before, we obtain [M+
n ]ij = [L+]ij − [L+]in.

This allows us to express the elements of L̂+ in terms of those of L+:

l̂+ij = [M+
n ]ij − [M+

n ]nj = [L+]ij − [L+]in − [L+]nj + [L+]nn = l+ij − l+in − l+nj + l+nn (B.7)

By substituting (B.7) in (B.3), we obtain

o(n|i) =

n−1∑

j=1

l̂−1
ij bj =

n−1∑

j=1

(
l+ij − l+in − l+nj + l+nn

)
bj =

n∑

j=1

(
l+ij − l+in − l+nj + l+nn

)
bj

since L+ is symmetric.

Now, remember that we reordered the numbering of the states in order to put state k at the nth row/column.

For any arbitrary state, we thus have

o(k|i) =
n∑

j=1

(
l+ij − l+ik − l+kj + l+kk

)
bj (B.8)

where bi =
∑n

j=1 aijc(j|i). Notice that in the case of the average first-passage time, c(j|i) = 1, and bi =

∑n
j=1 aijc(j|i) = ai. = dii, the sum of the weights reaching node i. Therefore,

m(k|i) =
n∑

j=1

(
l+ij − l+ik − l+kj + l+kk

)
djj (B.9)

C. Appendix: Computation of the average commute time in function of L+

Since we already have the formula for the average first-passage time (Equation B.9), computing the average

commute time is trivial:

n(i, j) = m(j|i) + m(i|j) =

n∑

k=1

(
l+ik − l+ij − l+jk + l+jj

)
dkk +

n∑

k=1

(
l+jk − l+ji − l+ik + l+ii

)
dkk

=

n∑

k=1

(
l+ii + l+jj − 2l+ij

)
dkk =

(
l+ii + l+jj − 2l+ij

) n∑

k=1

dkk = VG

(
l+ii + l+jj − 2l+ij

)
(C.1)

Notice that Equation (C.1) can be put in matrix form:

n(i, j) = VG (ei − ej)
TL+(ei − ej) (C.2)

and we easily observe that [n(i, j)]1/2 is a distance on the node space since L+ is positive semidefinite.

D. Appendix: Mapping to a space preserving the ECTD

Let us show that the node vectors ei can be mapped into a new Euclidean space that preserves the commute time

distances. Indeed, every positive semidefinite matrix can be transformed to a diagonal matrix, Λ = UTL+U,
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where U is an orthonormal matrix made of the eigenvectors of L+, U = [u1,u2, . . . ,un−1,0]: the column vectors

uk are the orthonormal eigenvectors of L+, uT
i uj = δij or UTU = I (see for instance [45]). Hence we have

n(i, j) = VG (ei − ej)
TL+(ei − ej) = VG (xi − xj)

TUTL+U(xi − xj) = VG (xi − xj)
TΛ(xi − xj)

= VG (xi − xj)
TΛ1/2 Λ1/2(xi − xj) = VG (xi − xj)

T(Λ1/2)TΛ1/2(xi − xj) = VG (x′
i − x′

j)
T(x′

i − x′
j)

where we made the transformations 



ei = Uxi or eT
i = xT

i UT

x′
i = Λ

1/2
i x

(D.1)

So, in this n-dimensional Euclidean space, the transformed node vectors, x′
i, are exactly separated by

Euclidean commute time distances.

Now, we easily observe from (D.1) that if uk
i is coordinate i of eigenvector uk ([uk]i = uk

i ) corresponding

to eigenvalue λk of L+, and if xi
k is coordinate k of vector xi ([xi]k = xi

k), we obtain xi
k = uk

i . We thus have

x′i
k =

√
λkuk

i where x′i
k is coordinate k of vector x′

i ([x′
i]k = x′i

k ).

In other words, the first coordinate of the n node vectors, x′
i, i = 1 . . . n, corresponding to the first axis

(k = 1 ) of the transformed space, are x′1
1 , x′2

1 , . . . , x′n
1 , or

√
λ1u

1
1,
√

λ1u
1
2, . . . ,

√
λ1u

1
n. Thus, the first coordinate of

these n node vectors is simply the projection of the original node vectors, e1, e2, . . . , en, on the first eigenvector,

u1, weighted by
√

λ1. More generally, coordinate k of the node vectors in the transformed space is simply the

projection of the original node vectors, e1, e2, . . . , en, on uk, weighted by
√

λk. The idea developed in Section

5 is thus to discard the axes (eigenvectors) corresponding to the smallest eigenvalues of L+.

E. Appendix: L+ is a kernel

In this section, we show that L+ is a valid kernel a Gram matrix, see for instance [56]). Indeed, L+ is the matrix

containing the inner products of the transformed vectors x′
i:

x′T
i x′

j = (Λ
1/2
i xi)

TΛ
1/2
j xj = xT

i Λxj = eT
i UΛUTej = eT

i L+ej = l+ij

Let us also show that the vectors x′
i are centered (their center of gravity is 0):

n∑

i=1

x′
i = Λ1/2

n∑

i=1

xi = Λ1/2UT

n∑

i=1

ei = Λ1/2UTe (E.1)

The columns of the orthonormal matrix U are made of the eigenvectors of L+ in decreasing order of correspond-

ing eigenvalue. Since the smallest eigenvalue is λn = 0, and the corresponding (unnormalized) eigenvector is e,

all the columns of U are orthogonal to e, except the nth one. Therefore, all the elements of the column vector
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UTe are zero, except the last (nth) one. But since we further multiply UTe by the diagonal matrix Λ1/2 in

(E.1), and the last diagonal element of Λ is 0 (remember that λn = 0), the last (n th) element of
∑n

i=1 x′
i is

also equal to zero. We therefore obtain
∑n

i=1 x′
i = 0.

Another way of proving the same fact would be to notice that, from Λ = UTL+U, we have Λ1/2UT =

Λ−1/2UTL+. Therefore,
∑n

i=1 x′
i =(Λ1/2UT)e=(Λ

−1/2
UTL+)e=0 since L+e = 0.

Thus, if X′ denotes the data matrix containing the coordinates of the nodes in the transformed space on

each row:

X′ = [x′
1,x

′
2, ...,x

′
n]

T
, (E.2)

we have L+ = X′(X′)T with elements l+ij = x′T
i x′

j .

F. Appendix: Links with principal components analysis

We will now show that this decomposition is similar to principal components analysis in the sense that the

projection has maximal variance among all the possible candidate projections. If X′ denotes the data matrix

containing the coordinates of the nodes in the transformed space, x′T
i , on each row (see (E.2), in Appendix E),

we easily deduce from (D.1) that X′ = UΛ1/2.

It is well-known that the principal components analysis of a data matrix X′ yields, as kth principal compo-

nent, the eigenvector, vk, of (X′)TX′ (which is the variance-covariance matrix, since the x′
i are centered). But

(X′)TX′ = (UΛ1/2)TUΛ1/2 = Λ. Since Λ is a diagonal matrix, we deduce that the x′
i are already expressed

in the principal components coordinate system – the eigenvectors of (X′)TX′ are the basis vectors of the trans-

formed space. Thus, if x′i
k is coordinate k of vector x′

i , it corresponds to the projection of node i on the kth

principal component. The variance, in terms of ECTD, of the nodes cloud on each principal component k is

therefore λk. An alternative proof of the same result is presented in [53].

We thus conclude that this projection can be viewed as a principal components analysis in the Euclidean

space where the nodes are exactly separated by ECTD. This decomposition therefore defines the projection of

the node vectors that has maximal variance (in terms of the ECTD) among all the possible candidate projections.
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