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A B S T R A C T

The current focus on real world evidence (RWE) is occurring at a time when at least two major trends are converging. First, is
the progress made in observational research design and methods over the past decade. Second, the development of
numerous large observational healthcare databases around the world is creating repositories of improved data assets to
support observational research.

Objective: This paper examines the implications of the improvements in observational methods and research design, as well
as the growing availability of real world data for the quality of RWE. These developments have been very positive. On the
other hand, unstructured data, such as medical notes, and the sparcity of data created by merging multiple data assets are not
easily handled by traditional health services research statistical methods. In response, machine learning methods are gaining
increased traction as potential tools for analyzing massive, complex datasets.

Conclusions: Machine learning methods have traditionally been used for classification and prediction, rather than causal
inference. The prediction capabilities of machine learning are valuable by themselves. However, using machine learning for
causal inference is still evolving. Machine learning can be used for hypothesis generation, followed by the application of
traditional causal methods. But relatively recent developments, such as targeted maximum likelihood methods, are directly
integrating machine learning with causal inference.
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Introduction

Currently, there is a high level of interest in real-world evi-
dence (RWE). RWE consists of evidence on patient care and health
outcomes that has been developed from real-world data on actual
clinical practice.1 Its uses span clinical decision making, regulatory
decision making, coverage decisions by payers and health tech-
nology assessment, clinical trials design, assessing burden of
illness, evaluating market potential for new products, and much
more. Key to all these use cases is whether the quality of the RWE
is sufficient to support decision making in the context for which it
has been developed.

In this Policy Perspective, I summarize developments in
research design, the proliferation of very large healthcare research
data sets around the world, and the advancement of statistical
methodology, which has culminated in the current tension be-
tween the causal modeling orientation of health services research,
econometrics, and epidemiology methods with the classification
and prediction methods of supervised machine learning. This is
not intended as a formal review of the literature. Nevertheless,
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with the 20th anniversary of Value in Health as a backdrop, I have
attempted to draw the reader’s attention to several key de-
velopments in observational research that have occurred since the
journal was launched and consider where we may be headed.
Interest in RWE Around the Globe

With the passage of the American Recovery and Reinvestment
Act (ARRA) in the United States in 2009, a new focus on
comparative effectiveness research studies was born.2 Because of
concerns about potential rationing of healthcare, ARRA explicitly
forbade the use of cost effectiveness in government programs.3,4

The resulting focus was on noneconomic outcomes but the
domain of interventions was very broad—including treatments,
diagnoses, care organization models, disease management pro-
grams, and much more.

The ARRA legislation also set in motion major changes to the
US healthcare research infrastructure through 2 different path-
ways: (1) meaningful use provisions that led to dramatic
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expansion in the volume of electronic health record (EHR) data5

and (2) establishment of the Patient-Centered Outcomes
Research Institute, which established a major new data infra-
structure to conduct clinical research and fundamentally changed
how researchers thought about the implications of the patient
perspective for research design.

Europe has witnessed a parallel set of activities under the
rubric of relative effectiveness that assesses whether an inter-
vention provides more benefit than harm relative to a treatment
alternative provided in routine care.6 In particular, the Innovative
Medicines Initiative GetReal Consortium encompasses a set of
multinational collaborations across Europe to explore the role of
using real-world data in drug development and assessment. A
recent review of 6 European health technology assessment (HTA)
agencies revealed significant variation in their use of real-world
data in decision making.6 Fundamentally, this lack of alignment
among the European HTA organizations is a result of differing
opinions about the strength of evidence that can be obtained from
observational studies.6

Interest in RWE studies has its roots in retrospective database
analyses to inform payer decision making, comparative effective-
ness analysis to inform clinical decision making, and cost-
effectiveness analysis that combines the comparative effective-
ness data with cost, utility, and other data to evaluate the relative
value associated with alternative treatments.7 Recently, interest in
RWE has also been driven by the desire to accelerate the clinical
development process that has been so heavily dependent on ev-
idence from randomized controlled trials (RCTs). In the United
States, this has taken the form of regulatory mandates on the US
Food and Drug Administration (FDA) embedded in key legislation
including the Prescription Drug User Fee Act VI8 and the 21st
Century Cures Act9 to publish draft guidance for RWE applications
by the end of fiscal year 2021. In addition, the 21st Century Cures
Act (Section 3022) mandates that FDA propose a framework and
enact a program to evaluate RWE to support approval of new in-
dications and to satisfy postapproval requirements.
RWE and Causal Inference

Not all RWE is developed for the purposes of regulatory, clin-
ical, or policy decision making. Although causal modeling is an
important component of RWE, RWE is a much broader framework
involving the use of observational data for market assessment,
clinical trials design, measuring burden of disease, understanding
variation in practice, and improving clinical aspects of healthcare
delivery, to name a few. For example, disease management pro-
grams may seek to improve population health by intervening with
patients at risk of adverse health events; this requires the ability
to predict risk but not the need for causal inference about the
effect of a particular factor on that risk. Nevertheless, assessing
whether the disease management program has the intended effect
of improving healthcare outcomes does require causal inference.

Several leading researchers stress that epidemiology requires
asking causal questions and advocate for the use of formal causal
frameworks to improve the analytical rigor of observational data
analysis.10,11 Epidemiology is the bedrock for making regulatory and
clinical decisions about the effectiveness and safety of therapeutic
interventions. Similarly, causal inference is needed to support policy
decisions by HTA agencies and payers with regard to coverage and
reimbursement. And causal inference is needed to assess all manner
of program evaluation questions such as benefit design, care orga-
nizationmodels, andeffectiveness of diseasemanagementprograms.

The critical importance of using a causal framework to design
studies using observational data is appropriately receiving
increasing attention. The use of a causal framework forces the
researcher to describe the theoretical model to be estimated—in
particular, how the key causal effect to be estimated fits within the
broader system. The observed data are then compared with those
needed to estimate the causal effect within the context of the
broader theoretical model. This forces the researcher to confront
data limitations and consider their implications for the ability to
estimate the causal effect. An important aspect of the ability to es-
timate causal effects, familiar to econometricians, is that of identi-
fication. Theconceptof identification refers towhether theavailable
data enable the estimation of the system parameters of interest.

Only at this point do statistical estimation methods enter the
picture. There are many choices of methods for estimating a causal
effect of interest. Each has its own properties and some will
perform better than others for specific questions. Nevertheless,
the key point is that the choice of statistical methods is a decid-
edly second-order consideration when conducting studies with
observational data. Design is paramount.
Evolving Statistical Methods and Methods
Guidance

Over the past 20 years, Value in Health has published a series of
International Society for Pharmacoeconomics and Outcomes
Research Good Practice Guidelines related to the conduct of high-
quality epidemiological and outcomes research using observa-
tional databases.1,12–16 Similarly, the International Society for
Pharmacoepidemiology, the FDA, the European Medicines Agency,
the European Network of Centres for Pharmacoepidemiology and
Pharmacovigilance, and the European Network for Health Tech-
nology Assessment have all published guidance documents on
good practice for the analysis of observational healthcare
data.17–21 These publications recommend that observational
research design incorporate pre- and postmeasurement on both
intervention and control groups (quasi-experimental design) and
the use of matching or weighting methods to achieve high
dimensional balance on observable confounders. For studies of
pharmaceutical interventions, best practice with respect to study
design generally also includes comparing new initiators, control-
ling for medication adherence, and avoiding reverse causation,
immortal time bias, and adjustment for causal intermediaries.
When Can We Trust RWE From Observational
Studies?

Despite common perceptions to the contrary, a 2014 Cochrane
review of the literature22 concluded that observational studies
usually generate similar average treatment effects (ATEs) to those
reported in clinical trials even when no attempt has been made to
mirror the inclusion and exclusion criteria of the RCTs. This
conclusion echoed that of several previous studies that had also
found that the treatment effects obtained from RCTs and obser-
vational studies in corresponding disease areas tend to be very
similar.23,24

Remarkably, these results comparing the similarity of ATEs
from RCTs and observational studies have been obtained without
examining the subset of observational studies that attempted to
mimic the inclusion and exclusion criteria of the trials and other
design features. But the result is that there remains confusion in
the literature about the importance of randomization in RCTs
versus a plethora of design differences between RCTs and obser-
vational studies that can easily be responsible for differences in
conclusions.
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A classic example of disagreement between RCT and observa-
tional study results is provided by the Nurses’ Health Study and
the Women’s Health Initiative—both very large, well-designed
studies that were conducted a decade apart. The Nurses’ Health
Study was an observational study that demonstrated convincing
evidence about the protective effect of hormone replacement
therapy against the development of cardiovascular disease.25

Nevertheless, 10 years later the Women’s Health Initiative, a
large RCT, came to the opposite conclusion.26 Hernan et al27 noted
that the 2 studies measured cardiovascular risk over different time
periods and this was an important contributor to the difference in
findings. When cardiovascular risk in the Nurse’s Health Study
was measured over the same 2-year follow-up period as in the
Women’s Health Initiative, the results of the 2 studies were very
similar. Although, in this instance, the observational design and
analysis were able to replicate the RCT, the researchers had the
RCT results available as a target. This ultimately led to identifying
the design problem that had led to the divergent results. Gener-
ally, RCT results are not available for comparison, which raises
concern that researchers might miss things in observational
research design and be led astray. This has led to the publication of
several recent articles outlining design principles for improving
the reliability of pharmacoepidemiology and economics
studies.11,28,29

Despite the results cited earlier demonstrating the high degree
of agreement generally found between retrospective database
studies and RCTs, there is also evidence for wide variation in re-
sults from observational studies with similar research designs
conducted on different data sets. In a study of 53 drug/outcome
pairs using 2 common research designs, Madigan et al30 estimate
that 20% to 40% of database studies can switch from a statistically
significant result in one direction to a statistically significant result
in the other direction, depending on the data set used for the
analysis—even after controlling for common study design.

One possible reason for variation across observational studies
is that the patient populations represented in the various samples
are very different. But study results can also vary because of the
statistical methods used as well as differences in study design.
Epidemiological research on drug safety over the past decade has
established generally accepted research designs and methodolo-
gies for estimating the effects of drug treatment on adverse events
and other safety outcomes with observational data.11,28,29 Using
similar methodological techniques that include high dimensional
control for confounders using propensity score matching, inverse
probability weighting, and related methods, there is reason to
believe that well-designed studies using RWE may play an
expanded role in regulatory submission for review and approval
with respect to additional patient populations and/or new in-
dications for previously approved products. Finally, understanding
the potential sources of variation in study results hinges critically
on transparency of reporting.31
Data Linkage and Causal Inference

There is a worldwide explosion in the volume and types of data
available to support outcomes research, health economics, and
epidemiology. In the context of the causal modeling framework
considered earlier, the growth in data availability offers promise for
improved causal inference. Estimates from technology companies
generally state that 80% of “big data” is unstructured; this is also the
case for biomedical data such as physician narratives in electronic
medical records (EMRs) and data streams from medical device
monitors.32 Structuredmedical data such as claims arealso growing
rapidly but, although structured, need considerable cleaning and
mapping before they are suitable for research purposes. Numerous
initiatives are amassing huge repositories of claims and EMR data
that have been curated with an eye toward facilitating healthcare
research (Health Care Cost Institute, Observational Health Data
Sciences and Informatics Network, FDA Sentinel Network, the
Patient-Centered Clinical Research Network, OptumLabs® Data
Warehouse, Health Data Research UK, Clinical Practice Research
Datalink, UK-CRIS Network, the national registries of Sweden,
Denmark, Finland, Iceland, and Norway, Taiwan’s National Health
Insurance Research Database, and many others).33–42

One important implication of this expanded data access is the
potential of reducing missing variable bias through data linkage.
For example, linking claims data with EMRs enables control for
confounders that are missing in analyses based on claims data
alone. Claims data are generally quite good for capturing the
breadth of the experience of patients, their medical comorbidities,
the drugs they take, their visits, and so forth, but they are not very
good for measuring disease severity, biomarkers, and other clinical
factors. In contrast, EMR data are much stronger for capturing
clinical detail but they can often be confined to particular treat-
ment settings such as hospitals and oncology clinics. In compari-
son with claims data, much of the knowledge about comorbidities
may be missing. As a result, models estimated with EMR data
alone are likely to be biased because they lack important infor-
mation on comorbidities. Conversely, models estimated with
claims data alone are likely to be biased because they lack
important controls for clinical severity. The linkage of data sets
should help address many of these missing data issues.
The Rise of Machine Learning in Healthcare

Several aspects about the changing healthcare data land-
scape—the rapid growth in the volume of healthcare data, the fact
that much of it is unstructured, the ability to link different types of
data together (claims, EHR, sociodemographic characteristics, ge-
nomics), the speed with which data are being refreshed—create
serious challenges for traditional statistical methods from epide-
miology, econometrics, and health services research. As a result,
there is growing interest in the use of machine learning to help
address these analytic challenges.

The term machine learning refers to a large family of mathe-
matical and statistical methods that have historically been focused
on classification and prediction.43 It is beyond the scope of this
Policy Perspective to describe machine learning methods in detail,
but Figure 1 provides a high-level overview of the range of
methods. At the highest level, there are 2 broad categories of
methods—supervised and unsupervised. Unsupervised methods
are focused mainly on dimension reduction and learning the un-
derlying structure of the data. Supervised methods require the
specification of an outcome variable and are focused on prediction
or classification.43,44

Machine learning methods can be particularly powerful tools
for satisfying the evidence needs of the broader RWE objectives
beyond causal inference alone. The ability to improve predictions
of whether someone is at risk of developing a disease or having a
health event such as a heart attack is extremely important in
healthcare delivery—potentially enabling intervention before
adverse outcomes occur. In some areas of medicine, such as
radiology, machine learning methods show great promise for
improved diagnostic accuracy.45,46

The applications of machine learning in healthcare have
changed significantly over the last decade. Earlier work often used
machine learning methods such as Lasso, random forest, and sup-
port vector machines to predict hospitalization47,48 or the onset of



Figure 1. Types of machine learning methods.

Unsupervised Learning—Focus on reducing data dimensionality and learning the underlying 
structure of the data

Dimensionality Reduction

Principal Components Analysis

Latent Variables and Factor Analysis

Multidimensional Scaling Methods

Clustering

K-means Clustering

Gaussian Mixture Models

Agglomerative Hierarchical Clustering

Supervised Learning—Focus on classification and prediction.

Classification and Prediction

Lasso, Ridge, and Elastic Net Regression

Random Forest

Boosting and Bagging Models

Support Vector Machines

Neural Networks

Learning Ensemble Methods

590 VALUE IN HEALTH MAY 2019
disease.49 These models often represented only modest improve-
ments over traditional regressionmethods.More recently, with the
development of graphical processing units andmassive volumes of
healthcare data, deep learning models have been increasingly
used.50,51 Traditional machine learning models rely on the devel-
opment of features or variables that are defined on the basis of
researcher domain knowledge. In contrast, deep learning models
extract features directly from the data—enabling the identification
of correlations in the data thatmayhave beenpreviously unknown.
A recent study used EHR data from several academic medical cen-
ters to predict in-hospital mortality, unplanned readmission, pro-
longed length of stay, and all of the patients’ final discharge
diagnoses. These models outperformed traditional clinical predic-
tive models in all cases.51 Nevertheless, there are basic questions
about the readiness of EHR systems to support machine learning
methods from a data quality standpoint.52
Is Machine Learning Compatible With Causal
Inference?

Some machine learning approaches use regression-based
methods for prediction. For example, Lasso, Ridge, and elastic
net methods use correction factors to reduce the risk of over-
fitting.44,53 Moreover, the K-fold cross-validation approach used in
machine learning can be thought of as a more sophisticated and
systematic version of the best practice of splitting one’s sample
into 2—one for model development and the other for final model
estimation.

Unfortunately, there is nothing magical about machine
learning that protects against the usual challenges encountered in
observational data analysis. In particular, just because machine
learning methods are operating on big data does not protect
against bias. Increasing sample size—for example, getting more
and more claims data—does not correct the problem of bias if the
data set is lacking in key clinical severity measures such as cancer
stage in a model of breast cancer outcomes.54 This is a specific
example of the issue of identification mentioned earlier. Machine
learning can provide a statistical method for estimating causal
effects but only in the context of an appropriate causal framework.
The use of machine learning without a causal framework is
fraught with danger.

Nevertheless, economists, epidemiologists, and health services
researchers have been trained that they must have a theory that
they test through model estimation. The major limitation of this
approach is that it makes it very difficult to escape from the
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confines of what we already know (or think we know). Traditional
machine learning is agnostic to theory and lets the data speak for
itself. This makes supervised machine learning very powerful for
exploratory analysis. One promising approach might be to use the
power of machine learning to identify all the features in a data set
that are correlated with an outcome of interest. These features
then become candidates for inclusion in a causal modeling
framework that is then estimated using standard methods from
economics or epidemiology.55

A second approach is to use machine learning methods to es-
timate the causal treatment effects directly. An example of this
approach is provided by targeted maximum likelihood estimation
(TMLE).56,57 TMLE uses doubly robust maximum likelihood esti-
mation to update the initial model using estimated probabilities of
exposure.58 The ATE is then estimated as the average difference in
the predicted outcome for treated patients versus their outcome if
they had not been treated (their counterfactual). Because the ATE
is based on the predicted values, rather than an estimated
parameter value, the modeling methods can draw upon the full
repertoire of machine learning and traditional econometric/
epidemiological methods. TMLE appears to outperform traditional
methods such as propensity score matching and inverse proba-
bility weights in simulation.56 Finally, using ensemble methods
produces estimates that are asymptotically as good as the best-
performing model—eliminating the need to make strong as-
sumptions about functional form and estimation method up
front.56,57
Conclusions

We are witnessing the convergence of several major
trends: (1) a focus on RWE and its potential role in generating
high-quality evidence previously reserved for RCTs; (2)
dramatically expanding data—some of it in curated research
data assets—but most in need of a great deal of work before
being suitable for research; and (3) the arrival of machine
learning methods.

Although RWE is a relatively new term, retrospective database
studies have been used for clinical trials design and generating
evidence on disease burden, comparative/relative effectiveness,
and safety surveillance for at least 2 decades. Such studies were
mainly conducted with claims data and many fell short of the level
of rigor that we would now consider necessary to draw causal
inferences from observational data. Over the years, however,
observational research designs and statistical methods have got-
ten much stronger. Most recently, the arrival of machine learning
methods is improving the ability to identify patients at risk of
healthcare events so that providers can intervene to prevent
adverse health outcomes. Predictive analytics are rapidly being
upgraded using machine learning methods to take advantage of
this opportunity. But we are still left with the question of drawing
causal inference from observational data. Can machine learning
help? At a minimum, it seems that machine learning would be an
effective tool for hypothesis generation. A core strength of ma-
chine learning is to identify correlational structures in observa-
tional data. Once identified, these structures can be tested with
traditional causal modeling approaches. The current frontier is
using machine learning to estimate causal models directly. These
methods, such as TMLE, use machine learning as a statistical
estimator but do so within a causal modeling framework. More
evidence is needed, but whether machine learning methods are
used for prediction alone, or for causal inference, it seems clear
that they are here to stay.
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