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Abstract

Directed acyclic graphs (DAGs) are increasingly used in epidemiology to identify and address

different types of bias. The present work aims to demonstrate how DAG-based data simulation

can be used to understand bias and compare data analytical strategies in an educational con-

text. Examples based on classical confounding situations and an M-DAG are examined and

used to introduce basic concepts and demonstrate some important features of regression

analysis, as well as the harmful effect of adjusting for a collider variable. Other potential uses of

DAG-based data simulation include systematic comparisons of data analytical strategies or the

evaluation of the role of uncertainties in a hypothesized DAG structure, including other types of

bias such as information bias. DAG-based data simulations, like those presented here, should

facilitate the exploration of several key epidemiological concepts, DAG theory and data analy-

sis. Some suggestions are also made on how to further expand the ideas from this study.
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Introduction

Directed acyclic graphs (DAGs), a tool that can be used for

identifying suitable adjustment sets based on assumed

causal relationships, are increasingly used in epidemiol-

ogy.1,2 An important advantage of this approach is that

harmful adjustment sets, that is those that introduce rather

than reduce bias, can be identified in a straightforward

manner using DAGs, even for some scenarios that are diffi-

cult to deal with using other approaches.3,4

In brief, a DAG depicts the causal dependencies be-

tween nodes representing a treatment or exposure (say X),

the outcome of interest (say Y) and covariables, by directed
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arrows pointing from causes to effects.1 An important con-

cept is that of a ‘backdoor path’ defined as ‘a non-causal

path between treatment and outcome that remains even if

all arrows pointing from treatment to other variables (the

descendants of treatment) are removed’.5 An open non-

causal path will result in bias. Even though the study of

confounding or selection bias using DAGs can be done fol-

lowing a simple set of rules,1 computer tools employing

various algorithms are currently available to assist with

this task.6,7

The present study illustrates the use of DAG-based data

simulations for demonstrating issues related to bias, and

the use of data analytical strategies in an educational con-

text. Examples of classical confounding situations as well

as a particularly instructive and often used DAG are exam-

ined, to exemplify how this approach may be used to pre-

sent the possibility of harmful adjustment and its impact

on regression model estimates.

Methods

DAGs under consideration

In our study, we consider the five DAGs from Figure 1.

The function to draw the DAGs used in the present work is

included in the publicly available dagR package [cran.r-

project.org/web/packages/dagR], and the five DAGs have

been described in detail elsewhere including the following

motivating real-life examples.5

DAG (a) shows a classical confounding situation in

which the non-causal path X C!Y is open because of the

common cause C. This is a very common confounding situ-

ation, with an example being the healthy worker bias.

Since ‘being physically fit’ (C) is a cause of both being an

active firefighter and having a lower mortality risk, the ef-

fect of working as a firefighter (X) on the risk of death (Y)

will be confounded by ‘being physically fit’.

DAG (b) shows confounding caused by the ancestor L

of treatment X and the outcome Y sharing a common cause

U. The non-causal path X L U!Y is open. An example

of this situation is confounding by indication. The effect of

taking aspirin (X) on the risk of stroke (Y) will be con-

founded by heart disease (L) since aspirin is more likely to

be prescribed to individuals with heart disease, and heart

disease and stroke share a common cause, namely athero-

sclerosis (U).

DAG (c) shows confounding that results from the treat-

ment X and the ancestor L of outcome Y sharing a com-

mon cause U. The non-causal path X U!L!Y is open.

An example of this situation is confounding by reverse cau-

sation. The effect of exercise (X) on the risk of death (Y)

will be confounded because exercise (X) is associated with

cigarette smoking (L), a known risk factor for death. The

association of exercise and cigarette smoking is caused by

personality type (or social factors) (U).

DAG (d) is the M-DAG. It corresponds to a situation in

which a so-called collider M exists that is causally influ-

enced both by an ancestor of the exposure X and by an

X Y?

C
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X Y?L

U(b)

X Y?

LU(c)

X Y?

C1

M

C2
(d)

X Y?

L

U(e)

c(
0,

 1
)

X: exposure
Y: outcome
L: covariable
U: covariable
M: covariable
C: covariable

Figure 1 Directed acyclic graphs representing classical confounding

[(a), (b) and (c)], and the M-structure frequently used for introducing

harmful adjustment [(d) and (e)]

Key Messages

• Directed acyclic graph (DAG)-based data simulations should facilitate the exploration of several key epidemiological

concepts, DAG theory and data analysis.

• DAG-based data simulations are suitable for teaching confounding or selection bias with DAG-based approaches and

corresponding applied regression analyses.

• DAG-based data simulations can be used for systematic comparisons of data analytical strategies or for the

evaluation of the role of uncertainties in a hypothesized DAG structure.
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ancestor of the outcome Y. Adjusting for M will open the

non-causal path X C1!M C2!Y which would be

harmful by introducing collider adjustment bias.

DAG (e) is another situation where the adjustment for a

collider L will result in bias. For example, consider a study

that aims to estimate the causal effect of being physically

active (X) on the risk of cervical cancer (Y). A health-con-

scious personality (C1) affects both the possibility of tak-

ing a diagnostic test for pre-cancer (M) and of being

physically active (X). A pre-cancer lesion (C2) affects the

possibility of taking a diagnostic test for pre-cancer (M)

and the risk of cervical cancer (Y). C1 does not affect Y,

and C2 does not affect X. There is no confounding because

there are no common causes of X and Y. However, in a

study restricted to subjects taking a diagnostic test for pre-

cancer (say, M¼ 1), conditioning on a common effect of

causes of treatment and outcome will open the non-causal

path X C1!M C2!Y and induce bias.

DAG-based data simulation

We will use simulated data to show the bias related to the

above DAGs, and the analysis methods to remove the bias.

The simulation function that we use is part of the latest

version of the dagR package. After specifying the DAG,

the coefficients describing the DAG arcs, and the parame-

ters describing the distribution of the data to be simulated,

the function simulates the requested number of observa-

tions based on the specified DAG structure. In our simula-

tions, all continuous variables were simulated from the

normal distribution, and all binary variables were simu-

lated from the binomial distribution. All simulations and

statistical analyses were done using R version 3.5.2. and

dagR 1.1.3. The R code for the main figures is provided in

Supplementary Material, available as Supplementary data

at IJE online.

Results

Simulations for understanding the basic concepts

A simple example was simulated for each of the five DAGs

shown in Figure 1, and linear regression models were used

to show that biased results will be generated when con-

founding exists, and also ways to remove the bias. All vari-

ables considered in the DAGs were simulated from Normal

(0, 0.32) distributions, the effect of X on Y was set to be

null, and the sample size n was set to be 100 000 (the sam-

ple size was large so that we could reduce the random error

to a negligible level).

For DAGs (a), (b) and (c), if we ignore the confounding

covariables [C for (a); L and U for (b) and (c)] and estimate

the effect of X on Y without adjusting for these covari-

ables, the results are biased (Table 1). The bias can be re-

moved by adjusting for the specified covariate(s). For

DAGs (d) and (e), the situation is fundamentally different.

There is no confounding to start with, and we can estimate

the effect of X on Y without adjusting for any covariables.

If we thoughtlessly adjust for colliders [M for (d), and L

for (e)], we obtain biased results (Table 1), although we

can overcome this harmful adjustment by controlling for

additional covariables.

Simulations for quantifying the bias

Classical confounding

DAG (a), representing the classical confounding situation,

is shown in Figure 1. The first question we may ask is

whether the bias is constant or proportional to the x-y-ef-

fect (the effect of X on Y which is defined as the true linear

regression coefficient of X on Y). Figure 2a shows the im-

pact of varying the true direct x-y-effect for the classical

confounding scenario while keeping all other parameters

constant. The raw regression estimates of the x-y-effect

overestimated the x-y-effect by approximately a constant

amount across all simulations, an indication of constant

bias, regardless of the x-y-effect.

The second question may be how the bias will change if

we increase the c-x-effect (the effect of C on X) or c-y-ef-

fect (the effect of C on Y). Our intuition may be that the

bias will also increase. However, Figure 2b and c shows

that the coefficients obtained by linear regression of Y on

X had quite different patterns. When the effect of C on X

increased, the estimated x-y-effect increased sharply and

then decreased [panel (b)]. By contrast, when the effect of

C on Y increased, the estimated x-y-effect increased line-

arly [panel (c)]. When we analysed the simulated data, we

found that when we increased the c-x-effect or c-y-effect,

the variance of X or Y will also be increased [panel (b)],

with the co-increase of the c-x-effect and the variance of X

resulting in the pattern of estimated x-y-effect from panel

(b). If we increased the c-x-effect but at the same time re-

duced the noise of X to prevent the variance of X from

changing, then the estimated x-y-effect increased linearly

[panel (d)].

M-DAG

Simulations based on an M-DAG structure (Figure 1d) can

be easily used to demonstrate the ‘harmful’ (biasing) effect

of adjusting for M, and to show that additionally adjusting

for either C1 or C2 generally removes that bias (with ad-

justment for C1 resulting in somewhat unstable, fluctuat-

ing estimates of the x-y-effect) (Figure 3). Based on the
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analysis of the simulated data, Table 2 shows that biased

estimates of the effect of X on Y resulted within each stra-

tum of M [cases (b) and (c)] and there was no bias without

stratification [case (a)]. If we further stratified the data by

C1 [cases (d) to (g)] and C2 [cases (h) to (k)], the bias

within each stratum was reduced to 0. It should be noted

that within each stratum of C1, X was distributed within a

very small range which resulted in the unstable estimation

of the x-y-effect when adjusting for C1 (Supplementary

Figure S1, available as Supplementary data at IJE online).

Binary X and Y

For binary outcome Y but normally distributed X, similar

results were observed (Supplementary Results part 1 and

Supplementary Figure S2, available as Supplementary data at

IJE online). By contrast, for binary X with normal Y or bi-

nary Y, there was a monotone but nonlinear increase (for the

classical confounding DAG) or decrease (for the M-DAG) of

the bias with the increase of the confounder effect on X, re-

gardless of whether we increase the prevalence of X¼1 with

the confounder effect on X or if we keep it fixed

(Supplementary Results part 1 and Supplementary Figures

S3–S5, available as Supplementary data at IJE online).

Discussion

The results presented in this study show how DAG-based

data simulations could be used to examine and demonstrate

fundamental aspects of the application of DAGs to epidemi-

ological data analysis. The consistent results from these easy-

to-understand examples suggest that the DAG functions

integrated into R may not only be useful for hands-on teach-

ing of epidemiological applications of DAGs and related re-

gression modelling, but also for quantifying the bias and

harmful adjustment for DAGs that are more complex than

Table 1 Simulation results for the five DAGs under consideration

DAGs Path The estimated effect of X on Y

Models and true parametersa

n¼100 000

Covariables

adjusted for

Status of the path Analysis resultsb Estimated effect

(a) Path: X C!Y

X¼ axþbcxCþex – Open 0.194 Biased

Y¼ ayþbcyCþbxyXþey C Closed �0.004 Unbiased

bxy¼0, bcx¼bcy¼0.5

(b) Path: X L U!Y

L¼ alþbulUþel – Open 0.092 Biased

X¼ axþblxLþex L Closed �0.005 Unbiased

Y¼ ayþbuyUþbxyXþey U Closed �0.002 Unbiased

bxy¼0, bul¼blx¼buy¼0.5 L, U Closed �0.004 Unbiased

(c) Path: X U!L!Y

L¼ alþbulUþel – Open 0.100 Biased

X¼ axþbuxUþex L Closed 0.003 Unbiased

Y¼ ayþblyLþbxyXþey U Closed 0.001 Unbiased

bxy¼0, bul¼bux¼bly¼0.5 L, U Closed 0.003 Unbiased

(d) Path X C1!M C2!Y

M¼ amþbc1mC1þbc2mC2þem – Closed �0.003 Unbiased

X¼ axþbc1xC1þex M Open �0.037 Biased

Y¼ ayþbc2yC2þbxyXþey M, C1 Closed �0.004 Unbiased

bxy¼0,

bc1m¼bc2m¼bc1x¼bc2y¼0.5

M, C2 Closed �0.002 Unbiased

M, C1, C2 Closed �0.004 Unbiased

(e) Path X!L U!Y

L¼ alþbulUþbxlXþel – Closed �0.006 Unbiased

Y¼ ayþbuyUþbxyXþey L Open �0.104 Biased

bxy¼0, bul¼bxl¼buy¼0.5 U Closed �0.005 Unbiased

L, U Closed �0.003 Unbiased

DAGs, directed acyclic graphs.
aThe true effect is defined as the true linear regression coefficient b. The true effect of X on Y is bxy, the others were defined in the same way. a is the intercept

and e is the added noise. (All variables are normal, for more simulation details see Supplementary Table S1, available as Supplementary data at IJE online).
bLinear regression model was used to estimate the effect of X on Y, Y was the dependent variable, and X and the covariables were the independent variables.
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those investigated in this introductory paper. In addition to

the confounding and selection bias discussed in this study,

the DAG-based simulations can also be used to address other

types of bias, such as information bias.

Some points to make on teaching classical

confounding

Already the simulations based on the classical confounding

DAG may serve to demonstrate some important points re-

garding regression analyses. In particular, decreasing the effect

of the confounder on the outcome vs on the exposure affected

very differently the regression estimation of the effect of X on

Y. For normally distributed X, the variance of X plays an im-

portant role in the regression estimation of the effect of X on

Y, and we need to consider the change in the variance of X

when evaluating the effect on the bias of changing the effect

of the confounder on the outcome or the exposure. For a real-

life data analysis situation, if we want to evaluate the bias due

to an unmeasured confounder C, the variance of X would be

considered fixed, and the bias caused by C will increase line-

arly with the true effect of C on X. But for binary X, the story

is different. The dependence of the variance of X on the prev-

alence of X presents a challenge when approaching this prob-

lem analytically.8 Straightforward simulation results, on the

other hand, show that the bias caused by C will increase

monotonically with the true effect of C on X.

Introducing harmful adjustment

A reasonable starting point would be the Berkson’s bias-

like phenomenon which is at the core of the harmful effect
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Figure 2 Estimated effects for the classical confounding DAG, depending on the simulated direct x-y-effect [panel (a)] and the simulated direct effect

of confounder C on exposure X [panel (b) and panel (d)] or outcome Y [panel (c)]

Models used in the simulation: X¼axþbcxCþex and Y¼ayþbcyCþbxyXþey, where bxy is the x-y-effect, bcx is the c-x-effect, bcy is the c-y-effect, standard

deviation of C is denoted as c-noise SD, standard deviation of ex is denoted as x-noise SD and standard deviation of ey is denoted as y-noise SD. For

simulation details see Supplementary Table S2, available as Supplementary data at IJE online). Crosses joined by black line ¼ regression estimates

of x-y-effect without adjustment for C; diamonds joined by red line ¼ regression estimates of x-y-effect adjusted for C; solid triangles joined by blue

line ¼ variance of C; solid squares joined by blue line ¼ variance of X; solid circles joined by blue line ¼ variance of Y

International Journal of Epidemiology, 2021, Vol. 00, No. 00 5

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyab096/6272915 by U

niversity of Southern C
alifornia user on 20 M

ay 2021

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab096#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab096#supplementary-data


of adjusting for a collider.1 Although DAG papers such as1

provide easy–to-understand numerical examples, simula-

tions may be worthwhile to show that this is a rather uni-

versal phenomenon.

The performance of adjusting for either covariable in addi-

tion to the collider (i.e. adjustment sets {M, C1} or {M, C2})

can be demonstrated to be very similar for a wide range of

parameter combinations. Relevant differences may only be-

come apparent if the DAG-based simulated data involves

very strong correlations, which are unlikely to be encountered

with real-life epidemiological data. Whether performance dif-

ferences are considered relevant, of course, often depends on

subjective and subject matter considerations.

Limitations

Only simple DAGs and data analytical approaches were used

in the present paper to avoid distracting the readers from the

main issues of interest. As such, the results presented in this

study could also be derived theoretically using linear
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Figure 3 Estimated effects for the M-DAG, depending on the simulated direct effect of C1 on X [panel (a)], and C2 on Y [panel (b)]. Binary C1, C2 and

M were simulated. Models used in the simulation were: X¼axþbc1xC1þex, Y¼ayþbc2yC2þbxyXþey and logit(Prob(M¼1))¼amþbc1mC1þbc2mC2, where

bxy is the x-y-effect, bc1x is the c1-x-effect, bc2y is the c2-y-effect, bc1m is the direct effects of C1 on M, bc2m is the direct effects of C2 on M, the standard

deviation of ex is denoted as x-noise SD, and the standard deviation of ey is denoted as y-noise SD. For simulation details see Supplementary Table

S3, available as Supplementary data at IJE online). Crosses joined by black line ¼regression estimates of x-y-effect without harmful M-adjustment;

solid circles joined by black line ¼ regression estimates of x-y-effect with harmful M-adjustment; solid triangles joined by red line ¼ regression esti-

mates of x-y-effect adjusted for M and C1; solid squares joined by green line ¼ regression estimates of x-y-effect adjusted for M and C2

Table 2 Simulation results for M-DAG structure

Estimated effect of X on Y (the true effect is null)a

Case Stratum analysed Status of the path Analysis resultsb Estimated effect

a) – Closed �0.005 Unbiased

b) M¼0 Open �0.124 Biased

c) M¼1 Open �0.127 Biased

d) C1¼0 and M¼0 Closed 0.033 Unbiased

e) C1¼0 and M¼1 Closed 0.025 Unbiased

f) C1¼1 and M¼0 Closed �0.053 Unbiased

g) C1¼1 and M¼1 Closed �0.027 Unbiased

h) C2¼0 and M¼0 Closed �0.001 Unbiased

i) C2¼0 and M¼1 Closed �0.000 Unbiased

j) C2¼1 and M¼0 Closed �0.001 Unbiased

k) C2¼1 and M¼1 Closed 0.001 Unbiased

M-DAG, directed acyclic graph with a collider M that is causally influenced both by an ancestor of the exposure X and by an ancestor of the outcome Y.
aModels used in the simulation: logit(Prob(M¼ 1))¼amþbc1mC1þbc2mC2, X¼ axþbc1xC1þex, Y¼ ayþbc2yC2þbxyXþey. M, C1, and C2 are binary and X and

Y are normal. The true effect of X on Y is bxy, the others were defined in the same way. a is the intercept and e is the added noise. The simulated prevalences of

C1, C2 and the collider M were 50%, bxy was 0, bc1x and bc2y were 1, bc1m and bc2m were log(5), ax and ay were 0.5, and the SDs of the noise ex and ey added

to X and Y were both 0.1.
bStratification analysis was used to adjust the effect of M, C1 and C2. For each stratum, the linear regression model was used to estimate the effect of X on Y, Y

was the dependent variable, and X was the independent variable.
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regression theory. The advantage of the simulation-based ap-

proach is that there is no need for advanced knowledge of sta-

tistical theory. The dagR suite can readily accommodate

more complex DAGs, and the simulation-based approach

might also be feasible for situations in which the complexity

of causal relationships renders current statistical approaches

either impractical or impossible to use.

In conclusion, confounding and selection bias and related

regression analyses are core topics of every comprehensive epi-

demiology course, and the inclusion of DAG methodology in

such courses is becoming more and more common. Although

the rules of DAGs are easy to teach, what the adjustment for

different variables will do for a real dataset is often not intui-

tive to students, and so using simulation can help them under-

stand the concepts better because they can see the data

generated based on the assumed DAG. R is often the statistical

software of choice, due to its free availability and wide use in

relevant standard textbooks.9–12 The analyses presented above

indicate how DAG-based simulation might help introduce pro-

spective epidemiologists to the use of DAGs for bias analysis

and related regression model estimation using simulated data.
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Supplementary data are available at IJE online.

Funding

This work was supported by the National Natural Science

Foundation of China [grant number 81803327].

Conflict of Interest

None declared.

References

1. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemio-

logic research. Epidemiology 1999;10:37–48.

2. Pearl J. Causality: Models, Reasoning, and Inference.

Cambridge, UK: Cambridge University Press, 2009.

3. Shrier I, Platt RW. Reducing bias through directed acyclic

graphs. BMC Med Res Methodol 2008;8:70.

4. Glymour MM, Greenland S. Causal diagrams. In: Rothman KJ,

Greenland S, Lash TL (eds). Modern Epidemiology. 3rd edn.

Philadelphia, PA: Lippincott Williams & Wilkins, 2008,

pp.183–209.

5. Hernán MA, Robins JM. Causal Inference: What If. Boca

Raton, FL: Chapman & Hall/CRC, 2020.
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