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Abstract—A wrist-worn PPG sensor coupled with a lightweight
algorithm can run on a MCU to enable non-invasive and com-
fortable monitoring, but ensuring robust PPG-based heart-rate
monitoring in the presence of motion artifacts is still an open
challenge. Recent state-of-the-art algorithms combine PPG and
inertial signals to mitigate the effect of motion artifacts. However,
these approaches suffer from limited generality. Moreover, their
deployment on MCU-based edge nodes has not been investigated.
In this work, we tackle both the aforementioned problems by
proposing the use of hardware-friendly Temporal Convolutional
Networks (TCN) for PPG-based heart estimation. Starting from a
single “seed” TCN, we leverage an automatic Neural Architecture
Search (NAS) approach to derive a rich family of models. Among
them, we obtain a TCN that outperforms the previous state-of-the-
art on the largest PPG dataset available (PPGDalia), achieving a
Mean Absolute Error (MAE) of just 3.84 Beats Per Minute (BPM).
Furthermore, we tested also a set of smaller yet still accurate (MAE
of 5.64 - 6.29 BPM) networks that can be deployed on a commercial
MCU (STM32L4) which require as few as 5k parameters and reach
a latency of 17.1 ms consuming just 0.21 mJ per inference.

I. INTRODUCTION

Wrist-worn devices equipped with sensors, such as wrist-
bands and smartwatches, enable a comfortable monitoring of
vital signs, hence they are becoming increasingly popular in
personalized health care and medical IoT applications [1]. Heart
rate (HR) is one of the most critical indexes to monitor, both
for activity tracking and for clinical purposes. First generation
HR-monitoring devices were based on a simple 1-3 leads
ECG, connected through a chest strip, which, however, is
uncomfortable or even impossible to wear in certain conditions.
Recently, the optimization and miniaturization of photoplethys-
mogram (PPG) sensors has allowed to integrate HR and blood
oxygenation (SPO2) monitoring in smaller, less invasive and
cheaper devices [2]. A PPG sensor consists of one or more
LEDs that continuously emit light to the skin and a photodiode
that measures variations of light intensity caused by blood flow,
which depends on the heart rate. A major limitation of PPG
based HR estimation is represented by motion artifacts (MA)
caused by variations of sensor pressure on the skin or ambient
light leaking in the gap between the photodiode and the wrist.
Moreover, blood flow can vary considerably depending on the
type of physical activity, contributing to a less precise light
absorption measurement, and hence HR estimate [3].

Several approaches have been proposed in literature [4], [5] to
tackle these limitations, by cancelling/reducing the noise caused
by MAs on the PPG signal before using it to compute the HR
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of subjects. However, these methods require an extensive hand-
tuning of parameters for the target dataset, leading to difficulties
in generalizing over many subjects and over different activities.
Until now, limited attention has been given to deep learning
approaches, despite the promising generalization results shown
in [3], [6]. Moreover, none of the state-of-the-art algorithms
(neither classic or deep learning ones) have been yet deployed
on a MCU of the class found in wrist-worn edge devices.

In this paper, we propose a collection of TCNs for HR estima-
tion based on raw PPG and acceleration data, called TimePPG.
All TCNs are derived automatically from a single seed archi-
tecture using a NAS tool [7], and form a Pareto frontier in
the accuracy vs complexity space, from which designers can
select a model based on the available computing resources. In
particular, we analyze in detail three TCNs from the TimePPG
family. The best performing model, BestMAE, achieves a MAE
of 5.30 BPM on the popular PPGDalia dataset, and includes ≈
232k trainable parameters. Coupling this TCN with simple post-
processing and fine-tuning steps, we further reduce the MAE
to 3.84 BPM, outperforming the current (more complex) state-
of-the-art algorithms [5]. At the other extreme, the smallest
model in TimePPG, BestSize, uses only 5k parameters while
still reaching an acceptable MAE of 6.29 BPM. Finally, as a
compromise between the former two, we analyze BestMCU,
i.e. the largest network that fits the memory of a popular
MCU by STM, the STM32L476, which achieves a MAE of
5.64 BPM with 41.7k parameters. When deployed on the MCU,
BestMCU consumes 5.17 mJ per inference, with a latency of
427 ms. BestSize reduces both metrics by 25×, reducing energy
to 0.21 mJ and latency to 17.1 ms.

II. BACKGROUND AND RELATED WORKS

A. Temporal Convolutional Networks
TCNs are a class of 1D-Convolutional Neural Networks

(CNNs), whose peculiarity is in the use of causality and
dilation in convolutional layers [8], [9]. Causality constrains the
convolution output yt to depend only on inputs xt̃ with t̃ ≤ t,
whereas dilation is a fixed gap d inserted between input samples
processed by the convolution, thus increasing its time receptive
field without requiring more parameters. A convolutional layer
in a TCN implements the following function:

ym
t =

K−1∑
i=0

Cin−1∑
l=0

xl
t−d i ·W

l,m
i (1)

where x and y are the input and output feature maps, t and
m the output time-step and channel respectively, W the filter
weights, Cin the number of input channels, d the dilation
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Fig. 1. Proposed NAS and deployment flow. In red, the architectural parameters
and MAE of the seed architecture and of three TimePPG Pareto points.

factor, and K the filter size. In the original paper [8], TCNs
were proposed as fully-convolutional architectures, but modern
embodiments also include other common layers such as pooling
and linear ones [10], [11].

B. State-of-the-art in PPG-based HR monitoring
HR monitoring through wrist-PPG is a relative new task,

which both industry and researchers are exploring. The seminal
work of [2] paved the way to algorithmic exploration in the
field, releasing the first open-access dataset (the 12-subject
SPC), and proposing a three-stage algorithm based on signal
decomposition, spectrum estimation and spectral peak tracking
(TROIKA), which achieves an average MAE of 2.34 BPM BPM
on SPC. Later, [4] improved TROIKA using the spectral differ-
ence with the acceleration spectrum to clean the PPG signal
from Motion Artifacts (MAs), reducing the error to 1.28 BPM.
With the same goal, the authors of [12] applied Singular Value
Decomposition to the acceleration data to extrapolate periodic
MAs. Followed by some iterations of the Iterative Method
with Adaptive Thresholding (IMAT), this method reduced the
MAE to 1.25 BPM. Two approaches used Wiener filtering [13],
[14] to clean PPG signals with accelerometer data, reaching
a MAE of 0.99 BPM. Lastly, the complex five-steps pipeline
called SpaMA [15], further reduced the MAE on this dataset
to 0.89 BPM. More recently, [5] presented a time-domain algo-
rithm which achieves 4.6 BPM of MAE on the larger PPGDalia
dataset with a 5-steps pipeline of light linear transformations,
outperforming SpaMa [15] and the CNN predented in [3] on
these data, but performing worse on the smaller SPC. On the
most challenging PPGDalia dataset, [5] is the SoA algorithm
and thus used as a comparison in this work.

All aforementioned approaches share the common problem
of including an high number of free hyper-parameters, which
are not automatically learned, but hand-tuned to maximize
performance, leading to an overfitting of the test dataset. For
instance, the authors of [3] have shown that the state-of-
the-art results of [15], [16] on the SPC dataset, cannot be
reproduced when cross-validation is used for optimizing hyper-
parameters on the same dataset, leading to a MAE increase
of 1.64-11.77 BPM. Further, they saw a degradation of up to
19.18 BPM MAE of classical approaches developed for SPC on
the PPGDalia dataset, demonstrating that classical approaches

Fig. 2. Ground truth and prediction of a well tracked patient (S7) and of the
worst one (S5). Values above 140 BPM are not well estimated by our algorithm.

hardly generalize over many subjects.
In recent years, researchers have tried to address this limi-

tation with data-driven deep learning algorithms. The works of
[6], [17] achieve comparable results to the ones of the classical
methods, applying a CNN to frequency data and a CNN+LSTM
(Long-Short Term Memory) to time data, respectively. In [3],
the authors present a CNN architecture which outperforms
two classical methods [15], [16] on PPGDalia. Despite these
promising results, however, the deep learning architectures
proposed in literature are still too complex to be embedded in a
MCU-based wearable device. For instance, the best architecture
presented in [3], based on a CNN ensembler, has 60M float32
parameters, while CorNet, a CNN+LSTM model, has 260k
float32 parameters and requires 21.1 million operations.

III. TIME PPG
Fig. 1 shows the complete flow proposed in this work. As

anticipated, we use an automatic tool to explore the space of
possible TCN architectures for PPG-based HR monitoring. As
a starting point for this exploration we use TEMPONet [11],
a TCN which shows impressive results in other bio-signals
analysis tasks, originally developed for EMG-based gesture
recognition. TEMPONet includes a modular feature extractor,
composed of 3 convolutional blocks, each with two dilated
convolutions, 1 strided convolution and 1 pooling layer. The
output channels in each block are 32, 64, and 128 respectively.
The feature extractor is followed by a classifier composed of
3 linear layers, contributing to almost half (200k) of the total
network parameters. All layers use ReLU activations and batch
normalization [18]. Further details on the network are omitted
for sake of space, and can be found in [11].

To adapt TEMPONet to our task, we modify the input layer to
match the target dataset, described in detail in Section IV. The
network takes as input raw sensor data generated by a PPG-
sensor and a tri-axial accelerometer. Samples are gathered at
32 Hz and fed to the model in sliding windows of 8 s with an
overlap of 75 %, resulting in a 256×4 input matrix. We also
remove the final classification layer, replacing it with a single
neuron for regression, and use a LogCosh loss for training.

A. Design Space Exploration
NAS methods are the natural tools for automatically exploring

novel NN architectures for a given task, acting on hyper-
parameters such as the number and type of layers, the number of
convolution filters, etc [19]. However, standard NAS approaches
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require an enormous number of training iterations and are
optimized for large-scale computer vision tasks, leading to
oversized networks for simpler tasks. Therefore, in this work
we resort to MorphNet [7] a new NAS algorithm which slightly
reduces the search space using a seed network (TEMPONet in
our case) in exchange for a dramatic reduction in complexity.

MorphNet limits the optimization to the number of channels
in each layer, and learns an optimal architecture which retains as
much as possible the initial performance of the network, while
reducing either its memory footprint, the number of required
Multiply-and-Accumulate (MAC) operations, or a combination.
This is obtained with a two-step algorithm: first, the network
size is reduced by applying group Lasso [20], a sparsifying reg-
ularizer which forces entire filter channels to small magnitude
values. At the end of this phase, all channels whose magnitude
is inferior to a threshold are eliminated. Since compression
is associated with an obvious performance penalty, MorphNet
alternates it with an expansion step, in which the number of
channels in all layers is uniformly up-scaled by a constant. Two
regularizers are introduced in the original paper, to guide the
search either on reducing the memory footprint (size regularizer)
or the number of MACs (flops regularizer). Importantly, the
overall resources required by MorphNet are only slightly greater
than those required to train the model once. Further details are
omitted for sake of space and can be found in [7].

We explore the design space by applying MorphNet to
TEMPONet, using grid search on the relative strengths of the
two regularizers and on the channels pruning threshold, thus
trading a penalty in MAE with a reduction in the number
of parameters and complexity of the network. Moreover, to
further reduce the memory footprint for deploying our TCNs
on resource-constrained MCUs, we also apply full-integer post-
training quantization to the MorphNet outputs, converting them
from float32 to int8 [21], [22]. As shown in Section IV, this
simple approach yields a large set of Pareto-optimal TCNs,
ranging from state-of-the-art accuracy to very small memory
footprints.

B. Post-Processing
Despite being accurate on average, fully data-driven models

such as TCNs can sometimes make large errors, especially
when inputs deviate significantly from the distributions seen
during training. Fortunately, for HR monitoring, these errors can
be easily filtered with a post-processing step, which removes
predictions that are not compatible with human physiology.
Specifically, we impose a limit on the maximum relative HR
variation over time. To this end, we compare the latest TCN
prediction with the mean of the previous N predictions: if the
difference between the two is larger than a threshold th, the
predicted HR is clipped to mean ± threshold. We set N to 10
and th to 10% of the mean, identical for all patients.

C. Fine-Tuning
Deep learning benefits from large amounts of training data,

unfortunately not yet available in datasets for PPG-based HR
monitoring, which include < 20 patients. Therefore, subjects
with particularly high/low HR are badly tracked by our TCNs,
since their unique data distributions are not present elsewhere
in the training set. To underline this effect, Fig. 2 showcases
the accurate tracking on a patient with HR < 140 BPM (S7),

Fig. 3. TimePPG results in the MAE vs. memory and MAE vs. MACs planes.

while miss-predicting intervals of time of S5 with HR > 140
BPM (lower part of the figure).

We claim that this is indeed just an effect of the scarcity of
data, and not a limitation of our models. To demonstrate it, in
one of our experiments we apply an additional fine-tuning step
to our trained TCNs. Specifically, we fine-tune on the initial
portion of data (25%) relative to the patient under exam, with a
low learning rate, freezing the weights of the first convolutional
block. We then compute the MAE on the remaining 75% of
data. Note that this step is hardly reproducible in the field, since
collecting ground truth data for fine-tuning is hard. However, it
mimics the effect of a larger dataset which would include data
similar to those of a given test subject.

IV. EXPERIMENTAL RESULTS

We evaluate our TimePPG models on the PPGDalia dataset
[3], the largest publicly available dataset for PPG-based heart
rate estimation. The dataset includes sensors’ data from a PPG-
sensor and a 3D-accelerometer, together with golden HR values
from 15 subject and a total of 37.5 hours of recording. We
validate TimePPG models following the cross validation scheme
proposed in [3]. We train all TCNs with an Adam optimizer
(learning rate = 1e-3, weight decay = 5e-4), and a batch size
of 128 over 500 epochs, with an early stop mechanism with
patience of 20. All experiments are performed using Python
3.6, TensorFlow 1.14 [23] and the Nucleo-STM32L476RG
evaluation board, with 128 kB of RAM, 1 MB Flash and an
average power consumption of 12.1 mW at 80 MHz [24].

A. TimePPG Design Space Exploration Results
Fig. 3 shows some of the models obtained applying MorphNet

to the seed network with different regularizer strengths and
pruning thresholds. Only models achieving a MAE lower than 7
BPM are reported. In this experiment, MAE results refer solely
to the TCN output, without post processing or fine tuning.

As shown, our design space exploration spans more than one
order of magnitude both in terms of TCN parameters (5k-230k)
and MACs (0.1M-12M). Three relevant Pareto-optimal models
are higlighted in the figure, called BestMAE, BestMCU, and
BestSize. The former is the one achieving the lowest overall
MAE (5.3 BPM) and is analyzed in detail in Section IV-B. It
requires around 230k parameters and 12M MACs. BestMCU is
the best performing model that meets the memory constraints
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TABLE I
COMPARISON WITH STATE-OF-THE-ART PPG-BASED HR MONITORING ALGORITHMS. p-VALUES COMPUTED WITH NON-PARAMETRIC MANN-WHITNEY.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean p-value
Schack2017 [16] 33.1 27.8 18.5 28.8 12.6 8.7 20.65 21.8 22.3 12.6 21.1 22.8 27.7 12.1 16.4 20.5 < 0.01
SpaMaPlus [15] 8.86 9.67 6.40 14.10 24.06 11.34 6.31 11.25 16.04 6.17 15.15 12.03 8.50 7.76 8.29 11.06 < 0.01
STFT+CNN [3] 7.73 6.74 4.03 5.90 18.51 12.88 3.91 10.87 8.79 4.03 9.22 9.35 4.29 4.37 4.17 7.65 < 0.01
TAPIR [5] 4.50 4.50 3.20 6.00 5.00 3.40 2.80 6.30 8.00 2.90 5.10 4.70 3.10 5.00 4.10 4.57 < 0.01
CurToSS [25] 5.40 4.30 3.00 8.00 2.20 2.80 3.30 8.50 12.60 3.60 3.60 6.10 3.00 5.50 3.70 5.04 0.02

TimePPG-BestMAE 4.51 3.37 2.33 5.25 14.68 4.76 2.37 8.04 8.75 3.3 5.19 8.08 2.29 3.02 3.49 5.30 n.a.
+ Post-Processing 4.01 3.16 2.27 4.62 14.96 4.28 2.58 6.02 7.61 2.89 4.79 6.95 2.54 3.01 3.56 4.88 n.a.
+ Fine Tuning 3.17 2.74 3.13 4.25 4.88 3.7 2.48 5.19 7.00 3.47 3.67 3.91 2.85 3.55 3.6 3.84 n.a.

TABLE II
PORTING OF DIFFERENT MODELS OF OUR TIMEPPG ON AN STM32L4

WITH 128 KB RAM MEMORY AND 1 MB FLASH MEMORY.

Model Ram/Flash [kB] E. [mJ] Time [ms] MAE [BPM]
BestMCU 84.0 / 160.0 5.17 427.0 5.64
BestMCU† 24.9 / 94.7 4.44 367.0 7.06
BestSize 11.5 / 16.5 0.21 17.1 6.29
BestSize† 7.21 / 8.07 0.23 19.0 7.55
† With post-training int8 quantization. Dilation reduced to one, with bigger

filters to maintain the receptive field, to cope with toolchain limitations.

imposed by the target MCU; it requires 41.7k parameters, and
4M MACs and achieves a MAE of 5.64 BPM, i.e. a model
compression of 5.6× w.r.t. BestMAE, with a MAE increase
of just 0.34 BPM. BestSize is the smallest model found in
our design space exploration, obtained using MorphNet’s flops
regularizer with a strength of 1e-5 and a pruning threshold of
0.01. The model has just 5.09k parameters (46× compression)
and less than 100k MACs, with a MAE of 6.29 BPM (0.99
increase). Section IV-C analyzes the execution metrics of the
latter two TCNs on the STM32L476RG.

B. TimePPG-BestMAE: state-of-the-art comparison
Table I compares our proposed BestMAE TCN with different

state of the art methods, including both classical and deep
learning approaches. We report the results of the TCN alone,
as well as those obtained after the application of our proposed
post-processing and with fine-tuning.

TimePPG outperforms previous deep learning approaches,
such as the CNN from [3] and the Generative Adversarial
Network (GAN)-based method reported in [26] (not in the table
since individual subjects performance are not reported in the
original paper), achieving a mean MAE of 5.3 BPM vs. 7.65
BPM (CNN) and 8.3 BPM (GAN). Further, our model has 230k
parameters, i.e. 260× smaller than the CNN ensemble of [3].

Among classical algorithms, Schack2017 and SpaMaPlus are
optimised on a different dataset (IEEE training [2]), while
CurToSS and TAPIR are tailored to PPGDalia. Note that while
the four methods employ similar filtering and peak tracking
algorithms, the ones optimized for PPGDalia substantially out-
perform the others, demonstrating the intrinsic overfitting due
to parameter tuning in classical methods. With post-processing,
TimePPG-BestMAE is comparable to CurToSS (-0.16 BPM)
and TAPIR (+0.31 BPM). In particular, while our method
achieves comparable performance on the majority of the pa-
tients, it is substantially outperformed by classical methods on
subject 5 (MAE of 2 and 5 BPM vs 14.96 BPM of TimePPG
with post processing), which has HR values in the range 160-
180 BPM. Data-driven deep learning methods are less accurate
in predicting such large HR values, since no sample in that
range is present in the dataset used for training models validated

on subject 5. This is confirmed by the fact that also the CNN
from [3] similarly fails in estimating the HR of this subject,
reaching a MAE of 18.51 BPM.

To mimic a wider training dataset including all realistic HR
ranges, we applied the fine-tuning described in Section III-C.
As shown in Table I the fine-tuned TimePPG-BestMAE obtains
the lowest mean MAE of 3.84 BPM, outperforming all state-
of-the-art methods. Note that this improvement is mainly due
to subject 5, whose MAE decreases from 14.68 to 4.88 BPM.

C. Embedded Deployment Results
Table II summarizes the results obtained deploying the

previously described BestSize and BestMCU TCNs on the
STM32L476RG. Specifically, we deploy both float32 and int8-
quantized variants of each TCN. Unfortunately, the toolchain of-
fered by STM to deploy neural network models on their MCUs,
called X-CUBE-AI [27], does not support int8 quantization with
dilation factors higher than 1. To cope with this limitation, we
are obliged to use larger filters of size d × (K − 1) + 1 and
dilation 1 to maintain the original receptive field of the float
models. This actually increases the number of parameters in the
networks, resulting in a more complex network – 1.8× higher
number of parameters and 2.7× more computation. Overall,
the table shows that latency and energy consumption metrics
obtained with our methodology starting from a single seed
model span more than one order of magnitude. On one extreme,
the float version of BestMCU achieves a mean MAE of 5.64
BPM with an energy consumption of 5.17 mJ and 427 ms of
latency. Alternatively, we can use BestSize to lower the energy
consumption to just 0.21 mJ and the latency to 17.1 ms at the
cost of a higher MAE, 6.29 BPM.

Note that these results could be improved by i) applying
a quantization-aware training and ii) manually porting the
network to the MCU implementing d > 1 with int8 filters.
These steps would be objects of our future work. Despite these
limitations, BestSize model result in a Flash occupation of
just 8.07 KB, which could be very promising for the porting
on commercial ultra-low-power wrist-worn devices, but with
almost equal computation compared to the float32 model.

V. CONCLUSIONS

The efficient execution of HR monitoring algorithms is a
critical enabler for the personalized health care. In the direction
of employing lightweight algorithms for HR, we have proposed
a set of TCN regressors, all automatically derived from a single
seed model using NAS. With our exploration, we spanned a
wide range in all metrics, reaching as low as 3.84 BPM average
MAE, 0.21 mJ of energy per inference and 8.07 KB of memory
footprint, enabling the deployment of our models even to very
tiny MCUs with small embedded flash memories.
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