
Splash

User-friendly Programming Interface for
Parallelizing Stochastic Algorithms

Yuchen Zhang and Michael Jordan

AMP Lab, UC Berkeley

AMP Lab Splash April 2015 1 / 27



Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 1
n

∑n
i=1 `i (w).

Gradient Descent: iteratively update

wt+1 = wt − ηt∇L(wt).

Pros: Easy to parallelize (via Spark).
Cons: May need hundreds of iterations to converge.

running time (seconds)

0 50 100 150 200 250

lo
ss

 f
u
n
ct

io
n

0.55

0.6

0.65

0.7
Gradient Descent - 64 threads

AMP Lab Splash April 2015 2 / 27



Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 1
n

∑n
i=1 `i (w).

Gradient Descent: iteratively update

wt+1 = wt − ηt∇L(wt).

Pros: Easy to parallelize (via Spark).
Cons: May need hundreds of iterations to converge.

running time (seconds)

0 50 100 150 200 250

lo
ss

 f
u
n
ct

io
n

0.55

0.6

0.65

0.7
Gradient Descent - 64 threads

AMP Lab Splash April 2015 2 / 27



Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 1
n

∑n
i=1 `i (w).

Gradient Descent: iteratively update

wt+1 = wt − ηt∇L(wt).

Pros: Easy to parallelize (via Spark).
Cons: May need hundreds of iterations to converge.

running time (seconds)

0 50 100 150 200 250

lo
ss

 f
u
n
ct

io
n

0.55

0.6

0.65

0.7
Gradient Descent - 64 threads

AMP Lab Splash April 2015 2 / 27



Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 1
n

∑n
i=1 `i (w).

Stochastic Gradient Descent (SGD): randomly draw `t , then

wt+1 = wt − ηt∇`t(wt).

Pros: Much faster convergence.
Cons: Sequential algorithm, difficult to parallelize.

running time (seconds)

0 50 100 150 200 250

lo
ss

 f
u
n
ct

io
n

0.55

0.6

0.65

0.7
Gradient Descent - 64 threads

Stochastic Gradient Descent

AMP Lab Splash April 2015 3 / 27



Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 1
n

∑n
i=1 `i (w).

Stochastic Gradient Descent (SGD): randomly draw `t , then

wt+1 = wt − ηt∇`t(wt).

Pros: Much faster convergence.
Cons: Sequential algorithm, difficult to parallelize.

running time (seconds)

0 50 100 150 200 250

lo
ss

 f
u
n
ct

io
n

0.55

0.6

0.65

0.7
Gradient Descent - 64 threads

Stochastic Gradient Descent

AMP Lab Splash April 2015 3 / 27



More Stochastic Algorithms

Convex Optimization

Adaptive SGD (Duchi et al.)

Stochastic Average Gradient Method (Schmidt et al.)

Stochastic Dual Coordinate Ascent (Shalev-Shwartz and Zhang)

Probabilistic Model Inference

Markov chain Monte Carlo and Gibbs sampling

Expectation propagation (Minka)

Stochastic variational inference (Hoffman et al.)

SGD variants for

Matrix factorization

Learning neural networks

Learning denoising auto-encoder

How to parallelize these algorithms?

AMP Lab Splash April 2015 4 / 27



More Stochastic Algorithms

Convex Optimization

Adaptive SGD (Duchi et al.)

Stochastic Average Gradient Method (Schmidt et al.)

Stochastic Dual Coordinate Ascent (Shalev-Shwartz and Zhang)

Probabilistic Model Inference

Markov chain Monte Carlo and Gibbs sampling

Expectation propagation (Minka)

Stochastic variational inference (Hoffman et al.)

SGD variants for

Matrix factorization

Learning neural networks

Learning denoising auto-encoder

How to parallelize these algorithms?

AMP Lab Splash April 2015 4 / 27



More Stochastic Algorithms

Convex Optimization

Adaptive SGD (Duchi et al.)

Stochastic Average Gradient Method (Schmidt et al.)

Stochastic Dual Coordinate Ascent (Shalev-Shwartz and Zhang)

Probabilistic Model Inference

Markov chain Monte Carlo and Gibbs sampling

Expectation propagation (Minka)

Stochastic variational inference (Hoffman et al.)

SGD variants for

Matrix factorization

Learning neural networks

Learning denoising auto-encoder

How to parallelize these algorithms?

AMP Lab Splash April 2015 4 / 27



More Stochastic Algorithms

Convex Optimization

Adaptive SGD (Duchi et al.)

Stochastic Average Gradient Method (Schmidt et al.)

Stochastic Dual Coordinate Ascent (Shalev-Shwartz and Zhang)

Probabilistic Model Inference

Markov chain Monte Carlo and Gibbs sampling

Expectation propagation (Minka)

Stochastic variational inference (Hoffman et al.)

SGD variants for

Matrix factorization

Learning neural networks

Learning denoising auto-encoder

How to parallelize these algorithms?

AMP Lab Splash April 2015 4 / 27



First Attempt

After processing a subsequence of random samples...
Single-thread Algorithm: incremental update w ← w + ∆.

Parallel Algorithm:

Thread 1 (on 1/m of samples): w ← w + ∆1.
Thread 2 (on 1/m of samples): w ← w + ∆2.
. . .
Thread m (on 1/m of samples): w ← w + ∆m.

Aggregate parallel updates w ← w + ∆1 + · · ·+ ∆m.

running time (seconds)

0 20 40 60

lo
ss

 f
u

n
ct

io
n

0

20

40

60

80

100
Single-thread SGD

Parallel SGD - 64 threads

Doesn’t work for SGD!

AMP Lab Splash April 2015 5 / 27



First Attempt

After processing a subsequence of random samples...
Single-thread Algorithm: incremental update w ← w + ∆.
Parallel Algorithm:

Thread 1 (on 1/m of samples): w ← w + ∆1.
Thread 2 (on 1/m of samples): w ← w + ∆2.
. . .
Thread m (on 1/m of samples): w ← w + ∆m.

Aggregate parallel updates w ← w + ∆1 + · · ·+ ∆m.

running time (seconds)

0 20 40 60

lo
ss

 f
u

n
ct

io
n

0

20

40

60

80

100
Single-thread SGD

Parallel SGD - 64 threads

Doesn’t work for SGD!

AMP Lab Splash April 2015 5 / 27



First Attempt

After processing a subsequence of random samples...
Single-thread Algorithm: incremental update w ← w + ∆.
Parallel Algorithm:

Thread 1 (on 1/m of samples): w ← w + ∆1.
Thread 2 (on 1/m of samples): w ← w + ∆2.
. . .
Thread m (on 1/m of samples): w ← w + ∆m.

Aggregate parallel updates w ← w + ∆1 + · · ·+ ∆m.

running time (seconds)

0 20 40 60

lo
ss

 f
u

n
ct

io
n

0

20

40

60

80

100
Single-thread SGD

Parallel SGD - 64 threads

Doesn’t work for SGD!

AMP Lab Splash April 2015 5 / 27



First Attempt

After processing a subsequence of random samples...
Single-thread Algorithm: incremental update w ← w + ∆.
Parallel Algorithm:

Thread 1 (on 1/m of samples): w ← w + ∆1.
Thread 2 (on 1/m of samples): w ← w + ∆2.
. . .
Thread m (on 1/m of samples): w ← w + ∆m.

Aggregate parallel updates w ← w + ∆1 + · · ·+ ∆m.

running time (seconds)

0 20 40 60

lo
ss

 f
u

n
ct

io
n

0

20

40

60

80

100
Single-thread SGD

Parallel SGD - 64 threads

Doesn’t work for SGD!

AMP Lab Splash April 2015 5 / 27



Conflicts in Parallel Updates

Reason of failure: ∆1, . . . ,∆m simultaneously manipulate the same
variable w , causing conflicts in parallel updates.

How to resolve conflicts
1 Frequent communication between threads:

Pros: general approach to resolving conflict.
Cons: inter-node (asynchronous) communication is expensive!

2 Carefully partition the data to avoid threads simultaneously
manipulating the same variable:

Pros: doesn’t need frequent communication.
Cons: need problem-specific partitioning schemes; only works for a
subset of problems.

AMP Lab Splash April 2015 6 / 27



Conflicts in Parallel Updates

Reason of failure: ∆1, . . . ,∆m simultaneously manipulate the same
variable w , causing conflicts in parallel updates.

How to resolve conflicts

1 Frequent communication between threads:

Pros: general approach to resolving conflict.
Cons: inter-node (asynchronous) communication is expensive!

2 Carefully partition the data to avoid threads simultaneously
manipulating the same variable:

Pros: doesn’t need frequent communication.
Cons: need problem-specific partitioning schemes; only works for a
subset of problems.

AMP Lab Splash April 2015 6 / 27



Conflicts in Parallel Updates

Reason of failure: ∆1, . . . ,∆m simultaneously manipulate the same
variable w , causing conflicts in parallel updates.

How to resolve conflicts
1 Frequent communication between threads:

Pros: general approach to resolving conflict.
Cons: inter-node (asynchronous) communication is expensive!

2 Carefully partition the data to avoid threads simultaneously
manipulating the same variable:

Pros: doesn’t need frequent communication.
Cons: need problem-specific partitioning schemes; only works for a
subset of problems.

AMP Lab Splash April 2015 6 / 27



Conflicts in Parallel Updates

Reason of failure: ∆1, . . . ,∆m simultaneously manipulate the same
variable w , causing conflicts in parallel updates.

How to resolve conflicts
1 Frequent communication between threads:

Pros: general approach to resolving conflict.
Cons: inter-node (asynchronous) communication is expensive!

2 Carefully partition the data to avoid threads simultaneously
manipulating the same variable:

Pros: doesn’t need frequent communication.
Cons: need problem-specific partitioning schemes; only works for a
subset of problems.

AMP Lab Splash April 2015 6 / 27



Splash: A Principle Solution

Splash is

A programming interface for developing stochastic algorithms

An execution engine for running stochastic algorithm on distributed
systems.

Features of Splash include:

Easy Programming: User develop single-thread algorithms via
Splash: no communication protocol, no conflict management, no data
partitioning, no hyper-parameters tuning.

Fast Performance: Splash adopts novel strategy for automatic
parallelization with infrequent communication. Communication is no
longer a performance bottleneck.

Integration with Spark: taking RDD as input and returning RDD as
output. Work with KeystoneML, MLlib and other data analysis tools
on Spark.

AMP Lab Splash April 2015 7 / 27



Splash: A Principle Solution

Splash is

A programming interface for developing stochastic algorithms

An execution engine for running stochastic algorithm on distributed
systems.

Features of Splash include:

Easy Programming: User develop single-thread algorithms via
Splash: no communication protocol, no conflict management, no data
partitioning, no hyper-parameters tuning.

Fast Performance: Splash adopts novel strategy for automatic
parallelization with infrequent communication. Communication is no
longer a performance bottleneck.

Integration with Spark: taking RDD as input and returning RDD as
output. Work with KeystoneML, MLlib and other data analysis tools
on Spark.

AMP Lab Splash April 2015 7 / 27



Splash: A Principle Solution

Splash is

A programming interface for developing stochastic algorithms

An execution engine for running stochastic algorithm on distributed
systems.

Features of Splash include:

Easy Programming: User develop single-thread algorithms via
Splash: no communication protocol, no conflict management, no data
partitioning, no hyper-parameters tuning.

Fast Performance: Splash adopts novel strategy for automatic
parallelization with infrequent communication. Communication is no
longer a performance bottleneck.

Integration with Spark: taking RDD as input and returning RDD as
output. Work with KeystoneML, MLlib and other data analysis tools
on Spark.

AMP Lab Splash April 2015 7 / 27



Splash: A Principle Solution

Splash is

A programming interface for developing stochastic algorithms

An execution engine for running stochastic algorithm on distributed
systems.

Features of Splash include:

Easy Programming: User develop single-thread algorithms via
Splash: no communication protocol, no conflict management, no data
partitioning, no hyper-parameters tuning.

Fast Performance: Splash adopts novel strategy for automatic
parallelization with infrequent communication. Communication is no
longer a performance bottleneck.

Integration with Spark: taking RDD as input and returning RDD as
output. Work with KeystoneML, MLlib and other data analysis tools
on Spark.

AMP Lab Splash April 2015 7 / 27



Programming Interface

AMP Lab Splash April 2015 8 / 27



Programming with Splash

Splash users implement the following function:

def process(sample: Any, weight: Int, var: VariableSet){
/*implement stochastic algorithm*/

}

where

sample — a random sample from the dataset.

weight — observe the sample duplicated by weight times.

var — set of all shared variables.

AMP Lab Splash April 2015 9 / 27



Example: SGD for Linear Regression

Goal: find w∗ = arg minw
1
n

∑n
i=1(wxi − yi )

2.

SGD update: randomly draw (xi , yi ), then w ← w − η∇w (wxi − yi )
2.

Splash implementation:

def process(sample: Any, weight: Int, var: VariableSet){
val stepsize = var.get(“eta”) * weight
val gradient = sample.x * (var.get(“w”) * sample.x - sample.y)
var.add(“w”, - stepsize * gradient)

}

Supported operations: get, add, multiply, delayedAdd.

AMP Lab Splash April 2015 10 / 27



Example: SGD for Linear Regression

Goal: find w∗ = arg minw
1
n

∑n
i=1(wxi − yi )

2.

SGD update: randomly draw (xi , yi ), then w ← w − η∇w (wxi − yi )
2.

Splash implementation:

def process(sample: Any, weight: Int, var: VariableSet){
val stepsize = var.get(“eta”) * weight
val gradient = sample.x * (var.get(“w”) * sample.x - sample.y)
var.add(“w”, - stepsize * gradient)

}

Supported operations: get, add, multiply, delayedAdd.

AMP Lab Splash April 2015 10 / 27



Example: SGD for Linear Regression

Goal: find w∗ = arg minw
1
n

∑n
i=1(wxi − yi )

2.

SGD update: randomly draw (xi , yi ), then w ← w − η∇w (wxi − yi )
2.

Splash implementation:

def process(sample: Any, weight: Int, var: VariableSet){
val stepsize = var.get(“eta”) * weight
val gradient = sample.x * (var.get(“w”) * sample.x - sample.y)
var.add(“w”, - stepsize * gradient)

}

Supported operations: get, add, multiply, delayedAdd.

AMP Lab Splash April 2015 10 / 27



Get Operations

Get the value of the variable (Double or Array[Double]).

get(key) returns var[key]

getArray(key) returns varArray[key]

getArrayElement(key, index) returns varArray[key][index]

getArrayElements(key, indices) returns varArray[key][indices]

Array-based operations are more efficient than element-wise operations,
because the key-value retrieval is executed only once for operating an array.

AMP Lab Splash April 2015 11 / 27



Add Operations

Add a quantity δ to the variable.

add(key, delta): var[key] += delta

addArray(key, deltaArray): varArray[key] += deltaArray

addArrayElement(key, index, delta): varArray[key][index] += delta

addArrayElements(key, indices, deltaArrayElements):
varArray[key][indices] += deltaArrayElements

AMP Lab Splash April 2015 12 / 27



Multiply Operations

Multiply a quantity γ to the variable v .

multiply(key, gamma): var[key] *= gamma

multiplyArray(key, gamma): varArray[key] *= gamma

We have optimized the implementation so that the time complexity of
multiplyArray is O(1), independent of the array dimension.

Example: SGD with sparse features and `2-norm regularization.

w ← (1− λ) ∗ w (multiply operation) (1)

w ← w − η∇f (w) (addArrayElements operation) (2)

Time complexity of (1) = O(1); Time complexity of (2) = nnz(∇f (w)).

AMP Lab Splash April 2015 13 / 27



Multiply Operations

Multiply a quantity γ to the variable v .

multiply(key, gamma): var[key] *= gamma

multiplyArray(key, gamma): varArray[key] *= gamma

We have optimized the implementation so that the time complexity of
multiplyArray is O(1), independent of the array dimension.

Example: SGD with sparse features and `2-norm regularization.

w ← (1− λ) ∗ w (multiply operation) (1)

w ← w − η∇f (w) (addArrayElements operation) (2)

Time complexity of (1) = O(1); Time complexity of (2) = nnz(∇f (w)).

AMP Lab Splash April 2015 13 / 27



Delayed Add Operations

Add a quantity δ to the variable v . The operation is not executed until the
next time the same sample is processed by the system.

delayedAdd(key, delta): var[key] += delta

delayedAddArray(key, deltaArray): varArray[key] += deltaArray

delayedAddArrayElement(key, index, delta):
varArray[key][index] += delta

Example: Collapsed Gibbs Sampling for LDA – update the word-topic
counter nwk when topic k is assigned to word w .

nwk ← nwk + weight (add operation) (3)

nwk ← nwk − weight (delayed add operation) (4)

(3) executed instantly; (4) will be executed at the next time before a new
topic is sampled for the same word.

AMP Lab Splash April 2015 14 / 27



Delayed Add Operations

Add a quantity δ to the variable v . The operation is not executed until the
next time the same sample is processed by the system.

delayedAdd(key, delta): var[key] += delta

delayedAddArray(key, deltaArray): varArray[key] += deltaArray

delayedAddArrayElement(key, index, delta):
varArray[key][index] += delta

Example: Collapsed Gibbs Sampling for LDA – update the word-topic
counter nwk when topic k is assigned to word w .

nwk ← nwk + weight (add operation) (3)

nwk ← nwk − weight (delayed add operation) (4)

(3) executed instantly; (4) will be executed at the next time before a new
topic is sampled for the same word.

AMP Lab Splash April 2015 14 / 27



Running Stochastic Algorithm

Three simple steps:

1 Convert RDD dataset to Parametrized RDD:

val paramRdd = new ParametrizedRDD(rdd)

2 Set a function that implements the algorithm:

paramRdd.setProcessFunction(process)

3 Start running:

paramRdd.run()

AMP Lab Splash April 2015 15 / 27



Running Stochastic Algorithm

Three simple steps:

1 Convert RDD dataset to Parametrized RDD:

val paramRdd = new ParametrizedRDD(rdd)

2 Set a function that implements the algorithm:

paramRdd.setProcessFunction(process)

3 Start running:

paramRdd.run()

AMP Lab Splash April 2015 15 / 27



Running Stochastic Algorithm

Three simple steps:

1 Convert RDD dataset to Parametrized RDD:

val paramRdd = new ParametrizedRDD(rdd)

2 Set a function that implements the algorithm:

paramRdd.setProcessFunction(process)

3 Start running:

paramRdd.run()

AMP Lab Splash April 2015 15 / 27



Execution Engine

AMP Lab Splash April 2015 16 / 27



How does Splash work?

In each iteration, the execution engine does:

1 Propose candidate degrees of parallelism m1, . . . ,mk such that∑k
i mi = m := (# of cores). For each i ∈ [k], collect mi cores and

do:

1 Each core gets a sub-sequence of samples (by default 1
m of the full

data). They process the samples sequentially using the process
function. Every sample is weighted by mi .

2 Combine the updates of all mi cores to get the global update. There
are different strategies for combining different types of updates. For
add operations, the updates are averaged.

2 If k > 1, then select the best mi by a parallel cross-validation
procedure.

3 Broadcast the best update to all machines to apply this update. Then
proceed to the next iteration. (degree of parallelism doesn’t decrease)

AMP Lab Splash April 2015 17 / 27



How does Splash work?

In each iteration, the execution engine does:

1 Propose candidate degrees of parallelism m1, . . . ,mk such that∑k
i mi = m := (# of cores). For each i ∈ [k], collect mi cores and

do:
1 Each core gets a sub-sequence of samples (by default 1

m of the full
data). They process the samples sequentially using the process
function. Every sample is weighted by mi .

2 Combine the updates of all mi cores to get the global update. There
are different strategies for combining different types of updates. For
add operations, the updates are averaged.

2 If k > 1, then select the best mi by a parallel cross-validation
procedure.

3 Broadcast the best update to all machines to apply this update. Then
proceed to the next iteration. (degree of parallelism doesn’t decrease)

AMP Lab Splash April 2015 17 / 27



How does Splash work?

In each iteration, the execution engine does:

1 Propose candidate degrees of parallelism m1, . . . ,mk such that∑k
i mi = m := (# of cores). For each i ∈ [k], collect mi cores and

do:
1 Each core gets a sub-sequence of samples (by default 1

m of the full
data). They process the samples sequentially using the process
function. Every sample is weighted by mi .

2 Combine the updates of all mi cores to get the global update. There
are different strategies for combining different types of updates. For
add operations, the updates are averaged.

2 If k > 1, then select the best mi by a parallel cross-validation
procedure.

3 Broadcast the best update to all machines to apply this update. Then
proceed to the next iteration. (degree of parallelism doesn’t decrease)

AMP Lab Splash April 2015 17 / 27



How does Splash work?

In each iteration, the execution engine does:

1 Propose candidate degrees of parallelism m1, . . . ,mk such that∑k
i mi = m := (# of cores). For each i ∈ [k], collect mi cores and

do:
1 Each core gets a sub-sequence of samples (by default 1

m of the full
data). They process the samples sequentially using the process
function. Every sample is weighted by mi .

2 Combine the updates of all mi cores to get the global update. There
are different strategies for combining different types of updates. For
add operations, the updates are averaged.

2 If k > 1, then select the best mi by a parallel cross-validation
procedure.

3 Broadcast the best update to all machines to apply this update. Then
proceed to the next iteration. (degree of parallelism doesn’t decrease)

AMP Lab Splash April 2015 17 / 27



How does Splash work?

In each iteration, the execution engine does:

1 Propose candidate degrees of parallelism m1, . . . ,mk such that∑k
i mi = m := (# of cores). For each i ∈ [k], collect mi cores and

do:
1 Each core gets a sub-sequence of samples (by default 1

m of the full
data). They process the samples sequentially using the process
function. Every sample is weighted by mi .

2 Combine the updates of all mi cores to get the global update. There
are different strategies for combining different types of updates. For
add operations, the updates are averaged.

2 If k > 1, then select the best mi by a parallel cross-validation
procedure.

3 Broadcast the best update to all machines to apply this update. Then
proceed to the next iteration. (degree of parallelism doesn’t decrease)

AMP Lab Splash April 2015 17 / 27



Example: Reweighting for SGD

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Optimal solution

(b) Solution with full update

(c) Local solutions with unit-weight update

AMP Lab Splash April 2015 18 / 27



Example: Reweighting for SGD

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Optimal solution

(b) Solution with full update

(c) Local solutions with unit-weight update

(d) Average local solutions in (c)

(e) Aggregate local solutions in (c)

(29,8)

AMP Lab Splash April 2015 18 / 27



Example: Reweighting for SGD

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Optimal solution

(b) Solution with full update

(c) Local solutions with unit-weight update

(d) Average local solutions in (c)

(e) Aggregate local solutions in (c)

(f) Local solutions with weighted update

(29,8)

AMP Lab Splash April 2015 18 / 27



Example: Reweighting for SGD

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Optimal solution

(b) Solution with full update

(c) Local solutions with unit-weight update

(d) Average local solutions in (c)

(e) Aggregate local solutions in (c)

(f) Local solutions with weighted update

(g) Average local solutions in (f)

(29,8)

AMP Lab Splash April 2015 18 / 27



Experiments

AMP Lab Splash April 2015 19 / 27



Experiment Setups

System: Amazon EC2 cluster with 8 workers. Each worker has 8
Intel Xeon E5-2665 cores and 30 GBs of memory and was connected
to a commodity 1GB network

Algorithms: SGD for logistic regression; mini-batch SGD for
collaborative filtering; Gibbs Sampling for topic modelling;.

Datasets:
MNIST 8M (LR): 8 million samples, 7,840 parameters.
Netflix (CF): 100 million samples, 65 million parameters.
NYTimes (LDA): 100 million samples, 200 million parameters.

Baseline methods: single-thread stochastic algorithm; MLlib (the
official machine learning library for Spark).

AMP Lab Splash April 2015 20 / 27



Logistic Regression on MNIST Digit Recognition

runtime (seconds)

0 100 200 300 400 500

lo
ss

 f
u
n
c
ti

o
n

0.45

0.5

0.55

0.6
Splash (SGD)
Single-thread SGD
MLlib (L-BFGS)

loss function value

0.460.470.480.49

sp
ee

d
u
p
 r

at
e

10

20

30

40
Over single-thread SGD
Over MLlib (L-BFGS)

Splash converges to a good solution in a few seconds, while other
methods take hundreds of seconds.

Splash is 10x - 25x faster than single-thread SGD.

Splash is 15x - 30x faster than parallelized L-BFGS.

AMP Lab Splash April 2015 21 / 27



Netflix Movie Recommendation

runtime (seconds)

0 100 200 300 400 500

p
re

d
ic

ti
o

n
 l

o
ss

0.8

1

1.2

1.4
Splash (SGD)
Single-thread SGD
MLlib (ALS)

Splash is 36x faster than parallelized Alternating Least Square (ALS).

Splash converges to a better solution than ALS (the problem is
non-convex).

AMP Lab Splash April 2015 22 / 27



Topic Modelling on New York Times Articles

runtime (seconds)

0 1000 2000

p
re

d
ic

ti
v

e 
lo

g
-l

ik
el

ih
o

o
d

-9

-8.5

-8
Splash (Gibbs)
Single-thread (Gibbs)
MLlib (VI)

Splash is 3x - 6x faster than parallelized Variational Inference (VI).

Splash converges to a better solution than VI.

AMP Lab Splash April 2015 23 / 27



Runtime Analysis

MNIST 8M (LR) Netflix (CF) NYTimes (LDA)

R
u
n
ti

m
e 

p
er

 p
as

s

0

10

20

30

40

50

60

Computation time

Waiting time

Communication time

Waiting time is 16%, 21%, 26% of the computation time.

Communication time is 6%, 39% and 103% of the computation time.

AMP Lab Splash April 2015 24 / 27



Machine Learning Package

AMP Lab Splash April 2015 25 / 27



Stochastic Machine Learning Library on Splash

Goal:
Fast performance: order-of-magnitude faster than MLlib.
Ease of use: call with one line of code.
Integration: easy to build a data analytics pipeline.

Algorithms:
Stochastic gradient descent.
Stochastic matrix factorization.
Gibbs sampling for LDA.

Will implement more algorithms in the future...

AMP Lab Splash April 2015 26 / 27



Summary

Splash is a general-purpose programming interface for developing
stochastic algorithms.

Splash is also an execution engine for automatic parallelizing
stochastic algorithms.

Reweighting is the key to achieve fast performance without scarifying
communication efficiency.

We observe good empirical performance and we have theoretical
guarantees for SGD.

Splash is online at http://zhangyuc.github.io/splash/.

AMP Lab Splash April 2015 27 / 27


