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Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 137 2;(w).
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Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 1 37 | £;(w).
Gradient Descent: iteratively update
Wiyl = W — ntVL(Wt)

Pros: Easy to parallelize (via Spark).
Cons: May need hundreds of iterations to converge.
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Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 137 2;(w).

" n

Stochastic Gradient Descent (SGD): randomly draw /¢;, then

Wiyl = Wt — ntvet(wt)'
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Batch Algorithm v.s. Stochastic Algorithm

Consider minimizing a loss function L(w) := 1 37 | £;(w).

Stochastic Gradient Descent (SGD): randomly draw /¢;, then
Wyl = We — 1 VE(We).

Pros: Much faster convergence.

Cons: Sequential algorithm, difficult to parallelize.

0.7

——Gradient Descent - 64 threads
——Stochastic Gradient Descent
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More Stochastic Algorithms

Convex Optimization
o Adaptive SGD (Duchi et al.)
@ Stochastic Average Gradient Method (Schmidt et al.)
@ Stochastic Dual Coordinate Ascent (Shalev-Shwartz and Zhang)
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More Stochastic Algorithms

Convex Optimization

o Adaptive SGD (Duchi et al.)

@ Stochastic Average Gradient Method (Schmidt et al.)

@ Stochastic Dual Coordinate Ascent (Shalev-Shwartz and Zhang)
Probabilistic Model Inference

@ Markov chain Monte Carlo and Gibbs sampling

e Expectation propagation (Minka)

@ Stochastic variational inference (Hoffman et al.)
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More Stochastic Algorithms

Convex Optimization
o Adaptive SGD (Duchi et al.)
@ Stochastic Average Gradient Method (Schmidt et al.)

@ Stochastic Dual Coordinate Ascent (Shalev-Shwartz and Zhang)
Probabilistic Model Inference

@ Markov chain Monte Carlo and Gibbs sampling

e Expectation propagation (Minka)

@ Stochastic variational inference (Hoffman et al.)
SGD variants for

@ Matrix factorization

@ Learning neural networks

@ Learning denoising auto-encoder

How to parallelize these algorithms?
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First Attempt

After processing a subsequence of random samples...
Single-thread Algorithm: incremental update w < w + A.
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First Attempt

After processing a subsequence of random samples...
Single-thread Algorithm: incremental update w < w + A.
Parallel Algorithm:

e Thread 1 (on 1/m of samples): w < w + A;.

@ Thread 2 (on 1/m of samples): w < w + Ay.

° ...

e Thread m (on 1/m of samples): w < w + Ap,.
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First Attempt

After processing a subsequence of random samples...

Single-thread Algorithm: incremental update w < w + A.

Parallel Algorithm:
e Thread 1 (on 1/m of samples): w < w + A;.
@ Thread 2 (on 1/m of samples): w < w + Ay.

@ Thread m (on 1/m of samples): w < w + Ap,.
Aggregate parallel updates w < w + A1 + - + Ap,.
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Conflicts in Parallel Updates

Reason of failure: Aj,..., A, simultaneously manipulate the same
variable w, causing conflicts in parallel updates.
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Conflicts in Parallel Updates

Reason of failure: Aj,..., A, simultaneously manipulate the same
variable w, causing conflicts in parallel updates.

How to resolve conflicts
© Frequent communication between threads:

e Pros: general approach to resolving conflict.
o Cons: inter-node (asynchronous) communication is expensive!
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Conflicts in Parallel Updates

Reason of failure: Aj,..., A, simultaneously manipulate the same
variable w, causing conflicts in parallel updates.

How to resolve conflicts
© Frequent communication between threads:

e Pros: general approach to resolving conflict.
o Cons: inter-node (asynchronous) communication is expensive!

@ Carefully partition the data to avoid threads simultaneously
manipulating the same variable:
e Pros: doesn’'t need frequent communication.
o Cons: need problem-specific partitioning schemes; only works for a
subset of problems.
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Splash: A Principle Solution

Splash is
@ A programming interface for developing stochastic algorithms

@ An execution engine for running stochastic algorithm on distributed
systems.
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Features of Splash include:

o Easy Programming: User develop single-thread algorithms via
Splash: no communication protocol, no conflict management, no data
partitioning, no hyper-parameters tuning.
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@ A programming interface for developing stochastic algorithms
@ An execution engine for running stochastic algorithm on distributed
systems.
Features of Splash include:

o Easy Programming: User develop single-thread algorithms via
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partitioning, no hyper-parameters tuning.

o Fast Performance: Splash adopts novel strategy for automatic
parallelization with infrequent communication. Communication is no
longer a performance bottleneck.
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Splash: A Principle Solution

Splash is
@ A programming interface for developing stochastic algorithms

@ An execution engine for running stochastic algorithm on distributed
systems.

Features of Splash include:
o Easy Programming: User develop single-thread algorithms via

Splash: no communication protocol, no conflict management, no data
partitioning, no hyper-parameters tuning.

o Fast Performance: Splash adopts novel strategy for automatic
parallelization with infrequent communication. Communication is no
longer a performance bottleneck.

o Integration with Spark: taking RDD as input and returning RDD as
output. Work with KeystoneML, MLIib and other data analysis tools
on Spark.
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Programming Interface
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Programming with Splash

Splash users implement the following function:

def process( . Any, . Int, var: VariableSet){

/*implement stochastic algorithm*/

where
° — a random sample from the dataset.
° — observe the sample duplicated by times.
° — set of all shared variables.
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Example: SGD for Linear Regression

Goal: find w* = argmin,, 1 377 (wx; — y;)2.

SGD update: randomly draw (x;, y;), then w + w — nV,, (wx; — y;)?.
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Example: SGD for Linear Regression

Goal: find w* = argmin,, 1 377 (wx; — y;)2.
SGD update: randomly draw (x;, y;), then w + w — nV,, (wx; — y;)?.

Splash implementation:

def process( . Any, . Int, var: VariableSet){
val = var.get(“eta”) *
val = * (var.get("w") * - )
add("w”, - * )
}
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Example: SGD for Linear Regression

Goal: find w* = argmin,, 1 377 (wx; — y;)2.

SGD update: randomly draw (x;, y;), then w + w — nV,, (wx; — y;)?.

Splash implementation:

def process( . Any, . Int, var: VariableSet){
val = var.get(“eta”) *
val = * (var.get("w") * -
add("w”, - * )
}

Supported operations: get, add, multiply, delayedAdd.
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Get Operations

Get the value of the variable (Double or Array[Double]).

o get(key) returns var|key]

o getArray(key) returns varArray[key]

o getArrayElement(key, index) returns varArray[key][index]

o getArrayElements(key, indices) returns varArray[key][indices]

Array-based operations are more efficient than element-wise operations,
because the key-value retrieval is executed only once for operating an array.
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Add Operations

Add a quantity 6 to the variable.

o add(key, delta): var[key] += delta
o addArray(key, deltaArray): varArraylkey] += deltaArray
o addArrayElement(key, index, delta): varArray[key][index] += delta

o addArrayElements(key, indices, deltaArrayElements):
varArray|key][indices] += deltaArrayElements
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Multiply Operations

Multiply a quantity v to the variable v.
e multiply(key, gamma): var[key] *= gamma

e multiplyArray(key, gamma): varArraylkey] *= gamma

We have optimized the implementation so that the time complexity of
multiplyArray is O(1), independent of the array dimension.
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Multiply Operations

Multiply a quantity v to the variable v.

e multiply(key, gamma): var[key] *= gamma

e multiplyArray(key, gamma): varArraylkey] *= gamma

We have optimized the implementation so that the time complexity of
multiplyArray is O(1), independent of the array dimension.

Example: SGD with sparse features and £>-norm regularization.

w < (1 —A)*w (multiply operation) (1)
w < w —nVf(w) (addArrayElements operation) (2)

Time complexity of (1) = O(1); Time complexity of (2) = nnz(Vf(w)).
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Delayed Add Operations

Add a quantity J to the variable v. The operation is not executed until the
next time the same sample is processed by the system.

o delayedAdd(key, delta): varlkey] += delta

o delayedAddArray(key, deltaArray): varArray[key] += deltaArray

o delayedAddArrayElement(key, index, delta):
varArray[key][index] += delta
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Delayed Add Operations

Add a quantity J to the variable v. The operation is not executed until the
next time the same sample is processed by the system.

o delayedAdd(key, delta): var[key] += delta
o delayedAddArray(key, deltaArray): varArray[key] += deltaArray

o delayedAddArrayElement(key, index, delta):
varArray[key][index] += delta

Example: Collapsed Gibbs Sampling for LDA — update the word-topic
counter n,x when topic k is assigned to word w.

Nwk < Nwk + weight (add operation) (3)
Nwk < Nwx — weight (delayed add operation) (4)

(3) executed instantly; (4) will be executed at the next time before a new
topic is sampled for the same word.
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Running Stochastic Algorithm

Three simple steps:
@ Convert RDD dataset to Parametrized RDD:

val paramRdd = new ParametrizedRDD(rdd)

AMP Lab Splash April 2015 15 / 27



Running Stochastic Algorithm

Three simple steps:
@ Convert RDD dataset to Parametrized RDD:

val paramRdd = new ParametrizedRDD(rdd)

@ Set a function that implements the algorithm:

paramRdd.setProcessFunction(process)

AMP Lab Splash April 2015 15 / 27



Running Stochastic Algorithm

Three simple steps:
@ Convert RDD dataset to Parametrized RDD:

val paramRdd = new ParametrizedRDD(rdd)

@ Set a function that implements the algorithm:

paramRdd.setProcessFunction(process)

© Start running:
paramRdd.run()
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Execution Engine
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How does Splash work?

In each iteration, the execution engine does:

@ Propose candidate degrees of parallelism my, ..., my such that
S K mj = m := (# of cores). For each i € [k], collect m; cores and
do:
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@ Each core gets a sub-sequence of samples (by default % of the full
data). They process the samples sequentially using the process
function. Every sample is weighted by m;.

AMP Lab Splash April 2015 17 / 27



How does Splash work?

In each iteration, the execution engine does:

@ Propose candidate degrees of parallelism my, ..., my such that
S K mj = m := (# of cores). For each i € [k], collect m; cores and
do:
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do:

@ Each core gets a sub-sequence of samples (by default % of the full
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procedure.
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How does Splash work?

In each iteration, the execution engine does:

@ Propose candidate degrees of parallelism my, ..., my such that
S K mj = m := (# of cores). For each i € [k], collect m; cores and
do:

@ Each core gets a sub-sequence of samples (by default % of the full
data). They process the samples sequentially using the process
function. Every sample is weighted by m;.

@ Combine the updates of all m; cores to get the global update. There
are different strategies for combining different types of updates. For
add operations, the updates are averaged.

@ If k > 1, then select the best m; by a parallel cross-validation
procedure.

© Broadcast the best update to all machines to apply this update. Then
proceed to the next iteration. (degree of parallelism doesn't decrease)

AMP Lab Splash April 2015 17 / 27



Example: Reweighting for SGD

éK (a) Optimal solution
0.8 | P> () Solution with full update
A (c) Local solutions with unit-weight update
0.6
04
02 |
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>
-02
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Example: Reweighting for SGD

éK (a) Optimal solution
08 F P> (b) Solution with full update
A (c) Local solutions with unit-weight update 0.8
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Example: Reweighting for SGD

1~
éK (a) Optimal solution
0.8 | P> () Solution with full update
A (c) Local solutions with unit-weight update 0.8
A (d) Average local solutions in (c) (29.8)
0.6 (e) Aggregate local solutions in (c)
O (f) Local solutions with weighted update
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Example: Reweighting for SGD

éK (a) Optimal solution
08 F P> (b) Solution with full update

A (c) Local solutions with unit-weight update 0.8

A (d) Average local solutions in (c) (@98)
0.6 - (e) Aggregate local solutions in (c)
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Experiments
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Experiment Setups

@ System: Amazon EC2 cluster with 8 workers. Each worker has 8
Intel Xeon E5-2665 cores and 30 GBs of memory and was connected
to a commodity 1GB network

@ Algorithms: SGD for logistic regression; mini-batch SGD for
collaborative filtering; Gibbs Sampling for topic modelling;.
o Datasets:

e MNIST 8M (LR): 8 million samples, 7,840 parameters.
o Netflix (CF): 100 million samples, 65 million parameters.
o NYTimes (LDA): 100 million samples, 200 million parameters.

o Baseline methods: single-thread stochastic algorithm; MLIib (the
official machine learning library for Spark).
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Logistic Regression on MNIST Digit Recognition

0.6 40
—==Splash (SGD) = =Over single-thread SGD
— =Single-thread SGD ——Over MLIib (L-BFGS)
0.55 ——MLIib (L-BFGS) 30
g 8
2 S
5 I
=] (=%
& 220
2 3
[=] (=%
= @
10
0 100 200 300 400 500 0.49 0.48 0.47 0.46
runtime (seconds) loss function value

@ Splash converges to a good solution in a few seconds, while other
methods take hundreds of seconds.

@ Splash is 10x - 25x faster than single-thread SGD.
@ Splash is 15x - 30x faster than parallelized L-BFGS.
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Netflix Movie Recommendation

1.4

—==Splash (SGD)
12 | — =Single-thread SGD
—MLIib (ALS)

prediction loss

0 100 200 300 400 500
runtime (seconds)

@ Splash is 36x faster than parallelized Alternating Least Square (ALS).

@ Splash converges to a better solution than ALS (the problem is
non-convex).
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Topic Modelling on New York Times Articles

@ Splash is 3x - 6x faster than parallelized Variational Inference (VI).

predictive log-likelihood

=== Splash (Gibbs)

[ |= =Single-thread (Gibbs)

——MLIib (V)

-

1000

2000

runtime (seconds)

@ Splash converges to a better solution than VI.
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Runtime Analysis

60

[ w N v
S S S S

Runtime per pass

S

Il Computation time
| | Waiting time
[ JCommunication time

MNIST 8M (LR)  Netflix (CF)

NYTimes (LDA)

e Waiting time is 16%, 21%, 26% of the computation time.

e Communication time is 6%, 39% and 103% of the computation time.
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Machine Learning Package
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Stochastic Machine Learning Library on Splash

o Goal:
o Fast performance: order-of-magnitude faster than MLIib.
o Ease of use: call with one line of code.
o Integration: easy to build a data analytics pipeline.

o Algorithms:

e Stochastic gradient descent.
e Stochastic matrix factorization.
o Gibbs sampling for LDA.

@ Will implement more algorithms in the future...
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Summary

@ Splash is a general-purpose programming interface for developing
stochastic algorithms.

@ Splash is also an execution engine for automatic parallelizing
stochastic algorithms.

@ Reweighting is the key to achieve fast performance without scarifying
communication efficiency.

@ We observe good empirical performance and we have theoretical
guarantees for SGD.

@ Splash is online at http://zhangyuc.github.io/splash/.
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