
Transformer Models for Type Inference in the

Simply Typed Lambda Calculus: A Case Study

in Deep Learning for Code

Brando Miranda ∗, Nathan Fulton, Avi Shinnar,
Vasily Pestun†, and Barry Trager

IBM Research

August 2021

Abstract

Despite a growing body of work at the intersection of deep learning and
formal languages, there has been relatively little systematic exploration
of transformer models for reasoning about typed lambda calculi. This is
an interesting area of inquiry for two reasons. First, typed lambda calculi
are the lingua franc of programming languages. A set of heuristics that
relate various typed lambda calculi to effective neural architectures would
provide a systematic method for mapping language features (e.g., poly-
morphism, subtyping, inheritance, etc.) to architecture choices. Second,
transformer models are widely used in deep learning architectures applied
to code, but the design and hyperparameter space for them is large and
relatively unexplored in programming language applications. Therefore,
we suggest a benchmark that allows us to explore exactly this through
perhaps the simplest and most fundamental property of a programming
language: the relationship between terms and types. Consequently, we
begin this inquiry of transformer architectures for typed lambda calculi
by exploring the effect of transformer warm-up and optimizer selection in
the task of type inference: i.e., predicting the types of lambda calculus
terms using only transformers. We find that the optimization landscape
is difficult even in this simple setting. One particular experimental find-
ing is that optimization by Adafactor converges much faster compared
to the optimization by Adam and RAdam. We conjecture that such dif-
ferent performance of optimizers might be related to the difficulties of
generalization over formally generated dataset.

∗Also affiliated with the University of Illinois at Urbana-Champaign.
†Also affiliated with IHES.

1

ar
X

iv
:2

30
4.

10
50

0v
1

 [
cs

.P
L

]
 1

5
M

ar
 2

02
3

1 Introduction

The success of deep learning in computer vision [1, 2], natural language pro-
cessing [3, 4], and especially game playing [5, 6, 7] motivates a growing body
of work on deep learning for programming tasks. Work in the intersection of
deep learning and programming languages includes the use of neural networks to
solve classical problems in programming language research (neural guided proof
search [8], neural deductive program synthesis [9], and neural inductive program
synthesis [10]), the use of programming languages to address the weaknesses of
deep learning in canonical application domains, and the combination of pro-
gramming languages with deep learning to solve novel tasks (e.g., NLP-to-code
[11]).

Despite a growing body of work at the intersection of deep learning and for-
mal languages, there has been relatively little systematic exploration of trans-
former models for reasoning about typed lambda calculi. This is an interesting
area of inquiry for two reasons. First, typed lambda calculi are a lingua franc
of programming languages. A set of heuristics that relate various typed lambda
calculi to effective neural architectures would provide a systematic method for
mapping language features (e.g., polymorphism, subtyping, inheritance, etc.) to
architecture choices. Second, transformer models are widely used in deep learn-
ing architectures applied to code, but the design space and hyperparameter
space for transformers is truly massive and relatively unexplored in program-
ming language applications.

This paper begins an inquiry of transformer architectures for simply typed
lambda calculi by exploring the effect of transformer warm-up [12, 13, 14, 15]
and optimizer selection for learning to do type inference. This benchmark allows
us to explore, in a simple setting, ability of transformers to reason about perhaps
the simplest and most fundamental property of a programming language: the
relationship between terms and types.

Our contributions are the following:

• We explore a full spectrum of hyperparameters for a fixed transformer
architecture. We find that the learning rate but not the warm-up steps, is
the most important hyperparameter. This finding is significant due to the
strong emphasis in the current literature on the importance of a warm-up
schedule for the learning rate [12, 13, 14, 15, 16].

• We show that, despite the simplicity of the task, extensive hyperparameter
search was needed to achieve acceptable performance.

• We find that the Adafactor optimizer [16] consistently achieves zero train
error and zero validation error on our task without any hyperparameters
tuning. This holds both when using complicated path embeddings of
formulas (analogous to a character embedding for natural language) and
when using depth embeddings [17].

From the impressive stability Adafactor brought to our training we conjec-
ture that the difficulty of training transformer-based models for learning

2

formal rules – for example first observered with “Grokking” by previous
work [18] – might be avoidable by using the Adafactor optimizer [16].
Therefore, we suggest practitioners and researchers to try Adafactor first.

2 Background

This section reviews transformers and the simply typed lambda calculus.

2.1 Transformers

The transformer model has had a tremendous impact in natural language pro-
cessing (NLP). It is able to generate human-like sounding language with models
like the GPT-n series [4]. In addition, the transformer model has been used
to generate code with GPT-3 [4], GitHub copilot [11], TreeGen [17], GPT-f
[19], skip-trees [20] and more. A common way it’s trained for NLP is by trans-
forming the natural language sentences into a sequence of tokens from a closed
vocabulary, and then feeding large amounts of data (e.g., millions of tokens)
to a transformer model with an order of millions of parameters [13]. In formal
language generation, transformers are typically trained to generate code from
natural language [11, 17] or directly on the formal languages [19, 20, 21].

2.2 The Simply Typed Lambda Calculus

The simply typed lambda calculus is a programming language model that cap-
tures the essence of function definitions and function applications. The language
has both terms and types. Note that terms are also called programs, but we
will use the word term in our paper.

A type is either an elementary type denoted by a letter from a prefixed based
alphabet t ∈ T , or a type of a function denoted by an arrow from type to type:

τ ::= t | τ → τ (1)

Terms of the simply typed lambda calculus include variables (ranged over
alphabet of variables x ∈ X), function definitions, and function applications:

e ::= x | λx : τ.e | e1 e2

The expression λx : τ.e defines a function that takes one argument called x
with type τ ; e is the body of the function (which may, of course, mention the
argument x). The expression e1 e2 calls the function e1 with the argument e2.

The language can be enriched with base types and base variables. For ex-
ample, consider the language extended with a nat base type and base variables
0, 1, 2, The following expression defines a function that takes any number as
input and returns the number 1, and then applies this function to the number
5:

(λx : nat.1)5

3

Usually, such a scenario is captured by a typing environment Γ (also called
context) with variables and their types. Formally, a typing environment (or
context) is a set of pairs x : τ where x is a variable and τ is its type. For example,
if we only have base variables at the beginning of execution, then the typing
environment for the previous example would be Γ = {1 : nat, 2 : nat, ..., }.
Traditionally, a type judgment is denoted as follows:

Γ ` e : τ

which means that the term e has type τ in context Γ. Note that going forward,
we will refer to the typing environment simply as the context.

2.3 Type Inference

Type inference algorithms compute the type of an expression. Type inference
plays an important role in typed programming languages but becomes more
difficult as languages become more expressive; for example, type inference in
OCaml or Scala is EXPTIME (but almost always tractable in practice) [22,
23]. In more expressive type theories, such as those used for theorem proving,
type inference becomes undecidable in general and difficult to automate even in
practice with extensive use of heuristics.

Type inference in the simply typed lambda calculus, however, is trivial. In
particular, its PTIME-completeness is well known [24] (i.e., one can compute
the type in polynomial time using a Turing Machine) and to show its triviality
provide the pseudocode in section 9. The triviality of this problem is exactly
why we hypothesize that type inference for simply typed lambda calculus is an
excellent few-shot learning benchmark. Given a few examples of type inference
in a programming languages class, students should be able to generalize to
terms of longer length, terms with different base types, etc. A transformer that
understands the formal language model over which it is operating should be
able to perform type inference on the simply typed lambda calculus.

3 Data set for Type Inference

Recall that we train a transformer to explore arguably the most fundamental
relationship between terms and types: can a model infer the type of a simply
typed lambda calculus term? (i.e., learning to do type inference). In particular,
we train a transformer on a synthetic data set we generated. In this section, we
describe the synthetic data set generation with some concrete data examples.

3.1 Synthetic Data Set Generation

When generating a synthetic data set of the simply typed lambda calculus, we
need to have a typing environment Γ with base variables and base types as

4

explained in section 2.2. In our experiments, we had the initial context with a
single vase variable x with base type T, giving the context

Γ = {x : T} (2)

Dataset generation: To generate a single instance in the dataset, we
generate a random type τ and then proceed to generate a term e with that
type. This process is trivial in simply typed lambda calculus because one only
needs to inspect the constructors of the Abstract Syntax Tree (AST) of the
term, but it is undecidable in general [25].

In addition, we have all terms to be bounded according to the depth of their
AST.

Random type generation: Input: To generate types we need: a list
of valid base types from the global context Γ, the maximum allowed depth for
any type and the probability distribution for when to generate a base type or
to branch and thus continue recursively generating a type. Output: A list of
types. Note that a data set might have repeated types, but we do not allow an
intersection of repeated types between the train, validation and test sets.

When recursively generating a type, we first flip an unbiased coin whether
we should branch (and thus recursively keep building a deeper term) or return
a base type. If our coin flip suggests branching and recursively keep building
a tree, we first check if we have reached the maximum depth - if we have, we
instead return a base type instead of recursively building a deeper term. If we
choose to branch, then it means we will create an application type and proceed
to generate the left and right part of the arrow type recursively as described.
Note that we can do not always generate complete binary tries because we have
some probability of continuing deepening the term or stopping to return for that
subtree a base type.

Random term generation: Input: To generate a random term, we
receive as input the desired type τ , the (current) dynamic context γ′ (which
starts off as the global context Γ), the probability distribution for branching and
the maximum allowed depth for any term. Output: We output a single term e
of this type τ . To generate a term, we begin by inspecting what sort of type τ
is and accordingly (randomly) build a term of that type. Note that every time
we generate an abstraction, we make sure to add the bounded variable to the
context so that the right context is always available. We call this the (current)
dynamic context Γ′, and it starts being equal to the global context with the
base variables and their types. Our implementation makes sure that binding
rules apply as normal when there are name clashes for nested abstractions. For
example, if there are two variables named y , then an abstraction closer to
the root would be overwritten by an abstraction created later (deeper) in the
lambda term. When generating a term, there are two main cases to consider:

1. if the given type τ is a base type, or
2. if τ is an arrow type τ ′ → τ ′′ (for an abstraction).
In the first case (when τ is base type), then we have two options,
a. to generate a term by choosing a variable from the current dynamic

context Γ′ with that type, or

5

b. (recursively) generate an application - of the form eleft(eright) - that
would eventually return the desired type τ when evaluated. To do this we
generate a new type τ ′ → τ for eleft and then recursively generate a eleft term
with this type. Then we recursively generate a term eright with type τ ′. Given
those two, we return an application term of the form eleft(eright). For case 1,
we decide to branch according to 1.a. or 1.b. with uniform probability and if at
any point we reach the maximum depth, then we do 1.a. to avoid making the
term deeper.

Now we proceed to describe how to take care of case 2. - when we need
to generate a term of type τ ′ → τ ′′. In this case, we have four options when
generating a term of such type:

a. we can choose a variable in the dynamic context Γ′ of that type - if there
is one (e.g., it could have been added when creating an abstraction).

b. we choose to create a new abstraction that directly has that type τ ′ → τ ′′

c. we choose to create an application that if evaluated it ultimately returns
a term of type τ ′ → τ ′′

d. the current depth of the term has reached the limit - so we choose to
return a variable from the dynamic context or an abstraction of depth 1.

We choose options 2.a., 2.b., or 2.c. uniformly at random. Step 2.c. proceeds
identically to step 1.b. except that the overall term returned is of type τ ′ → τ ′′.

To create an abstraction for step 2.b. we need to create a bound variable
and its body. The bound variable is created such that we do not reuse a name
from the base variables - if this were to happen, it would be like having a name
like 1 disappear from the global context, which would be fatal. Besides that,
we can create any string that has already been used or a fresh variable with
uniform probability over all these valid names. To create its body, we simply
create a term recursively using the procedure outlined in this section, with the
input type being τ ′′.

We proceed to give a few concrete examples of possible data points (x, y),
where x is the term and the target type to infer is y in context Γ = {x : T}.
Example 1:

(x, y) = (x, T)

In this example, the term is the base variable x with base type T.
Example 2:

(x, y) = (x0 : T.x, T→ T)

This example shows a lambda abstraction with bound variable x0 with type
T. The lambda abstraction returns the base variable x for any term of type T.
Thus, the overall type is T→ T.

Example 3:
(x, y) = ((λ.x0 : T.x)x, T)

In this second example, the term is the application of the lambda abstraction
from the previous example - applied to the base variable x. Since this lambda
abstraction always returns the base variable x for any argument, it always has
the T.

6

Example 4:
(x, y) = (λx0 : T→ T.x, (T→ T)→ T)

This example shows a lambda abstraction with bound variable x0 with type
T → T. In particular, notice that the argument is explicitly a function type
from the base type to the base type T. Since the body always returns the base
variable x, the resulting type is from the input type T → T to the output type
T.

Example 5:

(x, y) = ((λx1 : T.(λx2 : T→ T.x2)x)(λx0 : T.x0), T→ T)

This is a slightly more complex data example, where we apply the lambda
abstraction (λx1 : T.(λx2 : T→ T.x2)x) to the argument (λx0 : T.x0). Observe,
however, that the term λx1 : T.(λx2 : T→ T.x2)x evaluates to λx2 : T→ T.x2 for
any argument of type T. Therefore, overall, example 5 applies the function
λx2 : T→ T.x2 to the argument (λx0 : T.x0) which results with a type T→ T.

As a final remark, we want to remind the reader that the initial global
environment was Γ = {x : T} - so all our simply typed lambda terms have a
single base type T.

4 Model Architecture

Our model consists of a standard transformer [13] model that predicts rules from
a grammar to generate types for simply typed lambda calculus terms. Motivated
by the rich syntactical structure information contained in formal languages, our
model takes in a preprocessed sequence representation of the CST of the inputs,
instead of the raw sequence of tokens from the text. Since we are predicting the
type given a term, the encoder takes in the preprocessed sequence representation
of the term and the decoder takes in the standard right-shifted preprocessed
sequence representation of the type. The model had an embedding dimension
of size 1024, the transformer had 3 layers for both the decoder and encoder.

4.1 Preprocessing of names and the open vocabulary prob-
lem

Before producing a sequence representation of the CST, we preprocess the name
inside the terms as described in this section. First, we motivate this preprocess-
ing. In program synthesis there does not exist a closed vocabulary as in natural
language. For example, programs can have arbitrary names for variables, func-
tion, types, or any object. To avoid having to solve this challenging open prob-
lem in our experiments, we assume there is a fixed global context that allows us
to know in advances all the symbols that can be seen by our model. Therefore,
we only use 32 different bound variable names to keep our closed vocabulary
assumption true. In addition, all bound variables have been preprocessed such
that they are renamed according to their Breadth-First Search (BFS) ordering

7

in the CST. Therefore, we modify the grammar before training (and inference)
and replace the regular expressions in our grammar (in section 8.1) with the
names from the global context - namely Γ = {x : T} - and the new unique 32
BFS variable names. With this machinery in hand, we proceed to explain how
we create the input CSTs to the encoder and decoder of our model.

4.1.1 The CST input to the Encoder and Decoder

Input to Encoder: The encoder takes in a sequence of tokens from the BFS
traversal of the CST from a simply typed lambda calculus term. To produce
a sequence of tokens, we traverse the CST of the term in BFS order using the
edge symbols and node symbols. The node symbols are non-terminals from the
grammar for intermediate nodes, and terminal symbols for the leaf nodes. In
addition, we append the special tokens “sos”, “eos” at the start and end of the
sequence for each term in a batch. Finally, we add the positional embedding
from the original transformer [13] to the input sequence. In an input batch to
the encoder, the terms might have different lengths. To address this, we append
a pad token to the shorter term sequences up to the longest term sequence in
a batch. During training and inference, these pad tokens are masked and never
affect the output of the model. Note that a traversal ordering (e.g., BFS for us)
of the sequence is required if one wants to use an autoregressive model (like the
transformer) that takes in a sequence as input - instead of a more structured
input like a CST.

Input to Decoder: We follow the same input format to the decoder as
in the standard transformer [13]. In particular, since it is trying to predict a
sequence of grammar rules for the type - it therefore takes in the right-shifted
sequence of embeddings for grammar rules. To generate this input, we produce
a sequence of grammar rules from the BFS traversal of the CST of the target
type. Note that a traversal like this is forcibly required when transforming a
structured input like a CST into a sequence compatible with an autoregressive
model. Then we right-shift the sequence according to a single token and then
append the special tokens “sos”, “eos” at the start and end of the sequence
for each target type in a batch. Similarly, as in the encoder input, we append
the pad token to address the variable length of types and mask accordingly to
avoid the output of the model from being affected. We also apply the positional
embedding from the original transformer [13] to the input sequence.

Remarks on the presence of types in the input term: We would like
to emphasize that the types for the bound variables of the lambda abstractions
are not hidden from the model. This information is essential for the task of
type inference to not be ill-posed. Without this information it is impossible to
solve the type inference problem with further distributional assumptions, e.g.,
our data comes from terms produced by humans. Therefore, types are present
in the input term to the encoder.

8

4.2 Encoder and Decoder stacks

We use the PyTorch API [26] for our transformer’s encoder and decoder layers,
and thus all layers are present exactly as described by the original authors
[13]. We depict this abstraction in figure 1 and chose to only make explicit
the positional encoding - because of different ablation experiments we do. For
further details, we refer the readers to the original transformer paper [13] and the
PyTorch API [26]. The hyperparameters used for results in tables and figures
were: 1024 for all embedding dimensions, 3 for the number of layers for both the
encoder layer and decoder layer, and 0.1 dropout rate. The hyperparameters
used for results in tables and figures were: 256 for all embedding dimensions, 1
for the number of layers for both the encoder layer and decoder layer, and 0.1
dropout rate.

4.3 Grammar Rule Prediction

We predict the ID of grammar rules of the types from the lambda calculus
after the type grammar in equation 1 has been preprocessed with the allowed
base types from the global context. For us this global context is Γ = {x : T}.
Note that in practice the two grammars are present in a single grammar as in
section 8.1 - since the terms are simply typed the term grammar contains the
type grammar. To predict the grammar rules, we follow the information flow
depicted in figure 1 in our model and use the decoder’s last feature layer as
input to a linear layer that predicts the ID of the grammar rule for types.

4.4 Training

To train our model, we convert the target type into a rule sequence in BFS
ordered. We compute the loss by computing the cross-entropy loss of the model’s
predicted rule sequence and the rule sequence of the target type. Recall that
the focus of this work is the study of the different behaviors of optimizers with a
wide variety of hyperparameters. Therefore, the optimizers we used are: Adam,
RAdam [14] and Adafactor [16]. The experiment section 5 outlines the different
ablation studies and hyperparameters we use for our training experiments.

4.5 Inference - Type Synthesis

For the synthesis of types, we go through the model’s predicted distribution of
rule sequences and synthesis a type greedily by choosing the ID of the most likely
grammar rule. When we synthesize types, we expand the model’s predicted rules
in BFS order, since the model was trained with sequences ordered in this way.
If at some point during synthesis, a pair of rules in the predicted grammar
sequence could not have been applied in BFS order - we predict the dummy
error type. For more details, refer to algorithm 1.

9

Algorithm 1 Greedy Synthesis of Types in BFS order

1: Input: batch of terms B to synthesize types of length |B|
2: τ = [] initialize the empty list to hold the predicted batch of types.
3: for b = 1, 2, ..., |B| do
4: Tb = get a term from a batch of terms B with index b
5: Rb = get the predicted rule sequence Rb for the term Tb
6: Gb = [] initialize an empty list to hold the greedy rules from Rb

7: for t = 1, 2, ..., |Rb| do
8: pb,i = get distribution of possible rules for the current type inference

step t
9: r̂b,t = argmaxr∈1,2,...,|pb,i|{pb,t[r]} i.e., get the most likely rule for

this time step t for the current term Tb
10: Gb[t] = rb,t i.e., store the greedy rule to predict in time step t
11: end for
12: τb = generate type by applying the greedy rules from Gb in BFS order.

If a rule cannot be applied with respect to the previous rule in BFS order
skip this type and append the dummy error type.

13: τ [b] = τb append the predicted type τb to the list of types.
14: end for
15: Return: batch of predicted types for input terms τ

5 Experiments

In this section, we present the evidence to support our conclusion that we solved
the extensive hyperparameter search problem for training transformers to solve
the type inference problem - by using the Adafactor optimizer.

5.1 Is the warm-up phase important for transformers for
learning to predict simple types?

The literature on transformers has a strong emphasis on the importance of
choosing an appropriate warm-up phase for stable learning [12, 13, 14, 15, 16].

The warm-up phase is an initial period of training where the learning rate
starts at zero and is increased to a target value. In this section, we explore the
importance of the number of warm-up steps with various learning rates using
Adam [27]. Main results for this subsection are in table 1.

From table 1 we can see that as the number of warm-up steps is varied,
the training accuracy of the transformer does not change. In particular, for a
learning rate of 10−5 we notice the model stays at perfect prediction no matter
the number of warm-up steps. For a learning rate of size, 10−4 we can see that
the model achieves good performance on most runs but not perfect accuracy
compared with the 10−5 - suggesting that a good choice of learning rate is
more important than having a warm-up phase. For the largest learning rate of
size, 10−3 one would expect the biggest benefit from a warm-up phase, but the
performance of the model gets capped at 0.31 - even when having a long warm

10

Train Accuracy
number warm-up steps lr=10−3 lr=10−4 lr=10−5

0 0.31 0.95 0.99
2,000 0.089 0.93 0.99
4,000 0.27 0.76 1.0
10,000 0.31 0.97 0.99

Table 1: Results showing the role of the number of warm-up steps on the
training accuracy. We train our transformer model shown in figure 1 with token
embeddings from CSTs with only positional encoding - as described in section
10.1.1. Our model was trained with batch size 128 for 80, 000 iterations for 2
days and 4 hours. Our model had an embedding dimension of size 1024, the
transformer had 3 encoder and decoder layers.

up phase of 10, 000 steps. Note that 2, 000 iterations of warm up is in line with
the suggestions from previous work [15] - suggestion a warm-up of 2(1− β2)−1

(where β2 = 0.999 is the hyperparameter of the second moment from the Adam
optimizer [27]).

These experiments suggest that choosing a good learning rate seems sufficient
for a transformer to learn to do type inference.

5.2 Does RAdam fix the convergence issues?

Motivated by the big emphasis in the literature on a warm-up phase [14, 12,
13, 15] and complexity of tuning warm-up hyperparameters we tested Rectified
Adam (RAdam) - an optimizer that claims to fix the high variance problem of
Adam at the beginning of training [14].

Train Accuracy
number of warm up steps lr=10−3 lr=10−4 lr=10−5

0 training diverged 0.91 1.0
2,000 - 0.96 0.99
4,000 - 0.80 1.0
10,000 - 0.96 0.99

Table 2: Results showing the role of number of warm-up steps on the training
accuracy with RAdam [14]. We train our transformer model shown in figure 1
with token embeddings from CSTs with only positional encoding - as described
in section 10.1.1. The model was trained with batch size 128 for 80, 000 iterations
for 2 days and 4 hours. The model had an embedding dimension of size 1024,
the transformer had 3 layers for both the decoder and encoder. The table entries
for a learning rate of 10−3 with warm up steps of 2000, 4000 and 10, 000 were
not run. We choose to do this since the warm-up would increase the learning
rate and would likely lead to similar training divergence.

11

From table 2 we see that RAdam behaves similarly to Adam with or without
a warm-up phase. This is not surprising because RAdam is supposed to fix the
initial instability of training. However, the evidence from table 1 suggest that
a warm-up phase does not provide a bit of stability of our task. This suggests
that RAdam would not have a big impact either. This is highlighted by the fact
that when no warm-up schedule is used (row 1 of table 2) - the model diverges
and then the model fails to get perfect accuracy until the right learning rate is
found.

We did not try in depth experiments with 10−3 because the consistently
training diverged for us. To address this issue, we did try decaying the learning
rate with two different decay schedulers with RAdam. We tried a decay sched-
uler (with no warm-up) that decayed when the training loss was on a plateau,
and this did not help convergence. In another experiment, we used the expo-
nential decay, decaying every epoch. This did not help either. Neither of the
approaches solved the divergence issues for a learning rate of 10−3. But further
experiments would be interesting.

We would like to emphasize that in addition to choosing the learning rate
when training transformers, one also has to choose the number of steps to train
Adam or RAdam as an additional hyperparameter choice. In addition, this
hyperparameter interacts with the number of warm-up steps - complicating the
choice of both hyperparameters.

5.3 Experiments with Adafactor

Motivated by the difficulty to train our model to achieve perfect train accuracy
by Adam and RAdam on a small dataset, we tested Adafactor [16, 28] on our
task. To check the robustness of Adafactor, we also provide additional experi-
ments with different variants of the model in table 3. We describe these variants
in the appendix section 10.

The training succeeded in all these settings and reached perfect train accu-
racy within 2-3 hours with smooth learning curves - similar to the ones shown
in 5.4. To see the effect of an annealing scheduler on the learning rate, we used
the default Adafactor scheduler and found that this allowed a 2.5-fold speed up
to reach the same train accuracy. When calling the scheduler every epoch, the
training time decreased from 10 hours to 2-4 hours.

12

embedding method train accuracy validation accuracy iter/sec runtime
token (nlp) 1.0 0.99 0.2 1.7 hours

path + fchar 1.0 0.99 0.2 2.1 hours
Depth Embed + DERI 1.0 1.0 0.2 2.4 hours

Table 3: Results showing the success of training a model with Adafactor [16]
with different methods to embed the lambda calculus terms. We choose the
setting as outlined in the documentation for the Hugging Face Adafactor [28]
with a scheduler called every epoch. In this case, it means we called it every 78
iterations for our task. Note, that the models also converge without a scheduler,
but it took about 10 hours instead of about 2h. We trained the transformer
model as described in figure 1 with different embeddings as outlined in the
first column. The first row (nlp) refers to a pure token model as used in NLP
described in section 10.1.1. The second row (path+fchar) denotes a model that
embeds the path as described in section 10. The third row (Depth Embed +
DERI) denotes a depth embedding according to the parent grammar rule that
generated the token, as described in section 10. The model was trained with
a batch size 128 until it reached perfect training accuracy. The model had an
embedding dimension of size 1024, the transformer had 3 layers for both the
decoder and encoder.

We would also like to highlight that our model had perfect validation
accuracy. Suggesting that the model generalizes perfectly when the terms used
for training and testing have the same fixed depth. However, we conjecture that
search methods (like beam search) will be needed when testing for systematic
generalization. For example, when the terms in the validation set have a larger
depth size than the depth of terms used to train the model.

5.4 Comparison of Adam’s and Adafactor’s Learning curves

Motivated to understand the difficulty of training the transformer model in
figure 1, we analyze the learning of the successfully trained experiments depicted
in figure 5.4. The main observation is that Adafactor [16] with an annealing
scheduler is able to train in just 2.17 hours, while it took 1 days and 15 hours
to train the same model with Adam using a linear warm-up phase. We chose
the annealing scheduler rate according to the following equation

scheduler rate = min(one epoch, 2(1− beta 2)−1)

which resulted in calling in scheduler rate of every epoch. Note, however,
that even without an annealing scheduler, our transformer could train success-
fully but took about 10 hours instead.

13

Figure 2: Adafactor reaches perfect train accuracy 11 times faster
than Adam. Both optimizers were trained until perfect accuracy on the train-
ing set was achieved. Adafactor used the default scheduler provided by Hugging
Face [28] and Adam used a linear warm-up schedule. The learning rate 10−5

for Adam and Adafactor used the default Hugging Face [28] hyperparameters,
which included no search for a learning rate for us. No hyperparameter - ex-
cept calling the scheduler every epoch - was done for Adafactor. Adafactor was
trained for 7, 821 iterations until it got perfect accuracy with its scheduler being
called every two epochs - in this case around 146 iterations. Adam was trained
for 224, 439 iterations until it got perfect accuracy in 1 day 15 hours 43 min-
utes. Adafactor was trained for 7, 821 iterations until it got perfect accuracy in
2 hours 10 minutes. Note that we did try annealing schedules on Adam with no
success on beating Adafactor.

5.5 Hardware and framework parameters

All times are reported with respect to a measurement performed on a single
IBM Research Cluster virtual node using 1 GPU (NVidia Tesla P100 with 16
GB GPU RAM) and 16 virtual CPU cores (Intel Xeon Platinum 8260 (R) at
2.40GHz with 118 GB CPU RAM). The implementation used PyTorch 1.9.1
[26]. We also used the ultimate-utils library [29] – a utils library for machine
learning – to support our PyTorch model and training implementations.

6 Discussion

In this paper, we solved the extensive hyperparameter search problem when
training transformers to learn type inference by using the Adafactor optimizer
[16]. This approach has a number of benefits: a) it can get a 2.5-fold speed up
by adding an annealing scheduler called every

scheduler rate = min(one epoch, 2(1− beta 2)−1)

(in this work every epoch) b) the method works even without a scheduler

14

and one only has to track when the model has obtained perfect accuracy (or
has converged). In addition, the original authors of the Adafactor optimizer
designed it such that it uses sublinear memory - an especially valuable feature
in the era of huge language models. In addition, due to the difficulty to choose
hyperparameters, Adafactor has the ability to speed up the research process
and recommend practitioners to use it without a scheduler out of the box with
transformers. The choice of Adafactor over Adam is highlighted, that the hy-
perparameter search for Adam - in particular the number of iterations - was
guided using experiments that had already succeeded with Adafactor. To our
surprise, we found RAdam to diverge more than Adam and do not recommend
it for our model and task.

Finally, we conjecture that training on programming language tasks - like
type prediction - has a different optimization landscape compared to training
on natural language. We hypothesize this is the case because when one changes
a single token of a term, this leads to completely different semantics, while
changing a single token of a sentence in natural language often only makes the
sentence awkward. Our evidence suggests that, even, training a transformer on
the simplest of tasks - predicting the type of a simply typed lambda calculus
term - requires careful optimization. Independently, related work discovered the
difficulty of training transformers of formal rules and called their observation
the “Grokking effect”. They observed that after long periods of training, the
transformer model can go from random chance to perfect generalization. Based
on our evidence, we conjecture that Adafactor might be able to resolve this and
suggest it for future work. In addition, we conjecture that even with Adafactor,
the transformer is unlikely to exhibit systematic generalization and truly learn
the underlying rules and generalize to predict terms with larger depth than it
was trained on.

7 Related Work

The incorporation of unique learning schemes to train transformers on natural
language tasks can be observed since the original transformer [13] which used
the following learning rate scheme:

lrate = 0.0325 ·min(step num−0.5,
step num

252982
)

This corresponds to increasing the learning rate linearly and then decreasing
it inversely proportional to the square root of the step number.

Later work investigated the need for the warm-up stage and identified the
high variance in the adaptive learning rate [14] with their RAdam optimizer.
However, later work showed that the variance of the adaptive learning rate,
although divergent, does not result in a divergent update term [15]. This new
follow-up work suggests that the number of warm-up steps of 2 · (1 − β2)−1.
However, our experiments show that the number of warm-up steps does not
affect the convergence of the model in our task, but instead the type of optimizer

15

used or using low learning rate with long training is sufficient. Our evidence
suggests that the difficulty of training transformer-based models for learning
formal rules - named “Grokking” by previous work [18] - could be avoidable by
using the Adafactor optimizer [16] and suggest practitioners and researchers to
try it first. Finally, the Adafactor [16] optimizer was designed with the objective
of having a sublinear memory footprint for transformers, and our experiments
show that this optimizer results in a nice stable optimizer with only 1 potential
hyperparameter to tune. Future, work could test Adafactor’s stability with a
larger set of programming language challenges for the transformer.

Acknowledgments

We’d like to thank Tejas I. Dhamecha at IBM for sharing their experience
in training Transformer neural networks and discussions over slack during the
summer of 2021.

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classi-
fication with Deep Convolutional Neural Networks.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2016-
December:770–778, dec 2015.

[3] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding. NAACL HLT 2019 - 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies - Proceedings of the Conference, 1:4171–4186, oct 2018.

[4] GPT models explained. Open AI’s GPT-1,GPT-2,GPT-3 — Walmart
Global Tech Blog.

[5] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of Go with deep neural networks and tree search. Nature
2016 529:7587, 529(7587):484–489, jan 2016.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with
Deep Reinforcement Learning.

16

[7] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, Yang Gao, Ts-
inghua University, U C Berkeley, Shanghai Qi, and Zhi Institute. Mastering
Atari Games with Limited Data. oct 2021.

[8] Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep
Network Guided Proof Search. 46:85–63, jan 2017.

[9] Ashwin K. Vijayakumar, Dhruv Batra, Abhishek Mohta, Prateek Jain,
Oleksandr Polozov, and Sumit Gulwani. Neural-Guided Deductive Search
for Real-Time Program Synthesis from Examples. 6th International Con-
ference on Learning Representations, ICLR 2018 - Conference Track Pro-
ceedings, apr 2018.

[10] Yifan Xu, Lu Dai, Udaikaran Singh, Kening Zhang, and Zhuowen Tu. Neu-
ral Program Synthesis By Self-Learning. oct 2019.

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott
Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes,
Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evalu-
ating Large Language Models Trained on Code.

[12] Tutorial 6: Transformers and Multi-Head Attention — UvA DL Notebooks
v1.1 documentation.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems, volume 2017-
Decem, pages 5999–6009. Neural information processing systems founda-
tion, jun 2017.

[14] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu,
Jianfeng Gao, and Jiawei Han. On the Variance of the Adaptive Learning
Rate and Beyond. aug 2019.

[15] Jerry Ma and Denis Yarats. On the adequacy of untuned warmup for
adaptive optimization. oct 2019.

[16] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive Learning Rates
with Sublinear Memory Cost. 35th International Conference on Machine
Learning, ICML 2018, 10:7322–7330, apr 2018.

17

[17] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang.
TreeGen: A Tree-Based Transformer Architecture for Code Generation.
Technical report.

[18] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant
Misra. Grokking: Generalization beyond overfit-ting on small algorithmic
datasets.

[19] Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Au-
tomated Theorem Proving. sep 2020.

[20] Markus N Rabe, Google Research, Dennis Lee, Kshitij Bansal, and Chris-
tian Szegedy. Mathematical Reasoning via Self-supervised Skip-tree Train-
ing. Technical report.

[21] Kaiyu Yang and Jia Deng. Learning to Prove Theorems via Interacting
with Proof Assistants. 2019-June:12079–12094, may 2019.

[22] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. ML typability is dexptime-
complete. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 431
LNCS:206–220, 1990.

[23] Harry G. Mairson. Deciding ML typability is complete for deterministic
exponential time. Conference Record of the Annual ACM Symposium on
Principles of Programming Languages, pages 382–401, 1990.

[24] Harry G Mairson. Linear lambda calculus and PTIME-completeness.

[25] Adam Chlipala. Certified Programming with Dependent Types. Technical
report, 2019.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imper-
ative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[27] Diederik P Kingma and Jimmy Lei Ba. ADAM: A METHOD FOR
STOCHASTIC OPTIMIZATION. Technical report.

[28] Optimization — transformers 4.7.0 documentation.

[29] Brando Miranda. The ultimate utils library for machine learning and arti-
ficial intelligence, 2021.

18

8 Appendix

8.1 Lambda Calculus Grammar

Here we present the lambda calculus grammar in EBNF format using the Lark
Python syntax used in our code. Recall that this grammar gets expanded into
a closed vocabulary by appending 32 bound variables in addition to the global
context. White spaces and parenthesis are ignored as tokens in accordance to
our grammar. The result grammar results in the following1

term : "lambda" term ":" type "." term

| "[" term term "]"

| /[A-Za-z0-9_]+/

type : type "->" type // "->"

| /[A-Za-z0-9_]+/

IGNORE_TOKENS : "(" | ")"

%import common.WS

%ignore WS

%ignore IGNORE_TOKENS

Note that the grammar for terms and types is intertwined because the terms
have type annotations.

9 Type inference in Simply Typed Lambda cal-
culus

To infer the type of a simply typed lambda calculus term e with the context
Γ, one traverses the AST of term and builds the type recursively according to
the constructor sort at each level of the AST of e. Overall, the process for type
inference is outlined in algorithm 2.

10 Variations on Positional Encoding for CSTs

To test the robustness of Adafactor we also augment the initial input sequence
form the CSTs with additional structural information - similarly to how the
TreeGen model [17] does. We do this in two ways: 1. by providing an embedding
of tokens for the CST based on the path to each token in the CST and, 2. by
using a depth encoding layer in addition to a positional encoding layer We review
these methods, provide the motivation for them, and clarify our adaptation for
our robustness experiments.

1https://github.com/FormalML/type-parametric-synthesis/blob/master/tinfer/

simply_type_lambda_calc.ebnf

19

https://github.com/FormalML/type-parametric-synthesis/blob/master/tinfer/simply_type_lambda_calc.ebnf
https://github.com/FormalML/type-parametric-synthesis/blob/master/tinfer/simply_type_lambda_calc.ebnf

Algorithm 2 Type inference for Simply Typed Lambda Calculus

1: Definition infer type(e, Γ):
2: Input: e input term we want to infer the type. Context Γ with term-type

pairs x : τ .
3: if term e is a V ariable then
4: τe = Γ.get type(e)
5: Return: τe
6: else if term e = λx : τ.body is an Abstraction then
7: Γ′ = Γ ∪ {x : τ}
8: τabs = infer type(body,Γ′)
9: Return: τabs

10: else term e = (eleft)eright is an Application then
11: τleft = infer type(eleft,Γ)
12: τright = infer type(eright,Γ)
13: τapply = τleft → τright
14: Return: τapply
15: end if

10.1 Motivation

Our initial experiments revealed the unexpected challenge to train transformers
to learn to do type inference. We discovered that the Adafactor optimizer
was a surprisingly effective strategy to train our model. To test if this was
true in general in our setting, we decided to test our model with Adafactor
but incorporate variations in the way to embed the input model - to test the
robustness of Adafactor. Table 3 of our main results show that indeed the model
remained robust, but there were no improvement in the convergence time.

10.1.1 Variations to the Encoder and Decoder inputs

Path embedding method: Motivated by the fact that using BFS ordering of
symbols to produce sequences loses structural information about the term, we
implement path embeddings similar to [17]. This method replaces each node in
the CST with the path to that node - to encode this structural information in
the tokenization of the input. A path is the sequence of symbols visited when
traversing to a specific node in the CST - including the symbol of the final
visited node. Therefore, we embed tokens using the paths to their nodes using
a feed forward neural network - similar to the one described in [17]. The path
embedding computation is

embed(xpath) := FFD[x1; . . . ;xL] (3)

where FFD is feed-forward network with trainable weights where L is the max-
imum length of a path, xi is the embedding of the symbol in the path The
FFD outputs path embeding in RM Here by [x1; ...;xL] we denote the row-wise
concatenation operation for character vector embeddings. In particular, given a

20

list of L column vectors, the ; concatenation operation stacks them. Therefore,
if xi ∈ RD then the matrix [x1; ...;xL] is in RL×D.

We set L = 13 in our experiments since a path of length 13 allows for a
reasonably interesting terms - in the case of binary trees it allows terms with
about 8, 192 nodes. For paths shorter than L, we pad them with a special “pad”
token which eventually gets masked and doesn’t affect the prediction of the
model. Note that path embeddings are analogous to using character embeddings
in NLP. In NLP, they replace the tokens with the individual characters that
compose that token and then embed it. Analogously, we replace each token
with the path to the node corresponding to that token.

Depth embedding method: Unfortunately, the path embedding method
is expensive since it embeds each token using a sequence of symbols - analogous
to character embeddings for words in natural language. Since it is not always
easy to fully vectorize the code for path embeddings, we instead experiment
with depth embeddings as a way to inject structural information into the input
sequence (similar to [17]).

Assume we have length L the BST sorted sequence of embeddings vectors
for a CST xcst seq = [xtoken1

, . . . , xtokenL
] with embedding size D. We have

xcst seq ∈ RL,D. Then the depth embedding DE for this sequence is the
embedding sequence using the parent of each token in the CST. Therefore,
DExcst seq

= [DEtoken1
, . . . , DEtokenL

] ∈ RL,D. Then we proceed to add this
sequence vector to xcst seq - the same way one would add the positional embed-
ding:

xseq = [xtoken1 , . . . , xtokenL
] + [DEtoken1 , . . . , DEtokenL

] (4)

where xtokeni
∈ RD is the embedding of the tokeni and DEtoken1

∈ RD is the
embedding of the parent of tokeni in the CST. In addition, we always add the
usual positional encoding proposed in the original transformer model [13].

21

Transfomer
Encoder

+

Transfomer
Decoder

+

Grammar
Prediction
Layer

Positional
Embedding
(with Optional
Depth
Embedding)

Positional
Embedding
(with Optional
Depth
Embedding)

Token (or Path)
Embeddings

Token (or Path)
Embeddings

Batch of Lambda Calculus
Terms CSTs

Batch of (Tight Shifted) Types
as Rule Sequences

Predicted Rule
Sequence for Types

Figure 1: Our transformer model for simply typed lambda calculus.

22

	1 Introduction
	2 Background
	2.1 Transformers
	2.2 The Simply Typed Lambda Calculus
	2.3 Type Inference

	3 Data set for Type Inference
	3.1 Synthetic Data Set Generation

	4 Model Architecture
	4.1 Preprocessing of names and the open vocabulary problem
	4.1.1 The CST input to the Encoder and Decoder

	4.2 Encoder and Decoder stacks
	4.3 Grammar Rule Prediction
	4.4 Training
	4.5 Inference - Type Synthesis

	5 Experiments
	5.1 Is the warm-up phase important for transformers for learning to predict simple types?
	5.2 Does RAdam fix the convergence issues?
	5.3 Experiments with Adafactor
	5.4 Comparison of Adam's and Adafactor's Learning curves
	5.5 Hardware and framework parameters

	6 Discussion
	7 Related Work
	8 Appendix
	8.1 Lambda Calculus Grammar

	9 Type inference in Simply Typed Lambda calculus
	10 Variations on Positional Encoding for CSTs
	10.1 Motivation
	10.1.1 Variations to the Encoder and Decoder inputs

