Using Machine Learning to Find Hackers and Malware By Sam Triolo # What are we looking for and where are they? - * Who are we looking for? - * The Bad Guys - * Hackers - * Malware - * How do we find them? - * Unsupervised K-means - * Outliers - * Unusual group membership - * Supervised K-means to tune and alert going forward ## Tools Used / Data Collected - * Vbscript - * Microsoft Active Directory Login Successful (4624) and Login Denied (4625) event data - * Python - * ETL above data - * MongoDB - * Scikit-learn machine learning K-means - * Ipython data visualization - * Bokeh remote, interactive visualization ### Features / Analysis - * Six features were used for analysis - * unique destination logins (i.e. a set) - * total logins (any login to any host of any kind) - * w2s (workstation to server) logins, s2w logins, w2w logins, and s2s logins (determined by IP and hostname conventions) ### Data Visualization #### Conclusion - * By grouping users based on usage patterns, users of a certain type (e.g. a non-technical user) who's usage patterns more closely grouped them with a different type (e.g. a system administrator) would recommend further investigation - * Users who were outliers within their own group (i.e. unusual behavior within that group) would also recommend further investigation #### References - * Simple k-means example: http://mnemstudio.org/clustering-k-means-example-1.htm - * Windows event reference: https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx?i=j - * Statistics courses: https://onlinecourses.science.psu.edu/statprogram/programs