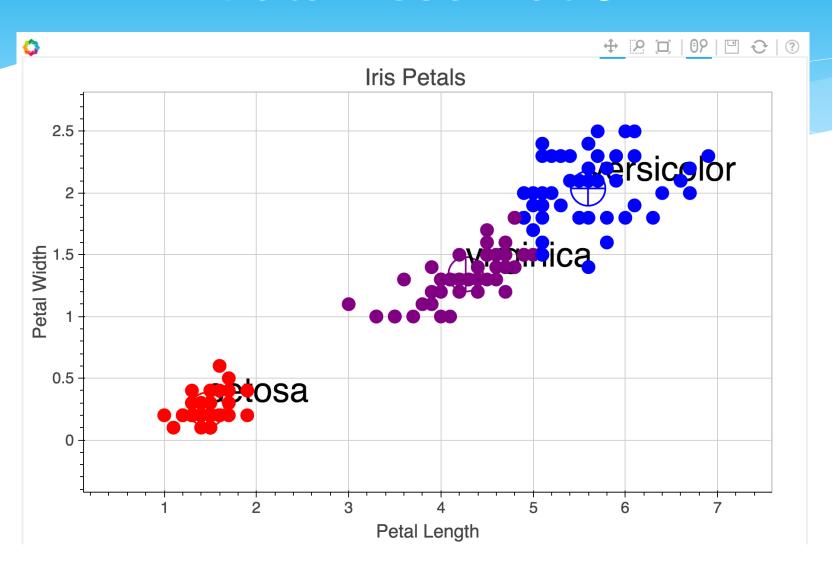
Using Machine Learning to Find Hackers and Malware

By Sam Triolo

What are we looking for and where are they?

- * Who are we looking for?
 - * The Bad Guys
 - * Hackers
 - * Malware
- * How do we find them?
 - * Unsupervised K-means
 - * Outliers
 - * Unusual group membership
 - * Supervised K-means to tune and alert going forward


Tools Used / Data Collected

- * Vbscript
 - * Microsoft Active Directory Login Successful (4624) and Login Denied (4625) event data
- * Python
 - * ETL above data
- * MongoDB
- * Scikit-learn machine learning K-means
- * Ipython data visualization
 - * Bokeh remote, interactive visualization

Features / Analysis

- * Six features were used for analysis
 - * unique destination logins (i.e. a set)
 - * total logins (any login to any host of any kind)
 - * w2s (workstation to server) logins, s2w logins, w2w logins, and s2s logins (determined by IP and hostname conventions)

Data Visualization

Conclusion

- * By grouping users based on usage patterns, users of a certain type (e.g. a non-technical user) who's usage patterns more closely grouped them with a different type (e.g. a system administrator) would recommend further investigation
- * Users who were outliers within their own group (i.e. unusual behavior within that group) would also recommend further investigation

References

- * Simple k-means example: http://mnemstudio.org/clustering-k-means-example-1.htm
- * Windows event reference:

 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx?i=j
- * Statistics courses: https://onlinecourses.science.psu.edu/statprogram/programs